1
|
Zemliak V, Mayer J, Nieters P, Pipa G. Spike synchrony as a measure of Gestalt structure. Sci Rep 2024; 14:5910. [PMID: 38467630 PMCID: PMC10928224 DOI: 10.1038/s41598-024-54755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
The function of spike synchrony is debatable: some researchers view it as a mechanism for binding perceptual features, others - as a byproduct of brain activity. We argue for an alternative computational role: synchrony can estimate the prior probability of incoming stimuli. In V1, this can be achieved by comparing input with previously acquired visual experience, which is encoded in plastic horizontal intracortical connections. V1 connectivity structure can encode the acquired visual experience in the form of its aggregate statistics. Since the aggregate statistics of natural images tend to follow the Gestalt principles, we can assume that V1 is more often exposed to Gestalt-like stimuli, and this is manifested in its connectivity structure. At the same time, the connectivity structure has an impact on spike synchrony in V1. We used a spiking model with V1-like connectivity to demonstrate that spike synchrony reflects the Gestalt structure of the stimulus. We conducted simulation experiments with three Gestalt laws: proximity, similarity, and continuity, and found substantial differences in firing synchrony for stimuli with varying degrees of Gestalt-likeness. This allows us to conclude that spike synchrony indeed reflects the Gestalt structure of the stimulus, which can be interpreted as a mechanism for prior probability estimation.
Collapse
Affiliation(s)
- Viktoria Zemliak
- Institute of Cognitive Science, University of Osnabrück, 49074, Osnabrück, Germany.
| | - Julius Mayer
- Institute of Cognitive Science, University of Osnabrück, 49074, Osnabrück, Germany
| | - Pascal Nieters
- Institute of Cognitive Science, University of Osnabrück, 49074, Osnabrück, Germany
| | - Gordon Pipa
- Institute of Cognitive Science, University of Osnabrück, 49074, Osnabrück, Germany
| |
Collapse
|
2
|
Peng K, Karunakaran KD, Green S, Borsook D. Machines, mathematics, and modules: the potential to provide real-time metrics for pain under anesthesia. NEUROPHOTONICS 2024; 11:010701. [PMID: 38389718 PMCID: PMC10883389 DOI: 10.1117/1.nph.11.1.010701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
The brain-based assessments under anesthesia have provided the ability to evaluate pain/nociception during surgery and the potential to prevent long-term evolution of chronic pain. Prior studies have shown that the functional near-infrared spectroscopy (fNIRS)-measured changes in cortical regions such as the primary somatosensory and the polar frontal cortices show consistent response to evoked and ongoing pain in awake, sedated, and anesthetized patients. We take this basic approach and integrate it into a potential framework that could provide real-time measures of pain/nociception during the peri-surgical period. This application could have significant implications for providing analgesia during surgery, a practice that currently lacks quantitative evidence to guide patient tailored pain management. Through a simple readout of "pain" or "no pain," the proposed system could diminish or eliminate levels of intraoperative, early post-operative, and potentially, the transition to chronic post-surgical pain. The system, when validated, could also be applied to measures of analgesic efficacy in the clinic.
Collapse
Affiliation(s)
- Ke Peng
- University of Manitoba, Department of Electrical and Computer Engineering, Price Faculty of Engineering, Winnipeg, Manitoba, Canada
| | - Keerthana Deepti Karunakaran
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
| | - Stephen Green
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Boston, Massachusetts, United States
| | - David Borsook
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Lazar L, Chand P, Rajan R, Mohammed H, Jain N. Somatosensory cortex of macaque monkeys is designed for opposable thumb. Cereb Cortex 2022; 33:195-206. [PMID: 35226918 DOI: 10.1093/cercor/bhac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/14/2022] Open
Abstract
The evolution of opposable thumb has enabled fine grasping ability and precision grip, therefore the ability to finely manipulate the objects and refined tool use. Since tactile inputs to an opposable thumb are often spatially and temporally out of sync with inputs from the fingers, we hypothesized that inputs from the opposable thumb would be processed in an independent module in the primary somatosensory cortex (area 3b). Here we show that in area 3b of macaque monkeys, most neurons in the thumb representation do not respond to tactile stimulation of other digits and receive few intrinsic cortical inputs from other digits. However, neurons in the representations of other 4 digits respond to touch on any of the 4 digits and interconnect significantly more. The thumb inputs are thus processed in an independent module, whereas there is a significantly more interdigital information exchange between the other digits. This cortical organization reflects behavioral use of a hand with an opposable thumb.
Collapse
Affiliation(s)
- Leslee Lazar
- National Brain Research Centre, Manesar 122052, India.,Centre for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, 322385, India
| | - Prem Chand
- National Brain Research Centre, Manesar 122052, India.,Department of Zoology, Tilak Dhari Post Graduate College, V.B.S. Purvanchal University, Jaunpur, Uttar Pradesh, 222002, India
| | - Radhika Rajan
- National Brain Research Centre, Manesar 122052, India.,Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | | - Neeraj Jain
- National Brain Research Centre, Manesar 122052, India.,Department of Bioscience and Bioengineering; and School of AI and Data Science, Indian Institute of Technology Jodhpur, Karwar, Jodhpur 342030, India
| |
Collapse
|
4
|
Wu R, Yang PF, Wang F, Liu Q, Gore JC, Chen LM. Differential Recovery of Submodality Touch Neurons and Interareal Communication in Sensory Input-Deprived Area 3b and S2 Cortices. J Neurosci 2022; 42:9330-9342. [PMID: 36379707 PMCID: PMC9794378 DOI: 10.1523/jneurosci.0034-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/09/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cortical reactivation and regain of interareal functional connections have been linked to the recovery of hand grasping behavior after loss of sensory inputs in primates. We investigated contributions of neurons in two hierarchically organized somatosensory areas, 3b and S2, by characterizing local field potential (LFP) and multiunit spiking activity in five states (rest, stimulus-on, sustained, stimulus-off, and induced) and interareal communication after grasping behavior of dorsal column lesioned male squirrel monkeys had mostly recovered. Compared with normal cortex, fMRI, LFP, and spiking response magnitudes to step indentations were significantly weaker. The sustained component of the spiking recovered much better than the stimulus-off response. Correlation between overall spiking and γ LFP remained strong within each recovered areas 3b and S2. The interareal correlations of γ LFP were severely disrupted, except in the resting and stimulus-on periods. Interareal correlation of spiking was disrupted in the stimulus-off period only. In summary, submodality of low threshold mechanoreceptive neurons recovered differentially in input-deprived area 3b and S2 when impaired global hand grasping behavior returned. Slow-adapting-like neurons recovered, whereas rapid-adapting-like neurons did not. Interareal communications were also severely compromised. We propose that slow-adapting-like neurons and afferents in recovered area 3b and S2 mediate recovery of impaired grasping behavior after dorsal column tract lesion.SIGNIFICANCE STATEMENT Sensory feedback is essential for execution of hand grasping behavior in primates. Reactivations of somatosensory cortices have been attributed to recovery of such behavior after loss of sensory inputs via largely unknown mechanisms. In input-deprived area 3b and S2 cortex, after hand grasping behavior mostly recovered, we found slow-adapting-like neurons were greatly recovered, whereas rapid-adapting-like neurons did not. Communications between area 3b and S2 neurons were severely compromised. We suggest that recovery of slow-adapting-like neurons in input-deprived area 3b and S2 may mediate the recovery of hand grasping behavior.
Collapse
Affiliation(s)
- Ruiqi Wu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 200031, China
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Qing Liu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biomedical Engineer, Vanderbilt University, Nashville, Tennessee 37232
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
5
|
Gansel KS. Neural synchrony in cortical networks: mechanisms and implications for neural information processing and coding. Front Integr Neurosci 2022; 16:900715. [PMID: 36262373 PMCID: PMC9574343 DOI: 10.3389/fnint.2022.900715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Synchronization of neuronal discharges on the millisecond scale has long been recognized as a prevalent and functionally important attribute of neural activity. In this article, I review classical concepts and corresponding evidence of the mechanisms that govern the synchronization of distributed discharges in cortical networks and relate those mechanisms to their possible roles in coding and cognitive functions. To accommodate the need for a selective, directed synchronization of cells, I propose that synchronous firing of distributed neurons is a natural consequence of spike-timing-dependent plasticity (STDP) that associates cells repetitively receiving temporally coherent input: the “synchrony through synaptic plasticity” hypothesis. Neurons that are excited by a repeated sequence of synaptic inputs may learn to selectively respond to the onset of this sequence through synaptic plasticity. Multiple neurons receiving coherent input could thus actively synchronize their firing by learning to selectively respond at corresponding temporal positions. The hypothesis makes several predictions: first, the position of the cells in the network, as well as the source of their input signals, would be irrelevant as long as their input signals arrive simultaneously; second, repeating discharge patterns should get compressed until all or some part of the signals are synchronized; and third, this compression should be accompanied by a sparsening of signals. In this way, selective groups of cells could emerge that would respond to some recurring event with synchronous firing. Such a learned response pattern could further be modulated by synchronous network oscillations that provide a dynamic, flexible context for the synaptic integration of distributed signals. I conclude by suggesting experimental approaches to further test this new hypothesis.
