1
|
Ouyang B, True AC, Crimaldi JP, Ermentrout B. Simple olfactory navigation in air and water. J Theor Biol 2024; 595:111941. [PMID: 39260736 DOI: 10.1016/j.jtbi.2024.111941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Two simple algorithms based on combining odor concentration differences across time and space along with information on the flow direction are tested for their ability to locate an odor source in four different odor landscapes. Image data taken from air plumes in three different regimes and a water plume are used as test environments for a bilateral ("stereo sampling") algorithm using concentration differences across two sensors and a "casting" algorithm that uses successive samples to decide orientation. Agents are started at random locations and orientations in the landscape and allowed to move until they reach the source of the odor (success) or leave the imaged area (failure). Parameters for the algorithm are chosen to optimize success and to minimize path length to the source. Success rates over 90% are consistently obtained with path lengths that can be as low as twice the starting distance from the source in air and four times the distance in the highly turbulent water plumes. We find that parameters that optimize success often lead to more exploratory pathways to the source. Information about the direction from which the odor is coming is necessary for successful navigation in the water plume and reduces the path length in the three tested air plumes.
Collapse
Affiliation(s)
- Bowei Ouyang
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| | - Aaron C True
- Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America.
| | - John P Crimaldi
- Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America.
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
2
|
Moreno Cunha G, Corso G, Brasil de Sousa MP, dos Santos Lima GZ. Can ephapticity contribute to brain complexity? PLoS One 2024; 19:e0310640. [PMID: 39636938 PMCID: PMC11620465 DOI: 10.1371/journal.pone.0310640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/04/2024] [Indexed: 12/07/2024] Open
Abstract
The inquiry into the origin of brain complexity remains a pivotal question in neuroscience. While synaptic stimuli are acknowledged as significant, their efficacy often falls short in elucidating the extensive interconnections of the brain and nuanced levels of cognitive integration. Recent advances in neuroscience have brought the mechanisms underlying the generation of highly intricate dynamics, emergent patterns, and sophisticated oscillatory signals into question. Within this context, our study, in alignment with current research, postulates the hypothesis that ephaptic communication, in addition to synaptic mediation's, may emerge as a prime candidate for unraveling optimal brain complexity. Ephaptic communication, hitherto little studied, refers to direct interactions of the electric field between adjacent neurons, without the mediation of traditional synapses (electrical or chemical). We propose that these electric field couplings may provide an additional layer of connectivity that facilitates the formation of complex patterns and emergent dynamics in the brain. In this investigation, we conducted a comparative analysis between two types of networks utilizing the Quadratic Integrate-and-Fire Ephaptic model (QIF-E): (I) a small-world synaptic network (ephaptic-off) and (II) a mixed composite network comprising a small-world synaptic network with the addition of an ephaptic network (ephaptic-on). Utilizing the Multiscale Entropy methodology, we conducted an in-depth analysis of the responses generated by both network configurations, with complexity assessed by integrating across all temporal scales. Our findings demonstrate that ephaptic coupling enhances complexity under specific topological conditions, considering variables such as time, spatial scales, and synaptic intensity. These results offer fresh insights into the dynamics of communication within the nervous system and underscore the fundamental role of ephapticity in regulating complex brain functions.
Collapse
Affiliation(s)
- Gabriel Moreno Cunha
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Laboratório de Simulação e Modelagem Neurodinâmica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Gilberto Corso
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Matheus Phellipe Brasil de Sousa
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Laboratório de Simulação e Modelagem Neurodinâmica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Gustavo Zampier dos Santos Lima
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Laboratório de Simulação e Modelagem Neurodinâmica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, France
| |
Collapse
|
3
|
Zheng A, Schmid S. A review of the neural basis underlying the acoustic startle response with a focus on recent developments in mammals. Neurosci Biobehav Rev 2023; 148:105129. [PMID: 36914078 DOI: 10.1016/j.neubiorev.2023.105129] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
The startle response consists of whole-body muscle contractions, eye-blink, accelerated heart rate, and freezing in response to a strong, sudden stimulus. It is evolutionarily preserved and can be observed in any animal that can perceive sensory signals, indicating the important protective function of startle. Startle response measurements and its alterations have become a valuable tool for exploring sensorimotor processes and sensory gating, especially in the context of pathologies of psychiatric disorders. The last reviews on the neural substrates underlying acoustic startle were published around 20 years ago. Advancements in methods and techniques have since allowed new insights into acoustic startle mechanisms. This review is focused on the neural circuitry that drives the primary acoustic startle response in mammals. However, there have also been very successful efforts to identify the acoustic startle pathway in other vertebrates and invertebrates in the past decades, so at the end we briefly summarize these studies and comment on the similarities and differences between species.
Collapse
Affiliation(s)
- Alice Zheng
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, Canada.
| |
Collapse
|
4
|
Lara RA, Breitzler L, Lau IH, Gordillo-Martinez F, Chen F, Fonseca PJ, Bass AH, Vasconcelos RO. Noise-induced hearing loss correlates with inner ear hair cell decrease in larval zebrafish. J Exp Biol 2022; 225:274643. [PMID: 35258623 DOI: 10.1242/jeb.243743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022]
Abstract
Anthropogenic noise can be hazardous for the auditory system and wellbeing of animals, including humans. However, very limited information is known on how this global environmental pollutant affects auditory function and inner ear sensory receptors in early ontogeny. The zebrafish (Danio rerio) is a valuable model in hearing research, including to investigate developmental processes of the vertebrate inner ear. We tested the effects of chronic exposure to white noise in larval zebrafish on inner ear saccular sensitivity and morphology at 3 and 5 days post fertilization (dpf), as well as on auditory-evoked swimming responses using the prepulse inhibition paradigm (PPI) at 5 dpf. Noise-exposed larvae showed significant increase in microphonic potential thresholds at low frequencies, 100 and 200 Hz, while PPI revealed a hypersensitisation effect and similar threshold shift at 200 Hz. Auditory sensitivity changes were accompanied by a decrease in saccular hair cell number and epithelium area. In aggregate, the results reveal noise-induced effects on inner ear structure-function in a larval fish paralleled by a decrease in auditory-evoked sensorimotor responses. More broadly, this study highlights the importance of investigating the impact of environmental noise on early development of sensory and behavioural responsiveness to acoustic stimuli.
