1
|
Flores-Martínez Á, Ramos-Herrero VD, Barroso A, Moreno A, G-García ME, Venegas-Moreno E, Dios E, Martínez-Barberá JP, Luque RM, Soto-Moreno A, Cano DA. Conditional Pten inactivation in pituitary results in sex-specific prolactinoma formation. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167543. [PMID: 39428000 DOI: 10.1016/j.bbadis.2024.167543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Pituitary tumors, including prolactinomas, present significant clinical challenges that require a deeper understanding of their molecular roots for improved diagnostics and therapies. Here, we investigate the role of the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K) pathway in pituitary tumorigenesis using a mouse model. Conditional knockout of Pten in all pituitary cell lineages resulted in prolactinoma formation exclusively in female mice, demonstrating the critical role of PTEN in pituitary homeostasis. While Pten inactivation induced Akt activation in all pituitary cells, only prolactin-producing cells exhibited tumorigenic changes, suggesting specific cell-type effects. Histological and molecular analyses of prolactinomas revealed similarities with human pituitary tumors, such as decreased vascularization and cell adhesion proteins and increased accumulation of cell cycle proteins. Notably, prolactinomas displayed diminished levels of phosphorylated extracellular signal-regulated kinase (ERK), implicating downregulation of ERK in tumorigenesis. Finally, we analyzed PTEN/PI3K activation in a collection of human pituitary tumors. Overall, our study delineates the intricate interplay between the PTEN and ERK signaling pathways, providing insights into sex-specific mechanisms of pituitary tumorigenesis and potential therapeutic strategies for prolactinomas.
Collapse
Affiliation(s)
- Álvaro Flores-Martínez
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon 1 University, Lyon, France
| | - Víctor Darío Ramos-Herrero
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Alexia Barroso
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Alicia Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Miguel E G-García
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain
| | - Eva Venegas-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Elena Dios
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Juan Pedro Martínez-Barberá
- Developmental Biology and Cancer Programme, GOS Institute of Child Health, University College London, London, UK
| | - Raúl M Luque
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain
| | - Alfonso Soto-Moreno
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - David A Cano
- Unidad de Gestión de Endocrinología y Nutrición, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
2
|
Kim K, Ku CR, Lee EJ. Multiomics Approach to Acromegaly: Unveiling Translational Insights for Precision Medicine. Endocrinol Metab (Seoul) 2023; 38:463-471. [PMID: 37828709 PMCID: PMC10613768 DOI: 10.3803/enm.2023.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
The clinical characteristics and prognoses of acromegaly vary among patients. Assessment of current and novel predictors can lead to multilevel categorization of patients, allowing integration into new clinical guidelines and a reduction in the increased morbidity and mortality associated with acromegaly. Despite advances in the diagnosis and treatment of acromegaly, its pathophysiology remains unclear. Recent advancements in multiomics technologies, including genomics, transcriptomics, proteomics, metabolomics, and radiomics, have offered new opportunities to unravel the complex pathophysiology of acromegaly. This review comprehensively explores the emerging role of multiomics approaches in elucidating the molecular landscape of acromegaly. We discuss the potential implications of multiomics data integration in the development of novel diagnostic tools, identification of therapeutic targets, and the prospects of precision medicine in acromegaly management. By integrating diverse omics datasets, these approaches can provide valuable insights into disease mechanisms, facilitate the identification of diagnostic biomarkers, and identify potential therapeutic targets for precision medicine in the management of acromegaly.
Collapse
Affiliation(s)
- Kyungwon Kim
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Ryong Ku
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Labadzhyan A, Melmed S. Molecular targets in acromegaly. Front Endocrinol (Lausanne) 2022; 13:1068061. [PMID: 36545335 PMCID: PMC9760705 DOI: 10.3389/fendo.2022.1068061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 12/10/2022] Open
Abstract
Molecular therapeutic targets in growth hormone (GH)-secreting adenomas range from well-characterized surface receptors that recognize approved drugs, to surface and intracellular markers that are potential candidates for new drug development. Currently available medical therapies for patients with acromegaly bind to somatostatin receptors, GH receptor, or dopamine receptors, and lead to attainment of disease control in most patients. The degree of control is variable: however, correlates with both disease aggressiveness and tumor factors that predict treatment response including somatostatin receptor subtype expression, granulation pattern, kinases and their receptors, and other markers of proliferation. A better understanding of the mechanisms underlying these molecular markers and their relationship to outcomes holds promise for expanding treatment options as well as a more personalized approach to treating patients with acromegaly.
Collapse
Affiliation(s)
- Artak Labadzhyan
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | |
Collapse
|
4
|
Melmed S, Kaiser UB, Lopes MB, Bertherat J, Syro LV, Raverot G, Reincke M, Johannsson G, Beckers A, Fleseriu M, Giustina A, Wass JAH, Ho KKY. Clinical Biology of the Pituitary Adenoma. Endocr Rev 2022; 43:1003-1037. [PMID: 35395078 PMCID: PMC9695123 DOI: 10.1210/endrev/bnac010] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 02/06/2023]
Abstract
All endocrine glands are susceptible to neoplastic growth, yet the health consequences of these neoplasms differ between endocrine tissues. Pituitary neoplasms are highly prevalent and overwhelmingly benign, exhibiting a spectrum of diverse behaviors and impact on health. To understand the clinical biology of these common yet often innocuous neoplasms, we review pituitary physiology and adenoma epidemiology, pathophysiology, behavior, and clinical consequences. The anterior pituitary develops in response to a range of complex brain signals integrating with intrinsic ectodermal cell transcriptional events that together determine gland growth, cell type differentiation, and hormonal production, in turn maintaining optimal endocrine health. Pituitary adenomas occur in 10% of the population; however, the overwhelming majority remain harmless during life. Triggered by somatic or germline mutations, disease-causing adenomas manifest pathogenic mechanisms that disrupt intrapituitary signaling to promote benign cell proliferation associated with chromosomal instability. Cellular senescence acts as a mechanistic buffer protecting against malignant transformation, an extremely rare event. It is estimated that fewer than one-thousandth of all pituitary adenomas cause clinically significant disease. Adenomas variably and adversely affect morbidity and mortality depending on cell type, hormone secretory activity, and growth behavior. For most clinically apparent adenomas, multimodal therapy controlling hormone secretion and adenoma growth lead to improved quality of life and normalized mortality. The clinical biology of pituitary adenomas, and particularly their benign nature, stands in marked contrast to other tumors of the endocrine system, such as thyroid and neuroendocrine tumors.
Collapse
Affiliation(s)
| | - Ursula B Kaiser
- Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M Beatriz Lopes
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome Bertherat
- Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Luis V Syro
- Hospital Pablo Tobon Uribe and Clinica Medellin - Grupo Quirónsalud, Medellin, Colombia
| | - Gerald Raverot
- Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| | - Martin Reincke
- University Hospital of LMU, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gudmundur Johannsson
- Sahlgrenska University Hospital & Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Andrea Giustina
- San Raffaele Vita-Salute University and IRCCS Hospital, Milan, Italy
| | | | - Ken K Y Ho
- The Garvan Institute of Medical Research and St. Vincents Hospital, Sydney, Australia
| |
Collapse
|
5
|
Fleseriu M, Langlois F, Lim DST, Varlamov EV, Melmed S. Acromegaly: pathogenesis, diagnosis, and management. Lancet Diabetes Endocrinol 2022; 10:804-826. [PMID: 36209758 DOI: 10.1016/s2213-8587(22)00244-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
Growth hormone-secreting pituitary adenomas that cause acromegaly arise as monoclonal expansions of differentiated somatotroph cells and are usually sporadic. They are almost invariably benign, yet they can be locally invasive and show progressive growth despite treatment. Persistent excess of both growth hormone and its target hormone insulin-like growth factor 1 (IGF-1) results in a wide array of cardiovascular, respiratory, metabolic, musculoskeletal, neurological, and neoplastic comorbidities that might not be reversible with disease control. Normalisation of IGF-1 and growth hormone are the primary therapeutic aims; additional treatment goals include tumour shrinkage, relieving symptoms, managing complications, reducing excess morbidity, and improving quality of life. A multimodal approach with surgery, medical therapy, and (more rarely) radiation therapy is required to achieve these goals. In this Review, we examine the epidemiology, pathogenesis, diagnosis, complications, and treatment of acromegaly, with an emphasis on the importance of tailoring management strategies to each patient to optimise outcomes.
Collapse
Affiliation(s)
- Maria Fleseriu
- Department of Medicine (Division of Endocrinology, Diabetes and Clinical Nutrition) and Department of Neurological Surgery, and Pituitary Center, Oregon Health & Science University, Portland, OR, USA.
| | - Fabienne Langlois
- Division of Endocrinology, Department of Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Elena V Varlamov
- Department of Medicine (Division of Endocrinology, Diabetes and Clinical Nutrition) and Department of Neurological Surgery, and Pituitary Center, Oregon Health & Science University, Portland, OR, USA
| | - Shlomo Melmed
- Department of Medicine and Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
6
|
Abstract
Replicative senescence occurs due to an inability to repair DNA damage and activation of p53/p21 and p16INK4 pathways. It is considered a preventive mechanism for arresting proliferation of DNA-damaged cells. Stably senescent cells are characterized by a senescence-associated secretory phenotype (SASP), which produces and secretes cytokines, chemokines, and/or matrix metalloproteinases depending on the cell type. SASP proteins may increase cell proliferation, facilitating conversion of premalignant to malignant tumor cells, triggering DNA damage, and altering the tissue microenvironment. Further, senescent cells accumulate with age, thereby aggravating age-related tissue damage. Here, we review a heretofore unappreciated role for growth hormone (GH) as a SASP component, acting in an autocrine and paracrine fashion. In senescent cells, GH is activated by DNA-damage-induced p53 and inhibits phosphorylation of DNA repair proteins ATM, Chk2, p53, and H2AX. Somatotroph adenomas containing abundant intracellular GH exhibit increased somatic copy number alterations, indicative of DNA damage, and are associated with induced p53/p21. As this pathway restrains proliferation of DNA-damaged cells, these mechanisms may underlie the senescent phenotype and benign nature of slowly proliferating pituitary somatotroph adenomas. In highly proliferative cells, such as colon epithelial cells, GH induced in response to DNA damage suppresses p53, thereby triggering senescent cell proliferation. As senescent cells harbor unrepaired DNA damage, GH may enable senescent cells to evade senescence and reenter the cell cycle, resulting in acquisition of harmful mutations. These mechanisms, at least in part, may underlie pro-aging effects of GH observed in animal models and in patients with chronically elevated GH levels.