Collapse
|
6
|
Arbuckle SA, Pruszynski JA, Diedrichsen J. Mapping the Integration of Sensory Information across Fingers in Human Sensorimotor Cortex. J Neurosci 2022; 42:5173-5185. [PMID: 35606141 PMCID: PMC9236287 DOI: 10.1523/jneurosci.2152-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 12/31/2022] Open
Abstract
The integration of somatosensory signals across fingers is essential for dexterous object manipulation. Previous experiments suggest that this integration occurs in neural populations in the primary somatosensory cortex (S1). However, the integration process has not been fully characterized, as previous studies have mainly used 2-finger stimulation paradigms. Here, we addressed this gap by stimulating all 31 single- and multifinger combinations. We measured population-wide activity patterns evoked during finger stimulation in human S1 and primary motor cortex (M1) using 7T fMRI in female and male participants. Using multivariate fMRI analyses, we found clear evidence of unique nonlinear interactions between fingers. In Brodmann area (BA) 3b, interactions predominantly occurred between pairs of neighboring fingers. In BA 2, however, we found equally strong interactions between spatially distant fingers, as well as interactions between finger triplets and quadruplets. We additionally observed strong interactions in the hand area of M1. In both M1 and S1, these nonlinear interactions did not reflect a general suppression of overall activity, suggesting instead that the interactions we observed reflect rich, nonlinear integration of sensory inputs from the fingers. We suggest that this nonlinear finger integration allows for a highly flexible mapping from finger sensory inputs to motor responses that facilitates dexterous object manipulation.SIGNIFICANCE STATEMENT Processing of somatosensory information in primary somatosensory cortex (S1) is essential for dexterous object manipulation. To successfully handle an object, the sensorimotor system needs to detect complex patterns of haptic information, which requires the nonlinear integration of sensory inputs across multiple fingers. Using multivariate fMRI analyses, we characterized brain activity patterns evoked by stimulating all single- and multifinger combinations. We report that progressively stronger multifinger interactions emerge in posterior S1 and in the primary motor cortex (M1), with interactions arising between inputs from neighboring and spatially distant fingers. Our results suggest that S1 and M1 provide the neural substrate necessary to support a flexible mapping from sensory inputs to motor responses of the hand.
Collapse
Affiliation(s)
- Spencer A Arbuckle
- Brain and Mind Institute, Western University, London, Ontario, N6A 3K7, Canada
| | - J Andrew Pruszynski
- Brain and Mind Institute, Western University, London, Ontario, N6A 3K7, Canada
- Departments of Physiology and Pharmacology, & Psychology, Western University, London, Ontario, N6A 3K7, Canada
- Robarts Research Institute, Western University, London, Ontario, N6A 3K7, Canada
| | - Jörn Diedrichsen
- Brain and Mind Institute, Western University, London, Ontario, N6A 3K7, Canada
- Departments of Statistical and Actuarial Sciences, & Computer Science, Western University, London, Ontario, N6A 3K7, Canada
| |
Collapse
|
7
|
Wesselink DB, Sanders ZB, Edmondson LR, Dempsey-Jones H, Kieliba P, Kikkert S, Themistocleous AC, Emir U, Diedrichsen J, Saal HP, Makin TR. Malleability of the cortical hand map following a finger nerve block. SCIENCE ADVANCES 2022; 8:eabk2393. [PMID: 35452294 PMCID: PMC9032959 DOI: 10.1126/sciadv.abk2393] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/09/2022] [Indexed: 05/10/2023]
Abstract
Electrophysiological studies in monkeys show that finger amputation triggers local remapping within the deprived primary somatosensory cortex (S1). Human neuroimaging research, however, shows persistent S1 representation of the missing hand's fingers, even decades after amputation. Here, we explore whether this apparent contradiction stems from underestimating the distributed peripheral and central representation of fingers in the hand map. Using pharmacological single-finger nerve block and 7-tesla neuroimaging, we first replicated previous accounts (electrophysiological and other) of local S1 remapping. Local blocking also triggered activity changes to nonblocked fingers across the entire hand area. Using methods exploiting interfinger representational overlap, however, we also show that the blocked finger representation remained persistent despite input loss. Computational modeling suggests that both local stability and global reorganization are driven by distributed processing underlying the topographic map, combined with homeostatic mechanisms. Our findings reveal complex interfinger representational features that play a key role in brain (re)organization, beyond (re)mapping.
Collapse
Affiliation(s)
- Daan B. Wesselink
- Institute of Cognitive Neuroscience, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Zeena-Britt Sanders
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Laura R. Edmondson
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Harriet Dempsey-Jones
- Institute of Cognitive Neuroscience, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- School of Psychology, University of Queensland, Brisbane, Australia
| | - Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sanne Kikkert
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Andreas C. Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Brain Function Research Group, University of the Witwatersrand, Johannesburg, South Africa
| | - Uzay Emir
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jörn Diedrichsen
- Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Hannes P. Saal
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Tamar R. Makin
- Institute of Cognitive Neuroscience, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
8
|
Qi HX, Reed JL, Wang F, Gross CL, Liu X, Chen LM, Kaas JH. Longitudinal fMRI measures of cortical reactivation and hand use with and without training after sensory loss in primates. Neuroimage 2021; 236:118026. [PMID: 33930537 PMCID: PMC8409436 DOI: 10.1016/j.neuroimage.2021.118026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022] Open
Abstract
In a series of previous studies, we demonstrated that damage to the dorsal column in the cervical spinal cord deactivates the contralateral somatosensory hand cortex and impairs hand use in a reach-to-grasp task in squirrel monkeys. Nevertheless, considerable cortical reactivation and behavioral recovery occurs over the following weeks to months after lesion. This timeframe may also be a window for targeted therapies to promote cortical reactivation and functional reorganization, aiding in the recovery process. Here we asked if and how task specific training of an impaired hand would improve behavioral recovery and cortical reorganization in predictable ways, and if recovery related cortical changes would be detectable using noninvasive functional magnetic resonance imaging (fMRI). We further asked if invasive neurophysiological mapping reflected fMRI results. A reach-to-grasp task was used to test impairment and recovery of hand use before and after dorsal column lesions (DC-lesion). The activation and organization of the affected primary somatosensory cortex (area 3b) was evaluated with two types of fMRI - either blood oxygenation level dependent (BOLD) or cerebral blood volume (CBV) with a contrast agent of monocrystalline iron oxide nanocolloid (MION) - before and after DC-lesion. At the end of the behavioral and fMRI studies, microelectrode recordings in the somatosensory areas 3a, 3b and 1 were used to characterize neuronal responses and verify the somatotopy of cortical reactivations. Our results indicate that even after nearly complete DC lesions, monkeys had both considerable post-lesion behavioral recovery, as well as cortical reactivation assessed with fMRI followed by extracellular recordings. Generalized linear regression analyses indicate that lesion extent is correlated with the behavioral outcome, as well as with the difference in the percent signal change from pre-lesion peak activation in fMRI. Monkeys showed behavioral recovery and nearly complete cortical reactivation by 9-12 weeks post-lesion (particularly when the DC-lesion was incomplete). Importantly, the specific training group revealed trends for earlier behavioral recovery and had higher magnitude of fMRI responses to digit stimulation by 5-8 weeks post-lesion. Specific kinematic measures of hand movements in the selected retrieval task predicted recovery time and related to lesion characteristics better than overall task performance success. For measures of cortical reactivation, we found that CBV scans provided stronger signals to vibrotactile digit stimulation as compared to BOLD scans, and thereby may be the preferred non-invasive way to study the cortical reactivation process after sensory deprivations from digits. When the reactivation of cortex for each of the digits was considered, the reactivation by digit 2 stimulation as measured with microelectrode maps and fMRI maps was best correlated with overall behavioral recovery.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Jamie L. Reed
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Feng Wang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA,Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | | | - Xin Liu
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Li Min Chen
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA,Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA,Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
9
|
Parvizi-Fard A, Amiri M, Kumar D, Iskarous MM, Thakor NV. A functional spiking neuronal network for tactile sensing pathway to process edge orientation. Sci Rep 2021; 11:1320. [PMID: 33446742 PMCID: PMC7809061 DOI: 10.1038/s41598-020-80132-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/17/2020] [Indexed: 01/24/2023] Open
Abstract
To obtain deeper insights into the tactile processing pathway from a population-level point of view, we have modeled three stages of the tactile pathway from the periphery to the cortex in response to indentation and scanned edge stimuli at different orientations. Three stages in the tactile pathway are, (1) the first-order neurons which innervate the cutaneous mechanoreceptors, (2) the cuneate nucleus in the midbrain and (3) the cortical neurons of the somatosensory area. In the proposed network, the first layer mimics the spiking patterns generated by the primary afferents. These afferents have complex skin receptive fields. In the second layer, the role of lateral inhibition on projection neurons in the cuneate nucleus is investigated. The third layer acts as a biomimetic decoder consisting of pyramidal and cortical interneurons that correspond to heterogeneous receptive fields with excitatory and inhibitory sub-regions on the skin. In this way, the activity of pyramidal neurons is tuned to the specific edge orientations. By modifying afferent receptive field size, it is observed that the larger receptive fields convey more information about edge orientation in the first spikes of cortical neurons when edge orientation stimuli move across the patch of skin. In addition, the proposed spiking neural model can detect edge orientation at any location on the simulated mechanoreceptor grid with high accuracy. The results of this research advance our knowledge about tactile information processing and can be employed in prosthetic and bio-robotic applications.
Collapse
Affiliation(s)
- Adel Parvizi-Fard
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Deepesh Kumar
- SINAPSE Laboratory, National University of Singapore, Singapore, Singapore
| | - Mark M Iskarous
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nitish V Thakor
- SINAPSE Laboratory, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Arslanova I, Wang K, Gomi H, Haggard P. Somatosensory evoked potentials that index lateral inhibition are modulated according to the mode of perceptual processing: comparing or combining multi-digit tactile motion. Cogn Neurosci 2020; 13:47-59. [PMID: 33307992 DOI: 10.1080/17588928.2020.1839403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Many perceptual studies focus on the brain's capacity to discriminate between stimuli. However, our normal experience of the world also involves integrating multiple stimuli into a single perceptual event. Neural mechanisms such as lateral inhibition are believed to enhance local differences between sensory inputs from nearby regions of the receptor surface. However, this mechanism would seem dysfunctional when sensory inputs need to be combined rather than contrasted. Here, we investigated whether the brain can strategically regulate the strength of suppressive interactions that underlie lateral inhibition between finger representations in human somatosensory processing. To do this, we compared sensory processing between conditions that required either comparing or combining information. We delivered two simultaneous tactile motion trajectories to index and middle fingertips of the right hand. Participants had to either compare the directions of the two stimuli, or to combine them to form their average direction. To reveal preparatory tuning of somatosensory cortex, we used an established event-related potential design to measure the interaction between cortical representations evoked by digital nerve shocks immediately before each tactile stimulus. Consistent with previous studies, we found a clear suppression between cortical activations when participants were instructed to compare the tactile motion directions. Importantly, this suppression was significantly reduced when participants had to combine the same stimuli. These findings suggest that the brain can strategically switch between a comparative and a combinative mode of somatosensory processing, according to the perceptual goal, by preparatorily adjusting the strength of a process akin to lateral inhibition.
