1
|
DNA Replication Control During Drosophila Development: Insights into the Onset of S Phase, Replication Initiation, and Fork Progression. Genetics 2017; 207:29-47. [PMID: 28874453 PMCID: PMC5586379 DOI: 10.1534/genetics.115.186627] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation.
Collapse
|
2
|
Liu J, Zimmer K, Rusch DB, Paranjape N, Podicheti R, Tang H, Calvi BR. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila. Nucleic Acids Res 2015; 43:8746-61. [PMID: 26227968 PMCID: PMC4605296 DOI: 10.1093/nar/gkv766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/16/2015] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kurt Zimmer
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Neha Paranjape
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ram Podicheti
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Hua BL, Li S, Orr-Weaver TL. The role of transcription in the activation of a Drosophila amplification origin. G3 (BETHESDA, MD.) 2014; 4:2403-8. [PMID: 25320071 PMCID: PMC4267935 DOI: 10.1534/g3.114.014050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/11/2014] [Indexed: 12/30/2022]
Abstract
The mechanisms that underlie metazoan DNA replication initiation, especially the connection between transcription and replication origin activation, are not well understood. To probe the role of transcription in origin activation, we exploited a specific replication origin in Drosophila melanogaster follicle cells, ori62, which coincides with the yellow-g2 transcription unit and exhibits transcription-dependent origin firing. Within a 10-kb genomic fragment that contains ori62 and is sufficient for amplification, RNA-sequencing analysis revealed that all detected RNAs mapped solely to the yellow-g2 gene. To determine whether transcription is required in cis for ori62 firing, we generated a set of tagged yellow-g2 transgenes in which we could prevent local transcription across ori62 by deletions in the yellow-g2 promoter. Surprisingly, inhibition of yellow-g2 transcription by promoter deletions did not affect ori62 firing. Our results reveal that transcription in cis is not required for ori62 firing, raising the possibility that a trans-acting factor is required specifically for the activation of ori62. This finding illustrates that a diversity of mechanisms can be used in the regulation of metazoan DNA replication initiation.
Collapse
Affiliation(s)
- Brian L Hua
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Sharon Li
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Terry L Orr-Weaver
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| |
Collapse
|
4
|
The ecdysone receptor (ScEcR-A) binds DNA puffs at the start of DNA amplification in Sciara coprophila. Chromosome Res 2013; 21:345-60. [PMID: 23737076 DOI: 10.1007/s10577-013-9360-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/11/2013] [Accepted: 04/23/2013] [Indexed: 12/20/2022]
Abstract
The steroid hormone ecdysone induces DNA amplification and subsequent DNA puff formation in late fourth larval instar salivary gland polytene chromosomes of the fungus fly, Sciara coprophila. Previous in vitro studies on DNA puff II/9A in Sciara demonstrated that the ecdysone receptor (ScEcR-A) efficiently binds an ecdysone response element adjacent to the origin recognition complex binding site within the II/9A amplification origin, implying a role for ScEcR-A in amplification. Here, we extrapolate the molecular details from locus II/9A to the rest of the genome using immunofluorescence with a ScEcR-A-specific antibody. ScEcR-A binds all DNA puff sites just as amplification begins and persists throughout the processes of amplification, transcription, and puffing. Ecdysone injections into pre-amplification stage larvae prematurely induce both DNA amplification and ScEcR-A binding to DNA puff sites. These data are consistent with a direct role for ScEcR-A in DNA amplification.
Collapse
|
5
|
Abstract
The origin recognition complex (ORC) was first discovered in the baker's yeast in 1992. Identification of ORC opened up a path for subsequent molecular level investigations on how eukaryotic cells initiate and control genome duplication each cell cycle. Twenty years after the first biochemical isolation, ORC is now taking on a three-dimensional shape, although a very blurry shape at the moment, thanks to the recent electron microscopy and image reconstruction efforts. In this chapter, we outline the current biochemical knowledge about ORC from several eukaryotic systems, with emphasis on the most recent structural and biochemical studies. Despite many species-specific properties, an emerging consensus is that ORC is an ATP-dependent machine that recruits other key proteins to form pre-replicative complexes (pre-RCs) at many origins of DNA replication, enabling the subsequent initiation of DNA replication in S phase.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA, And, Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA, , Tel: 631-344-2931, Fax: 631-344-3407
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, , Tel: 516-367-8383
| |
Collapse
|
6
|
Sher N, Bell GW, Li S, Nordman J, Eng T, Eaton ML, Macalpine DM, Orr-Weaver TL. Developmental control of gene copy number by repression of replication initiation and fork progression. Genome Res 2011; 22:64-75. [PMID: 22090375 DOI: 10.1101/gr.126003.111] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Precise DNA replication is crucial for genome maintenance, yet this process has been inherently difficult to study on a genome-wide level in untransformed differentiated metazoan cells. To determine how metazoan DNA replication can be repressed, we examined regions selectively under-replicated in Drosophila polytene salivary glands, and found they are transcriptionally silent and enriched for the repressive H3K27me3 mark. In the first genome-wide analysis of binding of the origin recognition complex (ORC) in a differentiated metazoan tissue, we find that ORC binding is dramatically reduced within these large domains, suggesting reduced initiation as one mechanism leading to under-replication. Inhibition of replication fork progression by the chromatin protein SUUR is an additional repression mechanism to reduce copy number. Although repressive histone marks are removed when SUUR is mutated and copy number restored, neither transcription nor ORC binding is reinstated. Tethering of the SUUR protein to a specific site is insufficient to block replication, however. These results establish that developmental control of DNA replication, at both the initiation and elongation stages, is a mechanism to change gene copy number during differentiation.
