1
|
Chaudhary S, Ali Z, Pantoja-Angles A, Abdelrahman S, Juárez COB, Rao GS, Hong PY, Hauser C, Mahfouz M. High-yield, plant-based production of an antimicrobial peptide with potent activity in a mouse model. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39264967 DOI: 10.1111/pbi.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
Plants offer a promising chassis for the large-scale, cost-effective production of diverse therapeutics, including antimicrobial peptides (AMPs). However, key advances will reduce production costs, including simplifying the downstream processing and purification steps. Here, using Nicotiana benthamiana plants, we present an improved modular design that enables AMPs to be secreted via the endomembrane system and sequestered in an extracellular compartment, the apoplast. Additionally, we translationally fused an AMP to a mutated small ubiquitin-like modifier sequence, thereby enhancing peptide yield and solubilizing the peptide with minimal aggregation and reduced occurrence of necrotic lesions in the plant. This strategy resulted in substantial peptide accumulation, reaching around 2.9 mg AMP per 20 g fresh weight of leaf tissue. Furthermore, the purified AMP demonstrated low collateral toxicity in primary human skin cells, killed pathogenic bacteria by permeabilizing the membrane and exhibited anti-infective efficacy in a preclinical mouse (Mus musculus) model system, reducing bacterial loads by up to three orders of magnitude. A base-case techno-economic analysis demonstrated the economic advantages and scalability of our plant-based platform. We envision that our work can establish plants as efficient bioreactors for producing preclinical-grade AMPs at a commercial scale, with the potential for clinical applications.
Collapse
Affiliation(s)
- Shahid Chaudhary
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
| | - Aarón Pantoja-Angles
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
| | - Cynthia Olivia Baldelamar Juárez
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
| | - Gundra Sivakrishna Rao
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Division of Biological Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
| | - Charlotte Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Tusé D, McNulty M, McDonald KA, Buchman LW. A review and outlook on expression of animal proteins in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1426239. [PMID: 39239203 PMCID: PMC11374769 DOI: 10.3389/fpls.2024.1426239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024]
Abstract
This review delves into the multifaceted technologies, benefits and considerations surrounding the expression of animal proteins in plants, emphasizing its potential role in advancing global nutrition, enhancing sustainability, while being mindful of the safety considerations. As the world's population continues to grow and is projected to reach 9 billion people by 2050, there is a growing need for alternative protein sources that can meet nutritional demands while minimizing environmental impact. Plant expression of animal proteins is a cutting-edge biotechnology approach that allows crops to produce proteins traditionally derived from animals, offering a sustainable and resource-efficient manner of producing these proteins that diversifies protein production and increases food security. In the United States, it will be important for there to be clear guidance in order for these technologies to reach consumers. As consumer demand for sustainable and alternative food sources rise, biotechnologies can offer economic opportunities, making this emerging technology a key player in the market landscape.
Collapse
Affiliation(s)
- Daniel Tusé
- DT/Consulting Group, Sacramento, CA, United States
| | - Matthew McNulty
- Center for Cellular Agriculture, Tufts University, Medford, MA, United States
| | - Karen A McDonald
- Department of Chemical Engineering and Global Healthshare Initiative, University of California, Davis, Davis, CA, United States
| | - Leah W Buchman
- Biotechniology Innovation Organization, Agriculture and Environment, Washington, DC, United States
| |
Collapse
|
3
|
Krittanai S, Rattanapisit K, Bulaon CJI, Pitaksajjakul P, Keadsanti S, Ramasoota P, Strasser R, Phoolcharoen W. Nicotiana benthamiana as a potential source for producing anti-dengue virus D54 neutralizing therapeutic antibody. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00844. [PMID: 38881650 PMCID: PMC11179242 DOI: 10.1016/j.btre.2024.e00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Dengue virus (DENV), transmitted by mosquitoes, is classified into four serotypes (DENV1-4) and typically causes mild, self-limiting symptoms upon initial infection. However, secondary infection can lead to severe symptoms due to antibody-dependent enhancement (ADE). To address this, anti-DENV antibodies are being developed with the goal of neutralizing infection without ADE activity. Previous attempts using a 54_hG1 antibody from CHO-K1 mammalian cells resulted in ADE induction, increasing viral infection. This study aimed to express the D54 monoclonal antibody in Nicotiana benthamiana. The plant-produced antibody had a similar neutralizing profile to the previous 54_hG1 antibody. Notably, the ADE activities of the plant-derived antibody were successfully eliminated, with no sign of viral induction. These findings suggest that N. benthamiana could be a source of therapeutic DENV antibodies. The method offers several advantages, including lower ADE, cost-effectiveness, simple facility requirements, scalability, and potential industrial-scale production in GMP facilities.
Collapse
Affiliation(s)
- Supaluk Krittanai
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | - Pannamthip Pitaksajjakul
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sujitra Keadsanti
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pongrama Ramasoota
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Soo Hoo WI, Higa K, McCormick AA. Vaccination against Epstein-Barr Latent Membrane Protein 1 Protects against an Epstein-Barr Virus-Associated B Cell Model of Lymphoma. BIOLOGY 2023; 12:983. [PMID: 37508413 PMCID: PMC10376452 DOI: 10.3390/biology12070983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
In this study, we demonstrate that expression of viral latent membrane protein 1 (LMP1) in a mouse B cell line renders the animals responsive to protection from a 38C13-LMP1 tumor challenge with a novel vaccine. The Epstein-Barr virus (EBV) preferentially infects circulating B lymphocytes, has oncogenic potential, and is associated with a wide variety of B cell lymphomas. EBV is ectotrophic to human cells, and currently there are no B cell animal models of EBV-associated lymphoma that can be used to investigate vaccine immunotherapy. Since most EBV-infected human tumor cells express latent membrane protein 1 (LMP1) on their surface, this viral antigen was tested as a potential target for an anticancer vaccine in a mouse model. Here, we describe a new mouse model of LMP1-expressing B cell lymphoma produced with plasmid transduction of 38C13 into mouse B cells. The expression of LMP-1 was confirmed with a western blot analysis and immunocytochemistry. We then designed a novel LMP1 vaccine, by fusing viral antigen LMP1 surface loop epitopes to the surface of a viral antigen carrier, the Tobacco Mosaic virus (TMV). Vaccinated mice produced high titer antibodies against the TMV-LMP1 vaccine; however, cellular responses were at the baseline, as measured with IFNγ ELISpot. Despite this, the vaccine showed significant protection from a 38C13-LMP1 tumor challenge. To provide additional immune targets, we compared TMV-LMP1 peptide immunization with DNA immunization with the full-length LMP1 gene. Anti-LMP1 antibodies were significantly higher in TMV-LMP1-vaccinated mice compared to the DNA-immunized mice, but, as predicted, DNA-vaccinated mice had improved cellular responses using IFNγ ELISpot. Surprisingly, the TMV-LMP1 vaccine provided protection from a 38C13-LMP1 tumor challenge, while the DNA vaccine did not. Thus, we demonstrated that LMP1 expression in a mouse B cell line is responsive to antibody immunotherapy that may be applied to EBV-associated disease.
Collapse
Affiliation(s)
- Wesley I Soo Hoo
- College of Pharmacy, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Kaylie Higa
- College of Pharmacy, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Alison A McCormick
- College of Pharmacy, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| |
Collapse
|
5
|
Yaghoobizadeh F, Ardakani MR, Ranjbar MM, Galehdari H, Khosravi M. Expression, purification, and study on the efficiency of a new potent recombinant scFv antibody against the SARS-CoV-2 spike RBD in E. coli BL21. Protein Expr Purif 2023; 203:106210. [PMID: 36473692 PMCID: PMC9719605 DOI: 10.1016/j.pep.2022.106210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Many efforts have been made around the world to combat SARS-CoV-2. Among these are recombinant antibodies considered to be suitable as an alternative for some diagnostics/therapeutics. Based on their importance, this study aimed to investigate the expression, purification, and efficiency of a new potent recombinant scFv in the E. coli BL21 (DE3) system. The expression studies were performed after confirming the scFv cloning into the pET28a vector using specific PCRs. After comprehensive expression studies, a suitable strategy was adopted to extract and purify periplasmic proteins using Ni2+-NTA resin. Besides the purified scFv, the crude bacterial lysate was also used to develop a sandwich ELISA (S-ELISA) for the detection of SARS-CoV-2. The use of PCR, E. coli expression system, western blotting (WB), and S-ELISA confirmed the functionality of this potent scFv. Moreover, the crude bacterial lysate also showed good potential for detecting SARS-CoV-2. This could be decreasing the costs and ease its utilization for large-scale applications. The production of high-quality recombinant proteins is essential for humankind. Moreover, with attention to the more aggressive nature of SARS-CoV-2 than other coronaviruses, the development of an effective detection method is urgent. Based on our knowledge, this study is one of the limited investigations in two fields: (1) The production of anti-SARS-CoV-2 scFv using E. coli [as a cheap heterologous host] in relatively high amounts and with good stability, and (2) Designing a sensitive S-ELISA for its detection. It may also be utilized as potent therapeutics after further investigations.