Collapse
Affiliation(s)
- Irena Arslanova
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Keying Wang
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, NTT Corporation, Atsugishi, Japan
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
11
|
Callier T, Suresh AK, Bensmaia SJ. Neural Coding of Contact Events in Somatosensory Cortex. Cereb Cortex 2020; 29:4613-4627. [PMID: 30668644 DOI: 10.1093/cercor/bhy337] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
Manual interactions with objects require precise and rapid feedback about contact events. These tactile signals are integrated with motor plans throughout the neuraxis to achieve dexterous object manipulation. To better understand the role of somatosensory cortex in interactions with objects, we measured, using chronically implanted arrays of electrodes, the responses of populations of somatosensory neurons to skin indentations designed to simulate the initiation, maintenance, and termination of contact with an object. First, we find that the responses of somatosensory neurons to contact onset and offset dwarf their responses to maintenance of contact. Second, we show that these responses rapidly and reliably encode features of the simulated contact events-their timing, location, and strength-and can account for the animals' performance in an amplitude discrimination task. Third, we demonstrate that the spatiotemporal dynamics of the population response in cortex mirror those of the population response in the nerves. We conclude that the responses of populations of somatosensory neurons are well suited to encode contact transients and are consistent with a role of somatosensory cortex in signaling transitions between task subgoals.
Collapse
Affiliation(s)
- Thierri Callier
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
| | - Aneesha K Suresh
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA
| | - Sliman J Bensmaia
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Shao Y, Hayward V, Visell Y. Compression of dynamic tactile information in the human hand. SCIENCE ADVANCES 2020; 6:eaaz1158. [PMID: 32494610 PMCID: PMC7159916 DOI: 10.1126/sciadv.aaz1158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/17/2020] [Indexed: 05/16/2023]
Abstract
A key problem in the study of the senses is to describe how sense organs extract perceptual information from the physics of the environment. We previously observed that dynamic touch elicits mechanical waves that propagate throughout the hand. Here, we show that these waves produce an efficient encoding of tactile information. The computation of an optimal encoding of thousands of naturally occurring tactile stimuli yielded a compact lexicon of primitive wave patterns that sparsely represented the entire dataset, enabling touch interactions to be classified with an accuracy exceeding 95%. The primitive tactile patterns reflected the interplay of hand anatomy with wave physics. Notably, similar patterns emerged when we applied efficient encoding criteria to spiking data from populations of simulated tactile afferents. This finding suggests that the biomechanics of the hand enables efficient perceptual processing by effecting a preneuronal compression of tactile information.
Collapse
Affiliation(s)
- Yitian Shao
- Department of Electrical and Computer Engineering, Media Arts and Technology Program, Department of Mechanical Engineering, and California NanoSystems Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Vincent Hayward
- Sorbonne Université, Institut des Systèmes Intelligents et de Robotique, F-75005 Paris, France
- Centre for the Study of the Senses, School of Advanced Study, University of London, London, UK
- Actronika SAS, Paris, France
| | - Yon Visell
- Department of Electrical and Computer Engineering, Media Arts and Technology Program, Department of Mechanical Engineering, and California NanoSystems Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Corresponding author.
| |
Collapse
|
13
|
Cybulska-Klosowicz A, Tremblay F, Jiang W, Bourgeon S, Meftah EM, Chapman CE. Differential effects of the mode of touch, active and passive, on experience-driven plasticity in the S1 cutaneous digit representation of adult macaque monkeys. J Neurophysiol 2020; 123:1072-1089. [DOI: 10.1152/jn.00014.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study compared the receptive field (RF) properties and firing rates of neurons in the cutaneous hand representation of primary somatosensory cortex (areas 3b, 1, and 2) of 9 awake, adult macaques that were intensively trained in a texture discrimination task using active touch (fingertips scanned over the surfaces using a single voluntary movement), passive touch (surfaces displaced under the immobile fingertips), or both active and passive touch. Two control monkeys received passive exposure to the same textures in the context of a visual discrimination task. Training and recording extended over 1–2 yr per animal. All neurons had a cutaneous receptive field (RF) that included the tips of the stimulated digits (D3 and/or D4). In area 3b, RFs were largest in monkeys trained with active touch, smallest in those trained with passive touch, and intermediate in those trained with both; i.e., the mode of touch differentially modified the cortical representation of the stimulated fingers. The same trends were seen in areas 1 and 2, but the changes were not significant, possibly because a second experience-driven influence was seen in areas 1 and 2, but not in area 3b: smaller RFs with passive exposure to irrelevant tactile inputs compared with recordings from one naive hemisphere. We suggest that added feedback during active touch and higher cortical firing rates were responsible for the larger RFs with behavioral training; this influence was tempered by periods of more restricted sensory feedback during passive touch training in the active + passive monkeys. NEW & NOTEWORTHY We studied experience-dependent sensory cortical plasticity in relation to tactile discrimination of texture using active and/or passive touch. We showed that neuronal receptive fields in primary somatosensory cortex, especially area 3b, are largest in monkeys trained with active touch, smallest in those trained with passive touch, and intermediate in those trained using both modes of touch. Prolonged, irrelevant tactile input had the opposite influence in areas 1 and 2, favoring smaller receptive fields.
Collapse
Affiliation(s)
- Anita Cybulska-Klosowicz
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - François Tremblay
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Wan Jiang
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Stéphanie Bourgeon
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - El-Mehdi Meftah
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - C. Elaine Chapman
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Shi Z, Wilkes DM, Yang PF, Wang F, Wu R, Wu TL, Chen LM, Gore JC. On the Relationship between MRI and Local Field Potential Measurements of Spatial and Temporal Variations in Functional Connectivity. Sci Rep 2019; 9:8871. [PMID: 31222020 PMCID: PMC6586888 DOI: 10.1038/s41598-019-45404-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/29/2019] [Indexed: 12/30/2022] Open
Abstract
Correlations between fluctuations in resting state BOLD fMRI signals are interpreted as measures of functional connectivity (FC), but the neural basis of their origins and their relationships to specific features of underlying electrophysiologic activity, have not been fully established. In particular, the dependence of FC metrics on different frequency bands of local field potentials (LFPs), and the relationship of dynamic changes in BOLD FC to underlying temporal variations of LFP correlations, are not known. We compared the spatial profiles of resting state coherences of different frequency bands of LFP signals, with high resolution resting state BOLD FC measurements. We also compared the probability distributions of temporal variations of connectivity in both modalities using a Markov chain model-based approach. We analyzed data obtained from the primary somatosensory (S1) cortex of monkeys. We found that in areas 3b and 1 of S1 cortex, low frequency LFP signal fluctuations were the main contributions to resting state LFP coherence. Additionally, the dynamic changes of BOLD FC behaved most similarly to the LFP low frequency signal coherence. These results indicate that, within the S1 cortex meso-scale circuit studied, resting state FC measures from BOLD fMRI mainly reflect contributions from low frequency LFP signals and their dynamic changes.
Collapse
Affiliation(s)
- Zhaoyue Shi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA. .,Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA.
| | - Don M Wilkes
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ruiqi Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Tung-Lin Wu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - John C Gore
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
15
|
Modulation of Beta Oscillations for Implicit Motor Timing in Primate Sensorimotor Cortex during Movement Preparation. Neurosci Bull 2019; 35:826-840. [PMID: 31062334 DOI: 10.1007/s12264-019-00387-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/09/2018] [Indexed: 01/03/2023] Open
Abstract
Motor timing is an important part of sensorimotor control. Previous studies have shown that beta oscillations embody the process of temporal perception in explicit timing tasks. In contrast, studies focusing on beta oscillations in implicit timing tasks are lacking. In this study, we set up an implicit motor timing task and found a modulation pattern of beta oscillations with temporal perception during movement preparation. We trained two macaques in a repetitive visually-guided reach-to-grasp task with different holding intervals. Spikes and local field potentials were recorded from microelectrode arrays in the primary motor cortex, primary somatosensory cortex, and posterior parietal cortex. We analyzed the association between beta oscillations and temporal interval in fixed-duration experiments (500 ms as the Short Group and 1500 ms as the Long Group) and random-duration experiments (500 ms to 1500 ms). The results showed that the peak beta frequencies in both experiments ranged from 15 Hz to 25 Hz. The beta power was higher during the hold period than the movement (reach and grasp) period. Further, in the fixed-duration experiments, the mean power as well as the maximum rate of change of beta power in the first 300 ms were higher in the Short Group than in the Long Group when aligned with the Center Hit event. In contrast, in the random-duration experiments, the corresponding values showed no statistical differences among groups. The peak latency of beta power was shorter in the Short Group than in the Long Group in the fixed-duration experiments, while no consistent modulation pattern was found in the random-duration experiments. These results indicate that beta oscillations can modulate with temporal interval in their power mode. The synchronization period of beta power could reflect the cognitive set maintaining working memory of the temporal structure and attention.
Collapse
|
16
|
Kim YR, Kim CE, Yoon H, Kim SK, Kim SJ. S1 Employs Feature-Dependent Differential Selectivity of Single Cells and Distributed Patterns of Populations to Encode Mechanosensations. Front Cell Neurosci 2019; 13:132. [PMID: 31024261 PMCID: PMC6460949 DOI: 10.3389/fncel.2019.00132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/18/2019] [Indexed: 11/23/2022] Open
Abstract
The primary somatosensory (S1) cortex plays an important role in the perception and discrimination of touch and pain mechanosensations. Conventionally, neurons in the somatosensory system including S1 cortex have been classified into low/high threshold (HT; non-nociceptive/nociceptive) or wide dynamic range (WDR; convergent) neurons by their electrophysiological responses to innocuous brush-stroke and noxious forceps-pinch stimuli. Besides this “noxiousness” (innocuous/noxious) feature, each stimulus also includes other stimulus features: “texture” (brush hairs/forceps-steel arm), “dynamics” (dynamic stroke/static press) and “intensity” (weak/strong). However, it remains unknown how S1 neurons inclusively process such diverse features of brushing and pinch at the single-cell and population levels. Using in vivo two-photon Ca2+ imaging in the layer 2/3 neurons of the mouse S1 cortex, we identified clearly separated response patterns of the S1 neural population with distinct tuning properties of individual cells to texture, dynamics and noxiousness features of cutaneous mechanical stimuli. Among cells other than broadly tuned neurons, the majority of the cells showed a highly selective response to the difference in texture, but low selectivity to the difference in dynamics or noxiousness. Between the two low selectivity features, the difference in dynamics was slightly more specific, yet both could be decoded using the response patterns of neural populations. In addition, more neurons are recruited and stronger Ca2+ responses are evoked as the intensity of forceps-pinch is gradually increased. Our results suggest that S1 neurons encode various features of mechanosensations with feature-dependent differential selectivity of single cells and distributed response patterns of populations. Moreover, we raise a caution about describing neurons by a single stimulus feature ignoring other aspects of the sensory stimuli.
