1
|
Kuriu A, Ishikawa K, Tsuchiya K, Furuta K, Kaito C. Xenopus laevis as an infection model for human pathogenic bacteria. Infect Immun 2025; 93:e0012625. [PMID: 40310291 DOI: 10.1128/iai.00126-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Animal infection models are essential for understanding bacterial pathogenicity and corresponding host immune responses. In this study, we investigated whether juvenile Xenopus laevis could be used as an infection model for human pathogenic bacteria. Xenopus frogs succumbed to intraperitoneal injection containing the human pathogenic bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Listeria monocytogenes. In contrast, non-pathogenic bacteria Bacillus subtilis and Escherichia coli did not induce mortality in Xenopus frogs. The administration of appropriate antibiotics suppressed mortality caused by S. aureus and P. aeruginosa. Strains lacking the agr locus, cvfA (rny) gene, or hemolysin genes in S. aureus, LIPI-1-deleted mutant of L. monocytogenes, which attenuate virulence within mammals, exhibited reduced virulence in Xenopus frogs compared with their respective wild-type counterparts. Bacterial distribution analysis revealed that S. aureus persisted in the blood, liver, heart, and muscles of Xenopus frogs until death. These results suggested that intraperitoneal injection of human pathogenic bacteria induces sepsis-like symptoms in Xenopus frogs, supporting their use as a valuable animal model for evaluating antimicrobial efficacy and identifying virulence genes in various human pathogenic bacteria.
Collapse
Affiliation(s)
- Ayano Kuriu
- Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuya Ishikawa
- Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kazuyuki Furuta
- Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chikara Kaito
- Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Wang R, Zhao C, Guo D, Wang Y, Sun L, Liu X, Sun Y, Liu D, Guan J, Wang L, Wang B. Disarming the Pathogenicity of Methicillin-Resistant Staphylococcus aureus via Osmundacetone-Mediated Inhibition of Sortase A. Microb Biotechnol 2025; 18:e70119. [PMID: 40358044 PMCID: PMC12070378 DOI: 10.1111/1751-7915.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 05/15/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major global health threat due to its resistance to multiple antibiotics, making conventional treatments ineffective. The rise in antibiotic resistance highlights the urgent need for new therapies. Sortase A (SrtA), a key virulence factor in Staphylococcus aureus (S. aureus), facilitates bacterial adhesion and infection by anchoring surface proteins to host cells, making it a promising drug target. In this study, we investigated the potential of osmundacetone (OSC), a natural compound from Osmundae Rhizoma, as an SrtA inhibitor. Using fluorescence resonance energy transfer (FRET), OSC was found to inhibit SrtA with an IC50 of 1.29 μg/mL (7.24 μM). Further in vitro assays confirmed the effectiveness of OSC in inhibiting SrtA-mediated bacterial adhesion, invasion and biofilm formation. Fluorescence quenching and molecular docking pinpointed the binding site of OSC on SrtA. In vivo, OSC improved survival rates in MRSA-infected mice and Galleria mellonella (G. mellonella) while reducing bacterial loads in infected tissues. These results suggest OSC as a promising candidate for anti-MRSA therapies.
Collapse
Affiliation(s)
- Rong Wang
- Changchun University of Chinese MedicineChangchunChina
| | - Chunhui Zhao
- Changchun University of Chinese MedicineChangchunChina
| | - Dongbin Guo
- Changchun University of Chinese MedicineChangchunChina
| | - Yueying Wang
- Changchun University of Chinese MedicineChangchunChina
| | - Luanbiao Sun
- China‐Japan Union Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Xinyao Liu
- Changchun University of Chinese MedicineChangchunChina
| | - Yun Sun
- Changchun University of Chinese MedicineChangchunChina
| | - Da Liu
- Changchun University of Chinese MedicineChangchunChina
| | - Jiyu Guan
- State Key·Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of EducationJilin University ChangchunChina
| | - Li Wang
- Changchun University of Chinese MedicineChangchunChina
| | - Bingmei Wang
- Changchun University of Chinese MedicineChangchunChina
| |
Collapse
|
3
|
Zhou H, Yuan Z, Guan XN, Yue C, Wu W, Lan L, Gan J, Zhang T, Yang CG. Structure-Based Development of a Covalent Inhibitor Targeting Streptococcus Pyogenes over Staphylococcus Aureus Sortase A. Chemistry 2025; 31:e202500464. [PMID: 40072260 DOI: 10.1002/chem.202500464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Sortase A (SrtA), a cysteine transpeptidase critical for surface protein anchoring in Gram-positive pathogens, represents an attractive antivirulence target. While covalent SrtA inhibitors show therapeutic potential, existing compounds lack species selectivity. Through structure-guided design, we developed T10, a covalent inhibitor selectively targeting Streptococcus pyogenes SrtA (SpSrtA) over Staphylococcus aureus SrtA (SaSrtA). Molecular docking revealed that shortening a "C=C" bond in lead compound ML346 eliminated SaSrtA inhibition due to steric hindrance from W194, while maintaining SpSrtA binding. X-ray crystallography confirmed T10's covalent modification of Cys208 in SpSrtA. T10 demonstrated two fold enhanced inhibitory potency and species-specific disruption of M-protein anchoring and biofilm formation in Streptococcus pyogenes, without affecting Staphylococcus aureus viability. In a Galleria mellonella infection model, T10 conferred potent protection against lethal infection. This work demonstrates the development of narrow-spectrum antivirulence agents through a structure-based rational strategy.
Collapse
Affiliation(s)
- Hailing Zhou
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziqi Yuan
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Na Guan
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Wu
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Gan
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Tao Zhang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| |
Collapse
|
4
|
Guo T, Haft DH, Wall D. Myxosortase: an intramembrane protease that sorts MYXO-CTERM proteins to the cell surface. mBio 2025; 16:e0406724. [PMID: 40071993 PMCID: PMC11980579 DOI: 10.1128/mbio.04067-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/04/2025] [Indexed: 04/10/2025] Open
Abstract
Cell surface proteins determine how cells interact with their biotic and abiotic environments. In social myxobacteria, a C-terminal protein sorting tag called MYXO-CTERM is universally found within the Myxococcota phylum, where their genomes typically contain dozens of proteins with this motif. MYXO-CTERM harbors a tripartite architecture: a short signature motif containing an invariant cysteine, followed by a transmembrane helix and a short arginine-rich C-terminal region localized in the cytoplasm. In Myxococcus xanthus, MYXO-CTERM is predicted to be posttranslationally lipidated and cleaved for subsequent cell surface localization by the type II secretion system. Here, following our bioinformatic discovery, we experimentally show that myxosortase (MrtX, MXAN_2755) is responsible for the C-terminal cleavage and cell surface anchoring of TraA, a prototypic cell surface receptor. The cleavage by MrtX depends on conserved cysteines within the MYXO-CTERM motif of TraA. M. xanthus mutants lacking myxosortase are defective in TraA-mediated outer membrane exchange and exhibit cell envelope defects. In a heterologous Escherichia coli expression system, the MYXO-CTERM motif is cleaved when MrtX is co-expressed. Therefore, MrtX represents a new family of sorting enzyme that enables cell surface localization of MYXO-CTERM proteins.IMPORTANCEThe CPBP (CaaX protease and bacteriocin processing) protease family is widespread across the three domains of life. Despite considerable research on eukaryotic homologs, prokaryotic CPBP family members remain largely unexplored. In this study, we experimentally reveal the function of a novel CPBP protease called myxosortase. Our findings show that myxosortase is responsible for the C-terminal cleavage and cell surface anchoring of substrate proteins containing MYXO-CTERM motifs in Myxococcus xanthus. MYXO-CTERM cleavage also occurred in a heterologous Escherichia coli host when myxosortase is co-expressed. This is the first report that a CPBP protease is involved in protein sorting in prokaryotes. This work provides important insights into the biogenesis and anchoring of cell surface proteins in gram-negative bacteria.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| | - Daniel H. Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
5
|
Wang Y, Wang L, Guo D, Liu X, Xu Y, Wang R, Sun Y, Liu Q, Guan J, Liu D, Wang B, Zhao Y, Yan M. Targeting ClpP: Unlocking a novel therapeutic approach of isochlorogenic acid A for methicillin-resistant Staphylococcus aureus-infected osteomyelitis. Microbiol Res 2025; 292:128042. [PMID: 39756139 DOI: 10.1016/j.micres.2024.128042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
A medical predicament has led to extensive drug resistance in methicillin-resistant Staphylococcus aureus (MRSA), and the complexity of treatment has increased exponentially with the induction of osteomyelitis. In view of the severe situation and the potential of bacterial antivirulence strategies, this study focused on the key virulence factor caseinolytic protease (ClpP) of S. aureus to identify new strategies against MRSA-induced osteomyelitis. As the main protein "quality control" system of S. aureus, ClpP is indispensable for coordinating drug resistance, regulating adhesion, and acting on numerous virulence targets. Through fluorescence resonance energy transfer (FRET), we successfully identified isochlorogenic acid A (I-A), a polyphenol derivative, as an efficient inhibitor of ClpP, with an IC50 value of 24.89 μg/mL. Further analysis revealed that I-A can effectively inhibit the expression of virulence factors of MRSA and significantly reduce its adhesion to fibrinogen. Molecular docking revealed the potential binding sites of ClpP and I-A, namely, ILE-81, LYS-109, GLU-156, ARG-157, and GLY-184. At the cellular level, I-A can alleviate the death and increased secretion of inflammatory factors caused by MRSA USA300 in MC3T3-E1 cells. Moreover, it downregulates the activity of ClpP and reduces the response of bacteria to environmental stress. In vivo experiments have confirmed that I-A shows significant efficacy in both rat osteomyelitis models and Galleria mellonella infection models. This study provides new insights into the field of treatment strategies targeting virulence and provides a solid foundation for further exploration of the potential of I-A in combating drug-resistant S. aureus.
Collapse
Affiliation(s)
- Yueying Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Li Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Clinical Medical College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongbin Guo
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xinyao Liu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yueshan Xu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Rong Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yun Sun
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Quan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Jiyu Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Bingmei Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Clinical Medical College, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yicheng Zhao
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong 519000, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China.
| | - Ming Yan
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
6
|
Barua N, Chan BCL, Lau CBS, Leung PC, Fung KP, Ip M. Antivirulence Properties of Kuraridin Against Methicillin-Resistant Staphylococcus aureus (MRSA). Biomedicines 2025; 13:564. [PMID: 40149540 PMCID: PMC11940505 DOI: 10.3390/biomedicines13030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a major human opportunistic pathogen that causes a wide range of infections. The vast arsenal of virulence factors expressed remains the biggest challenge in treating MRSA with conventional antibiotic therapy. Methods: We investigated the effects of Kuraridin at subinhibitory minimum inhibition concentrations (MICs) of 1/8, 1/16, and 1/32 (concentrations that did not inhibit bacterial growth) on adhesion to fibrinogen, adhesion, internalization into HaCaT cells, and biofilm production in three MRSA strains representing the clonal types USA300, ST30, and ST239. Results: All three MRSA strains exhibited a significant decrease (p < 0.001) in adhesion to fibrinogen upon treatment with 1/8 and 1/16 MICs of Kuraridin. The adhesion and internalization of all the MRSA strains to HaCaT cells were decreased significantly (p < 0.001) upon treatment with the three subinhibitory concentrations of Kuraridin. The biofilm formation of USA300 (p < 0.001), ST30 (p < 0.001), and ST239 (p < 0.01) was significantly reduced at a 1/8 MIC. A significant decrease in biofilm formation at a 1/16 MIC was observed for USA300 (p < 0.001) and ST30 (p < 0.05). Confocal laser scanning microscopy (CSLM) analysis of the biofilms revealed a reduction in biofilm formation in the MRSA strain when treated with Kuraridin. In the in vivo Caenorhabditis elegans model, Kuraridin offered a sizable degree of protection against MRSA infection without being toxic to the nematode. Conclusions: Our findings reveal that Kuraridin has the potential to be an alternative antivirulence option for reducing MRSA pathogenicity.