Collapse
Affiliation(s)
| | | | | | - Hamid Galehdari
- Department of Biology, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, Iran
| | - Mohammad Khosravi
- Department of Pathobiology, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, Iran
| |
Collapse
|
6
|
Gaobotse G, Venkataraman S, Mmereke KM, Moustafa K, Hefferon K, Makhzoum A. Recent Progress on Vaccines Produced in Transgenic Plants. Vaccines (Basel) 2022; 10:1861. [PMID: 36366370 PMCID: PMC9698746 DOI: 10.3390/vaccines10111861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 01/15/2024] Open
Abstract
The development of vaccines from plants has been going on for over two decades now. Vaccine production in plants requires time and a lot of effort. Despite global efforts in plant-made vaccine development, there are still challenges that hinder the realization of the final objective of manufacturing approved and safe products. Despite delays in the commercialization of plant-made vaccines, there are some human vaccines that are in clinical trials. The novel coronavirus (SARS-CoV-2) and its resultant disease, coronavirus disease 2019 (COVID-19), have reminded the global scientific community of the importance of vaccines. Plant-made vaccines could not be more important in tackling such unexpected pandemics as COVID-19. In this review, we explore current progress in the development of vaccines manufactured in transgenic plants for different human diseases over the past 5 years. However, we first explore the different host species and plant expression systems during recombinant protein production, including their shortcomings and benefits. Lastly, we address the optimization of existing plant-dependent vaccine production protocols that are aimed at improving the recovery and purification of these recombinant proteins.
Collapse
Affiliation(s)
- Goabaone Gaobotse
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Kamogelo M. Mmereke
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Khaled Moustafa
- The Arabic Preprint Server/Arabic Science Archive (ArabiXiv)
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| |
Collapse
|
7
|
Chloroplast Engineering: Fundamental Insights and Its Application in Amelioration of Environmental Stress. Appl Biochem Biotechnol 2022; 195:2463-2482. [PMID: 35484466 DOI: 10.1007/s12010-022-03930-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 12/21/2022]
Abstract
Chloroplasts are specialized organelle that are responsible for converting light energy to chemical energy, thereby driving the carbon dioxide fixation. Apart from photosynthesis, chloroplast is the site for essential cellular processes that determine the plant adaptation to changing environment. Owing to the presence of their own expression system, it provides an optimum platform for engineering valued traits as well as site for synthesis of bio-compounds. Advancements in technology have further enhanced the scope of using chloroplast as a multifaceted tool for the biotechnologist to develop stress-tolerant plants and ameliorate environmental stress. Focusing on chloroplast biotechnology, this review discusses the advances in chloroplast engineering and its application in enhancing plant adaptation and resistance to environmental stress and the development of new bioproducts and processes. This is accomplished through analysis of its biogenesis and physiological processes, highlighting the chloroplast engineering and recent developments in chloroplast biotechnology. In the first part of the review, the evolution and principles of structural organization and physiology of chloroplast are discussed. In the second part, the chief methods and mechanisms involved in chloroplast transformation are analyzed. The last part represents an updated analysis of the application of chloroplast engineering in crop improvement and bioproduction of industrial and health compounds.
Collapse
|
8
|
Swope K, Morton J, Pogue GP, Burden L, Partain N, Hume S, Shepherd J, Simpson CA, Brennan MB, Furman TC, Kingrey-Gebe S, Martinez T, McDonough J, Pauly MH, Whaley KJ, Zeitlin L, Bratcher B, Haydon H. Reproducibility and flexibility of monoclonal antibody production with Nicotiana benthamiana. MAbs 2022; 14:2013594. [PMID: 35000569 PMCID: PMC8744878 DOI: 10.1080/19420862.2021.2013594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 10/24/2022] Open
Abstract
The ongoing SARS-CoV-2 coronavirus pandemic of 2020-2021 underscores the need for manufacturing platforms that can rapidly produce monoclonal antibody (mAb) therapies. As reported here, a platform based on Nicotiana benthamiana produced mAb therapeutics with high batch-to-batch reproducibility and flexibility, enabling production of 19 different mAbs of sufficient purity and safety for clinical application(s). With a single manufacturing run, impurities were effectively removed for a representative mAb product (the ZMapp component c4G7). Our results show for the first time the reproducibility of the platform for production of multiple batches of clinical-grade mAb, manufactured under current Good Manufacturing Practices, from Nicotiana benthamiana. The flexibility of the system was confirmed by the results of release testing of 19 different mAbs generated with the platform. The process from plant infection to product can be completed within 10 days. Therefore, with a constant supply of plants, response to the outbreak of an infectious disease could be initiated within a matter of weeks. Thus, these data demonstrated that this platform represents a reproducible, flexible system for rapid production of mAb therapeutics to support clinical development.
Collapse
MESH Headings
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- COVID-19/immunology
- Humans
- Plants, Genetically Modified/chemistry
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/immunology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- SARS-CoV-2/immunology
- Nicotiana/chemistry
- Nicotiana/genetics
- Nicotiana/growth & development
- Nicotiana/immunology
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Kelsi Swope
- Kentucky BioProcessing, Inc, Owensboro, KY, USA
| | - Josh Morton
- Kentucky BioProcessing, Inc, Owensboro, KY, USA
| | - Gregory P. Pogue
- Kentucky BioProcessing, Inc, Owensboro, KY, USA
- IC Institute, the University of Texas at Austin, Austin, TXUSA
| | | | | | - Steve Hume
- Kentucky BioProcessing, Inc, Owensboro, KY, USA
| | | | | | | | | | | | | | | | | | - Kevin J. Whaley
- ZabBio, Inc, San Diego, CA, USA
- Mapp Biopharmaceutical, Inc, San Diego, Ca, USA
| | - Larry Zeitlin
- ZabBio, Inc, San Diego, CA, USA
- Mapp Biopharmaceutical, Inc, San Diego, Ca, USA
| | | | - Hugh Haydon
- Kentucky BioProcessing, Inc, Owensboro, KY, USA
| |
Collapse
|
9
|
Rahimian N, Miraei HR, Amiri A, Ebrahimi MS, Nahand JS, Tarrahimofrad H, Hamblin MR, Khan H, Mirzaei H. Plant-based vaccines and cancer therapy: Where are we now and where are we going? Pharmacol Res 2021; 169:105655. [PMID: 34004270 DOI: 10.1016/j.phrs.2021.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Therapeutic vaccines are an effective approach in cancer therapy for treating the disease at later stages. The Food and Drug Administration (FDA) recently approved the first therapeutic cancer vaccine, and further studies are ongoing in clinical trials. These are expected to result in the future development of vaccines with relatively improved efficacy. Several vaccination approaches are being studied in pre-clinical and clinical trials, including the generation of anti-cancer vaccines by plant expression systems.This approach has advantages, such as high safety and low costs, especially for the synthesis of recombinant proteins. Nevertheless, the development of anti-cancer vaccines in plants is faced with some technical obstacles.Herein, we summarize some vaccines that have been used in cancer therapy, with an emphasis on plant-based vaccines.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hamid Reza Miraei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashahd, Iran
| | | | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 20282028, South Africa
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
Ramos-Vega A, Monreal-Escalante E, Dumonteil E, Bañuelos-Hernández B, Angulo C. Plant-made vaccines against parasites: bioinspired perspectives to fight against Chagas disease. Expert Rev Vaccines 2021; 20:1373-1388. [PMID: 33612044 DOI: 10.1080/14760584.2021.1893170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Three decades of evidence have demonstrated that plants are an affordable platform for biopharmaceutical production and delivery. For instance, several plant-made recombinant proteins have been approved for commercialization under good manufacturing practice (GMP). Thus far, plant-based vaccine prototypes have been evaluated at pre- and clinical levels. Particularly, plant-made vaccines against parasitic diseases, such as malaria, cysticercosis, and toxoplasmosis have been successfully produced and orally delivered with promising outcomes in terms of immunogenicity and protection. The experience on several approaches and technical strategies over 30 years accounts for their potential low-cost, high scalability, and easy administration.Areas covered: This platform is an open technology to fight against Chagas disease, one of the most important neglected tropical diseases worldwide.Expert opinion: This review provides a perspective for the potential use of plants as a production platform and delivery system of Trypanosoma cruzi recombinant antigens, analyzing the advantages and limitations with respect to plant-made vaccines produced for other parasitic diseases. Plant-made vaccines are envisioned to fight against Chagas disease and other neglected tropical diseases in those countries suffering endemic prevalence.