Collapse
Affiliation(s)
- Yoo Rim Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang-Eop Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Physiology, College of Korean Medicine, Gachon University, Gyeonggi-do, South Korea
| | - Heera Yoon
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Enander JM, Jörntell H. Somatosensory Cortical Neurons Decode Tactile Input Patterns and Location from Both Dominant and Non-dominant Digits. Cell Rep 2019; 26:3551-3560.e4. [DOI: 10.1016/j.celrep.2019.02.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/10/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022] Open
|
18
|
Mione V, Tsujimoto S, Genovesio A. Neural Correlations Underlying Self-Generated Decision in the Frontal Pole Cortex during a Cued Strategy Task. Neuroscience 2019; 404:519-528. [PMID: 30811970 DOI: 10.1016/j.neuroscience.2019.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/15/2019] [Indexed: 11/30/2022]
Abstract
We have previously shown how the Frontal Pole cortex (FPC) neurons play a unique role in both the monitoring and evaluating of self-generated decisions during feedback in a visually cued strategy task. For each trial of this task, a cue instructed one of two strategies: to either stay with the previous goal or shift to the alternative goal. Each cue was followed by a delay period, then each choice was followed by a feedback. FPC neurons show goal-selective activity exclusively during the feedback period. Here, we studied how neural correlation dynamically changes, along with a trial in FPC. We classified the cells as goal-selective and not goal-selective (NS) and analyzed the time-course of the cross-correlations in 76 pairs of neurons from each group. We compared a control epoch with the feedback epoch and we found higher correlations in the latter one between goal-selective neurons than between NS neurons, in which the correlated activity dropped during feedback. This supports the involvement of goal-selective cells in the evaluation of self-generated decisions at the feedback time. We also observed a dynamic change of the correlations in time, indicating that the connections among cell-assemblies were transient, changing between internal states at the feedback time. These results indicate that the changing of the pattern of neural correlations can underlie the flexibility of the prefrontal computations.
Collapse
Affiliation(s)
- Valentina Mione
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Satoshi Tsujimoto
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan; The Nielsen Company Singapore Pte Ltd, Singapore
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
19
|
Delhaye BP, Long KH, Bensmaia SJ. Neural Basis of Touch and Proprioception in Primate Cortex. Compr Physiol 2018; 8:1575-1602. [PMID: 30215864 PMCID: PMC6330897 DOI: 10.1002/cphy.c170033] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sense of proprioception allows us to keep track of our limb posture and movements and the sense of touch provides us with information about objects with which we come into contact. In both senses, mechanoreceptors convert the deformation of tissues-skin, muscles, tendons, ligaments, or joints-into neural signals. Tactile and proprioceptive signals are then relayed by the peripheral nerves to the central nervous system, where they are processed to give rise to percepts of objects and of the state of our body. In this review, we first examine briefly the receptors that mediate touch and proprioception, their associated nerve fibers, and pathways they follow to the cerebral cortex. We then provide an overview of the different cortical areas that process tactile and proprioceptive information. Next, we discuss how various features of objects-their shape, motion, and texture, for example-are encoded in the various cortical fields, and the susceptibility of these neural codes to attention and other forms of higher-order modulation. Finally, we summarize recent efforts to restore the senses of touch and proprioception by electrically stimulating somatosensory cortex. © 2018 American Physiological Society. Compr Physiol 8:1575-1602, 2018.
Collapse
Affiliation(s)
- Benoit P Delhaye
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, USA
| | - Katie H Long
- Committee on Computational Neuroscience, University of Chicago, Chicago, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, USA.,Committee on Computational Neuroscience, University of Chicago, Chicago, USA
| |
Collapse
|
20
|
Pálfi E, Zalányi L, Ashaber M, Palmer C, Kántor O, Roe AW, Friedman RM, Négyessy L. Connectivity of neuronal populations within and between areas of primate somatosensory cortex. Brain Struct Funct 2018; 223:2949-2971. [PMID: 29725759 DOI: 10.1007/s00429-018-1671-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/21/2018] [Indexed: 11/25/2022]
Abstract
Functions of the cerebral cortex emerge via interactions of horizontally distributed neuronal populations within and across areas. However, the connectional underpinning of these interactions is not well understood. The present study explores the circuitry of column-size cortical domains within the hierarchically organized somatosensory cortical areas 3b and 1 using tract tracing and optical intrinsic signal imaging (OIS). The anatomical findings reveal that feedforward connections exhibit high topographic specificity, while intrinsic and feedback connections have a more widespread distribution. Both intrinsic and inter-areal connections are topographically oriented across the finger representations. Compared to area 3b, the low clustering of connections and small cortical magnification factor supports that the circuitry of area 1 scaffolds a sparse functional representation that integrates peripheral information from a large area that is fed back to area 3b. Fast information exchange between areas is ensured by thick axons forming a topographically organized, reciprocal pathway. Moreover, the highest density of projecting neurons and groups of axon arborization patches corresponds well with the size and locations of the functional population response reported by OIS. The findings establish connectional motifs at the mesoscopic level that underpin the functional organization of the cerebral cortex.
Collapse
Affiliation(s)
- E Pálfi
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - L Zalányi
- Complex Systems and Computational Neuroscience Group, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
| | - M Ashaber
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, Szent István University, Budapest, 1078, Hungary
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - C Palmer
- Department of Mathematical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - O Kántor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
- Department of Neuroanatomy, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, 79104, Freiburg, Germany
| | - A W Roe
- Division of Neuroscience, Oregon Health and Science University, Portland, OR, 97006, USA
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, 310029, China
| | - R M Friedman
- Division of Neuroscience, Oregon Health and Science University, Portland, OR, 97006, USA
| | - L Négyessy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary.
- Complex Systems and Computational Neuroscience Group, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary.
| |
Collapse
|
21
|
Avanzini P, Pelliccia V, Lo Russo G, Orban GA, Rizzolatti G. Multiple time courses of somatosensory responses in human cortex. Neuroimage 2018; 169:212-226. [PMID: 29248698 PMCID: PMC5864517 DOI: 10.1016/j.neuroimage.2017.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/22/2017] [Accepted: 12/13/2017] [Indexed: 02/04/2023] Open
Abstract
Here we show how anatomical and functional data recorded from patients undergoing stereo-EEG can be used to decompose the cortical processing following nerve stimulation in different stages characterized by specific topography and time course. Tibial, median and trigeminal nerves were stimulated in 96 patients, and the increase in gamma power was evaluated over 11878 cortical sites. All three nerve datasets exhibited similar clusters of time courses: phasic, delayed/prolonged and tonic, which differed in topography, temporal organization and degree of spatial overlap. Strong phasic responses of the three nerves followed the classical somatotopic organization of SI, with no overlap in either time or space. Delayed responses presented overlaps between pairs of body parts in both time and space, and were confined to the dorsal motor cortices. Finally, tonic responses occurred in the perisylvian region including posterior insular cortex and were evoked by the stimulation of all three nerves, lacking any spatial and temporal specificity. These data indicate that the somatosensory processing following nerve stimulation is a multi-stage hierarchical process common to all three nerves, with the different stages likely subserving different functions. While phasic responses represent the neural basis of tactile perception, multi-nerve tonic responses may represent the neural signature of processes sustaining the capacity to become aware of tactile stimuli.
Collapse
Affiliation(s)
- P Avanzini
- Istituto di Neuroscienze, Consiglio nazionale delle Ricerche - CNR, Parma, Italy; Dipartimento di Medicina e Chirurgia, University of Parma, Italy.
| | - V Pelliccia
- Dipartimento di Medicina e Chirurgia, University of Parma, Italy; Centro per la chirurgia dell'Epilessia "Claudio Munari", Ospedale Ca'Granda-Niguarda, Milano, Italy
| | - G Lo Russo
- Centro per la chirurgia dell'Epilessia "Claudio Munari", Ospedale Ca'Granda-Niguarda, Milano, Italy
| | - G A Orban
- Dipartimento di Medicina e Chirurgia, University of Parma, Italy
| | - G Rizzolatti
- Istituto di Neuroscienze, Consiglio nazionale delle Ricerche - CNR, Parma, Italy; Dipartimento di Medicina e Chirurgia, University of Parma, Italy
| |
Collapse
|
22
|
Abstract
Somatosensory areas containing topographic maps of the body surface are a major feature of parietal cortex. In primates, parietal cortex contains four somatosensory areas, each with its own map, with the primary cutaneous map in area 3b. Rodents have at least three parietal somatosensory areas. Maps are not isomorphic to the body surface, but magnify behaviorally important skin regions, which include the hands and face in primates, and the whiskers in rodents. Within each map, intracortical circuits process tactile information, mediate spatial integration, and support active sensation. Maps may also contain fine-scale representations of touch submodalities, or direction of tactile motion. Functional representations are more overlapping than suggested by textbook depictions of map topography. The whisker map in rodent somatosensory cortex is a canonic system for studying cortical microcircuits, sensory coding, and map plasticity. Somatosensory maps are plastic throughout life in response to altered use or injury. This chapter reviews basic principles and recent findings in primate, human, and rodent somatosensory maps.
