1
|
Simons J. Observations on the Electronic Character of Anions and Cations near Water Liquid/Vapor Interfaces. J Phys Chem A 2024; 128:8436-8445. [PMID: 39292537 DOI: 10.1021/acs.jpca.4c04694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
In recent years, many researchers have become interested in chemical reactions, photon-induced processes, and other events taking place at or near aqueous liquid/vapor or ice/vapor interfaces. Such studies relate to a wide variety of atmospheric, oceanographic, and environmental issues. Near these interfaces, atomic and molecular anions and cations display quite different behaviors than when they are fully solvated in the bulk medium. When they exist near an interface, some cations capture an excess electron to produce new neutral-molecule electronic states. Some such cations can use an attached electron to assist in hydrolyzing one of their first-solvent-shell molecules. Anions residing near an interface are less solvent-stabilized than when in the bulk, causing their electron binding energies to decrease as they approach an interface, as a result of which their ability to act as reducing agents increases. Many multiply charged anions even become electronically metastable with respect to electron loss near an interface. Thus, for both cations and anions, it is important to develop tools for characterizing their varying electronic-state nature as they migrate between bulk solvation and liquid-vapor interface positioning.
Collapse
Affiliation(s)
- Jack Simons
- Chemistry Department and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Heller J, Cunningham EM, Hartmann JC, van der Linde C, Ončák M, Beyer MK. Size-dependent H and H 2 formation by infrared multiple photon dissociation spectroscopy of hydrated vanadium cations, V +(H 2O) n, n = 3-51. Phys Chem Chem Phys 2022; 24:14699-14708. [PMID: 35438100 PMCID: PMC9215701 DOI: 10.1039/d2cp00833e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared spectra of the hydrated vanadium cation (V+(H2O)n; n = 3–51) were measured in the O–H stretching region employing infrared multiple photon dissociation (IRMPD) spectroscopy. Spectral fingerprints, along with size-dependent fragmentation channels, were observed and rationalized by comparing to spectra simulated using density functional theory. Photodissociation leading to water loss was found for cluster sizes n = 3–7, consistent with isomers featuring intact water ligands. Loss of molecular hydrogen was observed as a weak channel starting at n = 8, indicating the advent of inserted isomers, HVOH+(H2O)n−1. The majority of ions for n = 8, however, are composed of two-dimensional intact isomers, concordant with previous infrared studies on hydrated vanadium. A third channel, loss of atomic hydrogen, is observed weakly for n = 9–11, coinciding with the point at which the H and H2O calculated binding energies become energetically competitive for intact isomers. A clear and sudden spectral pattern and fragmentation channel intensity at n = 12 suggest a structural change to inserted isomers. The H2 channel intensity decreases sharply and is not observed for n = 20 and 25–51. IRMPD spectra for clusters sizes n = 15–51 are qualitatively similar indicating no significant structural changes, and are thought to be composed of inserted isomers, consistent with recent electronic spectroscopy experiments. Infrared multiple photon dissociation spectra of V+(H2O)n depend on experiment conditions, with strong kinetic shift effects for large clusters.![]()
Collapse
Affiliation(s)
- Jakob Heller
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Ethan M Cunningham
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Jessica C Hartmann
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Abdelmouleh M, Lalande M, Nicol E, Frison G, van der Rest G, Poully JC. Chemical Processes Involving 18-Crown-6-Ether in Activated Noncovalent Complexes with Protonated Peptides. Chemphyschem 2021; 22:1243-1250. [PMID: 33881793 DOI: 10.1002/cphc.202100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Indexed: 11/10/2022]
Abstract
These last decades, it has been widely assumed that 18-crown-6-ether (CE) plays a spectator role during the chemical processes occurring in isolated host-guest complexes between peptides or proteins and CE after activation in mass spectrometers. Our present experimental and theoretical results challenge this hypothesis by showing that CE can abstract a proton or a protonated molecule from protonated peptides after activation by collisions in argon or electron capture/transfer. Furthermore, thanks to comparison between experimental and calculated values of collision cross-sections, we demonstrate that CE can change binding site after electron transfer. We also propose detailed mechanisms for these processes.
Collapse
Affiliation(s)
- Marwa Abdelmouleh
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| | - Mathieu Lalande
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| | - Edith Nicol
- Laboratoire de Chimie Moléculaire, Ecole Polytech, Inst Polytech Paris, CNRS, 91128, Palaiseau, France
| | - Gilles Frison
- Laboratoire de Chimie Moléculaire, Ecole Polytech, Inst Polytech Paris, CNRS, 91128, Palaiseau, France.,Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, 75005, Paris, France
| | - Guillaume van der Rest
- Institut de Chimie Physique, Université Paris Saclay, CNRS, Bâtiment 349, 91405, Orsay, France
| | - Jean-Christophe Poully
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| |
Collapse
|
4
|
Cunningham EM, Taxer T, Heller J, Ončák M, van der Linde C, Beyer MK. Microsolvation of Zn cations: infrared multiple photon dissociation spectroscopy of Zn +(H 2O) n (n = 2-35). Phys Chem Chem Phys 2021; 23:3627-3636. [PMID: 33524092 DOI: 10.1039/d0cp06112c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structures, along with solvation evolution, of size-selected Zn+(H2O)n (n = 2-35) complexes have been determined by combining infrared multiple photon photodissociation (IRMPD) spectroscopy and density functional theory. The infrared spectra were recorded in the O-H stretching region, revealing varying shifts in band position due to different water binding motifs. Concordant with previous studies, a coordination number of 3 is observed, determined by the sudden appearance of a broad, red-shifted band in the hydrogen bonding region for clusters n > 3. The coordination number of 3 seems to be retained even for the larger clusters, due to incoming ligands experiencing significant repulsion from the Zn+ valence 4s electron. Evidence of spectrally distinct single- and double-acceptor sites are presented for medium-sized clusters, 4 ≤n≤ 7, however for larger clusters, n≥ 8, the hydrogen bonding region is dominated by a broad, unresolved band, indicative of the increased number of second and third coordination sphere ligands. No evidence of a solvated, six-fold coordinated Zn2+ ion/solvated electron pair is present in the spectra.