Collapse
Affiliation(s)
- Rafael A Lara
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.,Departamento de Biología, Universidad de Sevilla, Spain
| | - Lukas Breitzler
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| | - Ieng Hou Lau
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| | | | - Fangyi Chen
- Department of Biomedical Engineering, South University of Science and Technology of China, Guangdong, China
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, NY, USA
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| |
Collapse
|
5
|
Martinez-Banaclocha M. Astroglial Isopotentiality and Calcium-Associated Biomagnetic Field Effects on Cortical Neuronal Coupling. Cells 2020; 9:cells9020439. [PMID: 32069981 PMCID: PMC7073214 DOI: 10.3390/cells9020439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
Synaptic neurotransmission is necessary but does not sufficiently explain superior cognitive faculties. Growing evidence has shown that neuron-astroglial chemical crosstalk plays a critical role in the processing of information, computation, and memory. In addition to chemical and electrical communication among neurons and between neurons and astrocytes, other nonsynaptic mechanisms called ephaptic interactions can contribute to the neuronal synchronization from different brain regions involved in the processing of information. New research on brain astrocytes has clearly shown that the membrane potential of these cells remains very stable among neighboring and distant astrocytes due to the marked bioelectric coupling between them through gap junctions. This finding raises the possibility that the neocortical astroglial network exerts a guiding template modulating the excitability and synchronization of trillions of neurons by astroglial Ca2+-associated bioelectromagnetic interactions. We propose that bioelectric and biomagnetic fields of the astroglial network equalize extracellular local field potentials (LFPs) and associated local magnetic field potentials (LMFPs) in the cortical layers of the brain areas involved in the processing of information, contributing to the adequate and coherent integration of external and internal signals. This article reviews the current knowledge of ephaptic interactions in the cerebral cortex and proposes that the isopotentiality of cortical astrocytes is a prerequisite for the maintenance of the bioelectromagnetic crosstalk between neurons and astrocytes in the neocortex.
Collapse
|
6
|
Marsden KC, Jain RA, Wolman MA, Echeverry FA, Nelson JC, Hayer KE, Miltenberg B, Pereda AE, Granato M. A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold. Cell Rep 2019; 23:878-887. [PMID: 29669291 PMCID: PMC6642828 DOI: 10.1016/j.celrep.2018.03.095] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/13/2017] [Accepted: 03/20/2018] [Indexed: 11/18/2022] Open
Abstract
Sensory experiences dynamically modify whether animals respond to a given stimulus, but it is unclear how innate behavioral thresholds are established. Here, we identify molecular and circuit-level mechanisms underlying the innate threshold of the zebrafish startle response. From a forward genetic screen, we isolated five mutant lines with reduced innate startle thresholds. Using whole-genome sequencing, we identify the causative mutation for one line to be in the fragile X mental retardation protein (FMRP)-interacting protein cyfip2. We show that cyfip2 acts independently of FMRP and that reactivation of cyfip2 restores the baseline threshold after phenotype onset. Finally, we show that cyfip2 regulates the innate startle threshold by reducing neural activity in a small group of excitatory hindbrain interneurons. Thus, we identify a selective set of genes critical to establishing an innate behavioral threshold and uncover a circuit-level role for cyfip2 in this process. Using forward genetics, electrophysiology, and combined behavior and Ca2+ imaging in zebrafish, Marsden et al. show that cyfip2 regulates the acoustic startle threshold by controlling the activity of excitatory spiral fiber interneurons.
Collapse
Affiliation(s)
- Kurt C Marsden
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, USA; Department of Biological Sciences, W.M. Keck Center for Behavioral Biology, North Carolina State University, 127 David Clark Labs, 100 Brooks Ave., Raleigh, NC 27607, USA
| | - Roshan A Jain
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, USA; Department of Biology, Haverford College, S108 Sharpless Hall, 370 Lancaster Ave., Haverford, PA 19041, USA
| | - Marc A Wolman
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, USA; Department of Zoology, 213 Zoology Research Building, 1117 West Johnson St., University of Wisconsin, Madison, WI 53706, USA
| | - Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 431 Rose F. Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Jessica C Nelson
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ben Miltenberg
- Department of Biology, Haverford College, S108 Sharpless Hall, 370 Lancaster Ave., Haverford, PA 19041, USA
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 431 Rose F. Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Bhandiwad AA, Raible DW, Rubel EW, Sisneros JA. Noise-Induced Hypersensitization of the Acoustic Startle Response in Larval Zebrafish. J Assoc Res Otolaryngol 2018; 19:741-752. [PMID: 30191425 PMCID: PMC6249159 DOI: 10.1007/s10162-018-00685-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/21/2018] [Indexed: 01/28/2023] Open
Abstract
Overexposure to loud noise is known to lead to deficits in auditory sensitivity and perception. We studied the effects of noise exposure on sensorimotor behaviors of larval (5-7 days post-fertilization) zebrafish (Danio rerio), particularly the auditory-evoked startle response and hearing sensitivity to acoustic startle stimuli. We observed a temporary 10-15 dB decrease in startle response threshold after 18 h of flat-spectrum noise exposure at 20 dB re·1 ms-2. Larval zebrafish also exhibited decreased habituation to startle-inducing stimuli following noise exposure. The noise-induced sensitization was not due to changes in absolute hearing thresholds, but was specific to the auditory-evoked escape responses. The observed noise-induced sensitization was disrupted by AMPA receptor blockade using DNQX, but not NMDA receptor blockade. Together, these experiments suggest a complex effect of noise exposure on the neural circuits mediating auditory-evoked behaviors in larval zebrafish.
Collapse
Affiliation(s)
| | - David W. Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195 USA
- Department of Biology, University of Washington, Seattle, WA 98195 USA
- Virginia M. Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195 USA
| | - Edwin W. Rubel
- Department of Psychology, University of Washington, Seattle, WA 98195 USA
- Virginia M. Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195 USA
| | - Joseph A. Sisneros
- Department of Psychology, University of Washington, Seattle, WA 98195 USA
- Department of Biology, University of Washington, Seattle, WA 98195 USA
- Virginia M. Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
8
|
Faber DS, Pereda AE. Two Forms of Electrical Transmission Between Neurons. Front Mol Neurosci 2018; 11:427. [PMID: 30534051 PMCID: PMC6276723 DOI: 10.3389/fnmol.2018.00427] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022] Open
Abstract
Electrical signaling is a cardinal feature of the nervous system and endows it with the capability of quickly reacting to changes in the environment. Although synaptic communication between nerve cells is perceived to be mainly chemically mediated, electrical synaptic interactions also occur. Two different strategies are responsible for electrical communication between neurons. One is the consequence of low resistance intercellular pathways, called "gap junctions", for the spread of electrical currents between the interior of two cells. The second occurs in the absence of cell-to-cell contacts and is a consequence of the extracellular electrical fields generated by the electrical activity of neurons. Here, we place present notions about electrical transmission in a historical perspective and contrast the contributions of the two different forms of electrical communication to brain function.