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Sabatino ME, Grondona E, De Paul AL. Architects of Pituitary Tumour Growth. Front Endocrinol (Lausanne) 2022; 13:924942. [PMID: 35837315 PMCID: PMC9273718 DOI: 10.3389/fendo.2022.924942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
The pituitary is a master gland responsible for the modulation of critical endocrine functions. Pituitary neuroendocrine tumours (PitNETs) display a considerable prevalence of 1/1106, frequently observed as benign solid tumours. PitNETs still represent a cause of important morbidity, due to hormonal systemic deregulation, with surgical, radiological or chronic treatment required for illness management. The apparent scarceness, uncommon behaviour and molecular features of PitNETs have resulted in a relatively slow progress in depicting their pathogenesis. An appropriate interpretation of different phenotypes or cellular outcomes during tumour growth is desirable, since histopathological characterization still remains the main option for prognosis elucidation. Improved knowledge obtained in recent decades about pituitary tumorigenesis has revealed that this process involves several cellular routes in addition to proliferation and death, with its modulation depending on many signalling pathways rather than being the result of abnormalities of a unique proliferation pathway, as sometimes presented. PitNETs can display intrinsic heterogeneity and cell subpopulations with diverse biological, genetic and epigenetic particularities, including tumorigenic potential. Hence, to obtain a better understanding of PitNET growth new approaches are required and the systematization of the available data, with the role of cell death programs, autophagy, stem cells, cellular senescence, mitochondrial function, metabolic reprogramming still being emerging fields in pituitary research. We envisage that through the combination of molecular, genetic and epigenetic data, together with the improved morphological, biochemical, physiological and metabolically knowledge on pituitary neoplastic potential accumulated in recent decades, tumour classification schemes will become more accurate regarding tumour origin, behaviour and plausible clinical results.
Collapse
Affiliation(s)
- Maria Eugenia Sabatino
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), Córdoba, Argentina
| | - Ezequiel Grondona
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Ana Lucía De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
- *Correspondence: Ana Lucía De Paul,
| |
Collapse
|
8
|
Gonzalez RVL, Weis KE, Gonsioroski AV, Flaws JA, Raetzman LT. Iodoacetic Acid, a Water Disinfection Byproduct, Disrupts Hypothalamic, and Pituitary Reproductive Regulatory Factors and Induces Toxicity in the Female Pituitary. Toxicol Sci 2021; 184:46-56. [PMID: 34453833 DOI: 10.1093/toxsci/kfab106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Iodoacetic acid (IAA) is a water disinfection byproduct (DBP) formed by reactions between oxidizing disinfectants and iodide. In vitro studies have indicated that IAA is one of the most cyto- and genotoxic DBPs. In humans, DBPs have been epidemiologically associated with reproductive dysfunction. In mouse ovarian culture, IAA exposure significantly inhibits antral follicle growth and reduces estradiol production. Despite this evidence, little is known about the effects of IAA on the other components of the reproductive axis: the hypothalamus and pituitary. We tested the hypothesis that IAA disrupts expression of key neuroendocrine factors and directly induces cell damage in the mouse pituitary. We exposed adult female mice to IAA in drinking water in vivo and found 0.5 and 10 mg/l IAA concentrations lead to significantly increased mRNA levels of kisspeptin (Kiss1) in the arcuate nucleus although not affecting Kiss1 in the anteroventral periventricular nucleus. Both 10 mg/l IAA exposure in vivo and 20 μM IAA in vitro reduced follicle stimulating hormone (FSHβ)-positive cell number and Fshb mRNA expression. IAA did not alter luteinizing hormone (LHβ) expression in vivo although exposure to 20 μM IAA decreased expression of Lhb and glycoprotein hormones, alpha subunit (Cga) mRNA in vitro. IAA also had toxic effects in the pituitary, inducing DNA damage and P21/Cdkn1a expression in vitro (20 μM IAA) and DNA damage and Cdkn1a expression in vivo (500 mg/l). These data implicate IAA as a hypothalamic-pituitary-gonadal axis toxicant and suggest the pituitary is directly affected by IAA exposure.
Collapse
Affiliation(s)
- Rachel V L Gonzalez
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Andressa V Gonsioroski
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jodi A Flaws
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
9
|
Weidle UH, Birzele F. Bladder Cancer-related microRNAs With In Vivo Efficacy in Preclinical Models. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:245-263. [PMID: 35403137 PMCID: PMC8988954 DOI: 10.21873/cdp.10033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 06/14/2023]
Abstract
Progressive and metastatic bladder cancer remain difficult to treat. In this review, we critique seven up-regulated and 25 down-regulated microRNAs in order to identify new therapeutic entities and corresponding targets. These microRNAs were selected with respect to their efficacy in bladder cancer-related preclinical in vivo models. MicroRNAs and related targets interfering with chemoresistance, cell-cycle, signaling, apoptosis, autophagy, transcription factor modulation, epigenetic modification and metabolism are described. In addition, we highlight microRNAs targeting transmembrane receptors and secreted factors. We discuss druggability issues for the identified targets.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences,Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
10
|
Mo G, Zhang B, Jiang Q. Role of ARK5 in cancer and other diseases (Review). Exp Ther Med 2021; 22:697. [PMID: 33986861 PMCID: PMC8112134 DOI: 10.3892/etm.2021.10129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
Malignant tumors are often exposed to hypoxic and glucose-starved microenvironments. AMP-activated protein kinase (AMPK) is an energy sensor that is stimulated during energy-deficient conditions and protects cells from hypoxic injury by regulating metabolism. AMPK-related protein kinase 5 (ARK5) is a member of the catalytic sub-unit of the AMPK family and has an important role in energy regulation and hypoxia. ARK5 is regulated by Akt and liver kinase B1 and is associated with numerous tumor-related molecules to exert the negative effects of tumors. Studies have revealed ARK5 overexpression in cases of tumor invasion and metastasis and a positive association with the degree of cancer cell malignancy, which is regarded as a key element in determining cancer prognosis. Furthermore, ARK5 downregulation improves drug sensitivity through the epithelial-mesenchymal transition pathway, indicating that it may be a potential therapeutic target. In other non-cancer conditions, ARK5 has various roles in neurodegenerative diseases (Alzheimer's and Huntington's disease), renal disorders (diabetic nephropathy and renal fibrosis) and physiological processes (striated muscle generation). In the present review, the upstream and downstream molecular pathways of ARK5 in cancer and other diseases are described and potential therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Guoheng Mo
- Department of Neurosurgery, Queen Mary College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bohan Zhang
- First Clinical Medical College, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qunguang Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
11
|
Gonzalez-Meljem JM, Martinez-Barbera JP. Adamantinomatous craniopharyngioma as a model to understand paracrine and senescence-induced tumourigenesis. Cell Mol Life Sci 2021; 78:4521-4544. [PMID: 34019103 PMCID: PMC8195904 DOI: 10.1007/s00018-021-03798-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/03/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a process that can prevent tumour development in a cell autonomous manner by imposing a stable cell cycle arrest after oncogene activation. Paradoxically, senescence can also promote tumour growth cell non-autonomously by creating a permissive tumour microenvironment that fuels tumour initiation, progression to malignancy and metastasis. In a pituitary tumour known as adamantinomatous craniopharyngioma (ACP), cells that carry oncogenic β-catenin mutations and overactivate the WNT signalling pathway form cell clusters that become senescent and activate a senescence-associated secretory phenotype (SASP). Research in mouse models of ACP has provided insights into the function of the senescent cell clusters and revealed a critical role for SASP-mediated activities in paracrine tumour initiation. In this review, we first discuss this research on ACP and subsequently explore the theme of paracrine tumourigenesis in other tumour models available in the literature. Evidence is accumulating supporting the notion that paracrine signalling brought about by senescent cells may underlie tumourigenesis across different tumours and cancer models.
Collapse
Affiliation(s)
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Research and Teaching Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
12
|
Ben-Shlomo A, Deng N, Ding E, Yamamoto M, Mamelak A, Chesnokova V, Labadzhyan A, Melmed S. DNA damage and growth hormone hypersecretion in pituitary somatotroph adenomas. J Clin Invest 2021; 130:5738-5755. [PMID: 32673291 DOI: 10.1172/jci138540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Drivers of sporadic benign pituitary adenoma growth are largely unknown. Whole-exome sequencing of 159 prospectively resected pituitary adenomas showed that somatic copy number alteration (SCNA) rather than mutation is a hallmark of hormone-secreting adenomas and that SCNAs correlate with adenoma phenotype. Using single-gene SCNA pathway analysis, we observed that both cAMP and Fanconi anemia DNA damage repair pathways were affected by SCNAs in growth hormone-secreting (GH-secreting) somatotroph adenomas. As somatotroph differentiation and GH secretion are dependent on cAMP activation and we previously showed DNA damage, aneuploidy, and senescence in somatotroph adenomas, we studied links between cAMP signaling and DNA damage. Stimulation of cAMP in C57BL/6 mouse primary pituitary cultures using forskolin or a long-acting GH-releasing hormone (GHRH) analog increased GH production and DNA damage measured by H2AX phosphorylation and a comet assay. Octreotide, a somatostatin receptor ligand that targets somatotroph adenoma GH secretion in patients with acromegaly, inhibited cAMP and GH and reversed DNA damage induction. In vivo long-acting GHRH treatment also induced pituitary DNA damage in mice. We conclude that cAMP, which induces somatotroph proliferation and GH secretion, may concomitantly induce DNA damage, potentially linking hormone hypersecretion to SCNA and genome instability. These results elucidating somatotroph adenoma pathophysiology identify pathways for targeted treatment.