Collapse
Affiliation(s)
- Samuel Harding-Forrester
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
23
|
Correlated Disruption of Resting-State fMRI, LFP, and Spike Connectivity between Area 3b and S2 following Spinal Cord Injury in Monkeys. J Neurosci 2017; 37:11192-11203. [PMID: 29038239 DOI: 10.1523/jneurosci.2318-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/04/2023] Open
Abstract
This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans.SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened resting-state fMRI functional connectivity (FC) in input-deprived and reorganized digit regions in area 3b of the S1 and S2. Concurrent reductions in local field potential and spike FC validated the use of resting-state fMRI signals for probing neural intrinsic FC alterations in pathological deafferented cortex, and indicated that disrupted FC between mesoscale functionally highly related regions may contribute to the behavioral impairments.
Collapse
|
24
|
Korndörfer C, Ullner E, García-Ojalvo J, Pipa G. Cortical Spike Synchrony as a Measure of Input Familiarity. Neural Comput 2017; 29:2491-2510. [PMID: 28599117 DOI: 10.1162/neco_a_00987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Spike synchrony, which occurs in various cortical areas in response to specific perception, action, and memory tasks, has sparked a long-standing debate on the nature of temporal organization in cortex. One prominent view is that this type of synchrony facilitates the binding or grouping of separate stimulus components. We argue instead for a more general function: a measure of the prior probability of incoming stimuli, implemented by long-range, horizontal, intracortical connections. We show that networks of this kind-pulse-coupled excitatory spiking networks in a noisy environment-can provide a sufficient substrate for stimulus-dependent spike synchrony. This allows for a quick (few spikes) estimate of the match between inputs and the input history as encoded in the network structure. Given the ubiquity of small, strongly excitatory subnetworks in cortex, we thus propose that many experimental observations of spike synchrony can be viewed as signs of input patterns that resemble long-term experience-that is, of patterns with high prior probability.
Collapse
Affiliation(s)
- Clemens Korndörfer
- Institute of Cognitive Science, University of Osnabrück, 49074 Osnabrück, Germany
| | - Ekkehard Ullner
- Department of Physics, Institute for Complex Systems and Mathematical Biology, and Institute of Medical Sciences, University of Aberdeen, Aberdeen AB24 3UD, U.K.
| | - Jordi García-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Gordon Pipa
- Institute of Cognitive Science, University of Osnabrück, 49074 Osnabrück, Germany
| |
Collapse
|
25
|
High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials. Proc Natl Acad Sci U S A 2017; 114:5253-5258. [PMID: 28461461 DOI: 10.1073/pnas.1620520114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology.
Collapse
|
26
|
Lim H, Ahn HW, Kornijcuk V, Kim G, Seok JY, Kim I, Hwang CS, Jeong DS. Relaxation oscillator-realized artificial electronic neurons, their responses, and noise. NANOSCALE 2016; 8:9629-9640. [PMID: 27103542 DOI: 10.1039/c6nr01278g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A proof-of-concept relaxation oscillator-based leaky integrate-and-fire (ROLIF) neuron circuit is realized by using an amorphous chalcogenide-based threshold switch and non-ideal operational amplifier (op-amp). The proposed ROLIF neuron offers biologically plausible features such as analog-type encoding, signal amplification, unidirectional synaptic transmission, and Poisson noise. The synaptic transmission between pre- and postsynaptic neurons is achieved through a passive synapse (simple resistor). The synaptic resistor coupled to the non-ideal op-amp realizes excitatory postsynaptic potential (EPSP) evolution that evokes postsynaptic neuron spiking. In an attempt to generalize our proposed model, we theoretically examine ROLIF neuron circuits adopting different non-ideal op-amps having different gains and slew rates. The simulation results indicate the importance of gain in postsynaptic neuron spiking, irrespective of the slew rate (as long as the rate exceeds a particular value), providing the basis for the ROLIF neuron circuit design. Eventually, the behavior of a postsynaptic neuron in connection to multiple presynaptic neurons via synapses is highlighted in terms of EPSP evolution amid simultaneously incident asynchronous presynaptic spikes, which in fact reveals an important role of the random noise in spatial integration.
Collapse
Affiliation(s)
- Hyungkwang Lim
- Center for Electronic Materials, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Qi HX, Reed JL, Franca JG, Jain N, Kajikawa Y, Kaas JH. Chronic recordings reveal tactile stimuli can suppress spontaneous activity of neurons in somatosensory cortex of awake and anesthetized primates. J Neurophysiol 2016; 115:2105-23. [PMID: 26912593 DOI: 10.1152/jn.00634.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/19/2016] [Indexed: 01/05/2023] Open
Abstract
In somatosensory cortex, tactile stimulation within the neuronal receptive field (RF) typically evokes a transient excitatory response with or without postexcitatory inhibition. Here, we describe neuronal responses in which stimulation on the hand is followed by suppression of the ongoing discharge. With the use of 16-channel microelectrode arrays implanted in the hand representation of primary somatosensory cortex of New World monkeys and prosimian galagos, we recorded neuronal responses from single units and neuron clusters. In 66% of our sample, neuron activity tended to display suppression of firing when regions of skin outside of the excitatory RF were stimulated. In a small proportion of neurons, single-site indentations suppressed firing without initial increases in response to any of the tested sites on the hand. Latencies of suppressive responses to skin indentation (usually 12-34 ms) were similar to excitatory response latencies. The duration of inhibition varied across neurons. Although most observations were from anesthetized animals, we also found similar neuron response properties in one awake galago. Notably, suppression of ongoing neuronal activity did not require conditioning stimuli or multi-site stimulation. The suppressive effects were generally seen following single-site skin indentations outside of the neuron's minimal RF and typically on different digits and palm pads, which have not often been studied in this context. Overall, the characteristics of widespread suppressive or inhibitory response properties with and without initial facilitative or excitatory responses add to the growing evidence that neurons in primary somatosensory cortex provide essential processing for integrating sensory stimulation from across the hand.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Joao G Franca
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Neeraj Jain
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Yoshinao Kajikawa
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; and
| |
Collapse
|
28
|
Song W, Semework M. Tactile representation in somatosensory thalamus (VPL) and cortex (S1) of awake primate and the plasticity induced by VPL neuroprosthetic stimulation. Brain Res 2015; 1625:301-13. [PMID: 26348987 DOI: 10.1016/j.brainres.2015.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/20/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022]
Abstract
To further understand how tactile information is carried in somatosensory cortex (S1) and the thalamus (VPL), and how neuronal plasticity after neuroprosthetic stimulation affects sensory encoding, we chronically implanted microelectrode arrays across hand areas in both S1 and VPL, where neuronal activities were simultaneously recorded during tactile stimulation on the finger pad of awake monkeys. Tactile information encoded in the firing rate of individual units (rate coding) or in the synchrony of unit pairs (synchrony coding) was quantitatively assessed within the information theoretic-framework. We found that tactile information encoded in VPL was higher than that encoded in S1 for both rate coding and synchrony coding; rate coding carried greater information than synchrony coding for the same recording area. With the aim for neuroprosthetic stimulation, plasticity of the circuit was tested after 30 min of VPL electrical stimulation, where stimuli were delivered either randomly or contingent on the spiking of an S1 unit. We showed that neural encoding in VPL was more stable than in S1, which depends not only on the thalamic input but also on recurrent feedback. The percent change of mutual-information after stimulation was increased with closed-loop stimulation, but decreased with random stimulation. The underlying mechanisms during closed-loop stimulation might be spike-timing-dependent plasticity, while frequency-dependent synaptic plasticity might play a role in random stimulation. Our results suggest that VPL could be a promising target region for somatosensory stimulation with closed-loop brain-machine-interface applications.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, NY 11203, USA.
| | - Mulugeta Semework
- Joint Graduate Program in Biomedical Engineering SUNY Downstate and NYU-POLY, NY 11203, USA
| |
Collapse
|
29
|
Eads J, Lorimer Moseley G, Hillier S. Non-informative vision enhances tactile acuity: A systematic review and meta-analysis. Neuropsychologia 2015; 75:179-85. [PMID: 26071257 DOI: 10.1016/j.neuropsychologia.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND Individual experimental data suggest that visual input during tactile stimulation enhances tactile appreciation - whether this finding is replicated across studies and across body sites is unknown. OBJECTIVE To determine the available evidence as to whether non-informative vision of the body has an effect on tactile acuity. METHODS Studies that assessed tactile acuity with vision of the body, compared to vision of a neutral object or vision occluded, were systematically identified and reviewed. Seven relevant electronic databases were searched from their inception to April 2014. Risk of bias was assessed using adapted criteria from the Cochrane Handbook. Effect sizes were calculated using mean differences in a random effects model. RESULTS Ten studies were included. All were randomized, within subject, controlled trials published in English (total n=232 participants), with low to moderate risk of bias. Despite the diversity of protocols and outcome measures used, eight of the studies reported improvements in tactile acuity when vision of the relevant body part (predominantly the hand) was available. Meta-analysis revealed statistically significant findings from grating orientation tests (p=0.002, SMD 3.31, 95% CI 1.24-5.39), demonstrating a positive effect of vision of the body. No significant effect was found for other sensory tests or for other body parts, such as the back, and statistical heterogeneity was high. CONCLUSIONS This review provides confirmatory evidence for a visual enhancement effect for tactile acuity for body parts where vision has a plausible functional linkage - further studies are required to elaborate on the mechanisms for multi-modal processing of sensory stimuli.
Collapse
Affiliation(s)
- Jacki Eads
- International Centre for Allied Health Evidence, Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide 5001, South Australia, Australia
| | - G Lorimer Moseley
- Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide 5001, South Australia, Australia
| | - Susan Hillier
- International Centre for Allied Health Evidence, Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide 5001, South Australia, Australia.
| |
Collapse
|
30
|
Intrinsic functional plasticity of the sensory-motor network in patients with cervical spondylotic myelopathy. Sci Rep 2015; 5:9975. [PMID: 25897648 PMCID: PMC4404678 DOI: 10.1038/srep09975] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/23/2015] [Indexed: 12/13/2022] Open
Abstract
Several neuroimaging studies have suggested brain reorganisation in patients with cervical spondylotic myelopathy (CSM); however, the changes in spontaneous neuronal activity that are associated with connectedness remain largely unknown. In this study, functional connectivity strength (FCS), a data-driven degree centrality method based on a theoretical approach, was applied for the first time to investigate changes in the sensory-motor network (SMN) at the voxel level. Comparatively, CSM not only showed significantly decreased FCS in the operculum-integrated regions, which exhibited reduced resting-state functional connectivity (rsFC) around the Rolandic sulcus, but it also showed increased FCS in the premotor, primary somatosensory, and parietal-integrated areas, which primarily showed an enhanced rsFC pattern. Correlation analysis showed that altered FCS (in the left premotor-ventral/precentral-operculum, right operculum-parietale 4, and right S1) was associated with worsening Japanese Orthopaedic Association scores and that the rsFC pattern was influenced by cervical cord micro-structural damage at the C2 level. Together, these findings suggest that during myelopathy, the intrinsic functional plasticity of the SMN responds to the insufficient sensory and motor experience in CSM patients. This knowledge may improve our understanding of the comprehensive functional defects found in CSM patients and may inspire the development of new therapeutic strategies in the future.