Collapse
Affiliation(s)
- Donald S. Faber
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
- Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
9
|
Miriyala A, Kessler S, Rind FC, Wright GA. Burst Firing in Bee Gustatory Neurons Prevents Adaptation. Curr Biol 2018; 28:1585-1594.e3. [PMID: 29754900 DOI: 10.1016/j.cub.2018.03.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 10/16/2022]
Abstract
Animals detect changes in the environment using modality-specific, peripheral sensory neurons. The insect gustatory system encodes tastant identity and concentration through the independent firing of gustatory receptor neurons (GRNs) that spike rapidly at stimulus onset and quickly adapt. Here, we show the first evidence that concentrated sugar evokes a temporally structured burst pattern of spiking involving two GRNs within the gustatory sensilla of bumblebees. Bursts of spikes resulted when a sucrose-activated GRN was inhibited by another GRN at a frequency of ∼22 Hz during the first 1 s of stimulation. Pharmacological blockade of gap junctions abolished bursting, indicating that bee GRNs have electrical synapses that produce a temporal pattern of spikes when one GRN is activated by a sugar ligand. Bursting permitted bee GRNs to maintain a high rate of spiking and to exhibit the slowest rate of adaptation of any insect species. Feeding bout duration correlated with coherent bursting; only sugar concentrations that produced bursting evoked the bumblebee's feeding reflex. Volume of solution imbibed was a direct function of time in contact with food. We propose that gap junctions among GRNs enable a sustained rate of GRN spiking that is necessary to drive continuous feeding by the bee proboscis.
Collapse
Affiliation(s)
- Ashwin Miriyala
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Sébastien Kessler
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - F Claire Rind
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Geraldine A Wright
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
10
|
Jain RA, Wolman MA, Marsden KC, Nelson JC, Shoenhard H, Echeverry FA, Szi C, Bell H, Skinner J, Cobbs EN, Sawada K, Zamora AD, Pereda AE, Granato M. A Forward Genetic Screen in Zebrafish Identifies the G-Protein-Coupled Receptor CaSR as a Modulator of Sensorimotor Decision Making. Curr Biol 2018; 28:1357-1369.e5. [PMID: 29681477 DOI: 10.1016/j.cub.2018.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/24/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022]
Abstract
Animals continuously integrate sensory information and select contextually appropriate responses. Here, we show that zebrafish larvae select a behavioral response to acoustic stimuli from a pre-existing choice repertoire in a context-dependent manner. We demonstrate that this sensorimotor choice is modulated by stimulus quality and history, as well as by neuromodulatory systems-all hallmarks of more complex decision making. Moreover, from a genetic screen coupled with whole-genome sequencing, we identified eight mutants with deficits in this sensorimotor choice, including mutants of the vertebrate-specific G-protein-coupled extracellular calcium-sensing receptor (CaSR), whose function in the nervous system is not well understood. We demonstrate that CaSR promotes sensorimotor decision making acutely through Gαi/o and Gαq/11 signaling, modulated by clathrin-mediated endocytosis. Combined, our results identify the first set of genes critical for behavioral choice modulation in a vertebrate and reveal an unexpected critical role for CaSR in sensorimotor decision making.
Collapse
Affiliation(s)
- Roshan A Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, Haverford College, Haverford, PA 19041, USA.
| | - Marc A Wolman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kurt C Marsden
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica C Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah Shoenhard
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Christina Szi
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Hannah Bell
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianne Skinner
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emilia N Cobbs
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Keisuke Sawada
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Amy D Zamora
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Medan V, Mäki-Marttunen T, Sztarker J, Preuss T. Differential processing in modality-specific Mauthner cell dendrites. J Physiol 2017; 596:667-689. [PMID: 29148564 DOI: 10.1113/jp274861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/11/2017] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS The present study examines dendritic integrative processes that occur in many central neurons but have been challenging to study in vivo in the vertebrate brain. The Mauthner cell of goldfish receives auditory and visual information via two separate dendrites, providing a privileged scenario for in vivo examination of dendritic integration. The results show differential attenuation properties in the Mauthner cell dendrites arising at least partly from differences in cable properties and the nonlinear behaviour of the respective dendritic membranes. In addition to distinct modality-dependent membrane specialization in neighbouring dendrites of the Mauthner cell, we report cross-modal dendritic interactions via backpropagating postsynaptic potentials. Broadly, the results of the present study provide an exceptional example for the processing power of single neurons. ABSTRACT Animals process multimodal information for adaptive behavioural decisions. In fish, evasion of a diving bird that breaks the water surface depends on integrating visual and auditory stimuli with very different characteristics. How do neurons process such differential sensory inputs at the dendritic level? For that, we studied the Mauthner cells (M-cells) in the goldfish startle circuit, which receive visual and auditory inputs via two separate dendrites, both accessible for in vivo recordings. We investigated whether electrophysiological membrane properties and dendrite morphology, studied in vivo, play a role in selective sensory processing in the M-cell. The results obtained show that anatomical and electrophysiological differences between the dendrites combine to produce stronger attenuation of visually evoked postsynaptic potentials (PSPs) than to auditory evoked PSPs. Interestingly, our recordings showed also cross-modal dendritic interaction because auditory evoked PSPs invade the ventral dendrite (VD), as well as the opposite where visual PSPs invade the lateral dendrite (LD). However, these interactions were asymmetrical, with auditory PSPs being more prominent in the VD than visual PSPs in the LD. Modelling experiments imply that this asymmetry is caused by active conductances expressed in the proximal segments of the VD. The results obtained in the present study suggest modality-dependent membrane specialization in M-cell dendrites suited for processing stimuli of different time domains and, more broadly, provide a compelling example of information processing in single neurons.
Collapse
Affiliation(s)
- Violeta Medan
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Tuomo Mäki-Marttunen
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland.,Institute of Clinical Medicine, University of Oslo, OUS, Nydalen, Oslo, Norway.,Simula Research Laboratory, Lysaker, Norway
| | - Julieta Sztarker
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Thomas Preuss
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
| |
Collapse
|
12
|
Bronson DR, Preuss T. Cellular Mechanisms of Cortisol-Induced Changes in Mauthner-Cell Excitability in the Startle Circuit of Goldfish. Front Neural Circuits 2017; 11:68. [PMID: 29033795 PMCID: PMC5625080 DOI: 10.3389/fncir.2017.00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Predator pressure and olfactory cues (alarm substance) have been shown to modulate Mauthner cell (M-cell) initiated startle escape responses (C-starts) in teleost fish. The regulation of such adaptive responses to potential threats is thought to involve the release of steroid hormones such as cortisol. However, the mechanism by which cortisol may regulate M-cell excitability is not known. Here, we used intrasomatic, in vivo recordings to elucidate the acute effects of cortisol on M-cell membrane properties and sound evoked post-synaptic potentials (PSPs). Cortisol tonically decreased threshold current in the M-cell within 10 min before trending towards baseline excitability over an hour later, which may indicate the involvement of non-genomic mechanisms. Consistently, current ramp injection experiments showed that cortisol increased M-cell input resistance in the depolarizing membrane, i.e., by a voltage-dependent postsynaptic mechanism. Cortisol also increases the magnitude of sound-evoked M-cell PSPs by reducing the efficacy of local feedforward inhibition (FFI). Interestingly, another pre-synaptic inhibitory network mediating prepulse inhibition (PPI) remained unaffected. Together, our results suggest that cortisol rapidly increases M-cell excitability via a post-synaptic effector mechanism, likely a chloride conductance, which, in combination with its dampening effect on FFI, will modulate information processing to reach threshold. Given the central role of the M-cell in initiating startle, these results are consistent with a role of cortisol in mediating the expression of a vital behavior.