Collapse
Affiliation(s)
| | - Nan Deng
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, and
| | | | | | - Adam Mamelak
- Pituitary Center, Department of Medicine.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | |
Collapse
|
13
|
Urbani C, Mattiello A, Ferri G, Raggi F, Russo D, Marconcini G, Cappellani D, Manetti L, Marcocci C, Cardarelli F, Bogazzi F. PCB153 reduces apoptosis in primary cultures of murine pituitary cells through the activation of NF-κB mediated by PI3K/Akt. Mol Cell Endocrinol 2021; 520:111090. [PMID: 33242503 DOI: 10.1016/j.mce.2020.111090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent pollutants involved in human tumorigenesis. PCB153 is a ubiquitous non-dioxin-like PCB with proliferative and anti-apoptotic effects. To explore the impact of PCB153 in the survival of pituitary cells, we exposed murine pituitary primary cells to PCB153 10 μM for 24 h. Apoptosis was assessed by RT-qPCR, Western-blot, immunoprecipitation, caspase activity, and immunofluorescence. We found that PCB153 decreased pituitary apoptosis through both the extrinsic and intrinsic pathways. PCB153 reduced the level of the pro-apoptotic protein p38-MAPK. Otherwise, PCB153 activated PI3K/Akt and Erk1/2 pathways and enhanced the expression and nuclear translocation of NF-κB. Cotreatments with specific inhibitors revealed that only PI3K/Akt changed the caspase-3 expression and NF-κB activation induced by PCB153. Also, PCB153 decreased the expression of the pro-apoptotic and pro-senescent cyclins p53 and p21. In summary, exposure to PCB153 leads to a downregulation of apoptosis in the pituitary driven by a PI3K/Akt-mediated activation of NF-κB.
Collapse
Affiliation(s)
- Claudio Urbani
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Alessandro Mattiello
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Gianmarco Ferri
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Francesco Raggi
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Dania Russo
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Giulia Marconcini
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Daniele Cappellani
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Luca Manetti
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Francesco Cardarelli
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Fausto Bogazzi
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy.
| |
Collapse
|
14
|
Affiliation(s)
- Shlomo Melmed
- From the Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles
| |
Collapse
|
15
|
Weis KE, Raetzman LT. Genistein inhibits proliferation and induces senescence in neonatal mouse pituitary gland explant cultures. Toxicology 2019; 427:152306. [PMID: 31593742 DOI: 10.1016/j.tox.2019.152306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022]
Abstract
Genistein is an isoflavone abundant in soybean and infants are exposed to high levels of genistein in soy-based formula. It is known that genistein mediates estrogen receptor (ER) signaling, and exposure during neonatal development could cause acute and long term endocrine effects. We assayed genistein's impact on the neonatal mouse pituitary gland because it is an endocrine signaling hub and is sensitive to endocrine disruption during critical periods. Pituitary explant cultures, which actively proliferate and differentiate, were exposed to 0.06 μM-36 μM genistein and assayed for mRNA and protein changes. Genistein induced mRNA expression of the ERα regulated gene, Cckar, to the same magnitude as estradiol (E2) but with less potency. Interestingly, 36 μM genistein strongly inhibited pituitary proliferation, measured by a reduction in mKi67 mRNA and phospho-Histone H3 immunostaining. Examining cell cycle dynamics, we found that 36 μM genistein decreased Ccnb1 (Cyclin B1) mRNA; while mRNA for the cyclin dependent kinase inhibitor Cdkn1a (p21) was upregulated, correlated with an apparent increase in p21 immunostained cells. Strikingly, we observed a robust onset of cellular senescence, permanent cell cycle exit, in 36 μM genistein treated pituitaries by increased senescence activated β-galactosidase staining. We also found that 36 μM genistein decreased Bcl2 mRNA levels, a gene protective against apoptosis. Taken together these data suggest that genistein exposure during the neonatal period could initiate senescence and halt proliferation during a time when the proper numbers of endocrine cells are being established for mature gland function.
Collapse
Affiliation(s)
- Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois, 61801, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois, 61801, USA.
| |
Collapse
|
16
|
Xiong Z, Li X, Yang Q. PTTG has a Dual Role of Promotion-Inhibition in the Development of Pituitary Adenomas. Protein Pept Lett 2019; 26:800-818. [PMID: 37020362 DOI: 10.2174/0929866526666190722145449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/22/2022]
Abstract
Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
17
|
Ozeri O, Cohen ZR, Hadani M, Nass D, Shimon I, Rubinfeld H. Antibody array strategy for human growth factor secretome profiling of GH-secreting adenomas. Pituitary 2019; 22:344-352. [PMID: 30895501 DOI: 10.1007/s11102-019-00955-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSES To test if the antibody array strategy could be utilized to simultaneously detect the secretion of multiple growth factors by human pituitary GH-adenomas and to measure octreotide-induced alterations. METHODS Specimens of human pituitary adenomas were cultured and incubated with or without octreotide for 24 h. Conditional media were analyzed by human growth factor antibody array and VEGF concentrations were measured by ELISA. Media were also analyzed for GH concentrations. p21 expression levels were examined by Western blot of the specimens lysates. RESULTS The antibody arrays successfully identified growth factors secreted by GH-adenomas in vitro. Octreotide treatment induced both elevations and reductions in growth factors secretion. GH response to octreotide was measured, and in this small-sized study resistant and sensitive GH-adenomas presented with no unique secretome pattern of each of the groups. Octreotide-induced VEGF alterations analyzed by the antibody array and by ELISA were not fully matched. CONCLUSIONS This study suggests that the broad proteomic strategy of antibody arrays may be utilized to study the growth factors secretion pattern of GH-adenomas and its regulation by somatostatin analogs or other compounds.
Collapse
Affiliation(s)
- Orly Ozeri
- Institute of Endocrinology and Felsenstein Medical Research Center, Petach Tikva, Israel
- Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler School of Medicine, Tel Aviv, Israel
- Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Zvi R Cohen
- Sackler School of Medicine, Tel Aviv, Israel
- Tel-Aviv University, Tel Aviv, 69978, Israel
- Department of Neurosurgery, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | - Moshe Hadani
- Sackler School of Medicine, Tel Aviv, Israel
- Tel-Aviv University, Tel Aviv, 69978, Israel
- Department of Neurosurgery, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | - Dvora Nass
- Department of Pathology, Sheba Medical Center, Tel-Hashomer, 52621, Israel
| | - Ilan Shimon
- Institute of Endocrinology and Felsenstein Medical Research Center, Petach Tikva, Israel
- Rabin Medical Center, Petach Tikva, 49100, Israel
- Sackler School of Medicine, Tel Aviv, Israel
- Tel-Aviv University, Tel Aviv, 69978, Israel
| | - Hadara Rubinfeld
- Institute of Endocrinology and Felsenstein Medical Research Center, Petach Tikva, Israel.
- Rabin Medical Center, Petach Tikva, 49100, Israel.
- Sackler School of Medicine, Tel Aviv, Israel.
- Tel-Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
18
|
Faltermeier CM, Magill ST, Blevins LS, Aghi MK. Molecular Biology of Pituitary Adenomas. Neurosurg Clin N Am 2019; 30:391-400. [PMID: 31471046 DOI: 10.1016/j.nec.2019.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pituitary adenomas are benign tumors, but still cause significant morbidity and in some cases increases in mortality. Surgical resection is not without risks, and approximately 40% of adenomas are incompletely resected. Medical therapies such as dopamine agonists, somatostatin analogues, and growth hormone antagonists are associated with numerous side effects. Understanding the molecular biology of pituitary adenomas may yield new therapeutic approaches. Additional studies are needed to help determine which genes or pathways are "drivers" of tumorigenesis and should be therapeutic targets. Further studies may also enable pituitary adenoma stratification to tailor treatment approaches.
Collapse
Affiliation(s)
- Claire M Faltermeier
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue Suite M779, San Francisco, CA 94143-0112, USA
| | - Stephen T Magill
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue Suite M779, San Francisco, CA 94143-0112, USA. https://twitter.com/StephenTMagill1
| | - Lewis S Blevins
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue Suite M779, San Francisco, CA 94143-0112, USA; Medicine (Endocrinology), University of California, San Francisco, San Francisco, CA, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue Suite M779, San Francisco, CA 94143-0112, USA.
| |
Collapse
|
19
|
Abstract
Acromegaly is characterized by increased release of growth hormone and, consequently, insulin-like growth factor I (IGF1), most often by a pituitary adenoma. Prolonged exposure to excess hormone leads to progressive somatic disfigurement and a wide range of systemic manifestations that are associated with increased mortality. Although considered a rare disease, recent studies have reported an increased incidence of acromegaly owing to better disease awareness, improved diagnostic tools and perhaps a real increase in prevalence. Acromegaly treatment approaches, which include surgery, radiotherapy and medical therapy, have changed considerably over time owing to improved surgical procedures, development of new radiotherapy techniques and availability of new medical therapies. The optimal use of these treatments will reduce mortality in patients with acromegaly to levels in the general population. Medical therapy is currently an important treatment option and can even be the first-line treatment in patients with acromegaly who will not benefit from or are not suitable for first-line neurosurgical treatment. Pharmacological treatments include somatostatin receptor ligands (such as octreotide, lanreotide and pasireotide), dopamine agonists and the growth hormone receptor antagonist pegvisomant. In this Primer, we review the main aspects of acromegaly, including scientific advances that underlie expanding knowledge of disease pathogenesis, improvements in disease management and new medical therapies that are available and in development to improve disease control.
Collapse
Affiliation(s)
- Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University Federico II, Naples, Italy.
| | - Ludovica F S Grasso
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University Federico II, Naples, Italy
| | - Andrea Giustina
- Chair of Endocrinology, San Raffaele Vita-Salute University, Milano, Italy
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Philippe Chanson
- Assistance Publique-Hôpitaux de Paris, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Hôpital Bicêtre, Paris, France.,UMR S-1185, Faculté de Médecine Paris-Sud 11, Université Paris-Sud, Université Paris-Saclay, Paris, France
| | - Alberto M Pereira
- Department of Medicine, Division of Endocrinology and Center for Endocrine Tumors, Leiden University Medical Center, Leiden, The Netherlands
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University Federico II, Naples, Italy
| |
Collapse
|
20
|
Fuertes M, Sapochnik M, Tedesco L, Senin S, Attorresi A, Ajler P, Carrizo G, Cervio A, Sevlever G, Bonfiglio JJ, Stalla GK, Arzt E. Protein stabilization by RSUME accounts for PTTG pituitary tumor abundance and oncogenicity. Endocr Relat Cancer 2018; 25:665-676. [PMID: 29622689 DOI: 10.1530/erc-18-0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/05/2018] [Indexed: 11/08/2022]
Abstract
Increased levels of the proto-oncogene pituitary tumor-transforming gene 1 (PTTG) have been repeatedly reported in several human solid tumors, especially in endocrine-related tumors such as pituitary adenomas. Securin PTTG has a critical role in pituitary tumorigenesis. However, the cause of upregulation has not been found yet, despite analyses made at the gene, promoter and mRNA level that show that no mutations, epigenetic modifications or other mechanisms that deregulate its expression may explain its overexpression and action as an oncogene. We describe that high PTTG protein levels are induced by the RWD-containing sumoylation enhancer (RWDD3 or RSUME), a protein originally identified in the same pituitary tumor cell line in which PTTG was also cloned. We demonstrate that PTTG and RSUME have a positive expression correlation in human pituitary adenomas. RSUME increases PTTG protein in pituitary tumor cell lines, prolongs the half-life of PTTG protein and regulates the PTTG induction by estradiol. As a consequence, RSUME enhances PTTG transcription factor and securin activities. PTTG hyperactivity on the cell cycle resulted in recurrent and unequal divisions without cytokinesis, and the consequential appearance of aneuploidies and multinucleated cells in the tumor. RSUME knockdown diminishes securin PTTG and reduces its tumorigenic potential in a xenograft mouse model. Taken together, our findings show that PTTG high protein steady state levels account for PTTG tumor abundance and demonstrate a critical role of RSUME in this process in pituitary tumor cells.