Collapse
Affiliation(s)
- Abel Ramos-Vega
- Grupo de Inmunología & Vacunología. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.c.s. C.p., México
| | - Elizabeth Monreal-Escalante
- Grupo de Inmunología & Vacunología. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.c.s. C.p., México.,CONACYT- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.c.s. C.p, México
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Bernardo Bañuelos-Hernández
- Facultad de Agronomía Y Veterinaria, Universidad de La Salle Bajio, Avenida Universidad 602, Lomas del Campestre, León Guanajuato, México
| | - Carlos Angulo
- Grupo de Inmunología & Vacunología. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.c.s. C.p., México
| |
Collapse
|
11
|
Vacchelli E, Martins I, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology 2021; 1:1557-1576. [PMID: 23264902 PMCID: PMC3525611 DOI: 10.4161/onci.22428] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prophylactic vaccination constitutes one of the most prominent medical achievements of history. This concept was first demonstrated by the pioneer work of Edward Jenner, dating back to the late 1790s, after which an array of preparations that confer life-long protective immunity against several infectious agents has been developed. The ensuing implementation of nation-wide vaccination programs has de facto abated the incidence of dreadful diseases including rabies, typhoid, cholera and many others. Among all, the most impressive result of vaccination campaigns is surely represented by the eradication of natural smallpox infection, which was definitively certified by the WHO in 1980. The idea of employing vaccines as anticancer interventions was first theorized in the 1890s by Paul Ehrlich and William Coley. However, it soon became clear that while vaccination could be efficiently employed as a preventive measure against infectious agents, anticancer vaccines would have to (1) operate as therapeutic, rather than preventive, interventions (at least in the vast majority of settings), and (2) circumvent the fact that tumor cells often fail to elicit immune responses. During the past 30 y, along with the recognition that the immune system is not irresponsive to tumors (as it was initially thought) and that malignant cells express tumor-associated antigens whereby they can be discriminated from normal cells, considerable efforts have been dedicated to the development of anticancer vaccines. Some of these approaches, encompassing cell-based, DNA-based and purified component-based preparations, have already been shown to exert conspicuous anticancer effects in cohorts of patients affected by both hematological and solid malignancies. In this Trial Watch, we will summarize the results of recent clinical trials that have evaluated/are evaluating purified peptides or full-length proteins as therapeutic interventions against cancer.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Park SH, Ji KY, Kim HM, Ma SH, Park SY, Do JH, Oh DB, Kang HS, Shim JS, Joung YH. Optimization of the human colorectal carcinoma antigen GA733-2 production in tobacco plants. PLANT BIOTECHNOLOGY REPORTS 2021; 15:55-67. [PMID: 33520002 PMCID: PMC7825390 DOI: 10.1007/s11816-020-00657-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 05/02/2023]
Abstract
The colorectal carcinoma-associated protein GA733-2 is one of the representative candidate protein for the development of plant-derived colorectal cancer vaccine. Despite of its significant importance for colorectal vaccine development, low efficiency of GA733-2 production limits its wide applications. To improve productivity of GA733-2 in plants, we here tested multiple factors that affect expression of recombinant GA733-2 (rGA733-2) and rGA733 fused to fragment crystallizable (Fc) domain (rGA733-Fc) protein. The rGA733-2 and rGA733-Fc proteins were highly expressed when the pBINPLUS vector system was used for transient expression in tobacco plants. In addition, the length of interval between rGA733-2 and left border of T-DNA affected the expression of rGA733 protein. Transient expression analysis using various combinations of Agrobacterium tumefaciens strains (C58C1, LBA4404, and GV3101) and tobacco species (Nicotiana tabacum cv. Xanthi nc and Nicotiana benthamiana) revealed that higher accumulation of rGA733-2 and rGA733-Fc proteins were obtained by combination of A. tumefaciens LBA4404 and Nicotiana benthamiana. Transgenic plants generated by introduction of the rGA733-2 and rGA733-Fc expression cassettes also significantly accumulated corresponding recombinant proteins. Bioactivity and stability of the plant-derived rGA733 and rGA733-Fc were evaluated by further in vitro assay, western blot and N-glycosylation analysis. Collectively, we here suggest the optimal condition for efficient production of functional rGA733-2 protein in tobacco system.
Collapse
Affiliation(s)
- Se Hee Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Kon-Young Ji
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054 Korea
| | - Hyun Min Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Sang Hoon Ma
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Seo Young Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Ju Hui Do
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Doo-Byoung Oh
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon, 34113 Korea
| | - Hyung Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Young Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| |
Collapse
|
13
|
Abstract
Single chain variable fragments (scFvs) are generated by joining together the variable heavy and light chain of a monoclonal antibody (mAb) via a peptide linker. They offer some advantages over the parental mAb such as low molecular weight, heterologous production, multimeric form, and multivalency. The scFvs were produced against more than 50 antigens till date using 10 different plant species as the expression system. There were considerable improvements in the expression and purification strategies of scFv in the last 24 years. With the growing demand of scFv in therapeutic and diagnostic fields, its biosynthesis needs to be increased. The easiness in development, maintenance, and multiplication of transgenic plants make them an attractive expression platform for scFv production. The review intends to provide comprehensive information about the use of plant expression system to produce scFv. The developments, advantages, pitfalls, and possible prospects of improvement for the exploitation of plants in the industrial level are discussed.
Collapse
Affiliation(s)
- Padikara Kutty Satheeshkumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
14
|
Dent M, Matoba N. Cancer biologics made in plants. Curr Opin Biotechnol 2020; 61:82-88. [PMID: 31785553 PMCID: PMC7096282 DOI: 10.1016/j.copbio.2019.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/27/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Plants are routinely utilized as efficient production platforms for the development of anti-cancer biologics leading to novel anti-cancer vaccines, immunotherapies, and drug-delivery modalities. Various biosimilar/biobetter antibodies and immunogens based on tumor-associated antigens have been produced and optimized for plant expression. Plant virus nanoparticles, including those derived from cowpea mosaic virus or tobacco mosaic virus in particular have shown promise as immunotherapies stimulating tumor-associated immune cells and as drug carriers delivering conjugated chemotherapeutics effectively to tumors. Advancements have also been made toward the development of lectins that can selectively recognize cancer cells. The ease at which plant systems can be utilized for the production of these products presents an opportunity to further develop novel and exciting anti-cancer biologics.
Collapse
Affiliation(s)
- Matthew Dent
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
15
|
Tusé D, Nandi S, McDonald KA, Buyel JF. The Emergency Response Capacity of Plant-Based Biopharmaceutical Manufacturing-What It Is and What It Could Be. FRONTIERS IN PLANT SCIENCE 2020; 11:594019. [PMID: 33193552 PMCID: PMC7606873 DOI: 10.3389/fpls.2020.594019] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/24/2020] [Indexed: 05/12/2023]
Abstract
Several epidemic and pandemic diseases have emerged over the last 20 years with increasing reach and severity. The current COVID-19 pandemic has affected most of the world's population, causing millions of infections, hundreds of thousands of deaths, and economic disruption on a vast scale. The increasing number of casualties underlines an urgent need for the rapid delivery of therapeutics, prophylactics such as vaccines, and diagnostic reagents. Here, we review the potential of molecular farming in plants from a manufacturing perspective, focusing on the speed, capacity, safety, and potential costs of transient expression systems. We highlight current limitations in terms of the regulatory framework, as well as future opportunities to establish plant molecular farming as a global, de-centralized emergency response platform for the rapid production of biopharmaceuticals. The implications of public health emergencies on process design and costs, regulatory approval, and production speed and scale compared to conventional manufacturing platforms based on mammalian cell culture are discussed as a forward-looking strategy for future pandemic responses.
Collapse
Affiliation(s)
- Daniel Tusé
- DT/Consulting Group and GROW Biomedicine, LLC, Sacramento, CA, United States
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| | - Johannes Felix Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- *Correspondence: Johannes Felix Buyel, ; orcid.org/0000-0003-2361-143X
| |
Collapse
|
16
|
Moon KB, Park JS, Park YI, Song IJ, Lee HJ, Cho HS, Jeon JH, Kim HS. Development of Systems for the Production of Plant-Derived Biopharmaceuticals. PLANTS 2019; 9:plants9010030. [PMID: 31878277 PMCID: PMC7020158 DOI: 10.3390/plants9010030] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Over the last several decades, plants have been developed as a platform for the production of useful recombinant proteins due to a number of advantages, including rapid production and scalability, the ability to produce unique glycoforms, and the intrinsic safety of food crops. The expression methods used to produce target proteins are divided into stable and transient systems depending on applications that use whole plants or minimally processed forms. In the early stages of research, stable expression systems were mostly used; however, in recent years, transient expression systems have been preferred. The production of the plant itself, which produces recombinant proteins, is currently divided into two major approaches, open-field cultivation and closed-indoor systems. The latter encompasses such regimes as greenhouses, vertical farming units, cell bioreactors, and hydroponic systems. Various aspects of each system will be discussed in this review, which focuses mainly on practical examples and commercially feasible approaches.
Collapse
Affiliation(s)
- Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
- Department of Biological Sciences, Chungnam National University, 99 Deahank-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, 99 Deahank-ro, Yuseong-gu, Daejeon 34134, Korea
| | - In-Ja Song
- National Research Safety Headquarters, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Chungbuk-do 28116, Korea;
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (K.-B.M.); (J.-S.P.); (H.-J.L.); (H.S.C.); (J.-H.J.)