Collapse
Affiliation(s)
- Nilakshi Barua
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong 999077, China
| | - Ben Chung Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong 999077, China; (B.C.L.C.)
| | - Clara Bik-San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong 999077, China; (B.C.L.C.)
| | - Ping-Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong 999077, China; (B.C.L.C.)
| | - Kwok Pui Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong 999077, China
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong 999077, China
| |
Collapse
|
7
|
Leddy O, Ibrahim AM, Azam MS, Solomon S, Yu W, Schneewind O, Missiakas D. Screening a library of temperature-sensitive mutants to identify secretion factors in Staphylococcus aureus. J Bacteriol 2025; 207:e0043324. [PMID: 39817767 PMCID: PMC11841065 DOI: 10.1128/jb.00433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism Escherichia coli, but the Sec pathways of other bacteria such as the human pathogen Staphylococcus aureus differ in important ways from this model. Unlike in E. coli, a subset of precursors in S. aureus contains a YSIRK/GXXS (YSIRK) motif in an extended signal peptide. These proteins are secreted into the cross-wall compartment bounded by invaginating septal membranes during cell division. To gain insights into the factor(s) and mechanism(s) enabling protein secretion and spatial specificity in S. aureus, we isolated and screened a collection of temperature-sensitive (ts) mutants. These efforts identified at least one secA(ts) allele as well as mutations in the secG and pepV genes. A SecA pull-down experiment identified SecDF, all ribosomal proteins, several chaperones and proteases, as well as PepV, validating the genetic screen in identifying candidate cofactors of SecA in S. aureus.IMPORTANCEAll organisms use the Sec pathway for protein secretion, and key components of this pathway are essential for viability. The discovery of conditional loss-of-function mutants played an important role in defining the genetic basis of protein secretion in model organisms. In turn, the identification of Sec components facilitated mechanistic studies and revealed general rules for protein secretion but did not answer species-specific intricacies. Gram-positive bacteria, such as Staphylococcus aureus, restrict the secretion of some proteins into the septal membranes that bind their division site at mid-cell. Here, we screen a library of conditional temperature-sensitive mutants to define components of the Sec pathway of S. aureus and factors that may regulate its activity.
Collapse
Affiliation(s)
- Owen Leddy
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Amany M. Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Muhammad S. Azam
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Sadie Solomon
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Wenqi Yu
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Ibrahim AM, Missiakas D. A novel polysaccharide in the envelope of S. aureus influences the septal secretion of preproteins with a YSIRK/GXXS motif. J Bacteriol 2025; 207:e0047824. [PMID: 39873517 PMCID: PMC11841062 DOI: 10.1128/jb.00478-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Bacteria transport proteins across the plasma membrane to assemble their envelope, acquire nutrients, and establish appropriate interactions with their environment. The majority of these proteins are synthesized as precursors with a cleavable N-terminal signal sequence for recognition by the Sec machinery. In Staphylococcus aureus, a small subset of secreted precursors carries a YSIRK/GXXS motif. This motif provides a pre-translocation function by promoting the targeting of precursors to septal membranes, but the trans-acting factors that regulate such spatial distribution are not known. Here, we used immunofluorescence-microscopy to compare the spatial trafficking of Staphylococcal protein A (SpA), an abundant YSIRK/GXXS bearing precursor, between mutants of an arranged transposon library. This genetic search identified a cluster of five genes predicted to encode enzymes responsible for the synthesis of a novel surface polymer referred to as Staphylococcal surface carbohydrate, Ssc. Mutants in the ssc gene cluster no longer restrict the secretion of SpA into the cross-walls of S. aureus. ssc mutants replicate like wild-type bacteria unless grown in phosphate-limited conditions, and do not contribute to virulence when examined in a mouse model of bloodstream infection. Together, our observations suggest that S. aureus may encode a minor, phosphate-free carbohydrate, and propose a possible assembly pathway for this polymer. IMPORTANCE Gram-positive bacteria assemble peptidoglycan-linked polymers known as wall teichoic acids (WTA). Both Staphylococcus aureus and Bacillus subtilis elaborate WTAs made of poly-glycerol or poly-ribitol phosphates. WTAs contribute to cell shape maintenance, cation homeostasis, and resistance to antimicrobial compounds. Yet, B. subtilis replaces its phosphate-rich polymer with minor teichuronic acids whose functions remain elusive. S. aureus also encodes a minor wall polymer that may be required for growth under phosphate-limited condition. Here, we find that this polymer could help define the composition of the septal compartment, the site of cell division also used to recruit preproteins with a YSIRK/GXXS motif. Thus, the envelope of S. aureus may be more complex than previously thought with minor wall polymers contributing some discrete functions.
Collapse
Affiliation(s)
- Amany M. Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
9
|
Chen Y, Li W, Wang L, Wang B, Suo J. Novel inhibition of Staphylococcus aureus sortase A by plantamajoside: implications for controlling multidrug-resistant infections. Appl Environ Microbiol 2025; 91:e0180424. [PMID: 39745463 PMCID: PMC11784452 DOI: 10.1128/aem.01804-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/13/2024] [Indexed: 02/01/2025] Open
Abstract
In confronting the significant challenge posed by multidrug-resistant (MDR) pathogens, particularly methicillin-resistant Staphylococcus aureus (MRSA), the development of innovative anti-infective strategies is essential. Our research focuses on sortase A (SrtA), a vital enzyme for anchoring surface proteins in S. aureus. We discovered that plantamajoside (PMS), a phenylpropanoid glycoside extracted from Plantago asiatica L. (Plantaginaceae), acts as an effective and reversible inhibitor of SrtA, with a notable IC50 value of 22.93 µg/mL. This breakthrough provides a novel approach to combat both resistance and virulence in MRSA. PMS significantly inhibits S. aureus adhesion to fibrinogen, reducing biofilm formation and hindering the anchoring of staphylococcal protein A to the cell wall. Live-dead cell assays demonstrated increased survival rates in PMS-treated MRSA-infected A549 cells. Fluorescence quenching experiments revealed a robust interaction between PMS and SrtA, with mechanistic analyses pinpointing the critical R197 amino acid residue as the target site. In vivo, PMS was highly effective in a Galleria mellonella infection model, reducing mortality rates in MRSA-infected larvae. Additionally, PMS demonstrated therapeutic efficacy in a mouse pneumonia model, improved survival rates, reduced the bacterial load in pulmonary tissues, and mitigated lung damage. These results validate PMS as a promising compound to mitigate MRSA virulence and thwart resistance by targeting SrtA. This study highlights PMS as a leading candidate for controlling MRSA infections, showing the potential of targeting specific bacterial mechanisms in the fight against MDR infections.IMPORTANCEThe increasing issue of antibiotic resistance, particularly in methicillin-resistant Staphylococcus aureus (MRSA), demands innovative solutions. Our study presents plantamajoside (PMS) as a novel inhibitor of sortase A (SrtA), a key enzyme in S. aureus pathogenicity. By targeting SrtA, PMS shows promise in curbing the ability of MRSA to adhere, invade, and form biofilms, thereby reducing its virulence without exerting selective pressure for resistance. This research is significant because it introduces a potential new strategy in the antimicrobial arsenal, aligning with the global effort to combat drug-resistant infections. This study is crucial because it identifies a natural compound that can reduce the harmful effects of MRSA, a type of bacteria that is very hard to treat owing to resistance to many antibiotics. This discovery could lead to new treatments that are less likely to cause bacteria to become resistant, which is a major win in the fight against infections that are difficult to cure.
Collapse
Affiliation(s)
- Yujia Chen
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jian Suo
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Xu Y, Luan Y, Wang R, Su Z, Wang L, Liu Y, Jiang G, Wang B. Advancing treatment strategies against MRSA: unveiling the potency of tubuloside A in targeting sortase A and mitigating pathogenicity. World J Microbiol Biotechnol 2025; 41:29. [PMID: 39789193 DOI: 10.1007/s11274-024-04185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 01/30/2025]
Abstract
In addressing the formidable challenge posed by methicillin-resistant Staphylococcus aureus (MRSA), this investigation elucidates a novel therapeutic paradigm by specifically targeting the virulence factor sortase A (SrtA) utilizing Tubuloside A (TnA). SrtA plays a critical role in the pathogenicity of MRSA, primarily by anchoring surface proteins to the bacterial cell wall, which is crucial for the bacterium's ability to colonize and infect host tissues. By inhibiting SrtA, TnA offers a novel and distinct strategy compared to traditional antibiotics. TnA significantly impedes Staphylococcus aureus' adherence to fibrinogen, notably disrupting biofilm development and the integration of staphylococcal protein A (SpA) into the cell wall. Enhanced survival in MRSA-infected A549 cells treated with TnA was demonstrated by live-dead cell assays, confirming its efficacy. The interaction between TnA and SrtA, as indicated by fluorescence quenching and molecular docking studies, shows that TnA has a targeted mechanism of action. Notably, TnA exhibited significant efficacy in reducing MRSA pathogenicity, as demonstrated in a murine pneumonia model. Treatment with TnA resulted in a marked decrease in the bacterial load and improved survival in infected mice. This research highlights the potential of targeting specific bacterial virulence factors as an effective strategy against antibiotic-resistant pathogens and paves the way for the development of innovative antivirulence therapies.
Collapse
Affiliation(s)
- Yangming Xu
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
- Jilin Province People's Hospital, Changchun, China
| | - Yanhe Luan
- Surgery Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Rong Wang
- Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhengjie Su
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Jilin Province People's Hospital, Changchun, China.
| | | | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
11
|
Dewan D, Basu A, Dolai D, Pal S. Biological and Biophysical Methods for Evaluation of Inhibitors of Sortase A in Staphylococcus aureus: An Overview. Cell Biochem Funct 2024; 42:e70002. [PMID: 39470102 DOI: 10.1002/cbf.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Staphylococcus aureus, one of the most notorious pathogens, develops antibiotic resistance by the formation of a thick layer of exopolysaccharides known as biofilms. Sortase A, a transpeptidase responsible for biofilm formation and attachment to the host surface, has emerged as an important drug target for development of anti-virulence agents. A number of sortase A inhibitors, both peptide and non-peptides are reported which involved the use of several experiments which may provide insights regarding binding affinity, specificity, safety, and efficacy of ligands. In this review, we focus on the principles, pros and cons, and the type of information obtained from biophysical (FRET assay, Microscale Thermophoresis, Surface Plasmon Resonance, CD spectroscopy etc.) and biological (cell viability assay, biofilm formation assay, CLSM, western blot analysis, in vivo characterization on mice etc.) methods for estimation of probable sortase A inhibitors, which might be helpful to the researchers who might be interested to delve into the development of sortase A inhibitors as a drug, to address the burning question of antimicrobial resistance (AMR).