Collapse
Affiliation(s)
- Daniel R Bronson
- The Graduate Center, City University of New York, New York, NY, United States
| | - Thomas Preuss
- Hunter College, City University of New York, New York, NY, United States
| |
Collapse
|
13
|
Ephaptic Coupling of Cortical Neurons: Possible Contribution of Astroglial Magnetic Fields? Neuroscience 2017; 370:37-45. [PMID: 28793233 DOI: 10.1016/j.neuroscience.2017.07.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/17/2017] [Accepted: 07/31/2017] [Indexed: 02/08/2023]
Abstract
The close anatomical and functional relationship between neuronal circuits and the astroglial network in the neocortex has been demonstrated at several organization levels supporting the idea that neuron-astroglial crosstalk can play a key role in information processing. In addition to chemical and electrical neurotransmission, other non-synaptic mechanisms called ephaptic interactions seem to be important to understand neuronal coupling and cognitive functions. Recent interest in this issue comes from the fact that extra-cranial electric and magnetic field stimulations have shown therapeutic actions in the clinical practice. The present paper reviews the current knowledge regarding the ephaptic effects in mammalian neocortex and proposes that astroglial bio-magnetic fields associated with Ca2+ transients could be implicated in the ephaptic coupling of neurons by a direct magnetic modulation of the intercellular local field potentials.
Collapse
|
14
|
Goldwyn JH, Rinzel J. Neuronal coupling by endogenous electric fields: cable theory and applications to coincidence detector neurons in the auditory brain stem. J Neurophysiol 2016; 115:2033-51. [PMID: 26823512 PMCID: PMC4869512 DOI: 10.1152/jn.00780.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/27/2016] [Indexed: 11/22/2022] Open
Abstract
The ongoing activity of neurons generates a spatially and time-varying field of extracellular voltage (Ve). This Ve field reflects population-level neural activity, but does it modulate neural dynamics and the function of neural circuits? We provide a cable theory framework to study how a bundle of model neurons generates Ve and how this Ve feeds back and influences membrane potential (Vm). We find that these "ephaptic interactions" are small but not negligible. The model neural population can generate Ve with millivolt-scale amplitude, and this Ve perturbs the Vm of "nearby" cables and effectively increases their electrotonic length. After using passive cable theory to systematically study ephaptic coupling, we explore a test case: the medial superior olive (MSO) in the auditory brain stem. The MSO is a possible locus of ephaptic interactions: sounds evoke large (millivolt scale)Vein vivo in this nucleus. The Ve response is thought to be generated by MSO neurons that perform a known neuronal computation with submillisecond temporal precision (coincidence detection to encode sound source location). Using a biophysically based model of MSO neurons, we find millivolt-scale ephaptic interactions consistent with the passive cable theory results. These subtle membrane potential perturbations induce changes in spike initiation threshold, spike time synchrony, and time difference sensitivity. These results suggest that ephaptic coupling may influence MSO function.
Collapse
Affiliation(s)
- Joshua H Goldwyn
- Center for Neural Science, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York; and Department of Mathematics, Ohio State University, Columbus, Ohio
| | - John Rinzel
- Center for Neural Science, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York; and
| |
Collapse
|
15
|
Marsden KC, Granato M. In Vivo Ca(2+) Imaging Reveals that Decreased Dendritic Excitability Drives Startle Habituation. Cell Rep 2015; 13:1733-40. [PMID: 26655893 DOI: 10.1016/j.celrep.2015.10.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/15/2015] [Accepted: 10/20/2015] [Indexed: 01/12/2023] Open
Abstract
Exposure to repetitive startling stimuli induces habitation, a simple form of learning. Despite its simplicity, the precise cellular mechanisms by which repeated stimulation converts a robust behavioral response to behavioral indifference are unclear. Here, we use head-restrained zebrafish larvae to monitor subcellular Ca(2+) dynamics in Mauthner neurons, the startle command neurons, during startle habituation in vivo. Using the Ca(2+) reporter GCaMP6s, we find that the amplitude of Ca(2+) signals in the lateral dendrite of the Mauthner neuron determines startle probability and that depression of this dendritic activity rather than downstream inhibition mediates glycine and N-methyl-D-aspartate (NMDA)-receptor-dependent short-term habituation. Combined, our results suggest a model for habituation learning in which increased inhibitory drive from feedforward inhibitory neurons combined with decreased excitatory input from auditory afferents decreases dendritic and Mauthner neuron excitability.
Collapse
Affiliation(s)
- Kurt C Marsden
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA. Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry 2015; 20:974-85. [PMID: 25224259 PMCID: PMC4362800 DOI: 10.1038/mp.2014.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/09/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
In schizophrenia, cognitive overload is thought to reflect an inability to suppress non-salient information, a process which is studied using prepulse inhibition (PPI) of the startle response. PPI is reduced in schizophrenia and routinely tested in animal models and preclinical trials of antipsychotic drugs. However, the underlying neuronal circuitry is not well understood. We used a novel genetic screen in larval zebrafish to reveal the molecular identity of neurons that are required for PPI in fish and mice. Ablation or optogenetic silencing of neurons with developmental expression of the transcription factor genomic screen homeobox 1 (gsx1) produced profound defects in PPI in zebrafish, and PPI was similarly impaired in Gsx1 knockout mice. Gsx1-expressing neurons reside in the dorsal brainstem and form synapses closely apposed to neurons that initiate the startle response. Surprisingly, brainstem Gsx1 neurons are primarily glutamatergic despite their role in a functionally inhibitory pathway. As Gsx1 has an important role in regulating interneuron development in the forebrain, these findings reveal a molecular link between control of interneuron specification and circuits that gate sensory information across brain regions.