Collapse
Affiliation(s)
- Noa Sher
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Analysis of a Drosophila amplicon in follicle cells highlights the diversity of metazoan replication origins. Proc Natl Acad Sci U S A 2011; 108:16681-6. [PMID: 21933960 DOI: 10.1073/pnas.1114209108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To investigate the properties of metazoan replication origins, recent studies in cell culture have adopted the strategy of identifying origins using genome-wide approaches and assessing correlations with such features as transcription and histone modifications. Drosophila amplicon in follicle cells (DAFCs), genomic regions that undergo repeated rounds of DNA replication to increase DNA copy number, serve as powerful in vivo model replicons. Because there are six DAFCs, compared with thousands of origins activated in the typical S phase, close molecular characterization of all DAFCs is possible. To determine the extent to which the six DAFCs are different or similar, we investigated the developmental and replication properties of the newly identified DAFC-34B. DAFC-34B contains two genes expressed in follicle cells, although the timing and spatial patterns of expression suggest that amplification is not a strategy to promote high expression at this locus. Like the previously characterized DAFC-62D, DAFC-34B displays origin activation at two separate stages of development. However, unlike DAFC-62D, amplification at the later stage is not transcription-dependent. We mapped the DAFC-34B amplification origin to 1 kb by nascent strand analysis and delineated cis requirements for origin activation, finding that a 6-kb region, but not the 1-kb origin alone, is sufficient for amplification. We analyzed the developmental localization of the origin recognition complex (ORC) and the minichromosome maintenance (MCM)2-7 complex, the replicative helicase. Intriguingly, the final round of origin activation at DAFC-34B occurs in the absence of detectable ORC, although MCMs are present, suggesting a new amplification initiation mechanism.
Collapse
|
8
|
Integrative analysis of gene amplification in Drosophila follicle cells: parameters of origin activation and repression. Genes Dev 2011; 25:1384-98. [PMID: 21724831 DOI: 10.1101/gad.2043111] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In metazoans, how replication origins are specified and subsequently activated is not well understood. Drosophila amplicons in follicle cells (DAFCs) are genomic regions that undergo rereplication to increase DNA copy number. We identified all DAFCs by comparative genomic hybridization, uncovering two new amplicons in addition to four known previously. The complete identification of all DAFCs enabled us to investigate these in vivo replicons with respect to parameters of transcription, localization of the origin recognition complex (ORC), and histone acetylation, yielding important insights into gene amplification as a metazoan replication model. Significantly, ORC is bound across domains spanning 10 or more kilobases at the DAFC rather than at a specific site. Additionally, ORC is bound at many regions that do not undergo amplification, and, in contrast to cell culture, these regions do not correlate with high gene expression. As a developmental strategy, gene amplification is not the predominant means of achieving high expression levels, even in cells capable of amplification. Intriguingly, we found that, in some strains, a new amplicon, DAFC-22B, does not amplify, a consequence of distant repression of ORC binding and origin activation. This repression is alleviated when a fragment containing the origin is placed in different genomic contexts.
Collapse
|
9
|
Karmakar S, Mahajan MC, Schulz V, Boyapaty G, Weissman SM. A multiprotein complex necessary for both transcription and DNA replication at the β-globin locus. EMBO J 2010; 29:3260-71. [PMID: 20808282 DOI: 10.1038/emboj.2010.204] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 07/29/2010] [Indexed: 12/17/2022] Open
Abstract
DNA replication, repair, transcription and chromatin structure are intricately associated nuclear processes, but the molecular links between these events are often obscure. In this study, we have surveyed the protein complexes that bind at β-globin locus control region, and purified and characterized the function of one such multiprotein complex from human erythroleukemic K562 cells. We further validated the existence of this complex in human CD34+ cell-derived normal erythroid cells. This complex contains ILF2/ILF3 transcription factors, p300 acetyltransferase and proteins associated with DNA replication, transcription and repair. RNAi knockdown of ILF2, a DNA-binding component of this complex, abrogates the recruitment of the complex to its cognate DNA sequence and inhibits transcription, histone acetylation and usage of the origin of DNA replication at the β-globin locus. These results imply a direct link between mammalian DNA replication, transcription and histone acetylation mediated by a single multiprotein complex.
Collapse
Affiliation(s)
- Subhradip Karmakar
- Department of Genetics, The Anlyan Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|