Collapse
|
12
|
Chen X, Missiakas D. Novel Antibody-Based Protection/Therapeutics in Staphylococcus aureus. Annu Rev Microbiol 2024; 78:425-446. [PMID: 39146354 DOI: 10.1146/annurev-micro-041222-024605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Staphylococcus aureus is a commensal of the skin and nares of humans as well as the causative agent of infections associated with significant mortality. The acquisition of antibiotic resistance traits complicates the treatment of such infections and has prompted the development of monoclonal antibodies. The selection of protective antigens is typically guided by studying the natural antibody responses to a pathogen. What happens when the pathogen masks these antigens and subverts adaptive responses, or when the pathogen inhibits or alters the effector functions of antibodies? S. aureus is constantly exposed to its human host and has evolved all these strategies. Here, we review how anti-S. aureus targets have been selected and how antibodies have been engineered to overcome the formidable immune evasive activities of this pathogen. We discuss the prospects of antibody-based therapeutics in the context of disease severity, immune competence, and history of past infections.
Collapse
Affiliation(s)
- Xinhai Chen
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Dominique Missiakas
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
13
|
Shulga DA, Kudryavtsev KV. Ensemble Docking as a Tool for the Rational Design of Peptidomimetic Staphylococcus aureus Sortase A Inhibitors. Int J Mol Sci 2024; 25:11279. [PMID: 39457061 PMCID: PMC11508331 DOI: 10.3390/ijms252011279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Sortase A (SrtA) of Staphylococcus aureus has long been shown to be a relevant molecular target for antibacterial development. Moreover, the designed SrtA inhibitors act via the antivirulence mechanism, potentially causing less evolutional pressure and reduced antimicrobial resistance. However, no marketed drugs or even drug candidates have been reported until recently, despite numerous efforts in the field. SrtA has been shown to be a tough target for rational structure-based drug design (SBDD), which hampers the regular development of small-molecule inhibitors using the available arsenal of drug discovery tools. Recently, several oligopeptides resembling the sorting sequence LPxTG (Leu-Pro-Any-Thr-Gly) of the native substrates of SrtA were reported to be active in the micromolar range. Despite the good experimental design of those works, their molecular modeling parts are still not convincing enough to be used as a basis for a rational modification of peptidic inhibitors. In this work, we propose to use the ensemble docking approach, in which the relevant SrtA conformations are extracted from the molecular dynamics simulation of the LPRDA (Leu-Pro-Arg-Asp-Ala)-SrtA complex, to effectively represent the most significant and diverse target conformations. The developed protocol is shown to describe the known experimental data well and then is applied to a series of new peptidomimetic molecules resembling the active oligopeptide structures reported previously in order to prioritize structures from this work for further synthesis and activity testing. The proposed approach is compared to existing alternatives, and further directions for its development are outlined.
Collapse
Affiliation(s)
- Dmitry A. Shulga
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Konstantin V. Kudryavtsev
- Vreden National Medical Research Center of Traumatology and Orthopedics, 195427 St. Petersburg, Russia
| |
Collapse
|
14
|
Karlsson A, Alarcón LA, Piñeiro-Iglesias B, Jacobsson G, Skovbjerg S, Moore ERB, Kopparapu PK, Jin T, Karlsson R. Surface-Shaving of Staphylococcus aureus Strains and Quantitative Proteomic Analysis Reveal Differences in Protein Abundance of the Surfaceome. Microorganisms 2024; 12:1725. [PMID: 39203567 PMCID: PMC11357550 DOI: 10.3390/microorganisms12081725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Staphylococcus aureus is a pathogen known to cause a wide range of infections. To find new targets for identification and to understand host-pathogen interactions, many studies have focused on surface proteins. We performed bacterial-cell surface-shaving, followed by tandem mass tag for quantitative mass spectrometry proteomics, to examine the surfaceome of S. aureus. Two steps were performed, the first step including surface protein-deficient mutants of S. aureus Newman strain lacking important virulence genes (clfA and spa, important for adhesion and immune evasion and srtAsrtB, linking surface-associated virulence factors to the surface) and the second step including isolates of different clinical origin. All strains were compared to the Newman strain. In Step 1, altogether, 7880 peptides were identified, corresponding to 1290 proteins. In Step 2, 4949 peptides were identified, corresponding to 919 proteins and for each strain, approximately 20 proteins showed differential expression compared to the Newman strain. The identified surface proteins were related to host-cell-adherence and immune-system-evasion, biofilm formation, and survival under harsh conditions. The results indicate that surface-shaving of intact S. aureus bacterial strains in combination with quantitative proteomics is a useful tool to distinguish differences in protein abundance of the surfaceome, including the expression of virulence factors.
Collapse
Affiliation(s)
| | - Leonarda Achá Alarcón
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
| | - Beatriz Piñeiro-Iglesias
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
| | - Gunnar Jacobsson
- Department of Infectious Diseases, Skaraborg Hospital, 54185 Skövde, Sweden;
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
- Culture Collection of the University of Gothenburg (CCUG), Sahlgrenska Academy, 41390 Gothenburg, Sweden
| | - Pradeep Kumar Kopparapu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden; (P.K.K.); (T.J.)
- Department of Rheumatology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden; (P.K.K.); (T.J.)
- Department of Rheumatology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Roger Karlsson
- Nanoxis Consulting AB, 40016 Gothenburg, Sweden;
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
15
|
Ungureanu D, Oniga O, Moldovan C, Ionuț I, Marc G, Stana A, Pele R, Duma M, Tiperciuc B. An Insight into Rational Drug Design: The Development of In-House Azole Compounds with Antimicrobial Activity. Antibiotics (Basel) 2024; 13:763. [PMID: 39200063 PMCID: PMC11350776 DOI: 10.3390/antibiotics13080763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial resistance poses a major threat to global health as the number of efficient antimicrobials decreases and the number of resistant pathogens rises. Our research group has been actively involved in the design of novel antimicrobial drugs. The blueprints of these compounds were azolic heterocycles, particularly thiazole. Starting with oxadiazolines, our research group explored, one by one, the other five-membered heterocycles, developing more or less potent compounds. An overview of this research activity conducted by our research group allowed us to observe an evolution in the methodology used (from inhibition zone diameters to minimal inhibitory concentrations and antibiofilm potential determination) correlated with the design of azole compounds based on results obtained from molecular modeling. The purpose of this review is to present the development of in-house azole compounds with antimicrobial activity, designed over the years by this research group from the departments of Pharmaceutical and Therapeutical Chemistry in Cluj-Napoca.
Collapse
Affiliation(s)
- Daniel Ungureanu
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Clinical Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Anca Stana
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Raluca Pele
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Mihaela Duma
- State Veterinary Laboratory for Animal Health and Safety, 1 Piața Mărăști Street, 400609 Cluj-Napoca, Romania;
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| |
Collapse
|
16
|
Lee J, Choi JH, Lee J, Cho E, Lee YJ, Lee HS, Oh KB. Halenaquinol Blocks Staphylococcal Protein A Anchoring on Cell Wall Surface by Inhibiting Sortase A in Staphylococcus aureus. Mar Drugs 2024; 22:266. [PMID: 38921577 PMCID: PMC11204543 DOI: 10.3390/md22060266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Sortase A (SrtA) is a cysteine transpeptidase that binds to the periplasmic membrane and plays a crucial role in attaching surface proteins, including staphylococcal protein A (SpA), to the peptidoglycan cell wall. Six pentacyclic polyketides (1-6) were isolated from the marine sponge Xestospongia sp., and their structures were elucidated using spectroscopic techniques and by comparing them to previously reported data. Among them, halenaquinol (2) was found to be the most potent SrtA inhibitor, with an IC50 of 13.94 μM (4.66 μg/mL). Semi-quantitative reverse transcription PCR data suggest that halenaquinol does not inhibit the transcription of srtA and spA, while Western blot analysis and immunofluorescence microscopy images suggest that it blocks the cell wall surface anchoring of SpA by inhibiting the activity of SrtA. The onset and magnitude of the inhibition of SpA anchoring on the cell wall surface in S. aureus that has been treated with halenaquinol at a value 8× that of the IC50 of SrtA are comparable to those for an srtA-deletion mutant. These findings contribute to the understanding of the mechanism by which marine-derived pentacyclic polyketides inhibit SrtA, highlighting their potential as anti-infective agents targeting S. aureus virulence.
Collapse
Affiliation(s)
- Jaepil Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (J.L.); (J.L.); (E.C.)
| | - Jae-Hyeong Choi
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; (J.-H.C.); (Y.-J.L.)
- Department of Applied Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jayho Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (J.L.); (J.L.); (E.C.)
| | - Eunji Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (J.L.); (J.L.); (E.C.)
| | - Yeon-Ju Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; (J.-H.C.); (Y.-J.L.)
- Department of Applied Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyi-Seung Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; (J.-H.C.); (Y.-J.L.)
- Department of Applied Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (J.L.); (J.L.); (E.C.)
| |
Collapse
|
17
|
Liu Y, Lu Z, Wu P, Liang Z, Yu Z, Ni K, Ma L. The Transpeptidase Sortase A Binds Nucleic Acids and Mediates Mammalian Cell Labeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305605. [PMID: 38581131 PMCID: PMC11151058 DOI: 10.1002/advs.202305605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/10/2024] [Indexed: 04/08/2024]
Abstract
Wild-type sortase A is an important virulence factor displaying a diverse array of proteins on the surface of bacteria. This protein display relies on the transpeptidase activity of sortase A, which is widely engineered to allow protein ligation and protein engineering based on the interaction between sortase A and peptides. Here an unknown interaction is found between sortase A from Staphylococcus aureus and nucleic acids, in which exogenously expressed engineered sortase A binds oligonucleotides in vitro and is independent of its canonical transpeptidase activity. When incubated with mammalian cells, engineered sortase A further mediates oligonucleotide labeling to the cell surface, where sortase A attaches itself and is part of the labeled moiety. The labeling reaction can also be mediated by many classes of wild-type sortases as well. Cell surface GAG appears involved in sortase-mediated oligonucleotide cell labeling, as demonstrated by CRISPR screening. This interaction property is utilized to develop a technique called CellID to facilitate sample multiplexing for scRNA-seq and shows the potential of using sortases to label cells with diverse oligonucleotides. Together, the binding between sortase A and nucleic acids opens a new avenue to understanding the virulence of wild-type sortases and exploring the application of sortases in biotechnology.
Collapse
Affiliation(s)
- Yingzheng Liu
- College of Life SciencesZhejiang UniversityHangzhou310058China
- Westlake Laboratory of Life Sciences and Biomedicine18 Shilongshan RoadHangzhou310024China
- School of Life SciencesWestlake University600 Dunyu RoadHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced Study18 Shilongshan RoadHangzhou310024China
| | - Zhike Lu
- College of Life SciencesZhejiang UniversityHangzhou310058China
- Westlake Laboratory of Life Sciences and Biomedicine18 Shilongshan RoadHangzhou310024China
- School of Life SciencesWestlake University600 Dunyu RoadHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced Study18 Shilongshan RoadHangzhou310024China
| | - Panfeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine18 Shilongshan RoadHangzhou310024China
- School of Life SciencesWestlake University600 Dunyu RoadHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced Study18 Shilongshan RoadHangzhou310024China
| | - Zhaohui Liang
- AIdit Therapeutics1 Yunmeng Road, Building 1Hangzhou310024China
| | - Zhenxing Yu
- Westlake Laboratory of Life Sciences and Biomedicine18 Shilongshan RoadHangzhou310024China
- School of Life SciencesWestlake University600 Dunyu RoadHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced Study18 Shilongshan RoadHangzhou310024China
| | - Ke Ni
- Westlake Laboratory of Life Sciences and Biomedicine18 Shilongshan RoadHangzhou310024China
- School of Life SciencesWestlake University600 Dunyu RoadHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced Study18 Shilongshan RoadHangzhou310024China
- AIdit Therapeutics1 Yunmeng Road, Building 1Hangzhou310024China
| | - Lijia Ma
- Westlake Laboratory of Life Sciences and Biomedicine18 Shilongshan RoadHangzhou310024China
- School of Life SciencesWestlake University600 Dunyu RoadHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced Study18 Shilongshan RoadHangzhou310024China
| |
Collapse
|
18
|
Li X, Li Y, Xiong B, Qiu S. Progress of Antimicrobial Mechanisms of Stilbenoids. Pharmaceutics 2024; 16:663. [PMID: 38794325 PMCID: PMC11124934 DOI: 10.3390/pharmaceutics16050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial drugs have made outstanding contributions to the treatment of pathogenic infections. However, the emergence of drug resistance continues to be a major threat to human health in recent years, and therefore, the search for novel antimicrobial drugs is particularly urgent. With a deeper understanding of microbial habits and drug resistance mechanisms, various creative strategies for the development of novel antibiotics have been proposed. Stilbenoids, characterized by a C6-C2-C6 carbon skeleton, have recently been widely recognized for their flexible antimicrobial roles. Here, we comprehensively summarize the mode of action of stilbenoids from the viewpoint of their direct antimicrobial properties, antibiofilm and antivirulence activities and their role in reversing drug resistance. This review will provide an important reference for the future development and research into the mechanisms of stilbenoids as antimicrobial agents.