Collapse
Affiliation(s)
- Sadie A. Bergeron
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Nicole Carrier
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Grace H. Li
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Harold A. Burgess
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA,6 Center Drive, Building 6B, Rm 3B308, Bethesda, MD 20892, , tel: 301-402-6018; fax: 301-496-0243
| |
Collapse
|
17
|
Curtin PCP, Preuss T. Glycine and GABAA receptors mediate tonic and phasic inhibitory processes that contribute to prepulse inhibition in the goldfish startle network. Front Neural Circuits 2015; 9:12. [PMID: 25852486 PMCID: PMC4371714 DOI: 10.3389/fncir.2015.00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
Prepulse inhibition (PPI) is understood as a sensorimotor gating process that attenuates sensory flow to the startle pathway during early stages (20–1000 ms) of information processing. Here, we applied in vivo electrophysiology and pharmacology to determine if PPI is mediated by glycine receptors (GlyRs) and/or GABAA receptors (GABAARs) in the goldfish auditory startle circuit. Specifically, we used selective antagonists to dissect the contributions of target receptors on sound-evoked postsynaptic potentials (PSPs) recorded in the neurons that initiate startle, the Mauthner-cells (M-cell). We found that strychnine, a GlyR antagonist, disrupted a fast-activated (5 ms) and rapidly (<50 ms) decaying (feed-forward) inhibitory process that contributes to PPI at 20 ms prepulse/pulse inter-stimulus intervals (ISI). Additionally we observed increases of the evoked postsynaptic potential (PSP) peak amplitude (+87.43 ± 21.53%, N = 9) and duration (+204 ± 48.91%, N = 9). In contrast, treatment with bicuculline, a GABAAR antagonist, caused a general reduction in PPI across all tested interstimulus intervals (ISIs) (20–500 ms). Bicuculline also increased PSP peak amplitude (+133.8 ± 10.3%, N = 5) and PSP duration (+284.95 ± 65.64%, N = 5). Treatment with either antagonist also tonically increased post-synaptic excitability in the M-cells, reflected by an increase in the magnitude of antidromically-evoked action potentials (APs) by 15.07 ± 3.21%, N = 7 and 16.23 ± 7.08%, N = 5 for strychnine and bicuculline, respectively. These results suggest that GABAARs and GlyRs are functionally segregated to short- and longer-lasting sound-evoked (phasic) inhibitory processes that contribute to PPI, with the mediation of tonic inhibition by both receptor systems being critical for gain control within the M-cell startle circuit.
Collapse
Affiliation(s)
- Paul C P Curtin
- Graduate Center, City University of New York New York, NY, USA
| | - Thomas Preuss
- Hunter College, City University of New York New York, NY, USA
| |
Collapse
|
18
|
Medan V, Preuss T. The Mauthner-cell circuit of fish as a model system for startle plasticity. ACTA ACUST UNITED AC 2014; 108:129-40. [PMID: 25106811 DOI: 10.1016/j.jphysparis.2014.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
Abstract
The Mauthner-cell (M-cell) system of teleost fish has a long history as an experimental model for addressing a wide range of neurobiological questions. Principles derived from studies on this system have contributed significantly to our understanding at multiple levels, from mechanisms of synaptic transmission and synaptic plasticity to the concepts of a decision neuron that initiates key aspects of the startle behavior. Here we will review recent work that focuses on the neurophysiological and neuropharmacological basis for modifications in the M-cell circuit. After summarizing the main excitatory and inhibitory inputs to the M-cell, we review experiments showing startle response modulation by temperature, social status, and sensory filtering. Although very different in nature, actions of these three sources of modulation converge in the M-cell network. Mechanisms of modulation include altering the excitability of the M-cell itself as well as changes in excitatory and inhibitor drive, highlighting the role of balanced excitation and inhibition for escape decisions. One of the most extensively studied forms of startle plasticity in vertebrates is prepulse inhibition (PPI), a sensorimotor gating phenomenon, which is impaired in several information processing disorders. Finally, we review recent work in the M-cell system which focuses on the cellular mechanisms of PPI and its modulation by serotonin and dopamine.
Collapse
Affiliation(s)
- Violeta Medan
- Dept. de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, Buenos Aires 1428, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Argentina.
| | - Thomas Preuss
- Psychology Dept. Hunter College, City University of New York, 695 Park Ave., New York, NY 10065, USA.
| |
Collapse
|
19
|
Weiss SA, Bikson M. Open questions on the mechanisms of neuromodulation with applied and endogenous electric fields. Front Hum Neurosci 2014; 8:227. [PMID: 24860463 PMCID: PMC4029019 DOI: 10.3389/fnhum.2014.00227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/31/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Marom Bikson
- Biomedical Engineering, The City College of New York of CUNY New York, NY, USA
| |
Collapse
|
20
|
Van der Goes van Naters W. Inhibition among olfactory receptor neurons. Front Hum Neurosci 2013; 7:690. [PMID: 24167484 PMCID: PMC3805947 DOI: 10.3389/fnhum.2013.00690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/30/2013] [Indexed: 11/25/2022] Open
Abstract
Often assumed to be epiphenomena of a cell's activity, extracellular currents and resulting potential changes are increasingly recognized to influence the function of other cells in the vicinity. Experimental evidence shows that even small electric fields can modulate spike timing in neurons. Moreover, when neurons are brought close together experimentally or in pathological conditions, activity in one neuron can excite its neighbors. Inhibitory ephaptic mechanisms, however, may depend on more specialized coupling among cells. Recent studies in the Drosophila olfactory system have shown that excitation of a sensory neuron can inhibit its neighbor, and it was speculated that this interaction was ephaptic. Here we give an overview of ephaptic interactions that effect changes in spike timing, excitation or inhibition in diverse systems with potential relevance to human neuroscience. We examine the mechanism of the inhibitory interaction in the Drosophila system and that of the well-studied ephaptic inhibition of the Mauthner cell in more detail. We note that both current towards and current away from the local extracellular environment of a neuron can inhibit it, but the mechanism depends on the specific architecture of each system.
Collapse
|
21
|
Wei X, Chen Y, Lu M, Deng B, Yu H, Wang J, Che Y, Han C. An ephaptic transmission model of CA3 pyramidal cells: an investigation into electric field effects. Cogn Neurodyn 2013; 8:177-97. [PMID: 24808928 DOI: 10.1007/s11571-013-9269-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022] Open
Abstract
Extracellular electric fields existing throughout the living brain affect the neural coding and information processing via ephaptic transmission, independent of synapses. A two-compartment whole field effect model (WFEM) of pyramidal neurons embedded within a resistive array which simulates the extracellular medium i.e. ephapse is developed to study the effects of electric field on neuronal behaviors. We derive the two linearized filed effect models (LFEM-1 and LFEM-2) from WFEM at the stable resting state. Through matching these simplified models to the subthreshold membrane response in experiments of the resting pyramidal cells exposed to applied electric fields, we not only verify our proposed model's validity but also found the key parameters which dominate subthreshold frequency response characteristic. Moreover, we find and give its underlying biophysical mechanism that the unsymmetrical properties of active ion channels results in the very different low-frequency response of somatic and dendritic compartments. Following, WFEM is used to investigate both direct-current (DC) and alternating-current field effect on the neural firing patterns by bifurcation analyses. We present that DC electric field could modulate neuronal excitability, with the positive field improving the excitability, the modest negative field suppressing the excitability, but interestingly, the larger negative field re-exciting the neuron back into spiking behavior. The neuron exposed to the sinusoidal electric field exhibits abundant firing patterns sensitive to the input frequency and intensity. In addition, the electrical properties of ephapse can modulate the efficacy of field effect. Our simulated results are qualitatively in line with the relevant experimental results and can explain some experimental phenomena. Furthermore, they are helpful to provide the predictions which can be tested in future experiments.
