1
|
Eldaly AS, Avila FR, Torres-Guzman RA, Maita K, Garcia JP, Serrano LP, Ho O, Forte AJ. Cell-Based Therapies Induce Tolerance of Vascularized Composite Allotransplants: A Systematic Review. J Surg Res 2024; 300:389-401. [PMID: 38851085 DOI: 10.1016/j.jss.2024.04.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION Vascularized composite allotransplantation (VCA) is the transplantation of multiple tissue types as a solution for devastating injuries. Despite the highly encouraging functional outcomes of VCA, the consequences of long-term immunosuppression remain the main obstacle in its application. In this review, we provide researchers and surgeons with a summary of the latest advances in the field of cell-based therapies for VCA tolerance. METHODS Four electronic databases were searched: PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature , and Web of Science. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis as the basis of our organization. RESULTS Hematopoietic stem cells prolonged VCA survival. A combination of immature dendritic cells and tacrolimus was superior to tacrolimus alone. T cell Ig domain and mucin domain modified mature dendritic cells increased VCA tolerance. Bone marrow-derived mesenchymal stem cells prolonged survival of VCAs. A combination of adipose-derived mesenchymal stem cells, cytotoxic T-lymphocyte antigen 4 immunoglobulin, and antilymphocyte serum significantly improved VCA tolerance. Ex-vivo allotransplant perfusion with recipient's bone marrow-derived mesenchymal stem cells increased VCA survival. Recipient's adipose-derived mesenchymal stem cells and systemic immunosuppression prolonged VCA survival more than any of those agents alone. Additionally, a combination of peripheral blood mononuclear cells shortly incubated in mitomycin and cyclosporine significantly improved VCA survival. Finally, a combination of donor recipient chimeric cells, anti-αβ-T cell receptor (TCR), and cyclosporine significantly prolonged VCA tolerance. CONCLUSIONS Evidence from animal studies shows that cell-based therapies can prolong survival of VCAs. However, there remain many obstacles for these therapies, and they require rigorous clinical research given the rarity of the subjects and the complexity of the therapies. The major limitations of cell-based therapies include the need for conditioning with immunosuppressive drugs and radiation, causing significant toxicity. Safety concerns also persist as most research is on animal models. While completely replacing traditional immunosuppression with cell-based methods is unlikely soon, these therapies could reduce the need for high doses of immunosuppressants and improve VCA tolerance.
Collapse
Affiliation(s)
| | | | | | - Karla Maita
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | - John P Garcia
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | | | - Olivia Ho
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | - Antonio J Forte
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
2
|
Mani R, Martin CG, Balu KE, Wang Q, Rychahou P, Izumi T, Evers BM, Suzuki Y. A Novel Protozoa Parasite-Derived Protein Adjuvant Is Effective in Immunization with Cancer Cells to Activate the Cancer-Specific Protective Immunity and Inhibit the Cancer Growth in a Murine Model of Colorectal Cancer. Cells 2024; 13:111. [PMID: 38247803 PMCID: PMC10814441 DOI: 10.3390/cells13020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Cancer-specific CD8+ cytotoxic T cells play important roles in preventing cancer growth, and IFN-γ, in addition to IL-12 and type I interferon, is critical for activating CD8+ cytotoxic T cells. We recently identified the capability of the amino-terminus region of dense granule protein 6 (GRA6Nt) of Toxoplasma gondii, an intracellular protozoan parasite, to activate IFN-γ production of microglia, a tissue-resident macrophage population. Therefore, in the present study, we examined whether recombinant GRA6Nt protein (rGRA6Nt) functions as an effective adjuvant to potently activate cancer-specific protective immunity using a murine model of MC38 colorectal cancer (CRC). When mice were immunized with non-replicable (either treated with mitomycin C or irradiated by X-ray) MC38 CRC cells in combination with rGRA6Nt adjuvant and received a challenge implantation of replication-capable MC38 tumor cells, those mice markedly inhibited the growth of the implanted tumors in association with a two-fold increase in CD8+ T cell density within the tumors. In addition, CD8+ T cells of the immunized mice secreted significantly increased amounts of granzyme B, a key mediator of the cytotoxic activity of CD8+ T cells, and IFN-γ in response to MC38 CRC cells in vitro when compared to the T cells from unimmunized mice. Notably, the protective effects of the immunization were specific to MC38 CRC cells, as the immunized mice did not exhibit a significantly inhibited growth of EL4 lymphoma tumors. These results indicate that rGRA6Nt is a novel and effective protein adjuvant when used in immunizations with non-replicable cancer cells to potently activate the protective immunity specifically against the cancer cells employed in the immunization.