Collapse
Affiliation(s)
- Xiancai Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Binghong Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Shengxiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| |
Collapse
|
19
|
Jackson JJ, Heyer S, Bell G. Sortase-encoding genes, srtA and srtC, mediate Enterococcus faecalis OG1RF persistence in the Helicoverpa zea gastrointestinal tract. Front Microbiol 2024; 15:1322303. [PMID: 38562482 PMCID: PMC10982312 DOI: 10.3389/fmicb.2024.1322303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Enterococcus faecalis is a commensal and opportunistic pathogen in the gastrointestinal (GI) tract of mammals and insects. To investigate mechanisms of bacterial persistence in the gastrointestinal tract (GIT), we developed a non-destructive sampling model using Helicoverpa zea, a destructive agricultural pest, as host to study the role of bacterial sortase enzymes in mitigating persistence in the gastrointestinal tract. E. faecalis OG1RF ΔsrtA and E. faecalis OG1RF ΔsrtC, isogenic E. faecalis OG1RF sortase mutants grew similarly under planktonic growth conditions relative to a streptomycin-resistant E. faecalis OG1RFS WT in vitro but displayed impaired biofilm formation under, both, physiological and alkaline conditions. In the H. zea GI model, both mutants displayed impaired persistence relative to the WT. This represents one of the initial reports in which a non-destructive insect model has been used to characterize mechanisms of bacterial persistence in the Lepidopteran midgut and, furthermore, sheds light on new molecular mechanisms employed by diverse microorganisms to associate with invertebrate hosts.
Collapse
Affiliation(s)
- Jerreme J. Jackson
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, United States
| | | | | |
Collapse
|
20
|
Ibrahim AM, Azam MS, Schneewind O, Missiakas D. Processing of LtaS restricts LTA assembly and YSIRK preprotein trafficking into Staphylococcus aureus cross-walls. mBio 2024; 15:e0285223. [PMID: 38174934 PMCID: PMC10865820 DOI: 10.1128/mbio.02852-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 01/05/2024] Open
Abstract
Septal membranes of Staphylococcus aureus serve as the site of secretion for precursors endowed with the YSIRK motif. Depletion of ltaS, a gene required for lipoteichoic acid (LTA) synthesis, results in the loss of restricted trafficking of YSIRK precursors to septal membranes. Here, we seek to understand the mechanism that ties LTA assembly and trafficking of YSIRK precursors. We confirm that catalytically inactive lipoteichoic acid synthase (LtaS)T300A does not support YSIRK precursor trafficking to septa. We hypothesize that the enzyme's reactants [gentiobiosyldiacylglycerol (Glc2-DAG) and phosphatidylglycerol (PG)] or products [LTA and diacylglycerol (DAG)], not LtaS, must drive this process. Indeed, we observe that septal secretion of the staphylococcal protein A YSIRK precursor is lost in ypfP and ltaA mutants that produce glycerophosphate polymers [poly(Gro-P)] without the Glc2-DAG lipid anchor. These mutants display longer poly(Gro-P) chains, implying enhanced PG consumption and DAG production. Our experiments also reveal that in the absence of Glc2-DAG, the processing of LtaS to the extracellular catalytic domain, eLtaS, is impaired. Conversely, LTA polymerization is delayed in a strain producing LtaSS218P, a variant processed more slowly than LtaS. We conclude that Glc2-DAG binding to the enzyme couples catalysis by LtaS and the physical release of eLtaS. We propose a model for the temporal and localized assembly of LTA into cross-walls. When LtaS is not processed in a timely manner, eLtaS no longer diffuses upon daughter cell splitting, LTA assembly continues, and the unique septal-lipid pool, PG over DAG ratio, is not established. This results in profound physiological changes in S. aureus cells, including the inability to restrict the secretion of YSIRK precursors at septal membranes.IMPORTANCEIn Staphylococcus aureus, peptidoglycan is assembled at the septum. Dedicated cell division proteins coordinate septal formation and the fission of daughter cells. Lipoteichoic acid (LTA) assembly and trafficking of preproteins with a YSIRK motif also occur at the septum. This begs the question as to whether cell division components also recruit these two pathways. This study shows that the processing of lipoteichoic acid synthase (LtaS) to extracellular LtaS by signal peptidase is regulated by gentiobiosyldiacylglycerol (Glc2-DAG), the priming substrate for LTA assembly. A model is proposed whereby a key substrate controls the temporal and spatial activity of an enzyme. In turn, this mechanism enables the establishment of a unique and transient lipid pool that defines septal membranes as a targeting site for the secretion of YSIRK preproteins.
Collapse
Affiliation(s)
- Amany M. Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Muhammad S. Azam
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
| | - Olaf Schneewind
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA
| |
Collapse
|
21
|
Mahmood Janlou MA, Sahebjamee H, Yazdani M, Fozouni L. Structure-based virtual screening and molecular dynamics approaches to identify new inhibitors of Staphylococcus aureus sortase A. J Biomol Struct Dyn 2024; 42:1157-1169. [PMID: 37184111 DOI: 10.1080/07391102.2023.2201863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 05/16/2023]
Abstract
Staphylococcus aureus is a prevalent Gram-positive bacteria leading cause of a wide range of human pathologies. Moreover, antibiotic résistance of pathogenesis bacteria is one of the worldwide health problems. In Gram-positive bacteria, the enzyme of SrtA, is responsible for the anchoring of surface-exposed proteins to the cell wall peptidoglycan. Because of its critical role in Gram-positive bacterial pathogenesis, SrtA is an attractive target for anti-virulence during drug development. To date, some SrtA inhibitors have been discovered most of them being derived from flavonoid compounds, like Myricetin. In order to provide potential hit molecules against SrtA for clinical use, we obtained a total of 293 compounds by performing in silico shape-based screening of compound libraries against Myristin as a reference structure. Employing molecular docking and scoring functions, the top 3 compounds Apigenin, Efloxate, and Compound 8261032 were screened by comparing their docking scores with Myricetin. Furthermore, MD simulations and MM-PBSA binding energy calculation studies revealed that only Compound 8261032 strongly binds to the catalytic core of the SrtA enzyme than Myricetin, and stable behavior was consistently observed in the docking complex. Compound 8261032 showed a good number of hydrogen bonds with SrtA and higher MM-PBSA binding energy when compared to all three molecules. Also, it makes strength interactions with Arg139 and His62, which are critical for SrtA biological activity. This study showed that the development of this inhibitor could be a fundamental strategy against resistant bacteria, but further studies in vitro are needed to confirm this claim.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehr Ali Mahmood Janlou
- Department of Biophysics, Faculty of Biological Sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Hassan Sahebjamee
- Department of Biophysics, Faculty of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Mohsen Yazdani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Leila Fozouni
- Department of Microbiology, Faculty of Biological Sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| |
Collapse
|
22
|
Yue C, Yuan Z, Xu G, Guan XN, Wei B, Yao H, Yang CG, Zhang T. Structure-Guided Design, Synthesis, and Antivirulence Assessment of Covalent Staphylococcus aureus Sortase A Inhibitors. J Med Chem 2024; 67:1127-1146. [PMID: 38170998 DOI: 10.1021/acs.jmedchem.3c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sortase A (SrtA) is a membrane-associated cysteine transpeptidase required for bacterial virulence regulation and anchors surface proteins to cell wall, thereby assisting biofilm formation. SrtA is targeted in antivirulence treatments against Gram-positive bacterial infections. However, the development of potent small-molecule SrtA inhibitors is constrained owing to the limited understanding of the mode of action of inhibitors in the SrtA binding pocket. Herein, we designed and synthesized a novel class of covalent SrtA inhibitors based on the binding mode detailed in the X-ray crystal structure of the ML346/Streptococcus pyogenes SrtA complex. ML346 analog Y40 exhibited 2-fold increased inhibitory activity on Staphylococcus aureus SrtA and showed superior inhibitory effects on biofilm formation in vitro. Y40 protected Galleria mellonella larvae fromS. aureusinfections in vivo while minimally attenuating staphylococcal growth in vitro. Our study indicates that the covalent SrtA inhibitor Y40 is an antivirulence agent that is effective againstS. aureusinfections.
Collapse
Affiliation(s)
- Chuan Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ziqi Yuan
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guobin Xu
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiang-Na Guan
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingyan Wei
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cai-Guang Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tao Zhang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
23
|
Bhattacharya M, Horswill AR. The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections. FEMS Microbiol Rev 2024; 48:fuae002. [PMID: 38337187 PMCID: PMC10873506 DOI: 10.1093/femsre/fuae002] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Twenty to forty one percent of the world's population is either transiently or permanently colonized by the Gram-positive bacterium, Staphylococcus aureus. In 2017, the CDC designated methicillin-resistant S. aureus (MRSA) as a serious threat, reporting ∼300 000 cases of MRSA-associated hospitalizations annually, resulting in over 19 000 deaths, surpassing that of HIV in the USA. S. aureus is a proficient biofilm-forming organism that rapidly acquires resistance to antibiotics, most commonly methicillin (MRSA). This review focuses on a large group of (>30) S. aureus adhesins, either surface-associated or secreted that are designed to specifically bind to 15 or more of the proteins that form key components of the human extracellular matrix (hECM). Importantly, this includes hECM proteins that are pivotal to the homeostasis of almost every tissue environment [collagen (skin), proteoglycans (lung), hemoglobin (blood), elastin, laminin, fibrinogen, fibronectin, and fibrin (multiple organs)]. These adhesins offer S. aureus the potential to establish an infection in every sterile tissue niche. These infections often endure repeated immune onslaught, developing into chronic, biofilm-associated conditions that are tolerant to ∼1000 times the clinically prescribed dose of antibiotics. Depending on the infection and the immune response, this allows S. aureus to seamlessly transition from colonizer to pathogen by subtly manipulating the host against itself while providing the time and stealth that it requires to establish and persist as a biofilm. This is a comprehensive discussion of the interaction between S. aureus biofilms and the hECM. We provide particular focus on the role of these interactions in pathogenesis and, consequently, the clinical implications for the prevention and treatment of S. aureus biofilm infections.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
- Department of Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO 80045, United States
| |
Collapse
|
24
|
Scaffidi SJ, Yu W. Tracking Cell Wall-Anchored Proteins in Gram-Positive Bacteria. Methods Mol Biol 2024; 2727:193-204. [PMID: 37815718 DOI: 10.1007/978-1-0716-3491-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Cell wall-anchored surface proteins are integral components of Gram-positive bacterial cell envelope and vital for bacterial survival in different environmental niches. To fulfill their functions, surface protein precursors translocate from cytoplasm to bacterial cell surface in three sequential steps: secretion across the cytoplasmic membrane, covalently anchoring to the cell wall precursor lipid II by sortase A, and incorporation of the lipid II-linked precursors into mature cell wall peptidoglycan. Here, we describe a series of immunofluorescence microscopy methods to track the subcellular localization of cell wall-anchored proteins along the sorting pathway. While the protocols are tailored to Staphylococcus aureus, they can be readily adapted to localize cell wall-anchored proteins as well as membrane proteins in other Gram-positive bacteria.