Collapse
Affiliation(s)
- Xile Wei
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, 300072 China
| | - Yinhong Chen
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, 300072 China
| | - Meili Lu
- School of Informational Technology and Engineering, Tianjin University of Technology and Education, Tianjin, 300222 China
| | - Bin Deng
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, 300072 China
| | - Haitao Yu
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, 300072 China
| | - Jiang Wang
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, 300072 China
| | - Yanqiu Che
- School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, 300222 China
| | - Chunxiao Han
- School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, 300222 China
| |
Collapse
|
22
|
Mirjany M, Preuss T, Faber DS. Role of the lateral line mechanosensory system in directionality of goldfish auditory evoked escape response. ACTA ACUST UNITED AC 2012; 214:3358-67. [PMID: 21957099 DOI: 10.1242/jeb.052894] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Goldfish (Carassius auratus) escape responses to sudden auditory stimuli are mediated by a pair of reticulospinal neurons, the Mauthner (M-) cells, which integrate mechanosensory inputs from the inner ear and the lateral line (LL) to initiate a fast directional response away from the aversive stimulus. This behavior is context dependent; when near an obstruction the fish may rather turn towards the sound to avoid hitting the object. Mechanisms underlying this directionality remain unknown. Here we investigate the contribution of the LL system to auditory evoked escapes and provide behavioral evidence that it transmits stimulus - and environmental-dependent information that determines the initial response direction of the escape. We quantified escape latency, probability and directionality following abrupt sound stimuli before and after removal of the entire LL with 0.03 mmol l(-1) cobalt chloride (CoCl(2)), 0.002% gentamicin or selective posterior LL nerve (pLLn) transection. CoCl(2) significantly increased escape onset latency without affecting probability and reduced open field directionality from 77% to chance, 52%. This effect on directionality was also observed with gentamicin. Transection of the pLLn had no effect on directionality, indicating the anterior LL nerve (aLLn) afferents are more likely to transmit directional information to the M-cell. When the fish were near a wall, the error rate was quadrupled by both CoCl(2) and pLLn transection. Visual elimination had no influence on directionality unless combined with LL elimination.
Collapse
Affiliation(s)
- Mana Mirjany
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
23
|
Mirjany M, Faber DS. Characteristics of the anterior lateral line nerve input to the Mauthner cell. ACTA ACUST UNITED AC 2012; 214:3368-77. [PMID: 21957100 DOI: 10.1242/jeb.056226] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The goldfish Mauthner (M-) cells, a bilateral pair of reticulospinal neurons, initiate the auditory evoked escape behavior of teleosts. In an open field the fish reliably turns away from the sound source. This implies that the M-cells are capable of a decision-making process that requires the two cells to receive differential directional inputs. Recent studies have indicated that the lateral line (LL) system is necessary in the initial directionality of the escape. This information is thought to be transmitted to the M-cell by the anterior branch of the lateral line nerve (aLLn), which has a shorter conduction time then the posterior branch. This study is the first attempt to characterize the inputs from the aLLn to the M-cell. M-cell intracellular responses to aLLn stimulation indicate a fast monosynaptic input (0.80±0.03 ms) that has a small amplitude averaging 5.85±0.42 mV. This input is bilateral and has a significantly longer latency and smaller amplitude in the contralateral M-cell. Superimposed on the evoked excitatory postsynaptic potential (EPSP) is a shunting inhibition with a delay of 1 ms, which is characteristic of other sensory inputs to the M-cell. Pharmacological manipulation and 50 Hz stimulation reveal a component of the evoked EPSP that is electrotonic, a property favoring speed of transmission. In addition, this input is localized to the lateral dendrite proximal to the inputs from the inner ear. The short latency of these inputs and their proximity to the posterior eighth nerve afferents indicate a crucial role for the aLLn in influencing the excitability and directionality of the M-cell.
Collapse
Affiliation(s)
- Mana Mirjany
- Albert Einstein College of Medicine, Dominick P. Purport Department of Neuroscience, 1410 Pelham Parkway S., Room 429, Bronx, NY 10461, USA
| | | |
Collapse
|
24
|
Roberts AC, Reichl J, Song MY, Dearinger AD, Moridzadeh N, Lu ED, Pearce K, Esdin J, Glanzman DL. Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS One 2011; 6:e29132. [PMID: 22216183 PMCID: PMC3247236 DOI: 10.1371/journal.pone.0029132] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/21/2011] [Indexed: 01/28/2023] Open
Abstract
The zebrafish larva has been a valuable model system for genetic and molecular studies of development. More recently, biologists have begun to exploit the surprisingly rich behavioral repertoire of zebrafish larvae to investigate behavior. One prominent behavior exhibited by zebrafish early in development is a rapid escape reflex (the C-start). This reflex is mediated by a relatively simple neural circuit, and is therefore an attractive model behavior for neurobiological investigations of simple forms of learning and memory. Here, we describe two forms of short-lived habituation of the C-start in response to brief pulses of auditory stimuli. A rapid form, persisting for ≥1 min but <15 min, was induced by 120 pulses delivered at 0.5–2.0 Hz. A more extended form (termed “short-term habituation” here), which persisted for ≥25 min but <1 h, was induced by spaced training. The spaced training consisted of 10 blocks of auditory pulses delivered at 1 Hz (5 min interblock interval, 900 pulses per block). We found that these two temporally distinguishable forms of habituation are mediated by different cellular mechanisms. The short-term form depends on activation of N-methyl-d-aspartate receptors (NMDARs), whereas the rapid form does not.