Collapse
Affiliation(s)
- M Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - M Sapochnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - L Tedesco
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - S Senin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - A Attorresi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - P Ajler
- Servicio de NeurocirugíaHospital Italiano, Buenos Aires, Argentina
| | - G Carrizo
- Servicio de NeurocirugíaHospital Italiano, Buenos Aires, Argentina
| | - A Cervio
- Departamento de NeurocirugíaFundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - G Sevlever
- Departamento de NeurocirugíaFundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - J J Bonfiglio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - G K Stalla
- Department of Clinical ResearchMax Planck Institute of Psychiatry, Munich, Germany
| | - E Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y CelularFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Sabatino ME, Grondona E, Sosa LDV, Mongi Bragato B, Carreño L, Juarez V, da Silva RA, Remor A, de Bortoli L, de Paula Martins R, Pérez PA, Petiti JP, Gutiérrez S, Torres AI, Latini A, De Paul AL. Oxidative stress and mitochondrial adaptive shift during pituitary tumoral growth. Free Radic Biol Med 2018; 120:41-55. [PMID: 29548793 DOI: 10.1016/j.freeradbiomed.2018.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
The cellular transformation of normal functional cells to neoplastic ones implies alterations in the cellular metabolism and mitochondrial function in order to provide the bioenergetics and growth requirements for tumour growth progression. Currently, the mitochondrial physiology and dynamic shift during pituitary tumour development are not well understood. Pituitary tumours present endocrine neoplastic benign growth which, in previous reports, we had shown that in addition to increased proliferation, these tumours were also characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria during tumour development, associated with augmented biogenesis and an increased fusion process. An activation of the Nrf2 stress response pathway together with the attenuation of the oxidative damage signs occurring during tumour development were also observed which will probably provide survival advantages to the pituitary cells. These neoplasms also presented a progressive increase in lactate production, suggesting a metabolic shift towards glycolysis metabolism. These findings might imply an oxidative stress state that could impact on the pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate their metabolism to adapt to different energy requirements and signalling events in a pathophysiological situation to obtain protection from damage and enhance their survival chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a critical role in pituitary tumour progression.
Collapse
Affiliation(s)
- Maria Eugenia Sabatino
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Ezequiel Grondona
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Liliana D V Sosa
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Bethania Mongi Bragato
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Lucia Carreño
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Virginia Juarez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Rodrigo A da Silva
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aline Remor
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucila de Bortoli
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Roberta de Paula Martins
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Pablo A Pérez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Juan Pablo Petiti
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Silvina Gutiérrez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Alicia I Torres
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ana L De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
22
|
Babu H, Ortega A, Nuno M, Dehghan A, Schweitzer A, Bonert HV, Carmichael JD, Cooper O, Melmed S, Mamelak AN. Long-Term Endocrine Outcomes Following Endoscopic Endonasal Transsphenoidal Surgery for Acromegaly and Associated Prognostic Factors. Neurosurgery 2018; 81:357-366. [PMID: 28368500 DOI: 10.1093/neuros/nyx020] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/13/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Long-term remission rates from endoscopic transsphenoidal surgery for acromegaly and their relationship to prognostic indicators of disease aggressiveness are not well documented. OBJECTIVE To investigate long-term remission rates in patients with acromegaly after endoscopic transsphenoidal surgery, and correlate this with molecular and radiographic markers of disease aggressiveness. METHODS We identified all patients undergoing endoscopic transsphenoidal surgery for acromegaly from 2005 to 2013 at Cedars-Sinai Pituitary Center. Hormonal remission was established by normal insulin-like growth factor (IGF)-1, basal serum growth hormone <2.5 ng/mL, and growth hormone suppression to <1 ng/mL following oral glucose tolerance test. Oral glucose tolerance test was performed at 3 months after surgery, and then as indicated. IGF-1 was measured at 3 months and then at least annually. We evaluated tumor granularity, nuclear expression of p21, Ki67 index, and extent of cavernous sinus invasion, and correlated these with remission status. RESULTS Fifty-eight patients that underwent surgery had follow-up from 38 to 98 months (mean 64 ± 32.2 months). There were 21 microadenomas and 37 macroadenomas. Three months after surgery 40 of 58 patients (69%) were in biochemical remission. Four additional patients were in remission at 6 months after surgery, and 1 patient had recurrence within the first year after surgery. At last follow-up, 43 of 44 (74.1%) of patients remained in remission. Cavernous sinus invasion by tumor predicted failure to achieve remission. CONCLUSIONS Prognostic markers of disease aggressiveness other than cavernous sinus invasion did not correlate with surgical outcome. Long-term remission after surgery alone was achieved in 74% of patients, indicating long-term efficacy of endoscopic surgery.
Collapse
Affiliation(s)
- Harish Babu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, Cali-fornia
| | - Alicia Ortega
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, Cali-fornia.,Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Miriam Nuno
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, Cali-fornia.,Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aaron Dehghan
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aaron Schweitzer
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, Cali-fornia
| | - H Vivien Bonert
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, California
| | - John D Carmichael
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Odelia Cooper
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shlomo Melmed
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, Cali-fornia
| |
Collapse
|
23
|
Metformin inhibits proliferation and growth hormone secretion of GH3 pituitary adenoma cells. Oncotarget 2018; 8:37538-37549. [PMID: 28380462 PMCID: PMC5514928 DOI: 10.18632/oncotarget.16556] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Metformin is an anti-hyperglycemic agent used to treat diabetes, and recent evidence suggests it has antitumor efficacy. Because growth hormone-secreting pituitary adenoma (GH-PA) patients have a high incidence of diabetes frequently treated with metformin, we assessed the antitumor effect of metformin on GH-PA. We found that metformin effectively inhibited proliferation and induced apoptosis in the GH-PA cell line GH3. We detected a decrease in mitochondrial membrane potential (MMP), an increase in expression of pro-apoptotic proteins, and a decrease in expression of an anti-apoptotic protein in metformin-treated GH3 cells, which suggests involvement of the mitochondrial-mediated apoptosis pathway. Inhibition of AMPK, which is activated by metformin, failed to reverse the antiproliferative effect. ATF3 was upregulated by metformin, and its knockdown significantly reduced metformin-induced apoptosis. In addition, GH secretion was inhibited by metformin through suppression of STAT3 activity independently of AMPK. Metformin also significantly suppressed cellular proliferation and GH secretion in primary human GH-PA cells. Metformin also significantly inhibited GH3 cell proliferation and GH secretion in vivo. ATF3 upregulation and p-STAT3 downregulation were confirmed in xenografts. These findings suggest metformin is a potentially promising therapeutic agent for the treatment of GH-PA, particularly in patients with diabetes.
Collapse
|
24
|
Xiang W, Wu X, Huang C, Wang M, Zhao X, Luo G, Li Y, Jiang G, Xiao X, Zeng F. PTTG1 regulated by miR-146a-3p promotes bladder cancer migration, invasion, metastasis and growth. Oncotarget 2018; 8:664-678. [PMID: 27893422 PMCID: PMC5352187 DOI: 10.18632/oncotarget.13507] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/11/2016] [Indexed: 11/26/2022] Open
Abstract
Pituitary tumor-transforming gene 1 (PTTG1) is identified as an oncogene, and overexpresses in many tumors. However, the role of PTTG1 in bladder cancer (BC) hasn't yet been characterized well. In this study, we showed the expression of PTTG1 mRNA and protein were both significantly increased in BC tissues and cells. The PTTG1 protein levels were positive correlated with increased tumor size, tumor–node–metastasis (TNM) stage, lymphatic invasion and distant metastasis of BC. PTTG1 knockdown dramatically suppressed the migration, invasion, metastasis and growth, and induced senescence and cell-cycle arrest at G0/G1 phase of BC cells. We further identified PTTG1 was the direct target of miR-146a-3p through using target prediction algorithms and luciferase reporter assay. miR-146a-3p was low expressed and negatively correlated with PTTG1 levels in BC tissues and cells. miR-146a-3p overexpression inhibited migration, invasion, metastasis and growth, and induced senescence of BC cells. Rescue experiment suggested ectopic expression of miR-146a-3p and PTTG1 suppressed migration, invasion and induced cell cycle arrest and senescence of BC cells compared to PTTG1 overexpression, confirming miR-146a-3p inhibited BC progression by targeting PTTG1. In summary, our study found miR-146a-3p/PTTG1 axis regulated BC migration, invasion, metastasis and growth, and might be a targets for BC therapy.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China.,Department of Urology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Xinchao Wu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Miao Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Xian Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Gang Luo
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Yawei Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Xingyuan Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| | - Fuqing Zeng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, PR China
| |
Collapse
|
25
|
Abstract
Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence.