- Correspondence: ; Tel.: +82-42-860-4493
| |
Collapse
|
17
|
Komarova TV, Sheshukova EV, Dorokhov YL. Plant-Made Antibodies: Properties and Therapeutic Applications. Curr Med Chem 2019; 26:381-395. [PMID: 29231134 DOI: 10.2174/0929867325666171212093257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/18/2017] [Accepted: 10/06/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND A cost-effective plant platform for therapeutic monoclonal antibody production is both flexible and scalable. Plant cells have mechanisms for protein synthesis and posttranslational modification, including glycosylation, similar to those in animal cells. However, plants produce less complex and diverse Asn-attached glycans compared to animal cells and contain plant-specific residues. Nevertheless, plant-made antibodies (PMAbs) could be advantageous compared to those produced in animal cells due to the absence of a risk of contamination from nucleic acids or proteins of animal origin. OBJECTIVE In this review, the various platforms of PMAbs production are described, and the widely used transient expression system based on Agrobacterium-mediated delivery of genetic material into plant cells is discussed in detail. RESULTS We examined the features of and approaches to humanizing the Asn-linked glycan of PMAbs. The prospects for PMAbs in the prevention and treatment of human infectious diseases have been illustrated by promising results with PMAbs against human immunodeficiency virus, rotavirus infection, human respiratory syncytial virus, rabies, anthrax and Ebola virus. The pre-clinical and clinical trials of PMAbs against different types of cancer, including lymphoma and breast cancer, are addressed. CONCLUSION PMAb biosafety assessments in patients suggest that it has no side effects, although this does not completely remove concerns about the potential immunogenicity of some plant glycans in humans. Several PMAbs at various developmental stages have been proposed. Promise for the clinical use of PMAbs is aimed at the treatment of viral and bacterial infections as well as in anti-cancer treatment.
Collapse
Affiliation(s)
- Tatiana V Komarova
- Vavilov Institute of General Genetics Russian Academy of Sciences 119991, Moscow, Russian Federation.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Ekaterina V Sheshukova
- Vavilov Institute of General Genetics Russian Academy of Sciences 119991, Moscow, Russian Federation
| | - Yuri L Dorokhov
- Vavilov Institute of General Genetics Russian Academy of Sciences 119991, Moscow, Russian Federation.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| |
Collapse
|
18
|
Kopertekh L, Schiemann J. Transient Production of Recombinant Pharmaceutical Proteins in Plants: Evolution and Perspectives. Curr Med Chem 2019; 26:365-380. [DOI: 10.2174/0929867324666170718114724] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022]
Abstract
During the last two decades, the production of pharmaceutical proteins in plants
evolved from proof of concept to established technology adopted by several biotechnological
companies. This progress is particularly based on intensive research starting stable genetic
transformation and moving to transient expression. Due to its advantages in yield and
speed of protein production transient expression platforms became the leading plant-based
manufacturing technology. Current transient expression methods rely on Agrobacteriummediated
delivery of expression vectors into plant cells. In recent years, great advances have
been made in the improvement of expression vectors, host cell engineering as well as in the
development of commercial manufacturing processes. Several GMP-certified large-scale
production facilities exist around the world to utilize agroinfiltration method. A number of
pharmaceutical proteins produced by transient expression are currently in clinical development.
The great potential of transient expression platform in respect to rapid response to
emerging pandemics was demonstrated by the production of experimental ZMapp antibodies
against Ebola virus as well as influenza vaccines. This review is focused on current design,
status and future perspectives of plant transient expression system for the production
of biopharmaceutical proteins.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| | - Joachim Schiemann
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| |
Collapse
|
19
|
Módolo DG, Horn CS, Soares JSM, Yunes JA, Lima LM, de Sousa SM, Menossi M. Transgenic Nicotiana tabacum seeds expressing the Mycobacterium tuberculosis Alanine- and Proline-rich antigen. AMB Express 2018; 8:178. [PMID: 30382415 PMCID: PMC6209126 DOI: 10.1186/s13568-018-0708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/24/2018] [Indexed: 11/10/2022] Open
Abstract
The glycoprotein APA (Alanine- and Proline-rich Antigen, a 45/47 kDa antigen complex, Rv1860) is considered as a major immunodominant antigen secreted by M. tuberculosis. This antigen has proved to be highly immunogenic in experimental models and humans, presenting a significant potential for further development of a new vaccine for tuberculosis. Glycosylation plays a key role in the immunogenicity of the APA protein. Because plants are known to promote post-translational modification such as glycosylation and to be one of the most economic and safe hosts for recombinant protein expression, we have over expressed the APA protein in transgenic tobacco plants aiming to produce a glycosylated version of the protein. Seeds are known to be a well-suited organ to accumulate recombinant proteins, due to low protease activity and higher protein stability. We used a seed-specific promoter from sorghum, a signal peptide to target the protein to the endoplasmic reticulum and ultimately in the protein storage vacuoles. We show that the recombinant protein accumulated in the seeds had similar isoelectric point and molecular weight compared with the native protein. These findings demonstrate the ability of tobacco plants to produce glycosylated APA protein, opening the way for the development of secure, effective and versatile vaccines or therapeutic proteins against tuberculosis.
Collapse
|
20
|
Leite ML, Sampaio KB, Costa FF, Franco OL, Dias SC, Cunha NB. Molecular farming of antimicrobial peptides: available platforms and strategies for improving protein biosynthesis using modified virus vectors. AN ACAD BRAS CIENC 2018; 91:e20180124. [PMID: 30365717 DOI: 10.1590/0001-3765201820180124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/07/2018] [Indexed: 11/22/2022] Open
Abstract
The constant demand for new antibiotic drugs has driven efforts by the scientific community to prospect for peptides with a broad spectrum of action. In this context, antimicrobial peptides (AMPs) have acquired great scientific importance in recent years due to their ability to possess antimicrobial and immunomodulatory activity. In the last two decades, plants have attracted the interest of the scientific community and industry as regards their potential as biofactories of heterologous proteins. One of the most promising approaches is the use of viral vectors to maximize the transient expression of drugs in the leaves of the plant Nicotiana benthamiana. Recently, the MagnifectionTM expression system was launched. This sophisticated commercial platform allows the assembly of the viral particle in leaf cells and the systemic spread of heterologous protein biosynthesis in green tissues caused by Agrobacterium tumefaciens "gene delivery method". The system also presents increased gene expression levels mediated by potent viral expression machinery. These characteristics allow the mass recovery of heterologous proteins in the leaves of N. benthamiana in 8 to 10 days. This system was highly efficient for the synthesis of different classes of pharmacological proteins and contains enormous potential for the rapid and abundant biosynthesis of AMPs.
Collapse
Affiliation(s)
- Michel L Leite
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
| | - Kamila B Sampaio
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
| | - Fabrício F Costa
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- Cancer Biology and Epigenomics Program, Northwestern University's Feinberg School of Medicine, 60611, Chicago IL, USA
- Genomic Enterprise, 2405 N. Sheffield Av., 14088, 60614, Chicago, IL, USA
- MATTER Chicago, 222 W. Merchandise Mart Plaza, 12th Floor, 60654, Chicago, IL, USA
- The Founder Institute, 3337 El Camino Real, 94306, Palo Alto, CA USA
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Av. Tamandaré, 6000, Jardim Seminário, 79117-010 Campo Grande, MS, Brazil
| | - Simoni C Dias
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
| | - Nicolau B Cunha
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília/UCB, SGAN 916, Modulo B, Bloco C, 70790-160 Brasilia, DF, Brazil
| |
Collapse
|
21
|
Sharma Y, Srivastava N, Bala K. Neuroprotective ability of TMV coat protein on rat PC-12 cells and it’s in silico study with LRRK2 receptor. Neurol Res 2018; 40:1028-1039. [DOI: 10.1080/01616412.2018.1515840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yash Sharma
- Center of Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nidhi Srivastava
- Center of Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Kumud Bala
- Center of Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
22
|
Alam A, Jiang L, Kittleson GA, Steadman KD, Nandi S, Fuqua JL, Palmer KE, Tusé D, McDonald KA. Technoeconomic Modeling of Plant-Based Griffithsin Manufacturing. Front Bioeng Biotechnol 2018; 6:102. [PMID: 30087892 PMCID: PMC6066545 DOI: 10.3389/fbioe.2018.00102] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Griffithsin is a marine algal lectin that exhibits broad-spectrum antiviral activity by binding oligomannose glycans on viral envelope glycoproteins, including those found in HIV-1, HSV-2, SARS, HCV and other enveloped viruses. An efficient, scalable and cost-effective manufacturing process for Griffithsin is essential for the adoption of this drug in human antiviral prophylaxis and therapy, particularly in cost-sensitive indications such as topical microbicides for HIV-1 prevention. The production of certain classes of recombinant biologics in plants can offer scalability, cost and environmental impact advantages over traditional biomanufacturing platforms. Previously, we showed the technical viability of producing recombinant Griffithsin in plants. In this study, we conducted a technoeconomic analysis (TEA) of plant-produced Griffithsin manufactured at commercial launch volumes for use in HIV microbicides. Data derived from multiple non-sequential manufacturing batches conducted at pilot scale and existing facility designs were used to build a technoeconomic model using SuperPro Designer® modeling software. With an assumed commercial launch volume of 20 kg Griffithsin/year for 6.7 million doses of Griffithsin microbicide at 3 mg/dose, a transient vector expression yield of 0.52 g Griffithsin/kg leaf biomass, recovery efficiency of 70%, and purity of >99%, we calculated a manufacturing cost for the drug substance of $0.32/dose and estimated a bulk product cost of $0.38/dose assuming a 20% net fee for a contract manufacturing organization (CMO). This is the first report modeling the manufacturing economics of Griffithsin. The process analyzed is readily scalable and subject to efficiency improvements and could provide the needed market volumes of the lectin within an acceptable range of costs, even for cost-constrained products such as microbicides. The manufacturing process was also assessed for environmental, health and safety impact and found to have a highly favorable environmental output index with negligible risks to health and safety. The results of this study help validate the plant-based manufacturing platform and should assist in selecting preferred indications for Griffithsin as a novel drug.