Collapse
Affiliation(s)
- Adam C. Roberts
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jun Reichl
- Undergraduate Interdepartmental Neuroscience Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Monica Y. Song
- Undergraduate Interdepartmental Neuroscience Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Amanda D. Dearinger
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Naseem Moridzadeh
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Elaine D. Lu
- Undergraduate Interdepartmental Neuroscience Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kaycey Pearce
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joseph Esdin
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - David L. Glanzman
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurobiology and the Brain Research Institute, David Geffen School of Medicine at University of Calfornia Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Medan V, Preuss T. Dopaminergic-induced changes in Mauthner cell excitability disrupt prepulse inhibition in the startle circuit of goldfish. J Neurophysiol 2011; 106:3195-204. [PMID: 21957221 DOI: 10.1152/jn.00644.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prepulse inhibition (PPI) is a widespread sensorimotor gating phenomenon characterized by a decrease in startle magnitude if a nonstartling stimulus is presented 20-1,000 ms before a startling stimulus. Dopaminergic agonists disrupt behavioral PPI in various animal models. This provides an important neuropharmacological link to schizophrenia patients that typically show PPI deficits at distinct (60 ms) prepulse-pulse intervals. Here, we study time-dependent effects of dopaminergic modulation in the goldfish Mauthner cell (M-cell) startle network, which shows PPI-like behavioral and physiological startle attenuations. The unique experimental accessibility of the M-cell system allows investigating the underlying cellular mechanism with physiological stimuli in vivo. Our results show that the dopaminergic agonist apomorphine (2 mg/kg body wt) reduced synaptic M-cell PPI by 23.6% (n = 18; P = 0.009) for prepulse-pulse intervals of 50 ms, whereas other intervals showed no reduction. Consistently, application of the dopamine antagonist haloperidol (0.4 mg/kg body wt) restored PPI to control level. Current ramp injections while recording M-cell membrane potential revealed that apomorphine acts through a postsynaptic, time-dependent mechanism by deinactivating a M-cell membrane nonlinearity, effectively increasing input resistance close to threshold. This increase is most pronounced for prepulse-pulse intervals of 50 ms (47.9%, n = 8; P < 0.05) providing a time-dependent, cellular mechanism for dopaminergic disruption of PPI. These results provide, for the first time, direct evidence of dopaminergic modulation of PPI in the elementary startle circuit of vertebrates and reemphasize the potential of characterizing temporal aspects of PPI at the physiological level to understand its underlying mechanisms.
Collapse
Affiliation(s)
- Violeta Medan
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065, USA
| | | |
Collapse
|
26
|
Martin EM, Devidze N, Shelley DN, Westberg L, Fontaine C, Pfaff DW. Molecular and neuroanatomical characterization of single neurons in the mouse medullary gigantocellular reticular nucleus. J Comp Neurol 2011; 519:2574-93. [PMID: 21456014 DOI: 10.1002/cne.22639] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Medullary gigantocellular reticular nucleus (mGi) neurons have been ascribed a variety of behaviors, many of which may fall under the concepts of either arousal or motivation. Despite this, many details of the connectivity of mGi neurons, particularly in reference to those neurons with ascending axons, remain unknown. To provide a neuroanatomical and molecular characterization of these cells, with reference to arousal and level-setting systems, large medullary reticular neurons were characterized with retrograde dye techniques and with real-time reverse transcriptase PCR (RT-PCR) analyses of single-neuron mRNA expression in the mouse. We have shown that receptors consistent with participation in generalized arousal are expressed by single mGi neurons and that receptors from different families of arousal-related neurotransmitters are rarely coexpressed. Through retrograde labeling, we have shown that neurons with ascending axons and neurons with descending axons tend to form like-with-like clusters, a finding that is consistent across age and gender. In comparing the two groups of retrogradely labeled neurons in neonatal animals, those neurons with axons that ascend to the midbrain show markers for GABAergic or coincident GABAergic and glutamatergic function; in contrast, approximately 60% of the neurons with axons that descend to the spinal cord are glutamatergic. We discuss the mGi's relationship to the voluntary and emotional motor systems and speculate that neurons in the mGi may represent a mammalian analogue to Mauthner cells, with a separation of function for neurons with ascending and descending axons.
Collapse
Affiliation(s)
- E M Martin
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Whitaker KW, Neumeister H, Huffman LS, Kidd CE, Preuss T, Hofmann HA. Serotonergic modulation of startle-escape plasticity in an African cichlid fish: a single-cell molecular and physiological analysis of a vital neural circuit. J Neurophysiol 2011; 106:127-37. [DOI: 10.1152/jn.01126.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Social life affects brain function at all levels, including gene expression, neurochemical balance, and neural circuits. We have previously shown that in the cichlid fish Astatotilapia burtoni brightly colored, socially dominant (DOM) males face a trade-off between reproductive opportunities and increased predation risk. Compared with camouflaged subordinate (SUB) males, DOMs exposed to a loud sound pip display higher startle responsiveness and increased excitability of the Mauthner cell (M-cell) circuit that governs this behavior. Using behavioral tests, intracellular recordings, and single-cell molecular analysis, we show here that serotonin (5-HT) modulates this socially regulated plasticity via the 5-HT receptor subtype 2 (5-HTR2). Specifically, SUBs display increased sensitivity to pharmacological manipulation of 5-HTR2 compared with DOMs in both startle-escape behavior and electrophysiological properties of the M-cell. Immunohistochemistry showed serotonergic varicosities around the M-cells, further suggesting that 5-HT impinges directly onto the startle-escape circuitry. To determine whether the effects of 5-HTR2 are pre- or postsynaptic, and whether other 5-HTR subtypes are involved, we harvested the mRNA from single M-cells via cytoplasmic aspiration and found that 5-HTR subtypes 5A and 6 are expressed in the M-cell. 5-HTR2, however, was absent, suggesting that it affects M-cell excitability through a presynaptic mechanism. These results are consistent with a role for 5-HT in modulating startle plasticity and increase our understanding of the neural and molecular basis of a trade-off between reproduction and predation.
Collapse
Affiliation(s)
- K. W. Whitaker
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Army Research Laboratory, Aberdeen Proving Grounds, Maryland
| | - H. Neumeister
- Department of Psychology, CUNY Hunter College, New York, New York; and
| | - L. S. Huffman
- Section of Integrative Biology and
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| | | | - T. Preuss
- Department of Psychology, CUNY Hunter College, New York, New York; and
| | - H. A. Hofmann
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Section of Integrative Biology and
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
28
|
Neumeister H, Whitaker KW, Hofmann HA, Preuss T. Social and Ecological Regulation of a Decision-Making Circuit. J Neurophysiol 2010; 104:3180-8. [DOI: 10.1152/jn.00574.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ecological context, sensory inputs, and the internal physiological state are all factors that need to be integrated for an animal to make appropriate behavioral decisions. However, these factors have rarely been studied in the same system. In the African cichlid fish Astatotilapia burtoni, males alternate between two phenotypes based on position in a social hierarchy. When dominant (DOM), fish display bright body coloration and a wealth of aggressive and reproductive behavioral patterns that make them conspicuous to predators. Subordinate (SUB) males, on the other hand, decrease predation risk by adopting cryptic coloration and schooling behavior. We therefore hypothesized that DOMs would show enhanced startle-escape responsiveness to compensate for their increased predation risk. Indeed, behavioral responses to sound clicks of various intensities showed a significantly higher mean startle rate in DOMs compared with SUBs. Electrophysiological recordings from the Mauthner cells (M-cells), the neurons triggering startle, were performed in anesthetized animals and showed larger synaptic responses to sound clicks in DOMs, consistent with the behavioral results. In addition, the inhibitory drive mediated by interneurons (passive hyperpolarizing potential [PHP] cells) presynaptic to the M-cell was significantly reduced in DOMs. Taken together, the results suggest that the likelihood for an escape to occur for a given auditory stimulus is higher in DOMs because of a more excitable M-cell. More broadly, this study provides an integrative explanation of an ecological and social trade-off at the level of an identifiable decision-making neural circuit.