Collapse
Affiliation(s)
- Rajesh Mani
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (R.M.)
| | - Chloe G. Martin
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (R.M.)
| | - Kanal E. Balu
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (R.M.)
| | - Qingding Wang
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA (P.R.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Piotr Rychahou
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA (P.R.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Tadahide Izumi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - B. Mark Evers
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA (P.R.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Yasuhiro Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (R.M.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Morath C, Schaier M, Ibrahim E, Wang L, Kleist C, Opelz G, Süsal C, Ponath G, Aly M, Alvarez CM, Kälble F, Speer C, Benning L, Nusshag C, Pego da Silva L, Sommerer C, Hückelhoven-Krauss A, Czock D, Mehrabi A, Schwab C, Waldherr R, Schnitzler P, Merle U, Tran TH, Scherer S, Böhmig GA, Müller-Tidow C, Reiser J, Zeier M, Schmitt M, Terness P, Schmitt A, Daniel V. Induction of Long-Lasting Regulatory B Lymphocytes by Modified Immune Cells in Kidney Transplant Recipients. J Am Soc Nephrol 2023; 34:160-174. [PMID: 36137752 PMCID: PMC10101591 DOI: 10.1681/asn.2022020210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We recently demonstrated that donor-derived modified immune cells (MICs)-PBMCs that acquire immunosuppressive properties after a brief treatment-induced specific immunosuppression against the allogeneic donor when administered before kidney transplantation. We found up to a 68-fold increase in CD19 + CD24 hi CD38 hi transitional B lymphocytes compared with transplanted controls. METHODS Ten patients from a phase 1 clinical trial who had received MIC infusions before kidney transplantation were followed to post-transplant day 1080. RESULTS Patients treated with MICs had a favorable clinical course, showing no donor-specific human leukocyte antigen antibodies or acute rejections. The four patients who had received the highest dose of MICs 7 days before surgery and were on reduced immunosuppressive therapy showed an absence of in vitro lymphocyte reactivity against stimulatory donor blood cells, whereas reactivity against third party cells was preserved. In these patients, numbers of transitional B lymphocytes were 75-fold and seven-fold higher than in 12 long-term survivors on minimal immunosuppression and four operationally tolerant patients, respectively ( P <0.001 for both). In addition, we found significantly higher numbers of other regulatory B lymphocyte subsets and a gene expression signature suggestive of operational tolerance in three of four patients. In MIC-treated patients, in vitro lymphocyte reactivity against donor blood cells was restored after B lymphocyte depletion, suggesting a direct pathophysiologic role of regulatory B lymphocytes in donor-specific unresponsiveness. CONCLUSIONS These results indicate that donor-specific immunosuppression after MIC infusion is long-lasting and associated with a striking increase in regulatory B lymphocytes. Donor-derived MICs appear to be an immunoregulatory cell population that when administered to recipients before transplantation, may exert a beneficial effect on kidney transplants. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER MIC Cell Therapy for Individualized Immunosuppression in Living Donor Kidney Transplant Recipients (TOL-1), NCT02560220.