Collapse
Affiliation(s)
- Aatif Alam
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Linda Jiang
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Gregory A. Kittleson
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Kenneth D. Steadman
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| | - Joshua L. Fuqua
- Center for Predictive Medicine, University of Louisville, Louisville, KY, United States
| | - Kenneth E. Palmer
- Center for Predictive Medicine, University of Louisville, Louisville, KY, United States
| | - Daniel Tusé
- Intrucept Biomedicine, LLC, Sacramento, CA, United States
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| |
Collapse
|
23
|
Narayanan KB, Han SS. Recombinant helical plant virus-based nanoparticles for vaccination and immunotherapy. Virus Genes 2018; 54:623-637. [PMID: 30008053 DOI: 10.1007/s11262-018-1583-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/23/2018] [Indexed: 01/15/2023]
Abstract
Plant virus-based nanoparticles (PVNs) are self-assembled capsid proteins of plant viruses, and can be virus-like nanoparticles (VLPs) or virus nanoparticles (VNPs). Plant viruses showing helical capsid symmetry are used as a versatile platform for the presentation of multiple copies of well-arrayed immunogenic antigens of various disease pathogens. Helical PVNs are non-infectious, biocompatible, and naturally immunogenic, and thus, they are suitable antigen carriers for vaccine production and can trigger humoral and/or cellular immune responses. Furthermore, recombinant PVNs as vaccines and adjuvants can be expressed in prokaryotic and eukaryotic systems, and plant expression systems can be used to produce cost-effective antigenic peptides on the surfaces of recombinant helical PVNs. This review discusses various recombinant helical PVNs based on different plant viral capsid shells that have been developed as prophylactic and/or therapeutic vaccines against bacterial, viral, and protozoal diseases, and cancer.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.,Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea. .,Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
24
|
Abstract
Plants and their rich variety of natural compounds are used to maintain and to improve health since the earliest stages of civilization. Despite great advances in synthetic organic chemistry, one fourth of present-day drugs have still a botanical origin, and we are currently living a revival of interest in new pharmaceuticals from plant sources. Modern biotechnology has defined the potential of plants to be systems able to manufacture not only molecules naturally occurring in plants but also newly engineered compounds, from small to complex protein molecules, which may originate even from non-plant sources. Among these compounds, pharmaceuticals such as vaccines, antibodies and other therapeutic or prophylactic entities can be listed. For this technology, the term plant molecular farming has been coined with reference to agricultural applications due to the use of crops as biofactories for the production of high-added value molecules. In this perspective, edible plants have also been thought as a tool to deliver by the oral route recombinant compounds of medical significance for new therapeutic strategies. Despite many hurdles in establishing regulatory paths for this “novel” biotechnology, plants as bioreactors deserve more attention when considering their intrinsic advantages, such as the quality and safety of the recombinant molecules that can be produced and their potential for large-scale and low-cost production, despite worrying issues (e.g. amplification and diffusion of transgenes) that are mainly addressed by regulations, if not already tackled by the plant-made products already commercialized. The huge benefits generated by these valuable products, synthesized through one of the safest, cheapest and most efficient method, speak for themselves. Milestone for plant-based recombinant protein production for human health use was the approval in 2012 by the US Food and Drug Administration of plant-made taliglucerase alfa, a therapeutic enzyme for the treatment of Gaucher’s disease, synthesized in carrot suspension cultures by Protalix BioTherapeutics. In this review, we will go through the various approaches and results for plant-based production of proteins and recent progress in the development of plant-made pharmaceuticals (PMPs) for the prevention and treatment of human diseases. An analysis on acceptance of these products by public opinion is also tempted.
Collapse
|
25
|
Zhang H, Wang X, Li X, Ma Z, Feng R. Construction, expression, and characterization of a single-chain variable fragment (ScFv) antibody targeting to the encephalomyocarditis virus. J Med Virol 2018; 90:1184-1191. [PMID: 29476627 DOI: 10.1002/jmv.25065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/13/2018] [Indexed: 11/10/2022]
Abstract
Encephalomyocarditis virus (EMCV) is as a potential zoonotic agent with a wide host range. Here, applying gene splicing by overlap extension PCR (SOE-PCR), we describe a simple method for producing single-chain variable fragment (scFv) antibody against EMCV that configurates in the orientation of VH-(GGGGS)4 -VL. DNA template was resverse transcribed by total RNA that derived from hyperimmunized antibody positive mice spleen after inoculation inactivated EMCV-PV21 as antigen. Using the degenerate primers designed for the variable regions of IgG of murine antibody, the 417 bp of gene encoding VH-linker (VHL) and 360 bp of gene encoding linker-VL (LVL) of the anti-EMCV was individually amplified from DNA template by PCR, repectively. The 762 bp gene encoding anti-EMCV scFv was constructed by SOE-PCR when the mixed VHL and LVL genes were used as the template. The amplified gene subcloned into pGEX-6P1 to yield pGEX-6P1/EMCV-scFv. Recombinant vector transformed into the Escherichia coli BL21 (DE3) and a 53 KDa GST-scFv fusion protein was obtained by SDS-PAGE electrophoresis. Animal experiment results showed that the pretective rate of mice in group A which challenged 500 μL 104 TCID50 EMCV per mouse for 7 d post-inoculation scFv 3 d (0.5 mg purified recombinant scFv per mouse) was 91.67% (11/12). The serum anti-EMCV antibody titer in group A mice was most significantly higher than that in positive control mouse (P < 0.01), coversely the serum relative mRNA copies were significantly lower than that in positive control mouse (P < 0.05). These findings indicated that recombinant anti-EMCV scFv has remarkable anti-EMCV effect in mice.
Collapse
Affiliation(s)
- Haixia Zhang
- The Key Bio-Engineering and Technology Laboratory of SEAC, Northwest Minzu University, Lanzhou, PR China.,Animal Cell Engineering and Technology Research Center of Gansu, Northwest Minzu University, Lanzhou, PR China
| | - Xinglong Wang
- School of Life Science and Bioengineering, Northwest Minzu University, Lanzhou, PR China
| | - Xiangrong Li
- The Key Bio-Engineering and Technology Laboratory of SEAC, Northwest Minzu University, Lanzhou, PR China
| | - Zhongren Ma
- Animal Cell Engineering and Technology Research Center of Gansu, Northwest Minzu University, Lanzhou, PR China
| | - Ruofei Feng
- The Key Bio-Engineering and Technology Laboratory of SEAC, Northwest Minzu University, Lanzhou, PR China.,Animal Cell Engineering and Technology Research Center of Gansu, Northwest Minzu University, Lanzhou, PR China
| |
Collapse
|
26
|
Leaf-Encapsulated Vaccines: Agroinfiltration and Transient Expression of the Antigen Staphylococcal Endotoxin B in Radish Leaves. J Immunol Res 2018; 2018:3710961. [PMID: 29577048 PMCID: PMC5821973 DOI: 10.1155/2018/3710961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 09/24/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Transgene introgression is a major concern associated with transgenic plant-based vaccines. Agroinfiltration can be used to selectively transform nonreproductive organs and avoid introgression. Here, we introduce a new vaccine modality in which Staphylococcal enterotoxin B (SEB) genes are agroinfiltrated into radishes (Raphanw sativus L.), resulting in transient expression and accumulation of SEB in planta. This approach can simultaneously express multiple antigens in a single leaf. Furthermore, the potential of high-throughput vaccine production was demonstrated by simultaneously agroinfiltrating multiple radish leaves using a multichannel pipette. The expression of SEB was detectable in two leaf cell types (epidermal and guard cells) in agroinfiltrated leaves. ICR mice intranasally immunized with homogenized leaves agroinfiltrated with SEB elicited detectable antibody to SEB and displayed protection against SEB-induced interferon-gamma (IFN-γ) production. The concept of encapsulating antigens in leaves rather than purifying them for immunization may facilitate rapid vaccine production during an epidemic disease.