Collapse
Affiliation(s)
- H. Neumeister
- Department of Psychology, Hunter College, City University of New York, New York
| | - K. W. Whitaker
- Institute for Neuroscience,
- Army Research Laboratory, Aberdeen Proving Grounds, Maryland
| | - H. A. Hofmann
- Institute for Neuroscience,
- Institute for Cellular and Molecular Biology, and
- Section of Integrative Biology, The University of Texas at Austin, Austin, Texas; and
| | - T. Preuss
- Department of Psychology, Hunter College, City University of New York, New York
| |
Collapse
|
29
|
Catania KC. Born knowing: tentacled snakes innately predict future prey behavior. PLoS One 2010; 5:e10953. [PMID: 20585384 PMCID: PMC2886828 DOI: 10.1371/journal.pone.0010953] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 05/13/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Aquatic tentacled snakes (Erpeton tentaculatus) can take advantage of their prey's escape response by startling fish with their body before striking. The feint usually startles fish toward the snake's approaching jaws. But when fish are oriented at a right angle to the jaws, the C-start escape response translates fish parallel to the snake's head. To exploit this latter response, snakes must predict the future location of the fish. Adult snakes can make this prediction. Is it learned, or are tentacled snakes born able to predict future fish behavior? METHODS AND FINDINGS Laboratory-born, naïve snakes were investigated as they struck at fish. Trials were recorded at 250 or 500 frames per second. To prevent learning, snakes were placed in a water container with a clear transparency sheet or glass bottom. The chamber was placed over a channel in a separate aquarium with fish below. Thus snakes could see and strike at fish, without contact. The snake's body feint elicited C-starts in the fish below the transparency sheet, allowing strike accuracy to be quantified in relationship to the C-starts. When fish were oriented at a right angle to the jaws, naïve snakes biased their strikes to the future location of the escaping fish's head, such that the snake's jaws and the fish's translating head usually converged. Several different types of predictive strikes were observed. CONCLUSIONS The results show that some predators have adapted their nervous systems to directly compensate for the future behavior of prey in a sensory realm that usually requires learning. Instead of behavior selected during their lifetime, newborn tentacled snakes exhibit behavior that has been selected on a different scale--over many generations. Counter adaptations in fish are not expected, as tentacled snakes are rare predators exploiting fish responses that are usually adaptive.
Collapse
Affiliation(s)
- Kenneth C Catania
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America.
| |
Collapse
|
30
|
Weiss SA, Faber DS. Field effects in the CNS play functional roles. Front Neural Circuits 2010; 4:15. [PMID: 20508749 PMCID: PMC2876880 DOI: 10.3389/fncir.2010.00015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 04/23/2010] [Indexed: 11/22/2022] Open
Abstract
An endogenous electrical field effect, i.e., ephaptic transmission, occurs when an electric field associated with activity occurring in one neuron polarizes the membrane of another neuron. It is well established that field effects occur during pathological conditions, such as epilepsy, but less clear if they play a functional role in the healthy brain. Here, we describe the principles of field effect interactions, discuss identified field effects in diverse brain structures from the teleost Mauthner cell to the mammalian cortex, and speculate on the function of these interactions. Recent evidence supports that relatively weak endogenous and exogenous field effects in laminar structures reach significance because they are amplified by network interactions. Such interactions may be important in rhythmogenesis for the cortical slow wave and hippocampal sharp wave-ripple, and also during transcranial stimulation.
Collapse
Affiliation(s)
- Shennan A. Weiss
- Department of Neuroscience, Albert Einstein College of MedicineBronx, NY, USA
| | - Donald S. Faber
- Department of Neuroscience, Albert Einstein College of MedicineBronx, NY, USA
| |
Collapse
|
31
|
Tentacled snakes turn C-starts to their advantage and predict future prey behavior. Proc Natl Acad Sci U S A 2009; 106:11183-7. [PMID: 19549832 DOI: 10.1073/pnas.0905183106] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fish are elusive prey with a short-latency escape behavior--the C-start--initiated to either the left or right by a "race" between 2 giant Mauthner neurons in the fish brainstem. Water disturbances usually excite the ipsilateral neuron, which massively excites contralateral motor neurons, resulting in a rapid turn away from striking predators. Here, it is reported that tentacled snakes (Erpeton tentaculatus) exploit this normally adaptive circuitry by feinting with their body, triggering the Mauthner cell that is furthest from their head milliseconds before a ballistic strike is initiated. As a result, fish that were oriented parallel to the long axis of the snake's head most often turned toward the approaching jaws, sometimes swimming directly into the snake's mouth. When strikes were instead directed at fish oriented at a right angle to the snake's head, snakes anticipated future fish behavior by striking to where fish would later be if they escaped from the snake's body feint, which fish usually did. The results provide an example of a rare predator taking advantage of a prey's normally adaptive escape circuitry and suggest that the snake's sensory-motor system is adapted to predict future behavior.
Collapse
|
32
|
Phase encoding in the Mauthner system: implications in left-right sound source discrimination. J Neurosci 2009; 29:3431-41. [PMID: 19295149 DOI: 10.1523/jneurosci.3383-08.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The paired teleost Mauthner (M)-cells and their associated network serve as an excellent system to study the biophysical basis of decision making. In teleosts, an abrupt sound evokes an M-spike, triggering a C-start escape that is usually directed away from a sound source. The response latency is minimized by electrical synapses between auditory afferents and the M-cell lateral dendrite. Here, we demonstrate that the electrical synapses also mediate phase encoding. Ramped sound pressure waves (150-250 Hz) evoked electrotonic postsynaptic potentials in the M-cell locked to two diametrically opposed phase angles that were frequency dependent but intensity independent. Phase encoding was also evident at the behavioral level underwater, because the stimuli evoked directional C-starts with an onset that was phase locked to the sound wave. In interneurons inhibitory to the M-cell, these same stimuli also evoked phase-locked electrotonic postsynaptic potentials and action potentials. The resulting chemical and electrical (i.e., field effect) inhibitions functioned tonically and phasically, respectively. Phase encoding could be important in underwater sound source localization, which is thought to require a neural computation involving a phase comparison between the pressure and the directional particle motion components of sound. This computation may be implemented by an interplay between phase-dependent afferent excitation and feedforward inhibition that activates the appropriate M-cell and directs the C-start away from the sound source.
Collapse
|