Collapse
Affiliation(s)
- Christian Morath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- TolerogenixX GmbH, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- TolerogenixX GmbH, Heidelberg, Germany
| | - Eman Ibrahim
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Lei Wang
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Kleist
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Opelz
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Caner Süsal
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Transplant Immunology Research Center of Excellence, Koç University, Istanbul, Turkey
| | - Gerald Ponath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- TolerogenixX GmbH, Heidelberg, Germany
| | - Mostafa Aly
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Nephrology Unit, Internal Medicine Department, Assiut University, Assiut, Egypt
| | - Cristiam M. Alvarez
- Cellular Immunology and Immunogenetics Group, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Florian Kälble
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Louise Benning
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Luiza Pego da Silva
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudia Sommerer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Hückelhoven-Krauss
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rüdiger Waldherr
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paul Schnitzler
- Center for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uta Merle
- Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thuong Hien Tran
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Scherer
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University, Chicago, Illinois
| | - Martin Zeier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Schmitt
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Terness
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anita Schmitt
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Morath C, Schmitt A, Schmitt M, Wang L, Kleist C, Opelz G, Süsal C, Tran TH, Scherer S, Schwenger V, Kemmner S, Fischereder M, Stangl M, Hauser IA, Sommerer C, Nusshag C, Kälble F, Speer C, Benning L, Bischofs C, Sauer S, Schubert ML, Kunz A, Hückelhoven-Krauss A, Neuber B, Mehrabi A, Schwab C, Waldherr R, Sander A, Büsch C, Czock D, Böhmig GA, Reiser J, Roers A, Müller-Tidow C, Terness P, Zeier M, Daniel V, Schaier M. Individualised immunosuppression with intravenously administered donor-derived modified immune cells compared with standard of care in living donor kidney transplantation (TOL-2 Study): protocol for a multicentre, open-label, phase II, randomised controlled trial. BMJ Open 2022; 12:e066128. [PMID: 36368749 PMCID: PMC9660568 DOI: 10.1136/bmjopen-2022-066128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Donor-derived modified immune cells (MIC) induced long-term specific immunosuppression against the allogeneic donor in preclinical models of transplantation. In a phase I clinical trial (TOL-1 Study), MIC treatment resulted in a cellular phenotype that was directly and indirectly suppressive to the recipient's immune system allowing for reduction of conventional immunosuppressive therapy. Here, we describe a protocol for a randomised controlled, multicentre phase-IIb clinical trial of individualised immunosuppression with intravenously administered donor MIC compared with standard-of-care (SoC) in living donor kidney transplantation (TOL-2 Study). METHODS AND ANALYSIS Sixty-three living donor kidney transplant recipients from six German transplant centres are randomised 2:1 to treatment with MIC (MIC group, N=42) or no treatment with MIC (control arm, N=21). MIC are manufactured from donor peripheral blood mononuclear cells under Good Manufacturing Practice conditions. The primary objective of this trial is to determine the efficacy of MIC treatment together with reduced conventional immunosuppressive therapy in terms of achieving an operational tolerance-like phenotype compared with SoC 12 months after MIC administration. Key secondary endpoints are the number of patient-relevant infections as well as a composite of biopsy-proven acute rejection, graft loss, graft dysfunction or death. Immunosuppressive therapy of MIC-treated patients is reduced during follow-up under an extended immunological monitoring including human leucocyte antigen-antibody testing, and determination of lymphocyte subsets, for example, regulatory B lymphocytes (Breg) and antidonor T cell response. A Data Safety Monitoring Board has been established to allow an independent assessment of safety and efficacy. ETHICS AND DISSEMINATION Ethical approval has been provided by the Ethics Committee of the Medical Faculty of the University of Heidelberg, Heidelberg, Germany (AFmu-580/2021, 17 March 2022) and from the Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institute, Langen, Germany (Vorlage-Nr. 4586/02, 21 March 2022). Written informed consent will be obtained from all patients and respective donors prior to enrolment in the study. The results from the TOL-2 Study will be published in peer-reviewed medical journals and will be presented at symposia and scientific meetings. TRIAL REGISTRATION NUMBER NCT05365672.
Collapse
Affiliation(s)
- Christian Morath
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research, DZIF, TTU-IICH, Partner site Heidelberg, Heidelberg, Germany
| | - Anita Schmitt
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Schmitt
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lei Wang
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Kleist
- TolerogenixX GmbH, Heidelberg, Germany
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Opelz
- TolerogenixX GmbH, Heidelberg, Germany
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Caner Süsal
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Transplant Immunology Research Center of Excellence, Koç University, Istanbul, Turkey
| | - T Hien Tran
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Scherer
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, Transplant Center, Klinikum der Landeshauptstadt Stuttgart, Stuttgart, Germany
| | - Stephan Kemmner
- Transplant Center, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
| | - Michael Fischereder
- Division of Nephrology, Department of Internal Medicine IV, University Hospital Munich, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Manfred Stangl
- Department of General, Visceral, and Transplant Surgery, University Hospital Munich, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Ingeborg A Hauser
- Department of Nephrology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Claudia Sommerer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research, DZIF, TTU-IICH, Partner site Heidelberg, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Kälble
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Louise Benning
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Bischofs
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sandra Sauer