Collapse
Affiliation(s)
- Ethan M Cunningham
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
5
|
Taxer T, Ončák M, Barwa E, van der Linde C, Beyer MK. Electronic spectroscopy and nanocalorimetry of hydrated magnesium ions [Mg(H 2O) n] +, n = 20-70: spontaneous formation of a hydrated electron? Faraday Discuss 2019; 217:584-600. [PMID: 30994636 PMCID: PMC6677030 DOI: 10.1039/c8fd00204e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 11/26/2022]
Abstract
Hydrated singly charged magnesium ions [Mg(H2O)n]+ are thought to consist of an Mg2+ ion and a hydrated electron for n > 15. This idea is based on mass spectra, which exhibit a transition from [MgOH(H2O)n-1]+ to [Mg(H2O)n]+ around n = 15-22, black-body infrared radiative dissociation, and quantum chemical calculations. Here, we present photodissociation spectra of size-selected [Mg(H2O)n]+ in the range of n = 20-70 measured for photon energies of 1.0-5.0 eV. The spectra exhibit a broad absorption from 1.4 to 3.2 eV, with two local maxima around 1.7-1.8 eV and 2.1-2.5 eV, depending on cluster size. The spectra shift slowly from n = 20 to n = 50, but no significant change is observed for n = 50-70. Quantum chemical modeling of the spectra yields several candidates for the observed absorptions, including five- and six-fold coordinated Mg2+ with a hydrated electron in its immediate vicinity, as well as a solvent-separated Mg2+/e- pair. The photochemical behavior resembles that of the hydrated electron, with barrierless interconversion into the ground state following the excitation.
Collapse
Affiliation(s)
- Thomas Taxer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Erik Barwa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
6
|
Herburger A, Ončák M, Barwa E, van der Linde C, Beyer MK. Carbon-carbon bond formation in the reaction of hydrated carbon dioxide radical anions with 3-butyn-1-ol. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 435:101-106. [PMID: 33209089 PMCID: PMC7116384 DOI: 10.1016/j.ijms.2018.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical activation of carbon dioxide in aqueous solution is a promising way to use carbon dioxide as a C1 building block. Mechanistic studies in the gas phase play an important role to understand the inherent chemical reactivity of the carbon dioxide radical anion. Here, the reactivity of CO2 •-(H2O)n with 3-butyn-1-ol is investigated by Fourier transform ion cyclotron (FT-ICR) mass spectrometry and quantum chemical calculations. Carbon-carbon bond formation takes places, but is associated with a barrier. Therefore, bond formation may require uptake of several butynol molecules. The water molecules slowly evaporate from the cluster due to the absorption of room temperature black-body radiation. When all water molecules are lost, butynol evaporation sets in. In this late stage of the reaction, side reactions occur including H• atom transfer and elimination of HOCO•.
Collapse
Affiliation(s)
| | | | | | | | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Poštulka J, Slavíček P, Domaracka A, Pysanenko A, Fárník M, Kočišek J. Proton transfer from pinene stabilizes water clusters. Phys Chem Chem Phys 2019; 21:13925-13933. [DOI: 10.1039/c8cp05959d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular beams experiments and ab initio theory reveal indirect formation of protonated water clusters by ionization of pinene.
Collapse
Affiliation(s)
- Jan Poštulka
- Department of Physical Chemistry, University of Chemistry and Technology
- Prague 6
- Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology
- Prague 6
- Czech Republic
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences
- 18223 Prague
| | - Alicja Domaracka
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP
- 14000 Caen
- France
| | - Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences
- 18223 Prague
- Czech Republic
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences
- 18223 Prague
- Czech Republic
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences
- 18223 Prague
- Czech Republic
| |
Collapse
|
8
|
Foley EDB, Zenaidee MA, Tabor RF, Ho J, Beves JE, Donald WA. On the mechanism of protein supercharging in electrospray ionisation mass spectrometry: Effects on charging of additives with short- and long-chain alkyl constituents with carbonate and sulphite terminal groups. Anal Chim Acta X 2018; 1:100004. [PMID: 33186415 PMCID: PMC7587038 DOI: 10.1016/j.acax.2018.100004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/16/2018] [Accepted: 12/21/2018] [Indexed: 01/26/2023] Open
Abstract
Small organic molecules are used as solution additives in electrospray ionisation mass spectrometry (ESI-MS) to increase the charge states of protein ions and improve the performance of intact protein analysis by tandem mass spectrometry. The properties of the additives that are responsible for their charge-enhancing effects (e.g. dipole moment, gas-phase basicity, Brønsted basicity, and surface tension) have been debated in the literature. We report a series of solution additives for ESI-MS based on cyclic alkyl carbonates and sulphites that have alkyl chains that are from two to ten methylene units long. The extent of charging of [Val [5]]-angiotensin II, cytochrome c, carbonic anhydrase II, and bovine serum albumin in ESI-MS using the additives was measured. For both the alkyl carbonate and sulphite additives with up to four methylene units, ion charging increased as the side chain lengths of the additives increased. At a critical alkyl chain length of four methylene units, protein ion charge states decreased as the chain length increased. The dipole moments, gas-phase basicity values, and Brønsted basicities (i.e. the pK a of the conjugate acids) of the additives were obtained using electronic structure calculations, and the surface tensions were measured by pendant drop tensiometry. Because the dipole moments, gas-phase basicities, and pK a values of the additives did not depend significantly on the alkyl chain lengths of the additives and the extent of charging depended strongly on the chain lengths, these data indicate that these three additive properties do not correlate with protein charging under these conditions. For the additives with alkyl chains at or above the critical length, the surface tension of the additives decreased as the length of the side chain decreased, which correlated well with the decrease in protein charging. These data are consistent with protein charging being limited by droplet surface tension below a threshold surface tension for these additives. For additives with relatively high surface tensions, protein ion charging increased as the amphiphilicity of the additives increased (and surface tension decreased) which is consistent with protein charging being limited by the emission of charge carriers from highly charged ESI generated droplets.