Collapse
Affiliation(s)
- Salvatore J Scaffidi
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Wenqi Yu
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
25
|
Liu K, Tong J, Liu X, Liang D, Ren F, Jiang N, Hao Z, Li S, Wang Q. The Discovery of Novel Agents against Staphylococcus aureus by Targeting Sortase A: A Combination of Virtual Screening and Experimental Validation. Pharmaceuticals (Basel) 2023; 17:58. [PMID: 38256891 PMCID: PMC11100315 DOI: 10.3390/ph17010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Staphylococcus aureus (S. aureus), commonly known as "superbugs", is a highly pathogenic bacterium that poses a serious threat to human health. There is an urgent need to replace traditional antibiotics with novel drugs to combat S. aureus. Sortase A (SrtA) is a crucial transpeptidase involved in the adhesion process of S. aureus. The reduction in virulence and prevention of S. aureus infections have made it a significant target for antimicrobial drugs. In this study, we combined virtual screening with experimental validation to identify potential drug candidates from a drug library. Three hits, referred to as Naldemedine, Telmisartan, and Azilsartan, were identified based on docking binding energy and the ratio of occupied functional sites of SrtA. The stability analysis manifests that Naldemedine and Telmisartan have a higher binding affinity to the hydrophobic pockets. Specifically, Telmisartan forms stable hydrogen bonds with SrtA, resulting in the highest binding energy. Our experiments prove that the efficiency of adhesion and invasion by S. aureus can be decreased without significantly affecting bacterial growth. Our work identifies Telmisartan as the most promising candidate for inhibiting SrtA, which can help combat S. aureus infection.
Collapse
Affiliation(s)
- Kang Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Jiangbo Tong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Xu Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China;
| | - Dan Liang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Fangzhe Ren
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Nan Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Zhenyu Hao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Shixin Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Qiang Wang
- Department of the Heart and Great Vessels, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
26
|
Chen F, Di H, Wang Y, Peng C, Chen R, Pan H, Yang CG, Liang H, Lan L. The enzyme activity of sortase A is regulated by phosphorylation in Staphylococcus aureus. Virulence 2023; 14:2171641. [PMID: 36694285 PMCID: PMC9928477 DOI: 10.1080/21505594.2023.2171641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In many Gram-positive bacteria, the transpeptidase enzyme sortase A (SrtA) anchors surface proteins to cell wall and plays a critical role in the bacterial pathogenesis. Here, we show that in Staphylococcus aureus, an important human pathogen, the SrtA is phosphorylated by serine/threonine protein kinase Stk1. S. aureus SrtA can also be phosphorylated by small-molecule phosphodonor acetyl phosphate (AcP) in vitro. We determined that various amino acid residues of S. aureus SrtA are subject to phosphorylation, primarily on its catalytic site residue cysteine-184 in the context of a bacterial cell lysate. Both Stk1 and AcP-mediated phosphorylation inhibited the enzyme activity of SrtA in vitro. Consequently, deletion of gene (i.e. stp1) encoding serine/threonine phosphatase Stp1, the corresponding phosphatase of Stk1, caused an increase in the phosphorylation level of SrtA. The stp1 deletion mutant mimicked the phenotypic traits of srtA deletion mutant (i.e. attenuated growth where either haemoglobin or haem as a sole iron source and reduced liver infections in a mouse model of systemic infection). Importantly, the phenotypic defects of the stp1 deletion mutant can be alleviated by overexpressing srtA. Taken together, our finding suggests that phosphorylation plays an important role in modulating the activity of SrtA in S. aureus.
Collapse
Affiliation(s)
- Feifei Chen
- College of Life Science, Northwest University, Xi’an, China,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hongxia Di
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yanhui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Rongrong Chen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Pan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Haihua Liang
- College of Life Science, Northwest University, Xi’an, China,School of Medicine, Southern University of Science and Technology, Shenzhen, China,Haihua Liang School of Medicine Southern University of Science and Technology, Shenzhen, China
| | - Lefu Lan
- College of Life Science, Northwest University, Xi’an, China,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China,CONTACT Lefu Lan
| |
Collapse
|
27
|
Tian L, Wang L, Yang F, Zhou T, Jiang H. Exploring the modulatory impact of isosakuranetin on Staphylococcus aureus: Inhibition of sortase A activity and α-haemolysin expression. Virulence 2023; 14:2260675. [PMID: 37733916 PMCID: PMC10543341 DOI: 10.1080/21505594.2023.2260675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/13/2023] [Indexed: 09/23/2023] Open
Abstract
The ubiquity of methicillin-resistant Staphylococcus aureus (MRSA) and the mounting prevalence of antibiotic resistance necessitate the identification of novel therapeutic approaches to reduce the selective pressure of antibiotics. Targeting bacterial virulence factors, such as the pivotal Sortase A (SrtA) in S. aureus for adhesion and invasion, and the salient toxin α-Hemolysin (Hla), offers a sophisticated approach to attenuate pathogenicity without bacterial elimination. Herein, we report the discovery of a flavonoid, isosakuranetin, which inhibits the activity of S. aureus SrtA. A fluorescence resonance energy transfer assay revealed that isosakuranetin exhibited a low IC50 of 21.20 μg/mL. Furthermore, isosakuranetin significantly inhibited SrtA-related virulence properties, such as bacterial adhesion to fibrinogen, biofilm formation, and invasion of A549 cells. We employed fluorescence quenching and molecular docking to determine the interactions between isosakuranetin and SrtA, revealing the key amino acid sites for binding. Importantly, isosakuranetin inhibited the haemolytic activity of S. aureus in vitro at a concentration of 32 μg/mL. Moreover, isosakuranetin effectively suppressed the transcription and expression of Hla in a dose-dependent manner and regulated the transcription of RNAIII, the upstream operator of Hla. Notably, isosakuranetin demonstrated in vivo efficacy in a mouse model of S. aureus-induced pneumonia by significantly improving survival rates and reducing lung damage. This is a valuable finding, as isosakuranetin's dual inhibitory effects on SrtA and haemolytic activity, as well as its anti-virulence activity against MRSA, make it an excellent candidate for therapeutic development.
Collapse
Affiliation(s)
- Lili Tian
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Fengying Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Tiezhong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Hong Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
28
|
Lou F, Huang H, Li Y, Yang S, Shi Y. Investigation of the inhibitory effect and mechanism of epigallocatechin-3-gallate against Streptococcus suis sortase A. J Appl Microbiol 2023; 134:lxad191. [PMID: 37634082 DOI: 10.1093/jambio/lxad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/28/2023]
Abstract
AIMS Streptococcus suis seriously harms people and animals, and importantly, causes great economic losses in the pig industry. Similar to most Gram-positive pathogenic bacteria, sortase A (SrtA) of S. suis can mediate the anchoring of a variety of virulence factors that contain specific sorting sequences to the surface of the bacterial cell wall envelope and participate in pathogenicity. The purpose of this study is to clarify the molecular mechanism of epigallocatechin-3-gallate (EGCG) inhibiting S. suis SrtA and provide more evidence for the development of novel anti-S. suis infections drugs. METHODS AND RESULTS Through the SrtA substrate cleavage experiment, we found that the main component of green tea, EGCG, can effectively inhibit the enzyme activity of S. suis SrtA. Further, molecular docking and molecular dynamics simulation were used to clarify the molecular mechanism of its inhibitory effect, demonstrating that EGCG mainly interacts with amino acids at 113 and 115 to exert its inhibitory function. It was previously found that EGCG can inhibit the growth of S. suis and reduce the activity of suilysin and inhibit its expression. Our research reveals a new function of EGCG in S. suis infection. CONCLUSIONS Our research proves that EGCG can effectively inhibit the transpeptidase activity of SrtA. We also clarify the accompanying molecular mechanism, providing more sufficient evidence for the use of EGCG as a potential lead compound against S. suis infection.
Collapse
Affiliation(s)
- Fei Lou
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Hui Huang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yaping Li
- School of Basic Medical Sciences, Beihua University, Jilin, China
| | - Shuo Yang
- School of Basic Medical Sciences, Beihua University, Jilin, China
| | - Yangqian Shi
- School of Basic Medical Sciences, Beihua University, Jilin, China
| |
Collapse
|
29
|
Hsieh RC, Liu R, Burgin DJ, Otto M. Understanding mechanisms of virulence in MRSA: implications for antivirulence treatment strategies. Expert Rev Anti Infect Ther 2023; 21:911-928. [PMID: 37501364 DOI: 10.1080/14787210.2023.2242585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen, often causing recurrent and deadly infections in the hospital and community. Many S. aureus virulence factors have been suggested as potential targets for antivirulence therapy to decrease the threat of diminishing antibiotic availability. Antivirulence methods hold promise due to their adjunctive and prophylactic potential and decreased risk for selective pressure. AREAS COVERED This review describes the dominant virulence mechanisms exerted by MRSA and antivirulence therapeutics that are currently undergoing testing in clinical or preclinical stages. We also discuss the advantages and downsides of several investigational antivirulence approaches, including the targeting of bacterial transporters, host-directed therapy, and quorum-sensing inhibitors. For this review, a systematic search of literature on PubMed, Google Scholar, and Web of Science for relevant search terms was performed in April and May 2023. EXPERT OPINION Vaccine and antibody strategies have failed in clinical trials and could benefit from more basic science-informed approaches. Antivirulence-targeting approaches need to be set up better to meet the requirements of drug development, rather than only providing limited results to provide 'proof-of-principle' translational value of pathogenesis research. Nevertheless, there is great potential of such strategies and potential particular promise for novel probiotic approaches.