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria-Luisa Schubert
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Kunz
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Hückelhoven-Krauss
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Brigitte Neuber
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Constantin Schwab
- Institut of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rüdiger Waldherr
- Institut of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anja Sander
- Institut of Medical Biometry, Heidelberg University Hospital, Heidelberg, Germany
| | - Christopher Büsch
- Institut of Medical Biometry, Heidelberg University Hospital, Heidelberg, Germany
| | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jochen Reiser
- Department of Medicine, Rush University, Chicago, Illinois, USA
| | - Axel Roers
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Terness
- TolerogenixX GmbH, Heidelberg, Germany
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Zeier
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Schaier
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
5
|
Zakharova I, Saaya S, Shevchenko A, Stupnikova A, Zhiven' M, Laktionov P, Stepanova A, Romashchenko A, Yanshole L, Chernonosov A, Volkov A, Kizilova E, Zavjalov E, Chernyavsky A, Romanov A, Karpenko A, Zakian S. Mitomycin-Treated Endothelial and Smooth Muscle Cells Suitable for Safe Tissue Engineering Approaches. Front Bioeng Biotechnol 2022; 10:772981. [PMID: 35360387 PMCID: PMC8963790 DOI: 10.3389/fbioe.2022.772981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
In our previous study, we showed that discarded cardiac tissue from the right atrial appendage and right ventricular myocardium is an available source of functional endothelial and smooth muscle cells for regenerative medicine and tissue engineering. In the study, we aimed to find out what benefits are given by vascular cells from cardiac explants used for seeding on vascular patches engrafted to repair vascular defects in vivo. Additionally, to make the application of these cells safer in regenerative medicine we tested an in vitro approach that arrested mitotic division to avoid the potential tumorigenic effect of dividing cells. A tissue-engineered construction in the form of a patch based on a polycaprolactone-gelatin scaffold and seeded with endothelial and smooth muscle cells was implanted into the abdominal aorta of immunodeficient SCID mice. Aortic patency was assessed using ultrasound, MRI, immunohistochemical and histological staining. Endothelial and smooth muscle cells were treated with mitomycin C at a therapeutic concentration of 10 μg/ml for 2 h with subsequent analysis of cell proliferation and function. The absence of the tumorigenic effect of mitomycin C-treated cells, as well as their angiogenic potential, was examined by injecting them into immunodeficient mice. Cell-containing patches engrafted in the abdominal aorta of immunodeficient mice form the vessel wall loaded with the appropriate cells and extracellular matrix, and do not interfere with normal patency. Endothelial and smooth muscle cells treated with mitomycin C show no tumorigenic effect in the SCID immunodeficient mouse model. During in vitro experiments, we have shown that treatment with mitomycin C does not lead to a decrease in cell viability. Despite the absence of proliferation, mitomycin C-treated vascular cells retain specific cell markers, produce specific extracellular matrix, and demonstrate the ability to stimulate angiogenesis in vivo. We pioneered an approach to arresting cell division with mitomycin C in endothelial and smooth muscle cells from cardiac explant, which prevents the risk of malignancy from dividing cells in vascular surgery. We believe that this approach to the fabrication of tissue-engineered constructs based on mitotically inactivated cells from waste postoperative material may be valuable to bring closer the development of safe cell products for regenerative medicine.
Collapse
Affiliation(s)
- Irina Zakharova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- *Correspondence: Irina Zakharova,
| | - Shoraan Saaya
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Alexander Shevchenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alena Stupnikova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Deparment of Natural Science, Novosibirsk State University, Novosibirsk, Russia
| | - Maria Zhiven'
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel Laktionov
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alena Stepanova
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Romashchenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lyudmila Yanshole
- International Tomography Center,The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Volkov
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Elena Kizilova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Deparment of Natural Science, Novosibirsk State University, Novosibirsk, Russia
| | - Evgenii Zavjalov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Chernyavsky
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Alexander Romanov
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Andrey Karpenko
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Suren Zakian
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Docq M, Vétillard M, Gallego C, Jaracz-Ros A, Mercier-Nomé F, Bachelerie F, Schlecht-Louf G. Multi-Tissue Characterization of GILZ Expression in Dendritic Cell Subsets at Steady State and in Inflammatory Contexts. Cells 2021; 10:3153. [PMID: 34831376 PMCID: PMC8623566 DOI: 10.3390/cells10113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are key players in the control of tolerance and immunity. Glucocorticoids (GCs) are known to regulate DC function by promoting their tolerogenic differentiation through the induction of inhibitory ligands, cytokines, and enzymes. The GC-induced effects in DCs were shown to critically depend on increased expression of the Glucocorticoid-Induced Leucine Zipper protein (GILZ). GILZ expression levels were further shown to control antigen-presenting cell function, as well as T-cell priming capacity of DCs. However, the pattern of GILZ expression in DC subsets across tissues remains poorly described, as well as the modulation of its expression levels in different pathological settings. To fill in this knowledge gap, we conducted an exhaustive analysis of GILZ relative expression levels in DC subsets from various tissues using multiparametric flow cytometry. This study was performed at steady state, in the context of acute as well as chronic skin inflammation, and in a model of cancer. Our results show the heterogeneity of GILZ expression among DC subsets as well as the complexity of its modulation, that varies in a cell subset- and context-specific manner. Considering the contribution of GILZ in the control of DC functions and its potential as an immune checkpoint in cancer settings, these results are of high relevance for optimal GILZ targeting in therapeutic strategies.