Collapse
Affiliation(s)
- Eric D B Foley
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia, 2052
| | - Muhammad A Zenaidee
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia, 2052
| | - Rico F Tabor
- School of Chemistry, Monash University, Melbourne, VIC, Australia, 3800
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia, 2052
| | - Jonathon E Beves
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia, 2052
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia, 2052
| |
Collapse
|
9
|
Fárník M, Lengyel J. Mass spectrometry of aerosol particle analogues in molecular beam experiments. MASS SPECTROMETRY REVIEWS 2018; 37:630-651. [PMID: 29178389 DOI: 10.1002/mas.21554] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 05/26/2023]
Abstract
Nanometer-size particles such as ultrafine aerosol particles, ice nanoparticles, water nanodroplets, etc, play an important, however, not yet fully understood role in the atmospheric chemistry and physics. These species are often composed of water with admixture of other atmospherically relevant molecules. To mimic and investigate such particles in laboratory experiments, mixed water clusters with atmospherically relevant molecules can be generated in molecular beams and studied by various mass spectrometric methods. The present review demonstrates that such experiments can provide unprecedented details of reaction mechanisms, and detailed insight into the photon-, electron-, and ion-induced processes relevant to the atmospheric chemistry. After a brief outline of the molecular beam preparation, cluster properties, and ionization methods, we focus on the mixed clusters with various atmospheric molecules, such as hydrated sulfuric acid and nitric acid clusters, Nx Oy and halogen-containing molecules with water. A special attention is paid to their reactivity and solvent effects of water molecules on the observed processes.
Collapse
Affiliation(s)
- Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jozef Lengyel
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Gernert I, Beyer MK. Evidence for Electron Transfer in the Reactions of Hydrated Monovalent First-Row Transition-Metal Ions M(H2O)n+, M = V, Cr, Mn, Fe, Co, Ni, Cu, and Zn, n < 40, toward 1-Iodopropane. J Phys Chem A 2017; 121:9557-9566. [DOI: 10.1021/acs.jpca.7b08385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ina Gernert
- Institut
für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstraße
40, 24098 Kiel, Germany
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut
für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstraße
40, 24098 Kiel, Germany
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Wegeberg C, Donald WA, McKenzie CJ. Noncovalent Halogen Bonding as a Mechanism for Gas-Phase Clustering. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2209-2216. [PMID: 28717931 DOI: 10.1007/s13361-017-1722-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Gas-phase clustering of nonionizable iodylbenzene (PhIO2) is attributed to supramolecular halogen bonding. Electrospray ionization results in the formation of ions of proton-charged and preferably sodium-charged clusters assignable to [H(PhIO2) n ]+, n = 1-7; [Na(PhIO2) n ]+, n = 1-6; [Na2(PhIO2) n ]2+, n = 7-20; [HNa(PhIO2) n ]2+, n = 6-19; [HNa2(PhIO2) n ]3+, n = 15-30; and [Na3(PhIO2) n ]3+, n = 14-30. The largest cluster detected has a supramolecular mass of 7147 Da. Electronic structure calculations using the M06-2X functional with the 6-311++G(d,p) basis set for C, H, and O, and LANL2DZ basis set for I and Na predict 298 K binding enthalpies for the protonated and sodiated iodylbenzene dimers and trimers are greater than 180 kJ/mol. This is exceptionally high in comparison with other protonated and sodiated clusters with well-established binding enthalpies. Strongly halogen-bonded motifs found in the crystalline phases of PhIO2 and its derivatives serve as models for the structures of larger gas-phase clusters, and calculations on simple model gas-phase dimer and trimer clusters result in similar motifs. This is the first account of halogen bonding playing an extensive role in gas-phase associations. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5320, Odense M, Denmark
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5320, Odense M, Denmark.
| |
Collapse
|
12
|
Lengyel J, Med J, Slavíček P, Beyer MK. Communication: Charge transfer dominates over proton transfer in the reaction of nitric acid with gas-phase hydrated electrons. J Chem Phys 2017; 147:101101. [PMID: 28915744 PMCID: PMC7116334 DOI: 10.1063/1.4999392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.