Collapse
|
27
|
Fujiuchi N, Matsuda R, Matoba N, Fujiwara K. Effects of plant density on recombinant hemagglutinin yields in an Agrobacterium-mediated transient gene expression system using Nicotiana benthamiana plants. Biotechnol Bioeng 2017; 114:1762-1770. [PMID: 28369753 DOI: 10.1002/bit.26303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/19/2017] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
Abstract
Agrobacterium-mediated transient expression systems enable plants to rapidly produce a wide range of recombinant proteins. To achieve economically feasible upstream production and downstream processing, it is beneficial to obtain high levels of two yield-related quantities of upstream production: recombinant protein content per fresh mass of harvested biomass (g gFM-1 ) and recombinant protein productivity per unit area-time (g m-2 /month). Here, we report that the density of Nicotiana benthamiana plants during upstream production had significant impacts on the yield-related quantities of recombinant hemagglutinin (HA). The two quantities were smaller at a high plant density of 400 plants m-2 than at a low plant density of 100 plants m-2 . The smaller quantities at the high plant density were attributed to: (i) a lower HA content in young leaves, which usually have high HA accumulation potentials; (ii) a lower biomass allocation to the young leaves; and (iii) a high area-time requirement for plants. Thus, plant density is a key factor for improving upstream production in Agrobacterium-mediated transient expression systems. Biotechnol. Bioeng. 2017;114: 1762-1770. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Naomichi Fujiuchi
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuyuki Matoba
- Owensboro Cancer Research Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Owensboro, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kazuhiro Fujiwara
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines 2017; 5:biomedicines5030044. [PMID: 28758953 PMCID: PMC5618302 DOI: 10.3390/biomedicines5030044] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Plant-made biopharmaceuticals have long been considered a promising technology for providing inexpensive and efficacious medicines for developing countries, as well as for combating pandemic infectious diseases and for use in personalized medicine. Plant virus expression vectors produce high levels of pharmaceutical proteins within a very short time period. Recently, plant viruses have been employed as nanoparticles for novel forms of cancer treatment. This review provides a glimpse into the development of plant virus expression systems both for pharmaceutical production as well as for immunotherapy.
Collapse
|
29
|
Lee JH, Ko K. Production of Recombinant Anti-Cancer Vaccines in Plants. Biomol Ther (Seoul) 2017; 25:345-353. [PMID: 28554196 PMCID: PMC5499611 DOI: 10.4062/biomolther.2016.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 12/24/2022] Open
Abstract
Plant expression systems have been developed to produce anti-cancer vaccines. Plants have several advantages as bioreactors for the production of subunit vaccines: they are considered safe, and may be used to produce recombinant proteins at low production cost. However, several technical issues hinder large-scale production of anti-cancer vaccines in plants. The present review covers design strategies to enhance the immunogenicity and therapeutic potency of anti-cancer vaccines, methods to increase vaccine-expressing plant biomass, and challenges facing the production of anti-cancer vaccines in plants. Specifically, the issues such as low expression levels and plant-specific glycosylation are described, along with their potential solutions.
Collapse
Affiliation(s)
- Jeong Hwan Lee
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kisung Ko
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
30
|
Giritch A, Klimyuk V, Gleba Y. 125 years of virology and ascent of biotechnologies based on viral expressio. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717020037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Edgue G, Twyman RM, Beiss V, Fischer R, Sack M. Antibodies from plants for bionanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Gueven Edgue
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
| | | | - Veronique Beiss
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
| | - Rainer Fischer
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Aachen Germany
| | - Markus Sack
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
| |
Collapse
|
32
|
Wong-Arce A, González-Ortega O, Rosales-Mendoza S. Plant-Made Vaccines in the Fight Against Cancer. Trends Biotechnol 2017; 35:241-256. [DOI: 10.1016/j.tibtech.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/21/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022]
|
33
|
Lomonossoff GP, D'Aoust MA. Plant-produced biopharmaceuticals: A case of technical developments driving clinical deployment. Science 2017; 353:1237-40. [PMID: 27634524 DOI: 10.1126/science.aaf6638] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to express heterologous proteins in plants has led to the concept of using plants as "bioreactors" or "biofactories" for the production of pharmaceutical proteins. Although initial studies were promising, the pathway to commercialization and deployment in a clinical setting has proven to be a somewhat rocky road. This Review examines the technical developments that have led to the current increase in interest in the use of plants for the production of pharmaceutical proteins, particularly in the context of clinical trials.
Collapse
Affiliation(s)
- George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Marc-André D'Aoust
- Medicago, 1020 Route de l'Église, Bureau 600, Quebec City, Quebec G1V 3V9, Canada
| |
Collapse
|
34
|
Role of Recombinant DNA Technology to Improve Life. Int J Genomics 2016; 2016:2405954. [PMID: 28053975 PMCID: PMC5178364 DOI: 10.1155/2016/2405954] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/21/2016] [Accepted: 11/06/2016] [Indexed: 12/26/2022] Open
Abstract
In the past century, the recombinant DNA technology was just an imagination that desirable characteristics can be improved in the living bodies by controlling the expressions of target genes. However, in recent era, this field has demonstrated unique impacts in bringing advancement in human life. By virtue of this technology, crucial proteins required for health problems and dietary purposes can be produced safely, affordably, and sufficiently. This technology has multidisciplinary applications and potential to deal with important aspects of life, for instance, improving health, enhancing food resources, and resistance to divergent adverse environmental effects. Particularly in agriculture, the genetically modified plants have augmented resistance to harmful agents, enhanced product yield, and shown increased adaptability for better survival. Moreover, recombinant pharmaceuticals are now being used confidently and rapidly attaining commercial approvals. Techniques of recombinant DNA technology, gene therapy, and genetic modifications are also widely used for the purpose of bioremediation and treating serious diseases. Due to tremendous advancement and broad range of application in the field of recombinant DNA technology, this review article mainly focuses on its importance and the possible applications in daily life.
Collapse
|
35
|
Juarez P, Virdi V, Depicker A, Orzaez D. Biomanufacturing of protective antibodies and other therapeutics in edible plant tissues for oral applications. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1791-1799. [PMID: 26873071 PMCID: PMC5067594 DOI: 10.1111/pbi.12541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Although plant expression systems used for production of therapeutic proteins have the advantage of being scalable at a low price, the downstream processing necessary to obtain pure therapeutic molecules is as expensive as for the traditional Chinese hamster ovary (CHO) platforms. However, when edible plant tissues (EPTs) are used, there is no need for exhaustive purification, because they can be delivered orally as partially purified formulations that are safe for consumption. This economic benefit is especially interesting when high doses of recombinant proteins are required throughout the treatment/prophylaxis period, as is the case for antibodies used for oral passive immunization (OPI). The secretory IgA (SIgA) antibodies, which are highly abundant in the digestive tract and mucosal secretions, and thus the first choice for OPI, have only been successfully produced in plant expression systems. Here, we cover most of the up-to-date examples of EPT-produced pharmaceuticals, including two examples of SIgA aimed at oral delivery. We describe the benefits and drawbacks of delivering partially purified formulations and discuss a number of practical considerations and criteria to take into account when using plant expression systems, such as subcellular targeting, protein degradation, glycosylation patterns and downstream strategies, all crucial for improved yield, high quality and low cost of the final product.
Collapse
Affiliation(s)
- Paloma Juarez
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Vikram Virdi
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
36
|
Gasanova TV, Petukhova NV, Ivanov PA. Chimeric particles of tobacco mosaic virus as a platform for the development of next-generation nanovaccines. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1995078016020051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Yusibov V, Kushnir N, Streatfield SJ. Antibody Production in Plants and Green Algae. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:669-701. [PMID: 26905655 DOI: 10.1146/annurev-arplant-043015-111812] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | | |
Collapse
|
38
|
Fujiuchi N, Matsuda R, Matoba N, Fujiwara K. Removal of bacterial suspension water occupying the intercellular space of detached leaves after agroinfiltration improves the yield of recombinant hemagglutinin in a Nicotiana benthamiana transient gene expression system. Biotechnol Bioeng 2016; 113:901-6. [PMID: 26461274 DOI: 10.1002/bit.25854] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/02/2015] [Accepted: 10/08/2015] [Indexed: 11/07/2022]
Abstract
The use of detached leaves instead of whole plants provides an alternative means for recombinant protein production based on Agrobacterium tumefaciens-mediated transient gene overexpression. However, the process for high-level protein production in detached leaves has not yet been established. In this study, we focused on leaf handling and maintenance conditions immediately after infiltration with Agrobacterium suspension (agroinfiltration) to improve recombinant protein expression in detached Nicotiana benthamiana leaves. We demonstrated that the residual water of bacterial suspension in detached leaves had significant impact on the yield of recombinant influenza hemagglutinin (HA). Immediately after agroinfiltration, detached leaves were stored in a dehumidified chamber to allow bacterial suspension water occupying intercellular space to be removed by transpiration. We varied the duration of this water removal treatment from 0.7 to 4.4 h, which resulted in leaf fresh weights ranging from 0.94 to 1.28 g g(-1) relative to weights measured just before agroinfiltration. We used these relative fresh weights (RFWs) as an indicator of the amount of residual water. The detached leaves were then incubated in humidified chambers for 6 days. We found that the presence of residual water significantly decreased HA yield, with a clear inverse correlation observed between HA yield and RFW. We next compared HA yields in detached leaves with those obtained from intact leaves by whole-plant expression performed at the same time. The maximum HA yield obtained from a detached leaf with a RFW of approximately 1.0, namely, 800 μg gFW(-1), was comparable to the mean HA yield of 846 μg gFW(-1) generated in intact leaves. Our results indicate the necessity of removing bacterial suspension water from agroinfiltrated detached leaves in transient overexpression systems and point to a critical factor enabling the detached-leaf system as a viable recombinant protein factory.