Collapse
|
26
|
Li J, Li C, Wang J, Song G, Zhao Z, Wang H, Wang W, Li H, Li Z, Miao Y, Li G, Zhang Y. Genome-wide analysis of differentially expressed lncRNAs and mRNAs in primary gonadotrophin adenomas by RNA-seq. Oncotarget 2018; 8:4585-4606. [PMID: 27992366 PMCID: PMC5354857 DOI: 10.18632/oncotarget.13948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022] Open
Abstract
Recently, long non-coding RNAs (lncRNAs) have received increased research interest owing to their participation via distinct mechanisms in the biological processes of nonfunctional pituitary adenomas. However, changes in the expression of lncRNAs in gonadotrophin adenoma, which is the most common nonfunctional pituitary adenomas, have not yet been reported. In this study, we performed a genome-wide analysis of lncRNAs and mRNAs obtained from gonadotrophin adenoma patients’ samples and normal pituitary tissues using RNA-seq. The differentially expressed lncRNAs and mRNAs were identified using fold-change filtering. We identified 839 lncRNAs and 1015 mRNAs as differentially expressed. Gene Ontology analysis indicated that the biological functions of differentially expressed mRNAs were related to transcription regulator activity and basic metabolic processes. Ingenuity Pathway Analysis was performed to identify 64 canonical pathways that were significantly enriched in the tumor samples. Furthermore, to investigate the potential regulatory roles of the differentially expressed lncRNAs on the mRNAs, we constructed general co-expression networks for 100 coding and 577 non-coding genes that showed significantly correlated expression patterns in tumor cohort. In particular, we built a special sub-network of co-expression involving 186 lncRNAs interacting with 15 key coding genes of the mTOR pathway, which might promote the pathogenesis of gonadotrophin tumor. This is the first study to explore the patterns of genome-wide lncRNAs expression and co-expression with mRNAs, which might contribute to the molecular pathogenesis of gonadotrophin adenoma.
Collapse
Affiliation(s)
- Jiye Li
- Beijing Neurosurgical Institute, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
| | - Jianpeng Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guidong Song
- Beijing Neurosurgical Institute, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China
| | - Haoyuan Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hailong Li
- Department of Neurosurgery, Navy General Hospital, Beijing, China
| | - Zhenye Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yazhou Miao
- Beijing Neurosurgical Institute, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China
| | - Guilin Li
- Beijing Neurosurgical Institute, Capital Medical University, Tiantan Xili, Dongcheng District, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Fedele M, Paciello O, De Biase D, Monaco M, Chiappetta G, Vitiello M, Barbieri A, Rea D, Luciano A, Papparella S, Arra C, Fusco A. HMGA2 cooperates with either p27 kip1 deficiency or Cdk4 R24C mutation in pituitary tumorigenesis. Cell Cycle 2018; 17:580-588. [PMID: 29157111 DOI: 10.1080/15384101.2017.1403682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have previously reported a critical role of HMGA proteins in pituitary tumorigenesis since either the Hmga1 or Hmga2 gene overexpression/activation induces the development of mixed growth hormone/prolactin cell pituitary adenomas by activating the E2F transcription factor 1, and then enhancing the G1/S transition of the cell cycle. Consistently, amplification and overexpression of the HMGA2 gene was found in human pituitary prolactinomas. Since impairment of the cell cycle control represents a feature of experimental and human pituitary adenomas, we have investigated the possible synergism between the alterations of other cell cycle regulators, such as p27 deficiency or Cdk4R24C mutation, with Hmga2 overexpression in pituitary tumorigenesis. Therefore, we crossed the Hmga2/T mice, overexpressing the truncated/active form of the Hmga2 gene, either with the knockout mice for p27kip1, or with the knockin mice for the Cdk4R24C mutation, both developing pituitary adenomas. Increased incidence and decreased latency in the development of pituitary lesions appeared in double mutant Hmga2/T;Cdk4R24C mice, and increased features of invasiveness and atypia were observed in pituitary tumors of both Hmga2/T;p27-ko and Hmga2/T;Cdk4R24C double mutant mice as compared with single mutant compounds. Interestingly, most of these mice develop pituitary adenomas with high Ki67 index, extrasellar expansion and brain tissue infiltration, representing good mouse models for human aggressive pituitary adenomas. Taken together, the results reported here indicate a cooperation between HMGA2 overexpression and either p27kip1 or CDK4 impairment in promoting pituitary tumor development and progression.
Collapse
Affiliation(s)
- Monica Fedele
- a CNR - Institute of Experimental Endocrinology and Oncology - c/o Department of Molecular Medicine and Medical Biotechnologies , University of Naples "Federico II" , Naples , Italy
| | - Orlando Paciello
- b Department of Veterinary Medicine and animal production , University of Naples "Federico II" , Naples , Italy
| | - Davide De Biase
- b Department of Veterinary Medicine and animal production , University of Naples "Federico II" , Naples , Italy
| | - Mario Monaco
- c Dipartimento di Ricerca Traslazionale a supporto dei percorsi oncologici, S.C. Genomica Funzionale e S.S.D. Sperimentazione Animale , Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale , Naples , Italy
| | - Gennaro Chiappetta
- c Dipartimento di Ricerca Traslazionale a supporto dei percorsi oncologici, S.C. Genomica Funzionale e S.S.D. Sperimentazione Animale , Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale , Naples , Italy
| | - Michela Vitiello
- a CNR - Institute of Experimental Endocrinology and Oncology - c/o Department of Molecular Medicine and Medical Biotechnologies , University of Naples "Federico II" , Naples , Italy
| | - Antonio Barbieri
- c Dipartimento di Ricerca Traslazionale a supporto dei percorsi oncologici, S.C. Genomica Funzionale e S.S.D. Sperimentazione Animale , Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale , Naples , Italy
| | - Domenica Rea
- c Dipartimento di Ricerca Traslazionale a supporto dei percorsi oncologici, S.C. Genomica Funzionale e S.S.D. Sperimentazione Animale , Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale , Naples , Italy
| | - Antonio Luciano
- c Dipartimento di Ricerca Traslazionale a supporto dei percorsi oncologici, S.C. Genomica Funzionale e S.S.D. Sperimentazione Animale , Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale , Naples , Italy
| | - Serenella Papparella
- b Department of Veterinary Medicine and animal production , University of Naples "Federico II" , Naples , Italy
| | - Claudio Arra
- c Dipartimento di Ricerca Traslazionale a supporto dei percorsi oncologici, S.C. Genomica Funzionale e S.S.D. Sperimentazione Animale , Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale , Naples , Italy
| | - Alfredo Fusco
- a CNR - Institute of Experimental Endocrinology and Oncology - c/o Department of Molecular Medicine and Medical Biotechnologies , University of Naples "Federico II" , Naples , Italy
| |
Collapse
|
28
|
Abstract
Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G0/G1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands.
Collapse
Affiliation(s)
- R Formosa
- Department of MedicineFaculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - J Borg
- Department of Applied Biomedical ScienceFaculty of Health Sciences, University of Malta, Msida, Malta
| | - J Vassallo
- Department of MedicineFaculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of MedicineNeuroendocrine Clinic, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
29
|
Mercado M, Melgar V, Salame L, Cuenca D. Clinically non-functioning pituitary adenomas: Pathogenic, diagnostic and therapeutic aspects. ACTA ACUST UNITED AC 2017; 64:384-395. [PMID: 28745610 DOI: 10.1016/j.endinu.2017.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 12/15/2022]
Abstract
Clinically non-functioning pituitary adenomas (NFPAs) are among the most common tumors in the sellar region. These lesions do not cause a hormonal hypersecretion syndrome, and are therefore found incidentally (particularly microadenomas) or diagnosed based on compressive symptoms such as headache and visual field defects, as well as clinical signs of pituitary hormone deficiencies. Immunohistochemically, more than 45% of these adenomas stain for gonadotropins or their subunits and are therefore called gonadotropinomas, while 30% of them show no immunostaining for any hormone and are known as null cell adenomas. The diagnostic approach to NFPAs should include visual field examination, an assessment of the integrity of all anterior pituitary hormone systems, and magnetic resonance imaging of the sellar region to define tumor size and extension. The treatment of choice is transsphenoidal resection of the adenoma, which in many instances cannot be completely accomplished. The recurrence rate after surgery may be up to 30%. Persistent or recurrent adenomas are usually treated with radiation therapy. In a small proportion of these cases, drug treatment with dopamine agonists and, to a lesser extent, somatostatin analogs may achieve reduction or at least stabilization of the tumor.
Collapse
Affiliation(s)
- Moises Mercado
- Experimental Endocrinology Unit, Hospital de Especialidades, Centro Médico Nacional S.XXI, IMSS, Mexico City, Mexico; Neurological Center, American British Cowdray Medical Center, Mexico City, Mexico.
| | - Virgilio Melgar
- Neurological Center, American British Cowdray Medical Center, Mexico City, Mexico
| | - Latife Salame
- Experimental Endocrinology Unit, Hospital de Especialidades, Centro Médico Nacional S.XXI, IMSS, Mexico City, Mexico
| | - Dalia Cuenca
- Department of Medicine, American British Cowdray Medical Center, Mexico City, Mexico
| |
Collapse
|
30
|
Yagnik G, Jahangiri A, Chen R, Wagner JR, Aghi MK. Role of a p53 polymorphism in the development of nonfunctional pituitary adenomas. Mol Cell Endocrinol 2017; 446:81-90. [PMID: 28214592 PMCID: PMC5553295 DOI: 10.1016/j.mce.2017.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 02/07/2023]
Abstract
Non-functional pituitary adenomas (NFPAs) are among the commonest intracranial neoplasms. While histologically benign, NFPAs sometimes become large enough to limit therapeutic options and reduce quality of life. Investigations of the molecular etiology of NFPAs have failed to identify prevalent genetic changes and, while a role for p53 has been suggested, TP53 gene alterations have yet to be described in NFPAs. We found that the polymorphism rs1042522:C > G in codon 72 of exon 4 of the TP53 gene, whose C variant produces a proline and is more common in most ethnicities, has a G variant producing an arginine in 79.8% of NFPAs (n = 42; p < 1.411 × 10-18 vs. 1000 Genomes database), causing patients to present a decade earlier with symptomatic NFPAs. In cultured NFPA cells, transfection with the rs1042522 G variant versus the C variant reduced expression of cell arrest gene p21 and increased proliferation. These findings suggest that this TP53 polymorphism influences NFPA growth.