Collapse
Affiliation(s)
- Jozef Lengyel
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Jakub Med
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
13
|
Zenaidee MA, Leeming MG, Zhang F, Funston TT, Donald WA. Highly Charged Protein Ions: The Strongest Organic Acids to Date. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Michael G. Leeming
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology University of Melbourne Parkville Victoria 3010 Australia
| | - Fangtong Zhang
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Toby T. Funston
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - William A. Donald
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
14
|
Zenaidee MA, Leeming MG, Zhang F, Funston TT, Donald WA. Highly Charged Protein Ions: The Strongest Organic Acids to Date. Angew Chem Int Ed Engl 2017; 56:8522-8526. [DOI: 10.1002/anie.201702781] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/19/2017] [Indexed: 11/09/2022]
Affiliation(s)
| | - Michael G. Leeming
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology University of Melbourne Parkville Victoria 3010 Australia
| | - Fangtong Zhang
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Toby T. Funston
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - William A. Donald
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
15
|
Lengyel J, van der Linde C, Fárník M, Beyer MK. The reaction of CF2Cl2 with gas-phase hydrated electrons. Phys Chem Chem Phys 2016; 18:23910-5. [PMID: 27523883 PMCID: PMC7116337 DOI: 10.1039/c6cp01976e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of dichlorodifluoromethane (CF2Cl2) with hydrated electrons (H2O)n(-) (n = 30-86) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The hydrated electron reacts with CF2Cl2, forming (H2O)mCl(-) with a rate constant of (8.6 ± 2.2) × 10(-10) cm(3) s(-1), corresponding to an efficiency of 57 ± 15%. The reaction enthalpy was determined using nanocalorimetry, revealing a strongly exothermic reaction with ΔHr(CF2Cl2, 298 K) = -208 ± 41 kJ mol(-1). The combination of the measured reaction enthalpy with thermochemical data from the condensed phase yields a C-Cl bond dissociation enthalpy (BDE) ΔHC-Cl(CF2Cl2, 298 K) = 355 ± 41 kJ mol(-1) that agrees within error limits with the predicted values from quantum chemical calculations and published BDEs.
Collapse
Affiliation(s)
- Jozef Lengyel
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
16
|
Akhgarnusch A, Tang WK, Zhang H, Siu CK, Beyer MK. Charge transfer reactions between gas-phase hydrated electrons, molecular oxygen and carbon dioxide at temperatures of 80-300 K. Phys Chem Chem Phys 2016; 18:23528-37. [PMID: 27498686 DOI: 10.1039/c6cp03324e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recombination reactions of gas-phase hydrated electrons (H2O)n˙(-) with CO2 and O2, as well as the charge exchange reaction of CO2˙(-)(H2O)n with O2, were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry in the temperature range T = 80-300 K. Comparison of the rate constants with collision models shows that CO2 reacts with 50% collision efficiency, while O2 reacts considerably slower. Nanocalorimetry yields internally consistent results for the three reactions. Converted to room temperature condensed phase, this yields hydration enthalpies of CO2˙(-) and O2˙(-), ΔHhyd(CO2˙(-)) = -334 ± 44 kJ mol(-1) and ΔHhyd(O2˙(-)) = -404 ± 28 kJ mol(-1). Quantum chemical calculations show that the charge exchange reaction proceeds via a CO4˙(-) intermediate, which is consistent with a fully ergodic reaction and also with the small efficiency. Ab initio molecular dynamics simulations corroborate this picture and indicate that the CO4˙(-) intermediate has a lifetime significantly above the ps regime.
Collapse
Affiliation(s)
- Amou Akhgarnusch
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | | | | | | | | |
Collapse
|
17
|
Akhgarnusch A, Höckendorf RF, Beyer MK. Thermochemistry of the Reaction of SF6 with Gas-Phase Hydrated Electrons: A Benchmark for Nanocalorimetry. J Phys Chem A 2015; 119:9978-85. [PMID: 26356833 DOI: 10.1021/acs.jpca.5b06975] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of sulfur hexafluoride with gas-phase hydrated electrons (H2O)n(-), n ≈ 60-130, is investigated at temperatures T = 140-300 K by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. SF6 reacts with a temperature-independent rate of 3.0 ± 1.0 × 10(-10) cm(3) s(-1) via exclusive formation of the hydrated F(-) anion and the SF5(•) radical, which evaporates from the cluster. Nanocalorimetry yields a reaction enthalpy of ΔHR,298K = 234 ± 24 kJ mol(-1). Combined with literature thermochemical data from bulk aqueous solution, these result in an F5S-F bond dissociation enthalpy of ΔH298K = 455 ± 24 kJ mol(-1), in excellent agreement with all high-level quantum chemical calculations in the literature. A combination with gas-phase literature thermochemistry also yields an experimental value for the electron affinity of SF5(•), EA(SF5(•)) = 4.27 ± 0.25 eV.
Collapse
Affiliation(s)
- Amou Akhgarnusch
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel , Olshausenstrasse 40, 24098 Kiel, Germany.,Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck , Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Robert F Höckendorf
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel , Olshausenstrasse 40, 24098 Kiel, Germany
| | - Martin K Beyer
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel , Olshausenstrasse 40, 24098 Kiel, Germany.,Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens-Universität Innsbruck , Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
18
|
Zenaidee MA, Donald WA. Extremely supercharged proteins in mass spectrometry: profiling the pH of electrospray generated droplets, narrowing charge state distributions, and increasing ion fragmentation. Analyst 2015; 140:1894-905. [DOI: 10.1039/c4an02338b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-performance solutions for supercharging proteins in electrospray ionization were optimized and the origin of the strong dependence of supercharging on acid strength was investigated.