Collapse
Affiliation(s)
- Naomichi Fujiuchi
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| | - Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Nobuyuki Matoba
- Owensboro Cancer Research Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Owensboro, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kazuhiro Fujiwara
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
39
|
Fujiuchi N, Matoba N, Matsuda R. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression. Front Bioeng Biotechnol 2016; 4:23. [PMID: 27014686 PMCID: PMC4781840 DOI: 10.3389/fbioe.2016.00023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area-time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant protein content and productivity, thus enhancing the utility of plant-based transient expression systems as recombinant protein factories.
Collapse
Affiliation(s)
- Naomichi Fujiuchi
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuyuki Matoba
- Owensboro Cancer Research Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Owensboro, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Madeira LM, Szeto TH, Henquet M, Raven N, Runions J, Huddleston J, Garrard I, Drake PMW, Ma JKC. High-yield production of a human monoclonal IgG by rhizosecretion in hydroponic tobacco cultures. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:615-24. [PMID: 26038982 DOI: 10.1111/pbi.12407] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 05/28/2023]
Abstract
Rhizosecretion of recombinant pharmaceuticals from in vitro hydroponic transgenic plant cultures is a simple, low cost, reproducible and controllable production method. Here, we demonstrate the application and adaptation of this manufacturing platform to a human antivitronectin IgG1 monoclonal antibody (mAb) called M12. The rationale for specific growth medium additives was established by phenotypic analysis of root structure and by LC-ESI-MS/MS profiling of the total protein content profile of the hydroponic medium. Through a combination of optimization approaches, mAb yields in hydroponic medium reached 46 μg/mL in 1 week, the highest figure reported for a recombinant mAb in a plant secretion-based system to date. The rhizosecretome was determined to contain 104 proteins, with the mAb heavy and light chains the most abundant. This enabled evaluation of a simple, scalable extraction and purification protocol and demonstration that only minimal processing was necessary prior to protein A affinity chromatography. MALDI-TOF MS revealed that purified mAb contained predominantly complex-type plant N-glycans, in three major glycoforms. The binding of M12 purified from hydroponic medium to vitronectin was comparable to its Chinese hamster ovary (CHO)-derived counterpart. This study demonstrates that in vitro hydroponic cultivation coupled with recombinant protein rhizosecretion can be a practical, low-cost production platform for monoclonal antibodies.
Collapse
Affiliation(s)
- Luisa M Madeira
- The Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Tim H Szeto
- The Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Maurice Henquet
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Nicole Raven
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - John Runions
- Department of Biological and Medical Sciences - Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Jon Huddleston
- Brunel Institute for Bioengineering, Brunel University, London, UK
| | - Ian Garrard
- Brunel Institute for Bioengineering, Brunel University, London, UK
| | - Pascal M W Drake
- The Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Julian K-C Ma
- The Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| |
Collapse
|
41
|
Takeyama N, Kiyono H, Yuki Y. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. THERAPEUTIC ADVANCES IN VACCINES 2015; 3:139-54. [PMID: 26668752 DOI: 10.1177/2051013615613272] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has been about 30 years since the first plant engineering technology was established. Although the concept of plant-based pharmaceuticals or vaccines motivates us to develop practicable commercial products using plant engineering, there are some difficulties in reaching the final goal: to manufacture an approved product. At present, the only plant-made vaccine approved by the United States Department of Agriculture is a Newcastle disease vaccine for poultry that is produced in suspension-cultured tobacco cells. The progress toward commercialization of plant-based vaccines takes much effort and time, but several candidate vaccines for use in humans and animals are in clinical trials. This review discusses plant engineering technologies and regulations relevant to the development of plant-based vaccines and provides an overview of human and animal vaccines currently under clinical trials.
Collapse
Affiliation(s)
- Natsumi Takeyama
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
42
|
Holtz BR, Berquist BR, Bennett LD, Kommineni VJM, Munigunti RK, White EL, Wilkerson DC, Wong KYI, Ly LH, Marcel S. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1180-90. [PMID: 26387511 DOI: 10.1111/pbi.12469] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/04/2015] [Accepted: 08/09/2015] [Indexed: 05/17/2023]
Abstract
Rapid, large-scale manufacture of medical countermeasures can be uniquely met by the plant-made-pharmaceutical platform technology. As a participant in the Defense Advanced Research Projects Agency (DARPA) Blue Angel project, the Caliber Biotherapeutics facility was designed, constructed, commissioned and released a therapeutic target (H1N1 influenza subunit vaccine) in <18 months from groundbreaking. As of 2015, this facility was one of the world's largest plant-based manufacturing facilities, with the capacity to process over 3500 kg of plant biomass per week in an automated multilevel growing environment using proprietary LED lighting. The facility can commission additional plant grow rooms that are already built to double this capacity. In addition to the commercial-scale manufacturing facility, a pilot production facility was designed based on the large-scale manufacturing specifications as a way to integrate product development and technology transfer. The primary research, development and manufacturing system employs vacuum-infiltrated Nicotiana benthamiana plants grown in a fully contained, hydroponic system for transient expression of recombinant proteins. This expression platform has been linked to a downstream process system, analytical characterization, and assessment of biological activity. This integrated approach has demonstrated rapid, high-quality production of therapeutic monoclonal antibody targets, including a panel of rituximab biosimilar/biobetter molecules and antiviral antibodies against influenza and dengue fever.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lan H Ly
- Caliber Biotherapeutics, Bryan, TX, USA
| | | |
Collapse
|
43
|
Tusé D, Ku N, Bendandi M, Becerra C, Collins R, Langford N, Sancho SI, López-Díaz de Cerio A, Pastor F, Kandzia R, Thieme F, Jarczowski F, Krause D, Ma JKC, Pandya S, Klimyuk V, Gleba Y, Butler-Ransohoff JE. Clinical Safety and Immunogenicity of Tumor-Targeted, Plant-Made Id-KLH Conjugate Vaccines for Follicular Lymphoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:648143. [PMID: 26425548 PMCID: PMC4575747 DOI: 10.1155/2015/648143] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/11/2015] [Accepted: 04/12/2015] [Indexed: 01/24/2023]
Abstract
We report the first evaluation of plant-made conjugate vaccines for targeted treatment of B-cell follicular lymphoma (FL) in a Phase I safety and immunogenicity clinical study. Each recombinant personalized immunogen consisted of a tumor-derived, plant-produced idiotypic antibody (Ab) hybrid comprising the hypervariable regions of the tumor-associated light and heavy Ab chains, genetically grafted onto a common human IgG1 scaffold. Each immunogen was produced in Nicotiana benthamiana plants using twin magnICON vectors expressing the light and heavy chains of the idiotypic Ab. Each purified Ab was chemically linked to the carrier protein keyhole limpet hemocyanin (KLH) to form a conjugate vaccine. The vaccines were administered to FL patients over a series of ≥6 subcutaneous injections in conjunction with the adjuvant Leukine (GM-CSF). The 27 patients enrolled in the study had previously received non-anti-CD20 cytoreductive therapy followed by ≥4 months of immune recovery prior to first vaccination. Of 11 patients who became evaluable at study conclusion, 82% (9/11) displayed a vaccine-induced, idiotype-specific cellular and/or humoral immune response. No patients showed serious adverse events (SAE) related to vaccination. The fully scalable plant-based manufacturing process yields safe and immunogenic personalized FL vaccines that can be produced within weeks of obtaining patient biopsies.