Collapse
Affiliation(s)
- Garima Yagnik
- University of California, San Francisco (UCSF) Department of Neurological Surgery and Brain Tumor Research Center, 1450 Third Street Room HD-465, San Francisco, CA 94158, USA.
| | - Arman Jahangiri
- University of California, San Francisco (UCSF) Department of Neurological Surgery and Brain Tumor Research Center, 1450 Third Street Room HD-465, San Francisco, CA 94158, USA
| | - Rebecca Chen
- University of California, San Francisco (UCSF) Department of Neurological Surgery and Brain Tumor Research Center, 1450 Third Street Room HD-465, San Francisco, CA 94158, USA
| | - Jeffrey R Wagner
- University of California, San Francisco (UCSF) Department of Neurological Surgery and Brain Tumor Research Center, 1450 Third Street Room HD-465, San Francisco, CA 94158, USA
| | - Manish K Aghi
- University of California, San Francisco (UCSF) Department of Neurological Surgery and Brain Tumor Research Center, 1450 Third Street Room HD-465, San Francisco, CA 94158, USA.
| |
Collapse
|
31
|
Sapochnik M, Fuertes M, Arzt E. Programmed cell senescence: role of IL-6 in the pituitary. J Mol Endocrinol 2017; 58:R241-R253. [PMID: 28381401 DOI: 10.1530/jme-17-0026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
IL-6 is a pleiotropic cytokine with multiple pathophysiological functions. As a key factor of the senescence secretome, it can not only promote tumorigenesis and cell proliferation but also exert tumor suppressive functions, depending on the cellular context. IL-6, as do other cytokines, plays important roles in the function, growth and neuroendocrine responses of the anterior pituitary gland. The multiple actions of IL-6 on normal and adenomatous pituitary function, cell proliferation, angiogenesis and extracellular matrix remodeling indicate its importance in the regulation of the anterior pituitary. Pituitary tumors are mostly benign adenomas with low mitotic index and rarely became malignant. Premature senescence occurs in slow-growing benign tumors, like pituitary adenomas. The dual role of IL-6 in senescence and tumorigenesis is well represented in pituitary tumor development, as it has been demonstrated that effects of paracrine IL-6 may allow initial pituitary cell growth, whereas autocrine IL-6 in the same tumor triggers senescence and restrains aggressive growth and malignant transformation. IL-6 is instrumental in promotion and maintenance of the senescence program in pituitary adenomas.
Collapse
Affiliation(s)
- Melanie Sapochnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y CelularFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
32
|
Isoliquiritigenin exhibits anti-proliferative properties in the pituitary independent of estrogen receptor function. Toxicol Appl Pharmacol 2016; 313:204-214. [PMID: 27702603 DOI: 10.1016/j.taap.2016.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/16/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022]
Abstract
The plant flavonoid isoliquiritigenin (ISL) is a botanical estrogen widely taken as an herbal supplement to ease the symptoms of menopause. ISL has been also shown to have anti-tumor properties in a number of cancer cell backgrounds. However, the effects of ISL on normal cells are less well known and virtually unstudied in the context of the pituitary gland. We have established a pituitary explant culture model to screen chemical agents for gene expression changes within the pituitary gland during a period of active proliferation and differentiation. Using this whole-organ culture system we found ISL to be weakly estrogenic based on its ability to induce Cckar mRNA expression, an estrogen receptor (ER) mediated gene. Using a range of ISL from 200nM to 200μM, we discovered that ISL promoted cell proliferation at a low concentration, yet potently inhibited proliferation at the highest concentration. ICI 182,780 failed to antagonize ISL's repression of pituitary cell proliferation, indicating the effect is independent of ER signaling. Coincident with a decrease in proliferating cells, we observed down-regulation of transcript for cyclin D2 and E2 and a strong induction of mRNA and protein for the cyclin dependent kinase inhibitor Cdkn1a (p21). Importantly, high dose ISL did not alter the balance of progenitor vs. differentiated cell types within the pituitary explants and they seemed otherwise healthy; however, TUNEL staining revealed an increase in apoptotic cell death in ISL treated cultures. Our results merit further examination of ISL as an anti-tumor agent in the pituitary gland.
Collapse
|
33
|
Yang Z, Zhang T, Gao H. Genetic aspects of pituitary carcinoma: A systematic review. Medicine (Baltimore) 2016; 95:e5268. [PMID: 27893664 PMCID: PMC5134857 DOI: 10.1097/md.0000000000005268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 09/27/2016] [Accepted: 10/08/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pituitary carcinoma (PC) is a rare type of malignant intracranial neoplasm defined as distant metastasis of pituitary adenoma (PA). Although PC incidence is low because only 0.1% to 0.2% of PAs ultimately develop into PCs, the prognosis is poor and 66% of patients die within the first year. Existing therapeutic measures, including surgical removal, chemotherapy, and radiotherapy, have limited effectiveness. The lack of efficacy of current treatments is largely caused by the limited understanding of the molecular pathogenesis of PA and the malignant transformation to PC. Therefore, the aim of this systematic review was to summarize published research regarding gene and protein expression in PC to clarify the molecular mechanisms underlying PC genesis and development and identify new candidate diagnostic biomarkers and therapeutic targets for potential use in personalized treatment of PC. METHODS We followed the PRISMA guidelines to plan and conduct this systematic review. PubMed, Embase, and Web of Science databases were searched for relevant studies conducted before December 16, 2015 describing the association of PC with gene expression at the mRNA and protein levels. MeSH terms combined with free terms were used to retrieve the references. RESULTS In total, 207 records were obtained by primary search, and 32 were included in the systematic review. Compared with normal pituitary gland and/or PA, 30 and 18 genes were found to have higher or lower expression, respectively, in PCs using different analytical methods. Among them, we selected 9 upregulated and 7 downregulated genes for further analysis based on their identification as candidate treatment targets in other cancers, potential clinical application, or further research value. CONCLUSION Previous studies demonstrated that many genes promote PC malignant transformation, angiogenesis, invasion, metastasis, and recurrence. Although most of these genes and proteins have not been fully analyzed with regard to their downstream mechanisms or potential diagnostic and therapeutic application, they have the potential to become candidate PC biomarkers and/or molecular targets for guiding personalized treatment. Modern advanced technologies should be utilized in future research to identify more candidate genes for PC pathogenesis, as precisely targeted gene therapies against PC are urgently required.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Neurosurgery, Jiangyin People's Hospital Affiliated to Nantong University
| | - Ting Zhang
- Central Laboratory, Jiangyin People's Hospital Affiliated to Nantong University
| | - Heng Gao
- Department of Neurosurgery, Jiangyin people's Hospital Affiliated to Nantong University, Jiangyin, Wuxi, China
| |
Collapse
|
34
|
Caimari F, Korbonits M. Novel Genetic Causes of Pituitary Adenomas. Clin Cancer Res 2016; 22:5030-5042. [DOI: 10.1158/1078-0432.ccr-16-0452] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/24/2016] [Indexed: 11/16/2022]
|
35
|
Vandeva S, Elenkova A, Natchev E, Zacharieva S. Epidemiological variations of aggressive growth hormone-secreting adenomas. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2016. [DOI: 10.2217/ije-2015-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acromegaly is a chronic disorder characterized by increased morbidity and mortality in uncontrolled patients. Growth hormone-secreting pituitary adenoma is the hallmark in the majority of cases, generally considered as benign due to lack of distant metastases. However, clinical behavior in a certain proportion of these adenomas could be quite aggressive, causing difficulties in their management. Aggressive pituitary adenomas have some clinical, radiological, ultrastructural and molecular features in common and they are usually resistant to the standard treatment. In the recent years, efforts have been made to define the most appropriate markers of such adenomas that would allow an early detection and efficient individualized therapeutic strategy. The aim of this review is to give an update on epidemiology and certain markers predicting aggressive behavior of somatotropinomas.
Collapse
Affiliation(s)
- Silvia Vandeva
- Clinical Center of Endocrinology, Medical University, Sofia, Bulgaria
| | - Atanaska Elenkova
- Clinical Center of Endocrinology, Medical University, Sofia, Bulgaria
| | - Emil Natchev
- Clinical Center of Endocrinology, Medical University, Sofia, Bulgaria
| | - Sabina Zacharieva
- Clinical Center of Endocrinology, Medical University, Sofia, Bulgaria
| |
Collapse
|
36
|
Melmed S. Pituitary Medicine From Discovery to Patient-Focused Outcomes. J Clin Endocrinol Metab 2016; 101:769-77. [PMID: 26908107 PMCID: PMC4803158 DOI: 10.1210/jc.2015-3653] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/27/2015] [Indexed: 12/14/2022]
Abstract
CONTEXT This perspective traces a pipeline of discovery in pituitary medicine over the past 75 years. OBJECTIVE To place in context past advances and predict future changes in understanding pituitary pathophysiology and clinical care. DESIGN Author's perspective on reports of pituitary advances in the published literature. SETTING Clinical and translational Endocrinology. OUTCOMES Discovery of the hypothalamic-pituitary axis and mechanisms for pituitary control, have culminated in exquisite understanding of anterior pituitary cell function and dysfunction. Challenges facing the discipline include fundamental understanding of pituitary adenoma pathogenesis leading to more effective treatments of inexorably growing and debilitating hormone secreting pituitary tumors as well as medical management of non-secreting pituitary adenomas. Newly emerging pituitary syndromes include those associated with immune-targeted cancer therapies and head trauma. CONCLUSIONS Novel diagnostic techniques including imaging genomic, proteomic, and biochemical analyses will yield further knowledge to enable diagnosis of heretofore cryptic syndromes, as well as sub classifications of pituitary syndromes for personalized treatment approaches. Cost effective personalized approaches to precision therapy must demonstrate value, and will be empowered by multidisciplinary approaches to integrating complex subcellular information to identify therapeutic targets for enabling maximal outcomes. These goals will be challenging to attain given the rarity of pituitary disorders and the difficulty in conducting appropriately powered prospective trials.
Collapse
Affiliation(s)
- Shlomo Melmed
- Cedars-Sinai Medical Center, Los Angeles, California 90048
| |
Collapse
|
37
|
Manojlovic-Gacic E, Skender-Gazibara M, Popovic V, Soldatovic I, Boricic N, Raicevic S, Pekic S, Doknic M, Miljic D, Alafuzoff I, Pontén F, Casar-Borota O. Oncogene-Induced Senescence in Pituitary Adenomas--an Immunohistochemical Study. Endocr Pathol 2016; 27:1-11. [PMID: 26573928 DOI: 10.1007/s12022-015-9405-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oncogene-induced senescence (OIS) serves as an initial barrier to cancer development, being proposed as a possible explanation for the usually benign behavior of the pituitary adenomas. We aimed to explore the immunohistochemical expression of the OIS markers, senescence-associated lysosomal β-galactosidase (SA-β-GAL), p16, and p21 in different types of 345 pituitary adenomas and compared it with the expression in the normal pituitary and in the specimens from the repeated surgeries. SA-β-GAL was overexpressed in the pituitary adenomas, compared to the normal pituitaries. Growth hormone (GH) producing adenomas showed the strongest SA-β-GAL, with densely granulated (DG)-GH adenomas more reactive than the sparsely granulated (SG). Nuclear p21 was decreased in the adenomas, except for the SG-GH adenomas that had higher p21 than the normal pituitaries and the other adenomas. p16 was significantly lower in the adenomas, without type-related differences. SA-β-GAL was slightly lower and p16 slightly higher in the recurrences. Our findings indicate alterations of the senescence program in the different types of pituitary adenomas. Activation of senescence in the pituitary adenomas presents one possible explanation for their usually benign behavior, at least in the GH adenomas that show a synchronous increase of two OIS markers. However, subdivision into GH adenoma subtypes reveals differences that reflect complex regulatory mechanisms influenced by the interplay between the granularity pattern and the hormonal factors, with possible impact on the different clinical behavior of the SG- and DG-GH adenoma subtypes. p16 seems to have a more prominent role in the pituitary tumorigenesis than in the senescence. Recurrent growth in a subset of the pituitary adenomas is not associated with consistent changes in the senescence pattern.