Collapse
|
19
|
Katari M, Payen de la Garanderie E, Nicol E, Steinmetz V, van der Rest G, Carmichael D, Frison G. Combining gas phase electron capture and IRMPD action spectroscopy to probe the electronic structure of a metastable reduced organometallic complex containing a non-innocent ligand. Phys Chem Chem Phys 2015; 17:25689-92. [DOI: 10.1039/c5cp01501d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gas-phase reduction of a Zn(ii) complex followed by IR spectroscopy shows that the incoming electron is localized on the metal rather than on the ligand.
Collapse
Affiliation(s)
- Madanakrishna Katari
- Laboratoire de Chimie Moléculaire
- Ecole polytechnique and CNRS
- 91128 Palaiseau Cedex
- France
| | | | - Edith Nicol
- Laboratoire de Chimie Moléculaire
- Ecole polytechnique and CNRS
- 91128 Palaiseau Cedex
- France
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique
- Université Paris Sud
- CNRS
- 91405 Orsay
- France
| | | | - Duncan Carmichael
- Laboratoire de Chimie Moléculaire
- Ecole polytechnique and CNRS
- 91128 Palaiseau Cedex
- France
| | - Gilles Frison
- Laboratoire de Chimie Moléculaire
- Ecole polytechnique and CNRS
- 91128 Palaiseau Cedex
- France
| |
Collapse
|
20
|
Johnson CJ, Dzugan LC, Wolk AB, Leavitt CM, Fournier JA, McCoy AB, Johnson MA. Microhydration of contact ion pairs in M(2+)OH(-)(H2O)(n=1-5) (M = Mg, Ca) clusters: spectral manifestations of a mobile proton defect in the first hydration shell. J Phys Chem A 2014; 118:7590-7. [PMID: 24874345 DOI: 10.1021/jp504139j] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vibrational predissociation spectra of D2-"tagged" Mg(2+)OH(-)(H2O)n=1-6 and Ca(2+)OH(-)(H2O)n=1-5 clusters are reported to explore how the M(2+)OH(-) contact ion pairs respond to stepwise formation of the first hydration shell. In both cases, the hydroxide stretching frequency is found to red-shift strongly starting with addition of the third water molecule, quickly becoming indistinguishable from nonbonded OH groups associated with solvent water molecules by n = 5. A remarkably broad feature centered around 3200 cm(-1) and spanning up to ∼1000 cm(-1) appears for the n ≥ 4 clusters that we assign to a single-donor ionic hydrogen bond between a proximal first solvent shell water molecule and the embedded hydroxide ion. The extreme broadening is rationalized with a theoretical model that evaluates the range of local OH stretching frequencies predicted for the heavy particle configurations available in the zero-point vibrational wave function describing the low-frequency modes. The implication of this treatment is that extreme broadening in the vibrational spectrum need not arise from thermal fluctuations in the ion ensemble, but can rather reflect combination bands based on the OH stretching fundamental that involve many quanta of low-frequency modes whose displacements strongly modulate the OH stretching frequency.
Collapse
Affiliation(s)
- Christopher J Johnson
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | | | | | | | | | | | | |
Collapse
|
21
|
Donald W, Williams E. Measuring Absolute Single Half-Cell Reduction Potentials with Mass Spectrometry. ELECTROANALYTICAL CHEMISTRY: A SERIES OF ADVANCES 2013. [DOI: 10.1201/b15576-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Flick TG, Donald WA, Williams ER. Electron capture dissociation of trivalent metal ion-peptide complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:193-201. [PMID: 23283726 PMCID: PMC3570592 DOI: 10.1007/s13361-012-0507-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/14/2012] [Accepted: 09/16/2012] [Indexed: 05/04/2023]
Abstract
With electrospray ionization from aqueous solutions, trivalent metal ions readily adduct to small peptides resulting in formation of predominantly (peptide + M(T) - H)(2+), where M(T) = La, Tm, Lu, Sm, Ho, Yb, Pm, Tb, or Eu, for peptides with molecular weights below ~1000 Da, and predominantly (peptide + M(T))(3+) for larger peptides. ECD of (peptide + M(T) - H)(2+) results in extensive fragmentation from which nearly complete sequence information can be obtained, even for peptides for which only singly protonated ions are formed in the absence of the metal ions. ECD of these doubly charged complexes containing M(T) results in significantly higher electron capture efficiency and sequence coverage than peptide-divalent metal ion complexes that have the same net charge. Formation of salt-bridge structures in which the metal ion coordinates to a carboxylate group are favored even for (peptide + M(T))(3+). ECD of these latter complexes for large peptides results in electron capture by the protonation site located remotely from the metal ion and predominantly c/z fragments for all metals, except Eu(3+), which undergoes a one electron reduction and only loss of small neutral molecules and b/y fragments are formed. These results indicate that solvation of the metal ion in these complexes is extensive, which results in the electrochemical properties of these metal ions being similar in both the peptide environment and in bulk water.