Collapse
Affiliation(s)
- Roger C Hsieh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Dylan J Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
30
|
Lazar V, Oprea E, Ditu LM. Resistance, Tolerance, Virulence and Bacterial Pathogen Fitness-Current State and Envisioned Solutions for the Near Future. Pathogens 2023; 12:pathogens12050746. [PMID: 37242416 DOI: 10.3390/pathogens12050746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The current antibiotic crisis and the global phenomena of bacterial resistance, inherited and non-inherited, and tolerance-associated with biofilm formation-are prompting dire predictions of a post-antibiotic era in the near future. These predictions refer to increases in morbidity and mortality rates as a consequence of infections with multidrug-resistant or pandrug-resistant microbial strains. In this context, we aimed to highlight the current status of the antibiotic resistance phenomenon and the significance of bacterial virulence properties/fitness for human health and to review the main strategies alternative or complementary to antibiotic therapy, some of them being already clinically applied or in clinical trials, others only foreseen and in the research phase.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| |
Collapse
|
31
|
Schwermann N, Winstel V. Functional diversity of staphylococcal surface proteins at the host-microbe interface. Front Microbiol 2023; 14:1196957. [PMID: 37275142 PMCID: PMC10232760 DOI: 10.3389/fmicb.2023.1196957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Surface proteins of Gram-positive pathogens are key determinants of virulence that substantially shape host-microbe interactions. Specifically, these proteins mediate host invasion and pathogen transmission, drive the acquisition of heme-iron from hemoproteins, and subvert innate and adaptive immune cell responses to push bacterial survival and pathogenesis in a hostile environment. Herein, we briefly review and highlight the multi-facetted roles of cell wall-anchored proteins of multidrug-resistant Staphylococcus aureus, a common etiological agent of purulent skin and soft tissue infections as well as severe systemic diseases in humans. In particular, we focus on the functional diversity of staphylococcal surface proteins and discuss their impact on the variety of clinical manifestations of S. aureus infections. We also describe mechanistic and underlying principles of staphylococcal surface protein-mediated immune evasion and coupled strategies S. aureus utilizes to paralyze patrolling neutrophils, macrophages, and other immune cells. Ultimately, we provide a systematic overview of novel therapeutic concepts and anti-infective strategies that aim at neutralizing S. aureus surface proteins or sortases, the molecular catalysts of protein anchoring in Gram-positive bacteria.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Leonard AC, Goncheva MI, Gilbert SE, Shareefdeen H, Petrie LE, Thompson LK, Khursigara CM, Heinrichs DE, Cox G. Autolysin-mediated peptidoglycan hydrolysis is required for the surface display of Staphylococcus aureus cell wall-anchored proteins. Proc Natl Acad Sci U S A 2023; 120:e2301414120. [PMID: 36920922 PMCID: PMC10041135 DOI: 10.1073/pnas.2301414120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
Peptidoglycan hydrolases, or autolysins, play a critical role in cell wall remodeling and degradation, facilitating bacterial growth, cell division, and cell separation. In Staphylococcus aureus, the so-called "major" autolysin, Atl, has long been associated with host adhesion; however, the molecular basis underlying this phenomenon remains understudied. To investigate, we used the type V glycopeptide antibiotic complestatin, which binds to peptidoglycan and blocks the activity of autolysins, as a chemical probe of autolysin function. We also generated a chromosomally encoded, catalytically inactive variant of the Atl enzyme. Autolysin-mediated peptidoglycan hydrolysis, in particular Atl-mediated daughter cell separation, was shown to be critical for maintaining optimal surface levels of S. aureus cell wall-anchored proteins, including the fibronectin-binding proteins (FnBPs) and protein A (Spa). As such, disrupting autolysin function reduced the affinity of S. aureus for host cell ligands, and negatively impacted early stages of bacterial colonization in a systemic model of S. aureus infection. Phenotypic studies revealed that Spa was sequestered at the septum of complestatin-treated cells, highlighting that autolysins are required to liberate Spa during cell division. In summary, we reveal the hydrolytic activities of autolysins are associated with the surface display of S. aureus cell wall-anchored proteins. We demonstrate that by blocking autolysin function, type V glycopeptide antibiotics are promising antivirulence agents for the development of strategies to control S. aureus infections.
Collapse
Affiliation(s)
- Allison C. Leonard
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| | - Mariya I. Goncheva
- Department of Microbiology and Immunology, University of Western Ontario, LondonONN6A 5C1, Canada
| | - Stephanie E. Gilbert
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| | - Hiba Shareefdeen
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| | - Laurenne E. Petrie
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| | - Laura K. Thompson
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| | - Cezar M. Khursigara
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| | - David E. Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, LondonONN6A 5C1, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, GuelphONN1G 2W1, Canada
| |
Collapse
|
33
|
Su X, Yu H, Wang X, Zhang C, Wang H, Kong X, Qu Y, Luan Y, Meng Y, Guan J, Song G, Wang L, Song W, Zhao Y. Cyanidin chloride protects mice from methicillin-resistant Staphylococcus aureus-induced pneumonia by targeting Sortase A. Virulence 2022; 13:1434-1445. [PMID: 35983964 PMCID: PMC9397467 DOI: 10.1080/21505594.2022.2112831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has been developing rapidly in recent years. It poses a severe peril to global health care, and the new strategies to against the MRSA is urgently needed. Sortase A (SrtA) regulates the anchoring of many surface proteins. Compounds repress Staphylococcus aureus (S. aureus) cysteine transpeptidase SrtA are considered adequate potent virulence inhibitors. Then, we describe the identification of an effective SrtA inhibitor, cyanidin chloride, a bioflavonoid compound isolated from various plants. It has a reversible inhibitory effect on SrtA activity at an IC50 of 21.91 μg/mL. As a SrtA inhibitor, cyanidin chloride antagonizes SrtA-related virulence phenotypes due to its breadth and specificity, including fibrinogen adhesion, A549 cell invasion, biofilm formation, and surface protein (SpA) anchoring. Subsequently, molecular docking and fluorescence quenching revealed that SrtA and cyanidin chloride had robust mutual affinity. Further mechanistic studies revealed that Arg-197, Gly-167, and Sep-116 were the key-binding sites mediating the interaction between SrtA and cyanidin chloride. Notably, a significant therapeutic effect of cyanidin chloride in vivo was also observed on the mouse pneumonia model induced by MRSA. In conclusion, our study indicates that cyanidin chloride potentially represents a new candidate SrtA inhibitor for S. aureus and potentially be developed as a new antivirulence agent.
Collapse
Affiliation(s)
- Xin Su
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangqian Yu
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xingye Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chi Zhang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Heming Wang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiangri Kong
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,College of Animal Science, Jilin University, Changchun, China
| | - Yishen Qu
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yanhe Luan
- College of Animal Science, Jilin University, Changchun, China
| | - Ying Meng
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Guangqi Song
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Li Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,CONTACT Li Wang
| | - Wu Song
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,Wu Song
| | - Yicheng Zhao
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China,Yicheng Zhao
| |
Collapse
|
34
|
Wang X, Luan Y, Hou J, Jiang T, Zhao Y, Song W, Wang L, Kong X, Guan J, Song D, Wang B, Li M. The protection effect of rhodionin against methicillin-resistant Staphylococcus aureus-induced pneumonia through sortase A inhibition. World J Microbiol Biotechnol 2022; 39:18. [PMID: 36409383 DOI: 10.1007/s11274-022-03457-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a zoonotic antibiotic-resistant pathogen that negatively impacts society from medical, veterinary, and societal standpoints. The search for alternative therapeutic strategies and innovative anti-infective agents is urgently needed. Among the pathogenic mechanisms of Staphylococcus aureus (S. aureus), sortase A is a virulence factor of great concern because it is highly linked with the ability of MRSA to invade the host. In this study, we identified that rhodionin, a natural compound of flavonoid glucosides, effectively inhibited the activity of SrtA without affecting the survival and growth of bacteria, and its half maximal inhibitory concentration (IC50) value was 22.85 μg/mL. In vitro, rhodionin prominently attenuated the virulence-related phenotype of SrtA by reducing the adhesion of S. aureus to fibrinogen, reducing the capacity of protein A (SpA) on the bacterial surface and biofilm formation. Subsequently, fluorescence quenching and molecular docking were performed to verify that rhodionin directly bonded to SrtA molecule with KA value of 6.22 × 105 L/mol. More importantly, rhodionin showed a significant protective effect on mice pneumonia model and improved the survival rate of mice. According to the above findings, rhodionin achieved efficacy in the treatment of MRSA-induced infections, which holds promising potential to be developed into a candidate used for MRSA-related infections.
Collapse
Affiliation(s)
- Xingye Wang
- Changchun University of Chinese Medicine, Changchun, China.,The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yanhe Luan
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Juan Hou
- Changchun University of Chinese Medicine, Changchun, China
| | - Tao Jiang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Xiangri Kong
- Changchun University of Chinese Medicine, Changchun, China.,The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Danning Song
- Changchun University of Chinese Medicine, Changchun, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, China.
| | - Mingquan Li
- Changchun University of Chinese Medicine, Changchun, China. .,The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China. .,The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
35
|
Tian L, Wu X, Yu H, Yang F, Sun J, Zhou T, Jiang H. Isovitexin Protects Mice from Methicillin-Resistant Staphylococcus aureus-Induced Pneumonia by Targeting Sortase A. J Microbiol Biotechnol 2022; 32:1284-1291. [PMID: 36224754 PMCID: PMC9668100 DOI: 10.4014/jmb.2206.06007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The rise of methicillin-resistant Staphylococcus aureus (MRSA) has resulted in significant morbidity and mortality, and clinical treatment of MRSA infections has become extremely difficult. Sortase A (SrtA), a virulence determinant that anchors numerous virulence-related proteins to the cell wall, is a prime druggable target against S. aureus infection due to its crucial role in the pathogenicity of S. aureus. Here, we demonstrate that isovitexin, an active ingredient derived from a variety of traditional Chinese medicines, can reversibly inhibit SrtA activity in vitro with a low dose (IC50=24.72 μg/ml). Fluorescence quenching and molecular simulations proved the interaction between isovitexin and SrtA. Subsequent point mutation experiments further confirmed that the critical amino acid positions for SrtA binding to isovitexin were Ala-92, Ile-182, and Trp-197. In addition, isovitexin treatment dramatically reduced S. aureus invasion of A549 cells. This study shows that treatment with isovitexin could alleviate pathological injury and prolong the life span of mice in an S. aureus pneumonia model. According to our research, isovitexin represents a promising lead molecule for the creation of anti-S. aureus medicines or adjuncts.
Collapse
Affiliation(s)
- Lili Tian
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Xinliang Wu
- Department of Pharmacy, Tianjin Baodi Hospital, Baodi Clinical College, Tianjin Medical University, Tianjin 301800, P.R. China
| | - Hangqian Yu
- College of Animal Science, Jilin University, Changchun 130062, P.R. China
| | - Fengying Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Jian Sun
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College Agriculture, Beijing 102442, P.R. China
| | - Tiezhong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China,Corresponding authors T. Zhou E-mail:
| | - Hong Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China,
H. Jiang E-mail:
| |
Collapse
|
36
|
Apostolos AJ, Kelly JJ, Ongwae GM, Pires MM. Structure Activity Relationship of the Stem Peptide in Sortase A Mediated Ligation from Staphylococcus aureus. Chembiochem 2022; 23:e202200412. [PMID: 36018606 PMCID: PMC9632411 DOI: 10.1002/cbic.202200412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Indexed: 01/11/2023]
Abstract
The surfaces of most Gram-positive bacterial cells, including that of Staphylococcus aureus (S. aureus), are heavily decorated with proteins that coordinate cellular interactions with the extracellular space. In S. aureus, sortase A is the principal enzyme responsible for covalently anchoring proteins, which display the sorting signal LPXTG, onto the peptidoglycan (PG) matrix. Considerable efforts have been made to understand the role of this signal peptide in the sortase-mediated reaction. In contrast, much less is known about how the primary structure of the other substrate involved in the reaction (PG stem peptide) could impact sortase activity. To assess the sortase activity, a library of synthetic analogs of the stem peptide that mimic naturally existing variations found in the S. aureus PG primary sequence were evaluated. Using a combination of two unique assays, we showed that there is broad tolerability of substrate variations that are effectively processed by sortase A. While some of these stem peptide derivatives are naturally found in mature PG, they are not known to be present in the PG precursor, lipid II. These results suggest that sortase A could process both lipid II and mature PG as acyl-acceptor strands that might reside near the membrane, which has not been previously described.