Collapse
|
31
|
Liao CC, Gharbawie OA, Qi H, Kaas JH. Cortical connections to single digit representations in area 3b of somatosensory cortex in squirrel monkeys and prosimian galagos. J Comp Neurol 2014; 521:3768-90. [PMID: 23749740 DOI: 10.1002/cne.23377] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/30/2013] [Accepted: 05/23/2013] [Indexed: 11/06/2022]
Abstract
The ventral posterior nucleus of thalamus sends highly segregated inputs into each digit representation in area 3b of primary somatosensory cortex. However, the spatial organization of the connections that link digit representations of areas 3b with other somatosensory areas is less understood. Here we examined the cortical inputs to individual digit representations of area 3b in four squirrel monkeys and one prosimian galago. Retrograde tracers were injected into neurophysiologically defined representations of individual digits of area 3b. Cortical tissues were cut parallel to the surface in some cases and showed that feedback projections to individual digits overlapped extensively in the hand representations of areas 3b, 1, and parietal ventral (PV) and second somatosensory (S2) areas. Other regions with overlapping populations of labeled cells included area 3a and primary motor cortex (M1). The results were confirmed in other cases in which the cortical tissues were cut in the coronal plane. The same cases also showed that cells were primarily labeled in the infragranular and supragranular layers. Thus, feedback projections to individual digit representations in area 3b mainly originate from multiple digits and other portions of hand representations of areas 3b, 1, PV, and S2. This organization is in stark contrast to the segregated thalamocortical inputs, which originate in single digit representations and terminate in the matching digit representation in the cortex. The organization of feedback connections could provide a substrate for the integration of information across the representations of adjacent digits in area 3b.
Collapse
Affiliation(s)
- Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | | | | | | |
Collapse
|
32
|
Cortical neuron response properties are related to lesion extent and behavioral recovery after sensory loss from spinal cord injury in monkeys. J Neurosci 2014; 34:4345-63. [PMID: 24647955 DOI: 10.1523/jneurosci.4954-13.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lesions of the dorsal columns at a mid-cervical level render the hand representation of the contralateral primary somatosensory cortex (area 3b) unresponsive. Over weeks of recovery, most of this cortex becomes responsive to touch on the hand. Determining functional properties of neurons within the hand representation is critical to understanding the neural basis of this adaptive plasticity. Here, we recorded neural activity across the hand representation of area 3b with a 100-electrode array and compared results from owl monkeys and squirrel monkeys 5-10 weeks after lesions with controls. Even after extensive lesions, performance on reach-to-grasp tasks returned to prelesion levels, and hand touches activated territories mainly within expected cortical locations. However, some digit representations were abnormal, such that receptive fields of presumably reactivated neurons were larger and more often involved discontinuous parts of the hand compared with controls. Hand stimulation evoked similar neuronal firing rates in lesion and control monkeys. By assessing the same monkeys with multiple measures, we determined that properties of neurons in area 3b were highly correlated with both the lesion severity and the impairment of hand use. We propose that the reactivation of neurons with near-normal response properties and the recovery of near-normal somatotopy likely supported the recovery of hand use. Given the near-completeness of the more extensive dorsal column lesions we studied, we suggest that alternate spinal afferents, in addition to the few spared primary axon afferents in the dorsal columns, likely have a major role in the reactivation pattern and return of function.
Collapse
|
33
|
Négyessy L, Pálfi E, Ashaber M, Palmer C, Jákli B, Friedman RM, Chen LM, Roe AW. Intrinsic horizontal connections process global tactile features in the primary somatosensory cortex: neuroanatomical evidence. J Comp Neurol 2014; 521:2798-817. [PMID: 23436325 DOI: 10.1002/cne.23317] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 11/05/2022]
Abstract
To understand manual tactile functions in primates, it is essential to explore the interactions between the finger pad representations in somatosensory cortex. To this end, we used optical imaging and electrophysiological mapping to guide neuroanatomical tracer injections into distal digit tip representations of Brodmann area 3b in the squirrel monkey. Retrogradely labeled cell densities and anterogradely labeled fibers and terminal patches in somatosensory areas were plotted and quantified with respect to tangential distribution. Within area 3b, reciprocal patchy distribution of anterograde and retrograde labeling spanned the representation of the distal pad of multiple digits, indicating strong cross-digit connectivity. Inter-areal connections revealed bundles of long-range fibers projecting anteroposteriorly, connecting area 3b with clusters of labeled neurons and terminal axon arborizations in area 1. Inter-areal linkage appeared to be largely confined to the representation of the injected finger. These findings provide the neuroanatomical basis for the interaction between distal finger pad representations observed by recent electrophysiological studies. We propose that intra-areal connectivity may be heavily involved in interdigit integration such as shape discrimination, whereas long-range inter-areal connections may subserve active touch in a digit-specific manner.
Collapse
Affiliation(s)
- László Négyessy
- Department of Theory, Institute for Particle and Nuclear Physics, Wigner Research Center for Physics, Hungarian Academy of Sciences, Budapest H-1121, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sarko DK, Ghose D, Wallace MT. Convergent approaches toward the study of multisensory perception. Front Syst Neurosci 2013; 7:81. [PMID: 24265607 PMCID: PMC3820972 DOI: 10.3389/fnsys.2013.00081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/20/2013] [Indexed: 11/13/2022] Open
Abstract
Classical analytical approaches for examining multisensory processing in individual neurons have relied heavily on changes in mean firing rate to assess the presence and magnitude of multisensory interaction. However, neurophysiological studies within individual sensory systems have illustrated that important sensory and perceptual information is encoded in forms that go beyond these traditional spike-based measures. Here we review analytical tools as they are used within individual sensory systems (auditory, somatosensory, and visual) to advance our understanding of how sensory cues are effectively integrated across modalities (e.g., audiovisual cues facilitating speech processing). Specifically, we discuss how methods used to assess response variability (Fano factor, or FF), local field potentials (LFPs), current source density (CSD), oscillatory coherence, spike synchrony, and receiver operating characteristics (ROC) represent particularly promising tools for understanding the neural encoding of multisensory stimulus features. The utility of each approach and how it might optimally be applied toward understanding multisensory processing is placed within the context of exciting new data that is just beginning to be generated. Finally, we address how underlying encoding mechanisms might shape-and be tested alongside with-the known behavioral and perceptual benefits that accompany multisensory processing.
Collapse
Affiliation(s)
- Diana K. Sarko
- Department of Anatomy, Cell Biology and Physiology, Edward Via College of Osteopathic MedicineSpartanburg, SC, USA
| | - Dipanwita Ghose
- Department of Anesthesiology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Mark T. Wallace
- Department of Hearing and Speech Sciences, Vanderbilt UniversityNashville, TN, USA
| |
Collapse
|
35
|
Wang Z, Chen LM, Négyessy L, Friedman RM, Mishra A, Gore JC, Roe AW. The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex. Neuron 2013; 78:1116-26. [PMID: 23791200 DOI: 10.1016/j.neuron.2013.04.023] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Studies of resting-state activity in the brain have provoked critical questions about the brain's functional organization, but the biological basis of this activity is not clear. Specifically, the relationships between interregional correlations in resting-state measures of activity, neuronal functional connectivity and anatomical connectivity are much debated. To investigate these relationships, we have examined both anatomical and steady-state functional connectivity within the hand representation of primary somatosensory cortex (areas 3b and 1) in anesthetized squirrel monkeys. The comparison of three data sets (fMRI, electrophysiological, and anatomical) indicate two primary axes of information flow within the SI: prominent interdigit interactions within area 3b and predominantly homotopic interactions between area 3b and area 1. These data support a strikingly close relationship between baseline functional connectivity and anatomical connections. This study extends findings derived from large-scale cortical networks to the realm of local millimeter-scale networks.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Song W, Francis JT. Tactile information processing in primate hand somatosensory cortex (S1) during passive arm movement. J Neurophysiol 2013; 110:2061-70. [PMID: 23945783 DOI: 10.1152/jn.00893.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor output mostly depends on sensory input, which also can be affected by action. To further our understanding of how tactile information is processed in the primary somatosensory cortex (S1) in dynamic environments, we recorded neural responses to tactile stimulation of the hand in three awake monkeys under arm/hand passive movement and rest. We found that neurons generally responded to tactile stimulation under both conditions and were modulated by movement: with a higher baseline firing rate, a suppressed peak rate, and a smaller dynamic range during passive movement than during rest, while the area under the response curve was stable across these two states. By using an information theory-based method, the mutual information between tactile stimulation and neural responses was quantified with rate and spatial coding models under the two conditions. The two potential encoding models showed different contributions depending on behavioral contexts. Tactile information encoded with rate coding from individual units was lower than spatial coding of unit pairs, especially during movement; however, spatial coding had redundant information between unit pairs. Passive movement regulated the mutual information, and such regulation might play different roles depending on the encoding strategies used. The underlying mechanisms of our observation most likely come from a bottom-up strategy, where neurons in S1 were regulated through the activation of the peripheral tactile/proprioceptive receptors and the interactions between these different types of information.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York
| | | |
Collapse
|
37
|
Song W, Kerr CC, Lytton WW, Francis JT. Cortical plasticity induced by spike-triggered microstimulation in primate somatosensory cortex. PLoS One 2013; 8:e57453. [PMID: 23472086 PMCID: PMC3589388 DOI: 10.1371/journal.pone.0057453] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/24/2013] [Indexed: 11/19/2022] Open
Abstract
Electrical stimulation of the nervous system for therapeutic purposes, such as deep brain stimulation in the treatment of Parkinson’s disease, has been used for decades. Recently, increased attention has focused on using microstimulation to restore functions as diverse as somatosensation and memory. However, how microstimulation changes the neural substrate is still not fully understood. Microstimulation may cause cortical changes that could either compete with or complement natural neural processes, and could result in neuroplastic changes rendering the region dysfunctional or even epileptic. As part of our efforts to produce neuroprosthetic devices and to further study the effects of microstimulation on the cortex, we stimulated and recorded from microelectrode arrays in the hand area of the primary somatosensory cortex (area 1) in two awake macaque monkeys. We applied a simple neuroprosthetic microstimulation protocol to a pair of electrodes in the area 1 array, using either random pulses or pulses time-locked to the recorded spiking activity of a reference neuron. This setup was replicated using a computer model of the thalamocortical system, which consisted of 1980 spiking neurons distributed among six cortical layers and two thalamic nuclei. Experimentally, we found that spike-triggered microstimulation induced cortical plasticity, as shown by increased unit-pair mutual information, while random microstimulation did not. In addition, there was an increased response to touch following spike-triggered microstimulation, along with decreased neural variability. The computer model successfully reproduced both qualitative and quantitative aspects of the experimental findings. The physiological findings of this study suggest that even simple microstimulation protocols can be used to increase somatosensory information flow.