Collapse
Affiliation(s)
| | | | - Evan R. Williams
- Address reprint requests to Prof. Evan R. Williams: Department of Chemistry, University of California, Berkeley, Latimer Hall #1460, Berkeley, CA 94720-1460, Phone: 510-643-7161, Fax: (510) 542-7714,
| |
Collapse
|
23
|
Rezaee M, Sanche L, Hunting DJ. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals. Radiat Res 2013; 179:323-31. [PMID: 23368416 DOI: 10.1667/rr3185.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The synergistic interaction of cisplatin with ionizing radiation is the clinical rationale for the treatment of several cancers including head and neck, cervical and lung cancer. The underlying molecular mechanism of the synergy has not yet been identified, although both DNA damage and repair processes are likely involved. Here, we investigate the indirect effect of γ rays on strand break formation in a supercoiled plasmid DNA (pGEM-3Zf-) covalently modified by cisplatin. The yields of single- and double-strand breaks were determined by irradiation of DNA and cisplatin/DNA samples with (60)Co γ rays under four different scavenging conditions to examine the involvement of hydrated electrons and hydroxyl radicals in inducing the DNA damage. At 5 mM tris in an N2 atmosphere, the presence of an average of two cisplatins per plasmid increased the yields of single- and double-strand breaks by factors of 1.9 and 2.2, respectively, relative to the irradiated unmodified DNA samples. Given that each plasmid of 3,200 base pairs contained an average of two cisplatins, this represents an increase in radiosensitivity of 3,200-fold on a per base pair basis. When hydrated electrons were scavenged by saturating the samples with N2O, these enhancement factors decreased to 1.5 and 1.2, respectively, for single- and double-strand breaks. When hydroxyl radicals were scavenged using 200 mM tris, the respective enhancement factors were 1.2 and 1.6 for single- and double-strand breaks, respectively. Furthermore, no enhancement in DNA damage by cisplatin was observed after scavenging both hydroxyl radicals and hydrated electrons. These findings show that hydrated electrons can induce both single- and double-strand breaks in the platinated DNA, but not in unmodified DNA. In addition, cisplatin modification is clearly an extremely efficient means of increasing the formation of both single- and double-strand breaks by the hydrated electrons and hydroxyl radicals created by ionizing radiation.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Groupe en Sciences des Radiations, Départment de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | | | | |
Collapse
|
24
|
Schmidt M, von Issendorff B. Gas-phase calorimetry of protonated water clusters. J Chem Phys 2012; 136:164307. [PMID: 22559482 DOI: 10.1063/1.4705266] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protonated water clusters with 60 to 79 molecules have been studied by nanocalorimetry. The technique is based on multi-collision excitations of the accelerated clusters with helium. The caloric curves indicate transitions that resemble those of water clusters charged by an excess electron, but the transition temperatures of the protonated clusters are higher.
Collapse
Affiliation(s)
- M Schmidt
- Laboratoire Aimé Cotton, CNRS, Bât 505, Université Paris Sud, 91405 Orsay Cedex, France
| | | |
Collapse
|
25
|
Affiliation(s)
- Ryan M. Young
- Department of Chemistry, University of California, Berkeley, California 94720,
United States
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720,
United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
| |
Collapse
|
26
|
Breen KJ, DeBlase AF, Guasco TL, Voora VK, Jordan KD, Nagata T, Johnson MA. Bottom-Up View of Water Network-Mediated CO2 Reduction Using Cryogenic Cluster Ion Spectroscopy and Direct Dynamics Simulations. J Phys Chem A 2011; 116:903-12. [DOI: 10.1021/jp209493v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kristin J. Breen
- Sterling Chemistry Laboratory, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Andrew F. DeBlase
- Sterling Chemistry Laboratory, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Timothy L. Guasco
- Sterling Chemistry Laboratory, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Vamsee K. Voora
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kenneth D. Jordan
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Takashi Nagata
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8902 Japan
| | - Mark A. Johnson
- Sterling Chemistry Laboratory, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
27
|
Donald WA, Leib RD, Demireva M, Williams ER. Ions in size-selected aqueous nanodrops: sequential water molecule binding energies and effects of water on ion fluorescence. J Am Chem Soc 2011; 133:18940-9. [PMID: 21999364 DOI: 10.1021/ja208072z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of water on ion fluorescence were investigated, and average sequential water molecule binding energies to hydrated ions, M(z)(H(2)O)(n), at large cluster size were measured using ion nanocalorimetry. Upon 248-nm excitation, nanodrops with ~25 or more water molecules that contain either rhodamine 590(+), rhodamine 640(+), or Ce(3+) emit a photon with average energies of approximately 548, 590, and 348 nm, respectively. These values are very close to the emission maxima of the corresponding ions in solution, indicating that the photophysical properties of these ions in the nanodrops approach those of the fully hydrated ions at relatively small cluster size. As occurs in solution, these ions in nanodrops with 8 or more water molecules fluoresce with a quantum yield of ~1. Ce(3+) containing nanodrops that also contain OH(-) fluoresce, whereas those with NO(3)(-) do not. This indirect fluorescence detection method has the advantages of high sensitivity, and both the size of the nanodrops as well as their constituents can be carefully controlled. For ions that do not fluoresce in solution, such as protonated tryptophan, full internal conversion of the absorbed 248-nm photon occurs, and the average sequential water molecule binding energies to the hydrated ions can be accurately obtained at large cluster sizes. The average sequential water molecule binding energies for TrpH(+)(H(2)O)(n) and a doubly protonated tripeptide, [KYK + 2H](2+)(H(2)O)(n), approach asymptotic values of ~9.3 (n ≥ 11) and ~10.0 kcal/mol (n ≥ 25), respectively, consistent with a liquidlike structure of water in these nanodrops.