Collapse
Affiliation(s)
- Emilija Manojlovic-Gacic
- Institute of Pathology, Medical Faculty, University of Belgrade, Dr Subotica 1, Belgrade, Serbia.
| | - Milica Skender-Gazibara
- Institute of Pathology, Medical Faculty, University of Belgrade, Dr Subotica 1, Belgrade, Serbia
| | - Vera Popovic
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr Subotica 13, Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, Serbia
| | - Ivan Soldatovic
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, Serbia
| | - Novica Boricic
- Institute of Pathology, Medical Faculty, University of Belgrade, Dr Subotica 1, Belgrade, Serbia
| | - Savo Raicevic
- Neurosurgery Clinic, Clinical Center of Serbia, Koste Todorovica 4, Belgrade, Serbia
| | - Sandra Pekic
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr Subotica 13, Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, Serbia
| | - Mirjana Doknic
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr Subotica 13, Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, Serbia
| | - Dragana Miljic
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Dr Subotica 13, Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, Serbia
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala, Sweden
- Department of Clinical Pathology and Cytology, Uppsala University Hospital, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala, Sweden
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala, Sweden
- Department of Clinical Pathology and Cytology, Uppsala University Hospital, Rudbeck Laboratory, Dag Hammarskjölds väg 20, Uppsala, Sweden
| |
Collapse
|
38
|
Molecular Mechanisms Underlying Pituitary Pathogenesis. Biochem Genet 2015; 54:107-19. [DOI: 10.1007/s10528-015-9709-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
|
39
|
Molecular Characterization of Growth Hormone-producing Tumors in the GC Rat Model of Acromegaly. Sci Rep 2015; 5:16298. [PMID: 26549306 PMCID: PMC4637865 DOI: 10.1038/srep16298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/08/2015] [Indexed: 12/14/2022] Open
Abstract
Acromegaly is a disorder resulting from excessive production of growth hormone (GH) and consequent increase of insulin-like growth factor 1 (IGF-I), most frequently caused by pituitary adenomas. Elevated GH and IGF-I levels results in wide range of somatic, cardiovascular, endocrine, metabolic, and gastrointestinal morbidities. Subcutaneous implantation of the GH-secreting GC cell line in rats leads to the formation of tumors. GC tumor-bearing rats develop characteristics that resemble human acromegaly including gigantism and visceromegaly. However, GC tumors remain poorly characterized at a molecular level. In the present work, we report a detailed histological and molecular characterization of GC tumors using immunohistochemistry, molecular biology and imaging techniques. GC tumors display histopathological and molecular features of human GH-producing tumors, including hormone production, cell architecture, senescence activation and alterations in cell cycle gene expression. Furthermore, GC tumors cells displayed sensitivity to somatostatin analogues, drugs that are currently used in the treatment of human GH-producing adenomas, thus supporting the GC tumor model as a translational tool to evaluate therapeutic agents. The information obtained would help to maximize the usefulness of the GC rat model for research and preclinical studies in GH-secreting tumors.
Collapse
|
40
|
Pérez PA, Petiti JP, Wagner IA, Sabatino ME, Sasso CV, De Paul AL, Torres AI, Gutiérrez S. Inhibitory role of ERβ on anterior pituitary cell proliferation by controlling the expression of proteins related to cell cycle progression. Mol Cell Endocrinol 2015; 415:100-13. [PMID: 26282612 DOI: 10.1016/j.mce.2015.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
Considering that the role of ERβ in the growth of pituitary cells is not well known, the aim of this work was to determine the expression of ERβ in normal and tumoral cells and to investigate its implications in the proliferative control of this endocrine gland, by analyzing the participation of cyclin D1, Cdk4 and p21. Our results showed that the expression of ERβ decreased during pituitary tumoral development induced by chronic E2 stimulation. The 20 ± 1.6% of normal adenohypophyseal cells expressed ERβ, with this protein being reduced in the hyperplastic/adenomatous pituitary: at 20 days the ERβ+ population was 10.7 ± 2.2%, while after 40 and 60 days of treatment an almost complete loss in the ERβ expression was observed (40 d: 1 ± 0.6%; 60 d: 2 ± 0.6%). The ERα/β ratio increased starting from tumors at 40 days, mainly due to the loss of ERβ expression. The cell proliferation was analyzed in normal and hyperplastic pituitary and also in GH3β- and GH3β+ which contained different levels of ERβ expression, and therefore different ERα/β ratios. The over-expression of ERβ inhibited the GH3 cell proliferation and expression of cyclin D1 and ERα. Also, the ERβ activation by its agonist DPN changed the subcellular localization of p21, inducing an increase in the p21 nuclear expression, where it acts as a tumoral suppressor. These results show that ERβ exerts an inhibitory role on pituitary cell proliferation, and that this effect may be partially due to the modulation of some key regulators of the cell cycle, such as cyclin D1 and p21. These data contribute significantly to the understanding of the ER effects in the proliferative control of pituitary gland, specifically related to the ERβ function in the E2 actions on this endocrine gland.
Collapse
Affiliation(s)
- Pablo A Pérez
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan P Petiti
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ignacio A Wagner
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria E Sabatino
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Corina V Sasso
- Laboratorio de Hormonas y Biología del Cáncer, Instituto de Medicina y Biología Experimental de Cuyo, (IMBECU-CONICET), CCT-Mendoza, Mendoza, Argentina
| | - Ana L De Paul
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alicia I Torres
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvina Gutiérrez
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
41
|
Herold KC, Majzoub JA, Melmed S, Pendergrass M, Schlumberger M. Endocrinology research-reflecting on the past decade and looking to the next. Nat Rev Endocrinol 2015; 11:672-80. [PMID: 26460340 DOI: 10.1038/nrendo.2015.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inaugural issue of this journal, published in November 2005, included articles on thyroid cancer, type 2 diabetes mellitus, the metabolic syndrome, pituitary adenomas and obesity. 10 years later, we are still publishing articles on these topics (and many others). Although a great deal of progress has been made in our understanding of the pathogenesis, diagnosis and treatment of diseases of the endocrine system over the past 10 years, many challenges still remain. For this Viewpoint, we have asked five of our Advisory Board Members to comment on the progress and challenges from the past 10 years. They were also asked to offer their thoughts on where money should be spent going forward, and their predictions for what advances might be achieved in the next 10 years.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Department of Internal Medicine, Yale University, 300 George Street, #353E, New Haven, CT 06520, USA
| | - Joseph A Majzoub
- Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shlomo Melmed
- Department of Medicine, Cedars-Sinai Medical Center, Room 2015, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Merri Pendergrass
- University of Arizona College of Medicine, Department of Medicine, Division of Endocrinology, 3950 South Country Club Road, Tucson, AZ 85714, USA
| | - Martin Schlumberger
- Institut Gustave Roussy and University Paris-Sud, 114 Rue Edouard Vaillant, 94800 Villejuif, France
| |
Collapse
|
42
|
Müssnich P, Raverot G, Jaffrain-Rea ML, Fraggetta F, Wierinckx A, Trouillas J, Fusco A, D'Angelo D. Downregulation of miR-410 targeting the cyclin B1 gene plays a role in pituitary gonadotroph tumors. Cell Cycle 2015; 14:2590-7. [PMID: 26125663 DOI: 10.1080/15384101.2015.1064207] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as posttranscriptional regulators of gene expression, and are frequently altered in human neoplasias. Here, we have analyzed the miRNA expression profile of human gonadotroph adenomas versus normal pituitary tissue using a miRNACHIP microarray. We demonstrate that miRNA-410 is downregulated in gonadotroph adenomas when compared with normal pituitary gland. We validate CCNB1 as target of miRNA-410 since its overexpression reduces CCNB1 at protein and mRNA levels, decreasing cell proliferation. In conclusion, our study suggess that the downregulation of miRNA-410 plays a role in the behavior of gonadotroph tumors.
Collapse
Affiliation(s)
- Paula Müssnich
- a Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche ; Scuola di Medicina e Chirurgia di Napoli; Università degli Studi di Napoli "Federico II" ; Naples , Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Syro LV, Rotondo F, Ramirez A, Di Ieva A, Sav MA, Restrepo LM, Serna CA, Kovacs K. Progress in the Diagnosis and Classification of Pituitary Adenomas. Front Endocrinol (Lausanne) 2015; 6:97. [PMID: 26124750 PMCID: PMC4464221 DOI: 10.3389/fendo.2015.00097] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
Pituitary adenomas are common neoplasms. Their classification is based upon size, invasion of adjacent structures, sporadic or familial cases, biochemical activity, clinical manifestations, morphological characteristics, response to treatment and recurrence. Although they are considered benign tumors, some of them are difficult to treat due to their tendency to recur despite standardized treatment. Functional tumors present other challenges for normalizing their biochemical activity. Novel approaches for early diagnosis, as well as different perspectives on classification, may help to identify subgroups of patients with similar characteristics, creating opportunities to match each patient with the best personalized treatment option. In this paper, we present the progress in the diagnosis and classification of different subgroups of patients with pituitary tumors that may be managed with specific considerations according to their tumor subtype.