Collapse
Affiliation(s)
| | - Joey J. Kelly
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| | - George M. Ongwae
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| | - Marcos M. Pires
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| |
Collapse
|
37
|
Chi Y, Wang Y, Ji M, Li Y, Zhu H, Yan Y, Fu D, Zou L, Ren B. Natural products from traditional medicine as promising agents targeting at different stages of oral biofilm development. Front Microbiol 2022; 13:955459. [PMID: 36033896 PMCID: PMC9411938 DOI: 10.3389/fmicb.2022.955459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Oral cavity is an ideal habitat for more than 1,000 species of microorganisms. The diverse oral microbes form biofilms over the hard and soft tissues in the oral cavity, affecting the oral ecological balance and the development of oral diseases, such as caries, apical periodontitis, and periodontitis. Currently, antibiotics are the primary agents against infectious diseases; however, the emergence of drug resistance and the disruption of oral microecology have challenged their applications. The discovery of new antibiotic-independent agents is a promising strategy against biofilm-induced infections. Natural products from traditional medicine have shown potential antibiofilm activities in the oral cavity with high safety, cost-effectiveness, and minimal adverse drug reactions. Aiming to highlight the importance and functions of natural products from traditional medicine against oral biofilms, here we summarized and discussed the antibiofilm effects of natural products targeting at different stages of the biofilm formation process, including adhesion, proliferation, maturation, and dispersion, and their effects on multi-species biofilms. The perspective of antibiofilm agents for oral infectious diseases to restore the balance of oral microecology is also discussed.
Collapse
Affiliation(s)
- Yaqi Chi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hualing Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Di Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zou,
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Biao Ren,
| |
Collapse
|
38
|
Hibifolin, a Natural Sortase A Inhibitor, Attenuates the Pathogenicity of Staphylococcus aureus and Enhances the Antibacterial Activity of Cefotaxime. Microbiol Spectr 2022; 10:e0095022. [PMID: 35913166 PMCID: PMC9430695 DOI: 10.1128/spectrum.00950-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed to identify hibifolin as a sortase A (SrtA) inhibitor and to determine whether it could attenuate the virulence of methicillin-resistant Staphylococcus aureus (MRSA). We employed a fluorescence resonance energy transfer (FRET) assay to screen a library of natural molecules to identify compounds that inhibit SrtA activity. Fluorescence quenching assay and molecular docking were performed to verify the direct binding interaction between SrtA and hibifolin. The pneumonia model was established using C57BL/6J mice by MRAS nasal administration for evaluating the effect of hibifolin on the pathogenicity of MRSA. Herein, we found that hibifolin was able to inhibit SrtA activity with an IC50 of 31.20 μg/mL. Further assays showed that the capacity of adhesion of bacteria to the host cells and biofilm formation was decreased in hibifolin-treated USA300. Results obtained from fluorescence quenching assay and molecular docking indicated that hibifolin was capable of targeting SrtA protein directly. This interaction was further confirmed by the finding that the inhibition activities of hibifolin on mutant SrtA were substantially reduced after mutating the binding sites (TRP-194, ALA-104, THR-180, ARG-197, ASN-114). The in vivo study showed that hibifolin in combination with cefotaxime protected mice from USA300 infection-induced pneumonia, which was more potent than cefotaxime alone, and no significant cytotoxicity of hibifolin was observed. Taken together, we identified that hibifolin attenuated the pathogenicity of S. aureus by directly targeting SrtA, which may be utilized in the future as adjuvant therapy for S. aureus infections. IMPORTANCE We identified hibifolin as a sortase A (SrtA) inhibitor by screening the natural compounds library, which effectively inhibited the activity of SrtA with an IC50 value of 31.20 μg/mL. Hibifolin attenuated the pathogenic behavior of Staphylococcus aureus, including adhesion, invasion, and biofilm formation. Binding assays showed that hibifolin bound to SrtA protein directly. Hibifolin improved the survival of pneumonia induced by S. aureus USA300 in mice and alleviated the pathological damage. Moreover, hibifolin showed a synergistic antibacterial effect with cefotaxime in USA300-infected mice.
Collapse
|
39
|
A conserved signal-peptidase antagonist modulates membrane homeostasis of actinobacterial sortase critical for surface morphogenesis. Proc Natl Acad Sci U S A 2022; 119:e2203114119. [PMID: 35787040 PMCID: PMC9282373 DOI: 10.1073/pnas.2203114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell wall anchoring of surface proteins in Gram-positive bacteria requires a sortase enzyme. Here, we unveiled the hitherto unknown function of an evolutionarily conserved small transmembrane protein, named SafA, genetically linked to the housekeeping sortase in Actinobacteria. We show that Actinomyces oris SafA interacts with the housekeeping sortase SrtA via the conserved FPW motif and prevents SrtA cleavage by the signal peptidase LepB2, hence maintaining membrane homeostasis of SrtA. This function is conserved as ectopic expression of SafA from Corynebacterium diphtheriae and Corynebacterium matruchotii in the A. oris safA mutant rescues its defects in cell morphology, pilus assembly, surface protein localization, and polymicrobial interactions. Thus, SafA represents an archetypal antagonist of signal peptidase that modulates surface assembly in Actinobacteria. Most Actinobacteria encode a small transmembrane protein, whose gene lies immediately downstream of the housekeeping sortase coding for a transpeptidase that anchors many extracellular proteins to the Gram-positive bacterial cell wall. Here, we uncover the hitherto unknown function of this class of conserved proteins, which we name SafA, as a topological modulator of sortase in the oral Actinobacterium Actinomyces oris. Genetic deletion of safA induces cleavage and excretion of the otherwise predominantly membrane-bound SrtA in wild-type cells. Strikingly, the safA mutant, although viable, exhibits severe abnormalities in cell morphology, pilus assembly, surface protein localization, and polymicrobial interactions—the phenotypes that are mirrored by srtA depletion. The pleiotropic defect of the safA mutant is rescued by ectopic expression of safA from not only A. oris, but also Corynebacterium diphtheriae or Corynebacterium matruchotii. Importantly, the SrtA N terminus harbors a tripartite-domain feature typical of a bacterial signal peptide, including a cleavage motif AXA, mutations in which prevent SrtA cleavage mediated by the signal peptidase LepB2. Bacterial two-hybrid analysis demonstrates that SafA and SrtA directly interact. This interaction involves a conserved motif FPW within the exoplasmic face of SafA, since mutations of this motif abrogate SafA-SrtA interaction and induce SrtA cleavage and excretion as observed in the safA mutant. Evidently, SafA is a membrane-imbedded antagonist of signal peptidase that safeguards and maintains membrane homeostasis of the housekeeping sortase SrtA, a central player of cell surface assembly.
Collapse
|
40
|
Cho E, Hwang JY, Park JS, Oh D, Oh DC, Park HG, Shin J, Oh KB. Inhibition of Streptococcus mutans adhesion and biofilm formation with small-molecule inhibitors of sortase A from Juniperus chinensis. J Oral Microbiol 2022; 14:2088937. [PMID: 35756538 PMCID: PMC9225741 DOI: 10.1080/20002297.2022.2088937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background Streptococcus mutans, an important Gram-positive pathogen in dental caries, uses sortase A (SrtA) to anchor surface proteins to the bacterial cell wall, thereby promoting biofilm formation and attachment to the tooth surface. Design Based on activity-guided separation, inhibitors of S. mutans SrtA were isolated from Juniperus chinensis and identified through combined spectroscopic analysis. Further effects of isolated SrtA inhibitor on S. mutans were evaluated on bacterial aggregation, adherence and biofilm formation. Results Six compounds (1–6) were isolated from the dried heartwood of J. chinensis. A novel compound designated 3’,3”-dihydroxy-(−)-matairesinol (1) was identified, which exhibited potent inhibitory activity toward S. mutans SrtA (IC50 = 16.1 μM) without affecting microbial viability (minimum inhibitory concentration > 300 μM). The results of subsequent bioassays using compound 1 indicated that this compound inhibits S. mutans aggregation, adhesion and biofilm formation on solid surfaces by inhibiting SrtA activity. The onset and magnitude of inhibition of adherence and biofilm formation in S. mutans treated with compound 1 at 4× the SrtA IC50 are comparable to the behaviors of the untreated srtA-deletion mutant. Conclusion Our findings suggest that small-molecule inhibitors of S. mutans SrtA may be useful for the prevention of dental plaque and treatment of dental microbial diseases.
Collapse
Affiliation(s)
- Eunji Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Yeon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jae Sung Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Daehyun Oh
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyeung-Geun Park
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Berry KA, Verhoef MTA, Leonard AC, Cox G. Staphylococcus aureus adhesion to the host. Ann N Y Acad Sci 2022; 1515:75-96. [PMID: 35705378 DOI: 10.1111/nyas.14807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is a pathobiont capable of colonizing and infecting most tissues within the human body, resulting in a multitude of different clinical outcomes. Adhesion of S. aureus to the host is crucial for both host colonization and the establishment of infections. Underlying the pathogen's success is a complex and diverse arsenal of adhesins. In this review, we discuss the different classes of adhesins, including a consideration of the various adhesion sites throughout the body and the clinical outcomes of each infection type. The development of therapeutics targeting the S. aureus host-pathogen interaction is a relatively understudied area. Due to the increasing global threat of antimicrobial resistance, it is crucial that innovative and alternative approaches are considered. Neutralizing virulence factors, through the development of antivirulence agents, could reduce bacterial pathogenicity and the ever-increasing burden of S. aureus infections. This review provides insight into potentially efficacious adhesion-associated targets for the development of novel decolonizing and antivirulence strategies.
Collapse
Affiliation(s)
- Kirsten A Berry
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mackenzie T A Verhoef
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
42
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
43
|
Punicalagin, an Inhibitor of Sortase A, Is a Promising Therapeutic Drug to Combat Methicillin-Resistant Staphylococcus aureus Infections. Antimicrob Agents Chemother 2022; 66:e0022422. [PMID: 35652646 DOI: 10.1128/aac.00224-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial resistance (AMR) poses a major threat to human health globally. Staphylococcus aureus is recognized as a cause of disease worldwide, especially methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA). The enzyme sortase A (SrtA), present on the cell surface of S. aureus, plays a key role in bacterial virulence without affecting the bacterial viability, and SrtA-deficient S. aureus strains do not affect the growth of bacteria. Here, we found that punicalagin, a natural compound, was able to inhibit SrtA activity with a very low half maximal inhibitory concentration (IC50) value of 4.23 μg/mL, and punicalagin is a reversible inhibitor of SrtA. Moreover, punicalagin has no distinct cytotoxicity toward A549, HEK293T, or HepG2 cells at a much higher concentration than the IC50 detected by MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assays. In addition, punicalagin visibly attenuated the virulence-related phenotype of SrtA in vitro by decreasing adhesion of S. aureus to fibrinogen, reducing the ability of protein A (SpA) displayed on the surface of the bacteria and biofilm formation. Fluorescence quenching elucidated the interaction between punicalagin and SrtA. Molecular docking further implied that the inhibitory activity lay in the bond between punicalagin and SrtA residues LYS190, TYR187, ALA104, and GLU106. In In vivo studies, we surprisingly found that punicalagin had a more effective curative effect combined with cefotaxime when mice were infected with pneumonia caused by MRSA. Essentially, punicalagin, a therapeutic compound targeting SrtA, demonstrates great potential for combating MRSA infections.