Collapse
Affiliation(s)
- William A Donald
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | |
Collapse
|
28
|
Donald WA, Williams ER. An improved cluster pair correlation method for obtaining the absolute proton hydration energy and enthalpy evaluated with an expanded data set. J Phys Chem B 2011; 114:13189-200. [PMID: 20863092 DOI: 10.1021/jp1068945] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An improved cluster pair correlation method that is based on the method originally introduced by Tuttle et al. ( Tuttle et al. J. Phys. Chem. A 2002 , 106 , 925 - 932 ) was developed and evaluated using a significantly larger data set than used previously. With this larger data set, values for the absolute proton hydration free energy of -259.3 and -265.0 kcal/mol were obtained using the original and improved method, respectively. The former value is ∼4.5 kcal/mol less negative than previously reported values obtained with the same method but with smaller data sets. The dependence of this value on data set size indicates that the uncertainty in the original method may be greater than previously realized. The improved method has the advantages of higher precision, and the effects of cluster size on the proton hydration free energy and enthalpy values can be more readily evaluated. Data for ions with extreme pK(a)s, many of which were included in previous estimates of the proton hydration free energy, were found to be unreliable and were eliminated from the extended data set. There is only a subtle effect of cluster size on the Gibbs free energy values, and within the limits of the approximation inherent in the cluster pair correlation method, the "best" value for the standard absolute proton hydration free energy obtained with this new method and larger data set is -263.4 kcal/mol (average for clusters with 4-6 water molecules). The absolute proton hydration enthalpy values decrease from -273.1 to -275.3 kcal/mol with increasing cluster size (one to six water molecules, respectively). This trend, along with an anomalously high value for the absolute proton hydration entropy, indicates that the enthalpy obtained with this method may not have converged for these relatively small clusters.
Collapse
Affiliation(s)
- William A Donald
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | | |
Collapse
|
29
|
Donald WA, Leib RD, Demireva M, Negru B, Neumark DM, Williams ER. Average sequential water molecule binding enthalpies of M(H2O)(19-124)2+ (M = Co, Fe, Mn, and Cu) measured with ultraviolet photodissociation at 193 and 248 nm. J Phys Chem A 2010; 115:2-12. [PMID: 21142113 DOI: 10.1021/jp107547r] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The average sequential water molecule binding enthalpies to large water clusters (between 19 and 124 water molecules) containing divalent ions were obtained by measuring the average number of water molecules lost upon absorption of an UV photon (193 or 248 nm) and using a statistical model to account for the energy released into translations, rotations, and vibrations of the products. These values agree well with the trend established by more conventional methods for obtaining sequential binding enthalpies to much smaller hydrated divalent ions. The average binding enthalpies decrease to a value of ~10.4 kcal/mol for n > ~40 and are insensitive to the ion identity at large cluster size. This value is close to that of the bulk heat of vaporization of water (10.6 kcal/mol) and indicates that the structure of water in these clusters may more closely resemble that of bulk liquid water than ice, owing either to a freezing point depression or rapid evaporative cooling and kinetic trapping of the initial liquid droplet. A discrete implementation of the Thomson equation using parameters for liquid water at 0 °C generally fits the trend in these data but provides values that are ~0.5 kcal/mol too low.
Collapse
Affiliation(s)
- William A Donald
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | | | | | |
Collapse
|
30
|
Demireva M, Williams ER. Measuring internal energy deposition in collisional activation using hydrated ion nanocalorimetry to obtain peptide dissociation energies and entropies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1133-1143. [PMID: 20363645 DOI: 10.1016/j.jasms.2010.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 05/29/2023]
Abstract
The internal energy deposited in both on- and off-resonance collisional activation in Fourier transform ion cyclotron resonance mass spectrometry is measured with ion nanocalorimetry and is used to obtain information about the dissociation energy and entropy of a protonated peptide. Activation of Na(+)(H(2)O)(30) results in sequential loss of water molecules, and the internal energy of the activated ion can be obtained from the abundances of the product ions. Information about internal energy deposition in on-resonance collisional activation of protonated peptides is inferred from dissociation data obtained under identical conditions for hydrated ions that have similar m/z and degrees-of-freedom. From experimental internal energy deposition curves and Rice-Ramsperger-Kassel-Marcus (RRKM) theory, dissociation data as a function of collision energy for protonated leucine enkephalin, which has a comparable m/z and degrees-of-freedom as Na(+)(H(2)O)(30), are modeled. The threshold dissociation energies and entropies are correlated for data acquired at a single time point, resulting in a relatively wide range of threshold dissociation energies (1.1 to 1.7 eV) that can fit these data. However, this range of values could be significantly reduced by fitting data acquired at different dissociation times. By measuring the internal energy of an activated ion, the number of fitting parameters necessary to obtain information about the dissociation parameters by modeling these data is reduced and could result in improved accuracy for such methods.
Collapse
Affiliation(s)
- Maria Demireva
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720-1460, USA
| | | |
Collapse
|
31
|
Donald WA, Williams ER. Measuring the extent and width of internal energy deposition in ion activation using nanocalorimetry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:615-625. [PMID: 20106678 DOI: 10.1016/j.jasms.2009.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 05/28/2023]
Abstract
The recombination energies resulting from electron capture by a positive ion can be accurately measured using hydrated ion nanocalorimetry in which the internal energy deposition is obtained from the number of water molecules lost from the reduced cluster. The width of the product ion distribution in these experiments is predominantly attributable to the distribution of energy that partitions into the translational and rotational modes of the water molecules that are lost. These results are consistent with a singular value for the recombination energy. For large clusters, the width of the energy distribution is consistent with rapid energy partitioning into internal vibrational modes. For some smaller clusters with high recombination energies, the measured product ion distribution is narrower than that calculated with a statistical model. These results indicate that initial water molecule loss occurs on the time scale of, or faster than energy randomization. This could be due to inherently slow internal conversion or it could be due to a multi-step process, such as initial ion-electron pair formation followed by reduction of the ion in the cluster. These results provide additional evidence for the accuracy with which condensed phase thermochemical values can be deduced from gaseous nanocalorimetry experiments.