Collapse
Affiliation(s)
- Weiguo Song
- Departments of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Cliff C. Kerr
- Departments of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| | - William W. Lytton
- Departments of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Neurology, Kings County Hospital, Brooklyn, New York, United States of America
- The Robert Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Joint Graduate Program in Biomedical Engineering SUNY Downstate and NYU-POLY, Brooklyn, New York, United States of America
| | - Joseph T. Francis
- Departments of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- The Robert Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Joint Graduate Program in Biomedical Engineering SUNY Downstate and NYU-POLY, Brooklyn, New York, United States of America
| |
Collapse
|
38
|
Vierck CJ, Whitsel BL, Favorov OV, Brown AW, Tommerdahl M. Role of primary somatosensory cortex in the coding of pain. Pain 2013; 154:334-344. [PMID: 23245864 PMCID: PMC4501501 DOI: 10.1016/j.pain.2012.10.021] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 09/15/2012] [Accepted: 10/29/2012] [Indexed: 02/04/2023]
Abstract
The intensity and submodality of pain are widely attributed to stimulus encoding by peripheral and subcortical spinal/trigeminal portions of the somatosensory nervous system. Consistent with this interpretation are studies of surgically anesthetized animals, demonstrating that relationships between nociceptive stimulation and activation of neurons are similar at subcortical levels of somatosensory projection and within the primary somatosensory cortex (in cytoarchitectural areas 3b and 1 of somatosensory cortex, SI). Such findings have led to characterizations of SI as a network that preserves, rather than transforms, the excitatory drive it receives from subcortical levels. Inconsistent with this perspective are images and neurophysiological recordings of SI neurons in lightly anesthetized primates. These studies demonstrate that an extreme anterior position within SI (area 3a) receives input originating predominantly from unmyelinated nociceptors, distinguishing it from posterior SI (areas 3b and 1), long recognized as receiving input predominantly from myelinated afferents, including nociceptors. Of particular importance, interactions between these subregions during maintained nociceptive stimulation are accompanied by an altered SI response to myelinated and unmyelinated nociceptors. A revised view of pain coding within SI cortex is discussed, and potentially significant clinical implications are emphasized.
Collapse
Affiliation(s)
- Charles J Vierck
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610-0244, USA Department of Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA Department of Computer Sciences, University of North Carolina School of Medicine, Chapel Hill, NC, USA Senior School, Shadyside Academy, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
39
|
Reed JL, Pouget P, Qi HX, Zhou Z, Bernard MR, Burish MJ, Kaas JH. Effects of spatiotemporal stimulus properties on spike timing correlations in owl monkey primary somatosensory cortex. J Neurophysiol 2012; 108:3353-69. [PMID: 23019003 DOI: 10.1152/jn.00414.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The correlated discharges of cortical neurons in primary somatosensory cortex are a potential source of information about somatosensory stimuli. One aspect of neuronal correlations that has not been well studied is how the spatiotemporal properties of tactile stimuli affect the presence and magnitude of correlations. We presented single- and dual-point stimuli with varying spatiotemporal relationships to the hands of three anesthetized owl monkeys and recorded neuronal activity from 100-electrode arrays implanted in primary somatosensory cortex. Correlation magnitudes derived from joint peristimulus time histogram (JPSTH) analysis of single neuron pairs were used to determine the level of spike timing correlations under selected spatiotemporal stimulus conditions. Correlated activities between neuron pairs were commonly observed, and the proportions of correlated pairs tended to decrease with distance between the recorded neurons. Distance between stimulus sites also affected correlations. When stimuli were presented simultaneously at two sites, ∼37% of the recorded neuron pairs showed significant correlations when adjacent phalanges were stimulated, and ∼21% of the pairs were significantly correlated when nonadjacent digits were stimulated. Spatial proximity of paired stimuli also increased the average correlation magnitude. Stimulus onset asynchronies in the paired stimuli had small effects on the correlation magnitude. These results show that correlated discharges between neurons at the first level of cortical processing provide information about the relative locations of two stimuli on the hand.
Collapse
Affiliation(s)
- Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Cleary DR, Phillips RS, Wallisch M, Heinricher MM. A novel, non-invasive method of respiratory monitoring for use with stereotactic procedures. J Neurosci Methods 2012; 209:337-43. [PMID: 22771713 DOI: 10.1016/j.jneumeth.2012.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022]
Abstract
Accurate monitoring of respiration is often needed for neurophysiological studies, as either a dependent experimental variable or an indicator of physiological state. Current options for respiratory monitoring of animals held in a stereotaxic frame include EMG recordings, pneumotachograph measurements, inductance-plethysmography, whole-body plethysmography (WBP), and visual monitoring. While powerful, many of these methods prevent access to the animal's body, interfere with experimental manipulations, or require deep anesthesia and additional surgery. For experiments where these issues may be problematic, we developed a non-invasive method of recording respiratory parameters specifically for use with animals held in a stereotaxic frame. This system, ventilation pressure transduction (VPT), measures variations in pressure at the animal's nostril from inward and outward airflow during breathing. These pressure changes are detected by a sensitive pressure transducer, then filtered and amplified. The output is an analog signal representing each breath. VPT was validated against WBP using 10% carbon dioxide and systemic morphine (4mg/kg) challenges in lightly anesthetized animals. VPT accurately represented breathing rate and tidal volume changes under both baseline and challenge conditions. This novel technique can therefore be used to measure respiratory rate and relative tidal volume when stereotaxic procedures are needed for neuronal manipulations and recording.
Collapse
Affiliation(s)
- Daniel R Cleary
- Department of Neurological Surgery, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd.,Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
41
|
Dopaminergic activity coincides with stimulus detection by the frontal lobe. Neuroscience 2012; 218:181-4. [PMID: 22626641 DOI: 10.1016/j.neuroscience.2012.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 11/23/2022]
Abstract
For midbrain dopamine (DA) neurons to respond to sensory events, the presence of a stimulus must first be detected. Where is the signal that activates DA neurons coming from? Here we show that DA responses to a vibrotactile stimulus lag significantly behind those of the primary somatosensory cortex, but they arise with a latency that closely matches the onset of premotor neurons known to encode perceptual decisions. In agreement with previous findings, these data suggest that sensory evoked DA activity does not signal a stimulus physical presence but arises from the output of a perceptual decision.
Collapse
|
42
|
Cortical topography of intracortical inhibition influences the speed of decision making. Proc Natl Acad Sci U S A 2012; 109:3107-12. [PMID: 22315409 DOI: 10.1073/pnas.1114250109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neocortex contains orderly topographic maps; however, their functional role remains controversial. Theoretical studies have suggested a role in minimizing computational costs, whereas empirical studies have focused on spatial localization. Using a tactile multiple-choice reaction time (RT) task before and after the induction of perceptual learning through repetitive sensory stimulation, we extend the framework of cortical topographies by demonstrating that the topographic arrangement of intracortical inhibition contributes to the speed of human perceptual decision-making processes. RTs differ among fingers, displaying an inverted U-shaped function. Simulations using neural fields show the inverted U-shaped RT distribution as an emergent consequence of lateral inhibition. Weakening inhibition through learning shortens RTs, which is modeled through topographically reorganized inhibition. Whereas changes in decision making are often regarded as an outcome of higher cortical areas, our data show that the spatial layout of interaction processes within representational maps contributes to selection and decision-making processes.
Collapse
|
43
|
Cross-modal responses in the primary visual cortex encode complex objects and correlate with tactile discrimination. Proc Natl Acad Sci U S A 2011; 108:15408-13. [PMID: 21876148 DOI: 10.1073/pnas.1102780108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cortical areas that directly receive sensory inputs from the thalamus were long thought to be exclusively dedicated to a single modality, originating separate labeled lines. In the past decade, however, several independent lines of research have demonstrated cross-modal responses in primary sensory areas. To investigate whether these responses represent behaviorally relevant information, we carried out neuronal recordings in the primary somatosensory cortex (S1) and primary visual cortex (V1) of rats as they performed whisker-based tasks in the dark. During the free exploration of novel objects, V1 and S1 responses carried comparable amounts of information about object identity. During execution of an aperture tactile discrimination task, tactile recruitment was slower and less robust in V1 than in S1. However, V1 tactile responses correlated significantly with performance across sessions. Altogether, the results support the notion that primary sensory areas have a preference for a given modality but can engage in meaningful cross-modal processing depending on task demand.
Collapse
|
44
|
Bruno RM. Synchrony in sensation. Curr Opin Neurobiol 2011; 21:701-8. [PMID: 21723114 DOI: 10.1016/j.conb.2011.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 11/25/2022]
Abstract
How neurons encode information has been a hotly debated issue. Ultimately, any code must be relevant to the senders, receivers, and connections between them. This review focuses on the transmission of sensory information through the circuit linking thalamus and cortex, two distant brain regions. Strong feedforward inhibition in the thalamocortical circuit renders cortex highly sensitive to the thalamic synchrony evoked by a sensory stimulus. Neuromodulators and feedback connections may modulate the temporal sensitivity of such circuits and gate the propagation of synchrony into other layers and cortical areas. The prevalence of strong feedforward inhibitory circuits throughout the central nervous system suggests that synchrony codes and timing-sensitive circuits may be widespread, occurring well beyond sensory thalamus and cortex.