Collapse
Affiliation(s)
- Luis V. Syro
- Department of Neurosurgery, Hospital Pablo Tobon Uribe and Clinica Medellin, Medellin, Colombia
| | - Fabio Rotondo
- Laboratory Medicine, Division of Pathology, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Alex Ramirez
- Department of Endocrinology, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Antonio Di Ieva
- Department of Neurosurgery, Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | | | | | - Carlos A. Serna
- Laboratorio de Patologia y Citologia Rodrigo Restrepo, Department of Pathology, Clinica Medellin, Medellin, Colombia
| | - Kalman Kovacs
- Laboratory Medicine, Division of Pathology, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
44
|
Sabatino ME, Petiti JP, Sosa LDV, Pérez PA, Gutiérrez S, Leimgruber C, Latini A, Torres AI, De Paul AL. Evidence of cellular senescence during the development of estrogen-induced pituitary tumors. Endocr Relat Cancer 2015; 22:299-317. [PMID: 25792544 DOI: 10.1530/erc-14-0333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2015] [Indexed: 12/13/2022]
Abstract
Although pituitary adenomas represent 25% of intracranial tumors, they are usually benign, with the mechanisms by which these tumors usually avoid an invasive profile and metastatic growth development still remaining unclear. In this context, cellular senescence might constitute a plausible explanation for the benign nature of pituitary adenomas. In this study, we investigated the emergence of cellular senescence as a growth control mechanism during the progression of estrogen-induced pituitary tumors. The quantification of Ki67-immunopositive cells in the pituitaries of estrogenized male rats after 10, 20, 40, and 60 days revealed that the mitogenic potential rate was not sustained for the whole period analyzed and successively decreased after 10 days of estrogen exposure. In addition, the expression of cellular senescence features, such as the progressive rise in the enzymatic senescence-associated b-galactosidase (SA-b-gal) activity, IL6, IL1b, and TGFb expression, was observed throughout pituitary tumor development. Furthermore, tumoral pituitary cells also displayed nuclear pATM expression, indicating activated DNA damage signaling, with a significant increase in p21 expression also being detected. The associations among DNA damage signaling activation, SA-b-gal expression, and p21 may provide a reliable combination of senescence-associated markers for in vivo pituitary senescence detection. These results suggest a role for this cellular process in the regulation of pituitary cell growth. Thus, cellular senescence should be conceived as a contributing component to the benign nature of pituitary adenomas, thereby influencing the capability of the pituitary gland to avoid unregulated cell proliferation.
Collapse
|
45
|
Manojlovic Gacic E, Skender-Gazibara M, Soldatovic I, Dundjerovic D, Boricic N, Raicevic S, Popovic V. Immunohistochemical Expression of p16 and p21 in Pituitary Tissue Adjacent to Pituitary Adenoma versus Pituitary Tissue Obtained at Autopsy: Is There a Difference? Endocr Pathol 2015; 26:104-10. [PMID: 25678367 DOI: 10.1007/s12022-015-9358-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Normal pituitary tissue is frequently used for comparison with protein expression in tumor tissue, being obtained either at surgery or at autopsy. p16 and p21 proteins are cyclin-dependent kinase inhibitors, belonging to INK4 and Cip/Kip family, respectively. Their expression is increased in response to DNA damage or other cellular stressors, resulting in the activation of cell cycle checkpoints. They also play important roles in cellular senescence. The purpose of this study was to investigate differences in p16 and p21 immunohistochemical expression in normal pituitary tissue adjacent to pituitary adenoma obtained during neurosurgical procedure with pituitary tissue obtained at autopsy, from patients who died from non-endocrinological diseases. Our results show significant difference in p16 nuclear and p21 cytoplasmic immunohistochemical expression between two types of normal pituitary tissues. One of the reasons for this difference could be the age of subjects because those who underwent autopsy for a non-endocrinological disease were significantly older than subjects who underwent neurosurgery for a pituitary adenoma. Our finding that differences are probably not influenced by postmortem changes is supported by no significant correlation between postmortem interval and immunohistochemical p16 and p21 expression. The influence of the presence of a pituitary adenoma could not be evaluated in these specimens.
Collapse
|
46
|
Gergics P, Brinkmeier ML, Camper SA. Lhx4 deficiency: increased cyclin-dependent kinase inhibitor expression and pituitary hypoplasia. Mol Endocrinol 2015; 29:597-612. [PMID: 25668206 PMCID: PMC4399274 DOI: 10.1210/me.2014-1380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/06/2015] [Indexed: 12/30/2022] Open
Abstract
Defects in the Lhx4, Lhx3, and Pitx2 genes can cause combined pituitary hormone deficiency and pituitary hypoplasia in both humans and mice. Not much is known about the mechanism underlying hypoplasia in these mutants beyond generally increased cell death and poorly maintained proliferation. We identified both common and unique abnormalities in developmental regulation of key cell cycle regulator gene expression in each of these three mutants. All three mutants exhibit reduced expression of the proliferative marker Ki67 and the transitional marker p57. We discovered that expression of the cyclin-dependent kinase inhibitor 1a (Cdkn1a or p21) is expanded dorsally in the pituitary primordium of both Lhx3 and Lhx4 mutants. Uniquely, Lhx4 mutants exhibit reduced cyclin D1 expression and have auxiliary pouch-like structures. We show evidence for indirect and direct effects of LHX4 on p21 expression in αT3-1 pituitary cells. In summary, Lhx4 is necessary for efficient pituitary progenitor cell proliferation and restriction of p21 expression.
Collapse
Affiliation(s)
- Peter Gergics
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
47
|
Abstract
Pituitary tumors are commonly encountered intracranial neoplasms that are invariably benign. Classic oncogene mutations are not encountered in these tumors, and disrupted cell cycle control and growth factor signaling likely contribute to pathogenesis and natural history. They have unique clinical features that are determined by the secreted hormone gene product.
Collapse
Affiliation(s)
- Shlomo Melmed
- Pituitary Center, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Room 2015, Los Angeles, CA 90048, USA.
| |
Collapse
|
48
|
Cuevas-Ramos D, Carmichael JD, Cooper O, Bonert VS, Gertych A, Mamelak AN, Melmed S. A structural and functional acromegaly classification. J Clin Endocrinol Metab 2015; 100:122-31. [PMID: 25250634 PMCID: PMC4283008 DOI: 10.1210/jc.2014-2468] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CONTEXT GH-secreting pituitary adenomas exhibit heterogeneous natural history ranging from small tumors to large aggressive adenomas. OBJECTIVE To rigorously classify an acromegaly patient cohort defined by clinical, radiological, histopathological, and outcome characteristics. DESIGN Cross-sectional study. SETTING Tertiary referral pituitary center. PATIENTS Subjects were selected from a pituitary tumor research registry that includes 1178 patients with pituitary disease. Cluster analysis was performed on 338 acromegaly patients. INTERVENTIONS None. MAIN OUTCOME MEASURES Biochemically active disease with elevated IGF-1 levels at follow-up. RESULTS Cluster analysis of all patients yielded 292 who were rigorously classified to three acromegaly types. Type 1 (50%) comprised older patients with the longest follow-up and most favorable outcomes, characterized by densely granulated, nonaggressive microadenomas and macroadenomas. Type 1 tumors extend to the sphenoid sinus more frequently than suprasellar extension (concave tumor image) and express abundant immunoreactive p21 and somatostatin receptor 2. Type 2 (19%) comprised noninvasive, densely or sparsely granulated macroadenomas, without significant extension (flat tumor image), with intermediate biochemical outcome. Type 3 (31%) was characterized by sparsely granulated aggressive macroadenomas and comprised patients with adverse therapeutic outcomes, despite receiving more treatments. These tumors extend to both the sphenoid sinus and suprasellar regions with commonly encountered optic chiasm compression ("peanut" magnetic resonance image), with low tumor p21 and somatostatin receptor 2 expression. CONCLUSIONS After validation, this classification may be useful to accurately identify acromegaly patients with distinctive patterns of disease aggressiveness and outcome, as well as to provide an accurate tool for selection criteria in clinical studies.
Collapse
Affiliation(s)
- Daniel Cuevas-Ramos
- Pituitary Center, Department of Medicine (D.C.-R., J.D.C., O.C., V.S.B., S.M.), Surgery, Pathology and Laboratory Medicine (A.G.), and Neurosurgery (A.N.M.), Cedars-Sinai Medical Center, Los Angeles, California 90048
| | | | | | | | | | | | | |
Collapse
|
49
|
Chatzellis E, Alexandraki KI, Androulakis II, Kaltsas G. Aggressive pituitary tumors. Neuroendocrinology 2015; 101:87-104. [PMID: 25571935 DOI: 10.1159/000371806] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/25/2014] [Indexed: 11/19/2022]
Abstract
Pituitary adenomas are common intracranial tumors that are mainly considered as benign. Rarely, these tumors can exhibit an aggressive behavior, characterized by gross invasion of the surrounding tissues, resistance to conventional treatment leading to early and frequent recurrences. Even more rarely, pituitary tumors can give rise to cerebrospinal or systemic metastases qualifying as pituitary carcinomas according to the latest WHO definition. In the same classification, a subset of tumors with relatively distinct histopathological features was identified and defined as atypical adenomas designated to follow a more aggressive clinical course. This classification, although clinically useful, does not provide an accurate correlation between histopathological findings and the clinical behavior of these tumors, neither is it adequate to convey the precise features of 'aggressive' tumors. Thus, 'aggressive' pituitary adenomas need to be properly defined with clinical, radiological, histological and molecular markers in order to identify patients at increased risk of early recurrence or subsequent tumor progression. At present, no single marker or classification system of pituitary tumor aggressiveness exists, and clinically useful information in the literature is insufficient to guide diagnostic and therapeutic decisions. Treatment of patients with aggressive pituitary tumors is challenging since conventional treatments often fail, necessitating multiple surgical procedures with additional radiotherapy. Although traditional chemotherapy applied in other neuroendocrine tumors has not been shown to be efficacious, newer agents, particularly temozolomide, have shown promising results and are currently used despite the lack of data from a randomized prospective trial. Molecular targeted therapies such as mTOR and epidermal growth factor inhibitors have also been applied and might prove to be useful in the management of these patients. In the present review, we provide information regarding the epidemiology and clinical, histopathological and molecular features of aggressive pituitary tumors using recent employed definitions. In addition, we review currently employed therapeutic means providing a therapeutic algorithm and highlight the need to identify more specific disease-related and prognostic markers and the necessity for central registration of these tumors.
Collapse
Affiliation(s)
- Eleftherios Chatzellis
- Endocrine Unit, Department of Pathophysiology, National University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
50
|
ZHANG TIEHUI, ZHAO BINHAI, LI JIA, ZHANG CHUNLEI, LI HONGZHI, WU JIANG, ZHANG SHIMING, HUI GUOZHEN. Pituitary gene expression differs in D-galactose-induced cell senescence and steroid-induced prolactinomas. Mol Med Rep 2014; 11:3027-32. [DOI: 10.3892/mmr.2014.3062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 11/19/2014] [Indexed: 11/06/2022] Open
|