Collapse
Affiliation(s)
- William A Donald
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720-1460, USA
| | | |
Collapse
|
32
|
Donald WA, Demireva M, Leib RD, Aiken MJ, Williams ER. Electron Hydration and Ion−Electron Pairs in Water Clusters Containing Trivalent Metal Ions. J Am Chem Soc 2010; 132:4633-40. [DOI: 10.1021/ja9079385] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- William A. Donald
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Maria Demireva
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Ryan D. Leib
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - M. Jeannette Aiken
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| |
Collapse
|
33
|
Feketeová L, O'Hair RAJ. Electron-induced dissociation of doubly protonated betaine clusters: controlling fragmentation chemistry through electron energy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3259-3263. [PMID: 19764074 DOI: 10.1002/rcm.4239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The [M21+2H]2+ cluster of the zwitterion betaine, M = (CH3)3NCH2CO2, formed via electrospray ionisation (ESI), has been allowed to interact with electrons with energies ranging from >0 to 50 eV in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The types of gas-phase electron-induced dissociation (EID) reactions observed are dependent on the energy of the electrons. In the low-energy region up to 10 eV, electrons are mainly captured, forming the charge-reduced species, {[M21+2H]+*}*, in an excited state, which stabilises via the ejection of an H atom and one or more neutral betaines. In the higher energy region, above 12 eV, a Coulomb explosion of the multiply charged clusters is observed in highly asymmetric fission with singly charged fragments carrying away more than 70% of the parent mass. Neutral betaine evaporation is also observed in this energy region. In addition, a series of singly charged fragments appears which arise from C-X bond cleavage reactions, including decarboxylation and CH3 group transfer. These latter reactions may arise from access of electronic excited states of the precursor ions.
Collapse
Affiliation(s)
- Linda Feketeová
- School of Chemistry, University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
34
|
Donald WA, Leib RD, Demireva M, O’Brien JT, Prell JS, Williams ER. Directly relating reduction energies of gaseous Eu(H2O)n(3+), n = 55-140, to aqueous solution: the absolute SHE potential and real proton solvation energy. J Am Chem Soc 2009; 131:13328-37. [PMID: 19711981 PMCID: PMC2909332 DOI: 10.1021/ja902815v] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In solution, half-cell potentials are measured relative to other half-cells resulting in a ladder of thermodynamic values that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of exactly 0 V. A new method for measuring the absolute SHE potential is introduced in which reduction energies of Eu(H(2)O)(n)(3+), from n = 55 to 140, are extrapolated as a function of the geometric dependence of the cluster reduction energy to infinite size. These measurements make it possible to directly relate absolute reduction energies of these gaseous nanodrops containing Eu(3+) to the absolute reduction enthalpy of this ion in bulk solution. From this value, an absolute SHE potential of +4.11 V and a real proton solvation energy of -269.0 kcal/mol are obtained. The infrared photodissociation spectrum of Eu(H(2)O)(119-124)(3+) indicates that the structure of the surface of the nanodrops is similar to that at the bulk air-water interface and that the hydrogen bonding of interior water molecules is similar to that in aqueous solution. These results suggest that the environment of Eu(3+) in these nanodrops and the surface potential of the nandrops are comparable to those of the condensed phase. This method for obtaining absolute potentials of redox couples has the advantage that no explicit solvation model is required, which eliminates uncertainties associated with these models, making this method potentially more accurate than previous methods.
Collapse
Affiliation(s)
- William A. Donald
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Ryan D. Leib
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Maria Demireva
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Jeremy T. O’Brien
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - James S. Prell
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| |
Collapse
|
35
|
|
36
|
Donald WA, Leib RD, O’Brien JT, Williams ER. Directly relating gas-phase cluster measurements to solution-phase hydrolysis, the absolute standard hydrogen electrode potential, and the absolute proton solvation energy. Chemistry 2009; 15:5926-34. [PMID: 19440999 PMCID: PMC2757329 DOI: 10.1002/chem.200900334] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M(H(2)O)(24)(2+)(g) + e(-)(g)-->M(H(2)O)(24)(+)(g) and 2) M(H(2)O)(24)(2+)(g) + e(-)(g)-->MOH(H(2)O)(23)(+)(g) + H(g) and the hydrogen atom affinities of MOH(H(2)O)(23)(+)(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e(-)(g) (standard deviation of 0.02 V) and a real proton solvation free energy of -265 kcal mol(-1) are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution.
Collapse
Affiliation(s)
- William A. Donald
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460 (USA), Fax: (+1) 510-642-7714
| | - Ryan D. Leib
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460 (USA), Fax: (+1) 510-642-7714
| | - Jeremy T. O’Brien
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460 (USA), Fax: (+1) 510-642-7714
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460 (USA), Fax: (+1) 510-642-7714
| |
Collapse
|
37
|
Affiliation(s)
- Fred W McLafferty
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|