Collapse
Affiliation(s)
- Daniel Tusé
- DT/Consulting Group, 2695 13th Street, Sacramento, CA 95818, USA
| | - Nora Ku
- DAVA Oncology LP, Two Lincoln Center, 5420 LBJ Freeway, Suite 410, Dallas, TX 75240, USA
| | - Maurizio Bendandi
- Ross University School of Medicine, P.O. Box 266, Portsmouth, Dominica
| | - Carlos Becerra
- Baylor University Medical Center, C. A. Sammons Cancer Center, 3535 Worth Street, Dallas, TX 75246, USA
| | - Robert Collins
- University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nyla Langford
- DAVA Oncology LP, Two Lincoln Center, 5420 LBJ Freeway, Suite 410, Dallas, TX 75240, USA
| | | | | | - Fernando Pastor
- CIMA, Universidad de Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain
| | - Romy Kandzia
- Icon Genetics GmbH, Weinbergweg 22, 06120 Halle, Germany
| | - Frank Thieme
- Icon Genetics GmbH, Weinbergweg 22, 06120 Halle, Germany
| | | | - Dieter Krause
- Icon Genetics GmbH, Weinbergweg 22, 06120 Halle, Germany
| | - Julian K.-C. Ma
- St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | - Shan Pandya
- St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | - Victor Klimyuk
- Icon Genetics GmbH, Weinbergweg 22, 06120 Halle, Germany
| | - Yuri Gleba
- Icon Genetics GmbH, Weinbergweg 22, 06120 Halle, Germany
| | | |
Collapse
|
44
|
Gene delivery into plant cells for recombinant protein production. BIOMED RESEARCH INTERNATIONAL 2015; 2015:932161. [PMID: 26075275 PMCID: PMC4449920 DOI: 10.1155/2015/932161] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/17/2014] [Indexed: 01/10/2023]
Abstract
Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.
Collapse
|
45
|
Zhou Y, Maharaj PD, Mallajosyula JK, McCormick AA, Kearney CM. In planta production of flock house virus transencapsidated RNA and its potential use as a vaccine. Mol Biotechnol 2015; 57:325-36. [PMID: 25432792 DOI: 10.1007/s12033-014-9826-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have developed a transencapsidated vaccine delivery system based on the insect virus, Flock House virus (FHV). FHV is attractive due to its small genome size, simple organization, and nonpathogenic characteristics. With the insertion of a Tobacco mosaic virus (TMV) origin of assembly (Oa), the independently replicating FHV RNA1 can be transencapsidated by TMV coat protein. In this study, we demonstrated that the Oa-adapted FHV RNA1 transencapsidation process can take place in planta, by using a bipartite plant expression vector system, where TMV coat protein is expressed by another plant virus vector, Foxtail mosaic virus (FoMV). Dual infection in the same cell by both FHV and FoMV was observed. Though an apparent classical coat protein-mediated resistance repressed FHV expression, this was overcome by delaying inoculation of the TMV coat protein vector by 3 days after FHV vector inoculation. Expression of the transgene marker in animals by these in vivo-generated transencapsidated nanoparticles was confirmed by mouse vaccination, which also showed an improved vaccine response compared to similar in vitro-produced vaccines.
Collapse
Affiliation(s)
- Yiyang Zhou
- Biomedical Studies Program, Baylor University, Waco, TX, USA,
| | | | | | | | | |
Collapse
|
46
|
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv 2015; 33:1024-42. [PMID: 25819757 DOI: 10.1016/j.biotechadv.2015.03.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 12/20/2022]
Abstract
Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations.
Collapse
Affiliation(s)
- Pavel Krenek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Olga Samajova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Ivan Luptovciak
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Anna Doskocilova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Jozef Samaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
47
|
Fahad S, Khan FA, Pandupuspitasari NS, Ahmed MM, Liao YC, Waheed MT, Sameeullah M, Darkhshan, Hussain S, Saud S, Hassan S, Jan A, Jan MT, Wu C, Chun MX, Huang J. Recent developments in therapeutic protein expression technologies in plants. Biotechnol Lett 2015; 37:265-79. [PMID: 25326175 PMCID: PMC7088338 DOI: 10.1007/s10529-014-1699-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/06/2014] [Indexed: 12/17/2022]
Abstract
Infectious diseases and cancers are some of the commonest causes of deaths throughout the world. The previous two decades have witnessed a combined endeavor across various biological sciences to address this issue in novel ways. The advent of recombinant DNA technologies has provided the tools for producing recombinant proteins that can be used as therapeutic agents. A number of expression systems have been developed for the production of pharmaceutical products. Recently, advances have been made using plants as bioreactors to produce therapeutic proteins directed against infectious diseases and cancers. This review highlights the recent progress in therapeutic protein expression in plants (stable and transient), the factors affecting heterologous protein expression, vector systems and recent developments in existing technologies and steps towards the industrial production of plant-made vaccines, antibodies, and biopharmaceuticals.
Collapse
Affiliation(s)
- Shah Fahad
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Faheem Ahmed Khan
- Molecular Biotechnology Laboratory for Triticeae Crops, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China
| | | | | | - Yu Cai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Muhammad Sameeullah
- Biotechnology Lab., Department of Biology, Faculty of Science and Arts, Abant Izzet Baysal University, Golkoy Campus, 14280 Bolu, Turkey
| | - Darkhshan
- Women Institute of Learning, Abbottabad, Pakistan
| | - Saddam Hussain
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Shah Saud
- Department of Horticultural, Northeast Agricultural University, Harbin, 150030 China
| | - Shah Hassan
- Agriculture University, Peshawar, 25000 Pakistan
| | | | | | - Chao Wu
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Ma Xiao Chun
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| |
Collapse
|
48
|
Yusibov V, Kushnir N, Streatfield SJ. Advances and challenges in the development and production of effective plant-based influenza vaccines. Expert Rev Vaccines 2014; 14:519-35. [PMID: 25487788 DOI: 10.1586/14760584.2015.989988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Influenza infections continue to present a major threat to public health. Traditional modes of influenza vaccine manufacturing are failing to satisfy the global demand because of limited scalability and long production timelines. In contrast, subunit vaccines (SUVs) can be produced in heterologous expression systems in shorter times and at higher quantities. Plants are emerging as a promising platform for SUV production due to time efficiency, scalability, lack of harbored mammalian pathogens and possession of the machinery for eukaryotic post-translational protein modifications. So far, several organizations have utilized plant-based transient expression systems to produce SUVs against influenza, including vaccines based on virus-like particles. Plant-produced influenza SUV candidates have been extensively evaluated in animal models and some have shown safety and immunogenicity in clinical trials. Here, the authors review ongoing efforts and challenges to producing influenza SUV candidates in plants and discuss the likelihood of bringing these products to the market.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 19711, USA
| | | | | |
Collapse
|
49
|
Salazar-Gonzalez JA, Rosales-Mendoza S, Romero-Maldonado A, Monreal-Escalante E, Uresti-Rivera EE, Bañuelos-Hernández B. Production of a plant-derived immunogenic protein targeting ApoB100 and CETP: toward a plant-based atherosclerosis vaccine. Mol Biotechnol 2014; 56:1133-42. [PMID: 25143122 DOI: 10.1007/s12033-014-9793-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In an effort to initiate the development of a plant-based vaccination model against atherosclerosis, a cholera toxin B subunit (CTB)-based chimeric protein was designed to target both ApoB100 and CETP epitopes associated with immunotherapeutic effects in atherosclerosis. Epitopes were fused at the C-terminus of CTB to yield a protein called CTB:p210:CETPe. A synthetic gene coding for CTB:p210:CETPe was successfully transferred to tobacco plants with no phenotypic alterations. Plant-derived CTB:p210:CETPe was expressed and assembled in the pentameric form. This protein retained the target antigenic determinants, as revealed by GM1-ELISA and Western blot analyses. Higher expresser lines reached recombinant protein accumulation levels up to 10 µg/g fresh weight in leaf tissues and these lines carry a single insertion of the transgene as determined by qPCR. Moreover, when subcutaneously administered, the biomass from these CTB:p210:CETPe-producing plants was able to elicit humoral responses in mice against both ApoB100 and CETP epitopes and human serum proteins. These findings evidenced for the first time that atherosclerosis-related epitopes can be expressed in plants retaining immunogenicity, which opens a new path in the molecular farming field for the development of vaccines against atherosclerosis.
Collapse
Affiliation(s)
- Jorge Alberto Salazar-Gonzalez
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico
| | | | | | | | | | | |
Collapse
|
50
|
Hefferon KL. DNA Virus Vectors for Vaccine Production in Plants: Spotlight on Geminiviruses. Vaccines (Basel) 2014; 2:642-53. [PMID: 26344750 PMCID: PMC4494219 DOI: 10.3390/vaccines2030642] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022] Open
Abstract
Plants represent a safe, efficacious and inexpensive production platform by which to provide vaccines and other therapeutic proteins to the world's poor. Plant virus expression vector technology has rapidly become one of the most popular methods to express pharmaceutical proteins in plants. This review discusses several of the state-of-the-art plant expression systems based upon geminiviruses that have been engineered for vaccine production. An overview of the advantages of these small, single-stranded DNA viruses is provided and comparisons are made with other virus expression systems. Advances in the design of several different geminivirus vectors are presented in this review, and examples of vaccines and other biologics generated from each are described.
Collapse
Affiliation(s)
- Kathleen L Hefferon
- Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 2J7, Canada.
| |
Collapse
|