Collapse
Affiliation(s)
- Randy M Bruno
- Department of Neuroscience and the Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
45
|
Spatiotemporal properties of neuron response suppression in owl monkey primary somatosensory cortex when stimuli are presented to both hands. J Neurosci 2011; 31:3589-601. [PMID: 21389215 DOI: 10.1523/jneurosci.4310-10.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the lack of ipsilateral receptive fields (RFs) for neurons in the hand representation of area 3b of primary somatosensory cortex, interhemispheric interactions have been reported to varying degrees. We investigated spatiotemporal properties of these interactions to determine the following: response types, timing between stimuli to evoke the strongest bimanual interactions, topographical distribution of effects, and their dependence on similarity of stimulus locations on the two hands. We analyzed response magnitudes and latencies of single neurons and multineuron clusters recorded from 100-electrode arrays implanted in one hemisphere of each of two anesthetized owl monkeys. Skin indentations were delivered to the two hands simultaneously and asynchronously at mirror locations (matched sites on each hand) and nonmirror locations. Since multiple neurons were recorded simultaneously, stimuli on the contralateral hand could be within or outside of the classical RFs of any given neuron. For most neurons, stimulation on the ipsilateral hand suppressed responses to stimuli on the contralateral hand. Maximum suppression occurred when the ipsilateral stimulus was presented 100 ms before the contralateral stimulus onset (p < 0.0005). The longest stimulus onset delay tested (500 ms) allowed contralateral responses to recover to control levels (p = 0.428). Stimulation on mirror digits did not differ from stimulation on nonmirror locations (p = 1.000). These results indicate that interhemispheric interactions are common in area 3b, somewhat topographically diffuse, and maximal when the suppressing ipsilateral stimulus precedes the contralateral stimulus. Our findings point to a neurophysiological basis for "interference" effects found in human psychophysical studies of bimanual stimulation.
Collapse
|
46
|
Qi HX, Gharbawie OA, Wong P, Kaas JH. Cell-poor septa separate representations of digits in the ventroposterior nucleus of the thalamus in monkeys and prosimian galagos. J Comp Neurol 2011; 519:738-58. [PMID: 21246552 DOI: 10.1002/cne.22545] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The architectonic features of the ventroposterior nucleus (VP) were visualized in coronal brain sections from two macaque monkeys, two owl monkeys, two squirrel monkeys, and three galagos that were processed for cytochrome oxidase, Nissl bodies, or the vesicular glutamate transporter 2 (vGluT2). The traditional ventroposterior medial (VPM) and ventroposterior lateral (VPL) subnuclei were easily identified, as well as the forelimb and hindlimb compartments of VPL, as they were separated by poorly staining, cell-poor septa. Septa also separated other cell groups within VPM and VPL, specifically in the medial compartment of VPL representing the hand (hand VPL). In one squirrel monkey and one galago we demonstrated that these five groups of cells represent digits 1-5 in a mediolateral sequence by injecting tracers into the cortical representation of single digits, defined by microelectrode recordings, and relating concentrations of labeled neurons to specific cell groups in hand VPL. The results establish the existence of septa that isolate the representation of the five digits in VPL of primates and demonstrate that the isolated cell groups represent digits 1-5 in a mediolateral sequence. The present results show that the septa are especially prominent in brain sections processed for vGluT2, which is expressed in the synaptic terminals of excitatory neurons in most nuclei of the brainstem and thalamus. As vGluT2 is expressed in the synaptic terminations from dorsal columns and trigeminal brainstem nuclei, the effectiveness of vGluT2 preparations in revealing septa in VP likely reflects a lack of synapses using glutamate in the septa.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203, USA
| | | | | | | |
Collapse
|
47
|
Interactions within the hand representation in primary somatosensory cortex of primates. J Neurosci 2010; 30:15895-903. [PMID: 21106828 DOI: 10.1523/jneurosci.4765-09.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies indicate that primary somatosensory cortical area 3b in macaques contains a somatotopic map of the hand, encompassing representations of each digit. However, numerous observations including recent findings in anesthetized New World monkeys indicate that that the digit representations within the map are not discrete. We assessed the generality and spatial extent of these effects in awake macaques. We show that, within a given digit representation, (1) there is response to stimulation of all other digits tested, extending across most or all of the digit map, and (2) response to stimulation of the locally preferred digit is modulated by concurrent stimulation of each of the other digits. Control experiments rule out effects of attention and mechanical spread of stimulation. We thus confirm that, even at the first level of somatosensory cortical processing, inputs from potentially all of the digits frame the context within which the input to a single digit is represented.
Collapse
|
48
|
Reed JL, Qi HX, Pouget P, Burish MJ, Bonds AB, Kaas JH. Modular processing in the hand representation of primate primary somatosensory cortex coexists with widespread activation. J Neurophysiol 2010; 104:3136-45. [PMID: 20926605 DOI: 10.1152/jn.00566.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons in the hand representation of primary somatosensory cortex (area 3b) are known to have discretely localized receptive fields; and these neurons form modules that can be visualized histologically as distinct digit and palm representations. Despite these indicators of the importance of local processing in area 3b, widespread interactions between stimuli presented to locations across the hand have been reported. We investigated the relationship of neuron firing rate with distance from the site of maximum activation in cortex by recording from a 100-electrode array with electrodes spaced 400 μm apart, implanted into the area 3b hand representation in anesthetized owl monkeys. For each stimulated location on the hand, the electrode site where neurons had the highest peak firing rate was defined as the peak activation site. The lesser firing rates of neurons at all other electrode sites in the grid were compared with the firing rates of neurons at the peak activation site. On average, peak firing rates of neurons decreased rapidly with distance away from the peak activation site. The effect of distance on the variance of firing rates was highly significant (P < 0.0001). However, individual neurons retained high firing rates for distances over 3 mm. The clear decline in firing rate with distance from the most activated location indicates that local processing is emphasized in area 3b, while the distance of neurons with reduced but maintained firing rates ≤3-4 mm from the site of best activation demonstrated widespread activation in primary somatosensory cortex.
Collapse
Affiliation(s)
- Jamie L Reed
- Dept. of Psychology, Vanderbilt University, 111 21 Ave. S., Nashville, TN 37240, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Statistical analysis of large-scale neuronal recording data. Neural Netw 2010; 23:673-84. [PMID: 20472395 DOI: 10.1016/j.neunet.2010.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 03/30/2010] [Accepted: 04/18/2010] [Indexed: 11/22/2022]
Abstract
Relating stimulus properties to the response properties of individual neurons and neuronal networks is a major goal of sensory research. Many investigators implant electrode arrays in multiple brain areas and record from chronically implanted electrodes over time to answer a variety of questions. Technical challenges related to analyzing large-scale neuronal recording data are not trivial. Several analysis methods traditionally used by neurophysiologists do not account for dependencies in the data that are inherent in multi-electrode recordings. In addition, when neurophysiological data are not best modeled by the normal distribution and when the variables of interest may not be linearly related, extensions of the linear modeling techniques are recommended. A variety of methods exist to analyze correlated data, even when the data are not normally distributed and the relationships are nonlinear. Here we review expansions of the Generalized Linear Model designed to address these data properties. Such methods are used in other research fields, and the application to large-scale neuronal recording data will enable investigators to determine the variable properties that convincingly contribute to the variances in the observed neuronal measures. Standard measures of neuron properties such as response magnitudes can be analyzed using these methods, and measures of neuronal network activity such as spike timing correlations can be analyzed as well. We have done just that in recordings from 100-electrode arrays implanted in the primary somatosensory cortex of owl monkeys. Here we illustrate how one example method, Generalized Estimating Equations analysis, is a useful method to apply to large-scale neuronal recordings.
Collapse
|
50
|
Reed JL, Qi HX, Zhou Z, Bernard MR, Burish MJ, Bonds AB, Kaas JH. Response properties of neurons in primary somatosensory cortex of owl monkeys reflect widespread spatiotemporal integration. J Neurophysiol 2010; 103:2139-57. [PMID: 20164400 PMCID: PMC2853283 DOI: 10.1152/jn.00709.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 02/11/2010] [Indexed: 11/22/2022] Open
Abstract
Receptive fields of neurons in somatosensory area 3b of monkeys are typically described as restricted to part of a single digit or palm pad. However, such neurons are likely involved in integrating stimulus information from across the hand. To evaluate this possibility, we recorded from area 3b neurons in anesthetized owl monkeys with 100-electrode arrays, stimulating two hand locations with electromechanical probes simultaneously or asynchronously. Response magnitudes and latencies of single- and multiunits varied with stimulus conditions, and multiunit responses were similar to single-unit responses. The mean peak firing rate for single neurons stimulated within the preferred location was estimated to be ∼26 spike/s. Simultaneous stimulation with a second probe outside the preferred location slightly decreased peak firing rates to ∼22 spike/s. When the nonpreferred stimulus preceded the preferred stimulus by 10-500 ms, peak firing rates were suppressed with greatest suppression when the nonpreferred stimulus preceded by 30 ms (∼7 spike/s). The mean latency for single neurons stimulated within the preferred location was ∼23 ms, and latency was little affected by simultaneous paired stimulation. However, when the nonpreferred stimulus preceded the preferred stimulus by 10 ms, latencies shortened to ∼16 ms. Response suppression occurred even when stimuli were separated by long distances (nonadjacent digits) or long times (500 ms onset asynchrony). Facilitation, though rare, occurred most often when the stimulus onsets were within 0-30 ms of each other. These findings quantify spatiotemporal interactions and support the hypothesis that area 3b is involved in widespread stimulus integration.
Collapse
Affiliation(s)
- Jamie L Reed
- Dept. of Psychology, Vanderbilt University, 111 21st Ave. S., Nashville, TN 37240, USA.
| | | | | | | | | | | | | |
Collapse
|