Collapse
|
44
|
Zhuravleva OI, Oleinikova GK, Antonov AS, Kirichuk NN, Pelageev DN, Rasin AB, Menshov AS, Popov RS, Kim NY, Chingizova EA, Chingizov AR, Volchkova OO, von Amsberg G, Dyshlovoy SA, Yurchenko EA, Guzhova IV, Yurchenko AN. New Antibacterial Chloro-Containing Polyketides from the Alga-Derived Fungus Asteromyces cruciatus KMM 4696. J Fungi (Basel) 2022; 8:jof8050454. [PMID: 35628710 PMCID: PMC9147975 DOI: 10.3390/jof8050454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Six new polyketides acrucipentyns A–F (1–6) were isolated from the alga-derived fungus Asteromyces cruciatus KMM 4696. Their structures were established based on spectroscopic methods. The absolute configurations of acrucipentyn A was assigned by the modified Mosher’s method and ROESY data analysis. Acrucipentyns A–E were identified to be the very first examples of chlorine-containing asperpentyn-like compounds. The cytotoxic and antimicrobial activities of the isolated compounds were examined. Acrucipentyns A–F were found as antimicrobial agents, which inhibited sortase A enzyme activity, bacterial growth and biofilm formation of Staphylococcus aureus and decreased LDH release from human keratinocytes HaCaT in S. aureus skin infection in an in vitro model.
Collapse
Affiliation(s)
- Olesya I. Zhuravleva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (O.O.V.); (S.A.D.)
- Correspondence: ; Tel.: +7-423-231-1168
| | - Galina K. Oleinikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Alexandr S. Antonov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Natalia N. Kirichuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Dmitry N. Pelageev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Anton B. Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Alexander S. Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Natalya Yu. Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Artur R. Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Olga O. Volchkova
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (O.O.V.); (S.A.D.)
| | - Gunhild von Amsberg
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sergey A. Dyshlovoy
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (O.O.V.); (S.A.D.)
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| | - Irina V. Guzhova
- Institute of Cytology Russian Academy of Sciences, Tikhoretskiy Ave. 4, 194064 St. Petersburg, Russia;
| | - Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, 690022 Vladivostok, Russia; (G.K.O.); (A.S.A.); (N.N.K.); (D.N.P.); (A.B.R.); (A.S.M.); (R.S.P.); (N.Y.K.); (E.A.C.); (A.R.C.); (E.A.Y.); (A.N.Y.)
| |
Collapse
|
45
|
Scutellarin potentiates vancomycin against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus through dual inhibition of sortase A and caseinolytic peptidase P. Biochem Pharmacol 2022; 199:114982. [PMID: 35247333 DOI: 10.1016/j.bcp.2022.114982] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023]
Abstract
The strategy of targeting virulence factor has received great attention as it barely develops bacterial resistance. Sortase A (SrtA) and caseinolytic peptidase P (ClpP), as important virulence factors, are considered to be ideal pharmacological targets for methicillin-resistant Staphylococcus aureus (MRSA) infection. Through screening hundreds of compounds, we found scutellarin, a natural flavonoid, markedly inhibited SrtA and ClpP activities of MRSA strain USA300 with an IC50 of 53.64 μg/mL and 107.00 μg/mL, respectively. Subsequently, we observed that scutellarin could inhibit the SrtA-related virulence of MRSA. To demonstrate whether scutellarin directly binding to SrtA, fluorescence quenching assay and molecular docking were performed and the results indicated that scutellarin directly bonded to SrtA molecule with a KA value of 7.58 × 104 L/mol. In addition to direct SrtA inhibition, scutellarin could also inhibit hemolytic activity of S. aureus by inhibiting the expression of Hla in a SrtA-independent manner. Further assays confirmed that scutellarin inhibited hemolysis by inhibiting ClpP. The combination of scutellarin and vancomycin showed enhancing inhibition of USA300 in vitro and in vivo, evidenced by decreased MIC from 3 μg/mL to 0.5 μg/mL and increased survival and improvement of lung pathology in pneumonia mice. Taken together, these results suggest that scutellarin exhibited di-inhibitory effects on SrtA and ClpP of USA300. The di-inhibition of virulence factors by scutellarin combined with vancomycin to prevent MRSA invasion of A549 cells and pneumonia in mice, indicating that scutellarin is expected to be a potential adjuvant against MRSA in the future.
Collapse
|
46
|
Manzer HS, Villarreal RI, Doran KS. Targeting the BspC-vimentin interaction to develop anti-virulence therapies during Group B streptococcal meningitis. PLoS Pathog 2022; 18:e1010397. [PMID: 35316308 PMCID: PMC8939794 DOI: 10.1371/journal.ppat.1010397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Bacterial infections are a major cause of morbidity and mortality worldwide and the rise of antibiotic resistance necessitates development of alternative treatments. Pathogen adhesins that bind to host cells initiate disease pathogenesis and represent potential therapeutic targets. We have shown previously that the BspC adhesin in Group B Streptococcus (GBS), the leading cause of bacterial neonatal meningitis, interacts with host vimentin to promote attachment to brain endothelium and disease development. Here we determined that the BspC variable (V-) domain contains the vimentin binding site and promotes GBS adherence to brain endothelium. Site directed mutagenesis identified a binding pocket necessary for GBS host cell interaction and development of meningitis. Using a virtual structure-based drug screen we identified compounds that targeted the V-domain binding pocket, which blocked GBS adherence and entry into the brain in vivo. These data indicate the utility of targeting the pathogen-host interface to develop anti-virulence therapeutics.
Collapse
Affiliation(s)
- Haider S. Manzer
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Ricardo I. Villarreal
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Kelly S. Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| |
Collapse
|
47
|
Recent Strategies to Combat Biofilms Using Antimicrobial Agents and Therapeutic Approaches. Pathogens 2022; 11:pathogens11030292. [PMID: 35335616 PMCID: PMC8955104 DOI: 10.3390/pathogens11030292] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Biofilms are intricate bacterial assemblages that attach to diverse surfaces using an extracellular polymeric substance that protects them from the host immune system and conventional antibiotics. Biofilms cause chronic infections that result in millions of deaths around the world every year. Since the antibiotic tolerance mechanism in biofilm is different than that of the planktonic cells due to its multicellular structure, the currently available antibiotics are inadequate to treat biofilm-associated infections which have led to an immense need to find newer treatment options. Over the years, various novel antibiofilm compounds able to fight biofilms have been discovered. In this review, we have focused on the recent and intensively researched therapeutic techniques and antibiofilm agents used for biofilm treatment and grouped them according to their type and mode of action. We also discuss some therapeutic approaches that have the potential for future advancement.
Collapse
|
48
|
Francés-Cuesta C, Ansari I, Fernández-Garayzábal JF, Gibello A, González-Candelas F. Comparative genomics and evolutionary analysis of Lactococcus garvieae isolated from human endocarditis. Microb Genom 2022; 8. [PMID: 35196218 PMCID: PMC8942021 DOI: 10.1099/mgen.0.000771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lactococcus garvieae is a well-known pathogen of fish, but is rarely involved in infections in humans and other mammals. In humans, the main clinical manifestation of L. garvieae infections is endocarditis usually related to the ingestion of contaminated food, such as undercooked fish and shellfish. This study presents the first complete genomic sequence of a clinical L. garvieae strain isolated from a patient with endocarditis and its comparative analysis with other genomes. This human isolate contains a circular chromosome of 2 099 060 bp and one plasmid of 50 557 bp. In comparison with other fully sequenced L. garvieae strains, the chromosomal DNA of L. garvieae Lg-Granada carries a low proportion of insertion sequence elements and a higher number of putative prophages. Our results show that, in general, L. garvieae is a highly recombinogenic species with an open pangenome in which almost 30 % of its genome has undergone horizontal transfers. Within the genus Lactococcus, L. lactis is the main donor of genetic components to L. garvieae but, taking Lg-Granada as a representative, this bacterium tends to import more genes from Bacilli taxa than from other Lactococcus species.
Collapse
Affiliation(s)
- Carlos Francés-Cuesta
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio, UV-CSIC) and CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Iván Ansari
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio, UV-CSIC) and CIBER in Epidemiology and Public Health, Valencia, Spain
| | - José Francisco Fernández-Garayzábal
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain.,VISAVET Animal Health Surveillance Center, Complutense University, Madrid, Spain
| | - Alicia Gibello
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - Fernando González-Candelas
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio, UV-CSIC) and CIBER in Epidemiology and Public Health, Valencia, Spain
| |
Collapse
|
49
|
Guan XN, Zhang T, Yang T, Dong Z, Yang S, Lan L, Gan J, Yang CG. Covalent sortase A inhibitor ML346 prevents Staphylococcus aureus infection of Galleria mellonella. RSC Med Chem 2022; 13:138-149. [PMID: 35308030 PMCID: PMC8864484 DOI: 10.1039/d1md00316j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 12/16/2023] Open
Abstract
The housekeeping sortase A (SrtA), a membrane-associated cysteine transpeptidase, is responsible for anchoring surface proteins to the cell wall peptidoglycan in Gram-positive bacteria. This process is essential for the regulation of bacterial virulence and pathogenicity. Therefore, SrtA is considered to be an ideal target for antivirulence therapy. In this study, we report that ML346, a compound with a barbituric acid and cinnamaldehyde scaffold, functions as an irreversible inhibitor of Staphylococcus aureus SrtA (SaSrtA) and Streptococcus pyogenes SrtA (SpSrtA) in vitro at low micromolar concentrations. According to our X-ray crystal structure of the SpSrtAΔN81/ML346 complex (Protein Data Bank ID: 7V6K), ML346 covalently modifies the thiol group of Cys208 in the active site of SpSrtA. Importantly, ML346 significantly attenuated the virulence phenotypes of S. aureus and exhibited inhibitory effects on Galleria mellonella larva infection caused by S. aureus. Collectively, our results indicate that ML346 has potential for development as a covalent antivirulence agent for treating S. aureus infections, including methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Xiang-Na Guan
- Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Tao Zhang
- Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Teng Yang
- Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University Guiyang 550025 China
| | - Ze Dong
- Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University Guiyang 550025 China
| | - Lefu Lan
- Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of the Chinese Academy of Sciences Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Jianhua Gan
- School of Life Sciences, Fudan University Shanghai 200433 China
| | - Cai-Guang Yang
- Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of the Chinese Academy of Sciences Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
50
|
Barthels F, Meyr J, Hammerschmidt SJ, Marciniak T, Räder HJ, Ziebuhr W, Engels B, Schirmeister T. 2-Sulfonylpyrimidines as Privileged Warheads for the Development of S. aureus Sortase A Inhibitors. Front Mol Biosci 2022; 8:804970. [PMID: 35047562 PMCID: PMC8763382 DOI: 10.3389/fmolb.2021.804970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with emerging multiresistant isolates causing a significant burden to public health systems. We identified 2-sulfonylpyrimidines as a new class of potent inhibitors against S. aureus sortase A acting by covalent modification of the active site cysteine 184. Series of derivatives were synthesized to derive structure-activity relationship (SAR) with the most potent compounds displaying low micromolar KI values. Studies on the inhibition selectivity of homologous cysteine proteases showed that 2-sulfonylpyrimidines reacted efficiently with protonated cysteine residues as found in sortase A, though surprisingly, no reaction occurred with the more nucleophilic cysteine residue from imidazolinium-thiolate dyads of cathepsin-like proteases. By means of enzymatic and chemical kinetics as well as quantum chemical calculations, it could be rationalized that the SNAr reaction between protonated cysteine residues and 2-sulfonylpyrimidines proceeds in a concerted fashion, and the mechanism involves a ternary transition state with a conjugated base. Molecular docking and enzyme inhibition at variable pH values allowed us to hypothesize that in sortase A this base is represented by the catalytic histidine 120, which could be substantiated by QM model calculation with 4-methylimidazole as histidine analog.
Collapse
Affiliation(s)
- Fabian Barthels
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Jessica Meyr
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Stefan J Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Tessa Marciniak
- Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | | | - Wilma Ziebuhr
- Institute for Molecular Infection Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Bernd Engels
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|