Collapse
Affiliation(s)
- Molène Docq
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Mathias Vétillard
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Carmen Gallego
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Agnieszka Jaracz-Ros
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Françoise Mercier-Nomé
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
- IPSIT SFR-UMS, CNRS, Inserm, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, 92296 Chatenay-Malabry, France
| | - Françoise Bachelerie
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| | - Géraldine Schlecht-Louf
- Inserm U996, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, 92140 Clamart, France; (M.D.); (M.V.); (C.G.); (A.J.-R.); (F.M.-N.); (F.B.)
| |
Collapse
|
7
|
Dhiman K, Nath SK, Ashish. Monomeric human soluble CD4 dimerizes at physiological temperature: VTSAXS data based modeling and screening of retardant molecules. J Biomol Struct Dyn 2020; 39:3813-3824. [PMID: 32425101 DOI: 10.1080/07391102.2020.1771422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Earlier, solution small angle X-ray scattering (SAXS) data at 10 °C showed that soluble CD4 (sCD4; 1 mg/ml) is monomer with shape similar to single chain in crystal structures of its dimer. Query remained whether the dimeric state of CD4 can form independent of packing effects of crystal? Taking cue from other systems, we explored heat induced possible association of native shapes of sCD4 by variable temperature SAXS (VTSAXS) experiments. The predominant particle size increased consistently with temperature and around 35-40 °C, the estimated mass indicated dimeric state in solution. Furthermore, the observed association was found to be reversible to certain extent. Using SAXS profile representing dimer and crystal structure of monomer, we solved models of CD4 dimers which were dominated by D4-D4 interactions and appeared "wobbling" about the crystal structure of dimeric CD4, convincing pre-existence of crystal-like association in solution. To break the dimerization, we theoretically screened for small molecules binding to dimeric interface of D4 domain. Additionally, as negative control or not expecting to interfere, we searched molecules preferentially docking on the apex of D1 domain. VTSAXS experiments of CD4 + molecules at ∼1:3 molar ratio showed that as expected few D4 reactive hits could retard dimerization, yet surprisingly molecules which docked at D1 domain could also derail dimerization. Additional analysis led to conclusion that there lies a systematic communication network across the structural length of sCD4 which senses binding to self and other molecules, and our work can be used to develop new (or re-purpose known) molecules as CD4-reactive immunosuppressive agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kanika Dhiman
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Samir Kumar Nath
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ashish
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Zhou X, Zhang S, Yu F, Zhao G, Geng S, Yu W, Wang XY, Wang B. Tolerogenic vaccine composited with islet-derived multipeptides and cyclosporin A induces pTreg and prevents Type 1 diabetes in murine model. Hum Vaccin Immunother 2019; 16:240-250. [PMID: 31070990 PMCID: PMC7062422 DOI: 10.1080/21645515.2019.1616504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Regulatory T cells (Tregs) play a crucial role in the control of the initiation and progression of type 1 diabetes (T1D). Various immunological interventions including those to ex vivo expansion Tregs transfer, in vivo induction of peripherally derived Treg (pTreg) have been considered as promising approaches for T1D therapy. In this study, we developed a novel tolerogenic vaccine using four autoantigenic peptides of islet-derived with cyclosporine A (CsA) as the pTreg inducer, designated as GAD-IN+CsA. This vaccine immunized into prediabetic NOD mice subcutaneously could induce IL-10 and TGF-β expressing pTregs and lead to suppressing autoreactive T cells responses, resulting in the prevention of T1D in these animals. Furthermore, we demonstrated that CsA with autoantigenic peptides modulates dendritic cells (DCs) to become immature IL-10hiCD40lo DCs. Such modulated DCs could foster naïve CD4+CD25− T cell into Tregs when presenting antigen peptides in vitro. This novel approach offers an alternative strategy to induce pTregs to treat T1D.
Collapse
Affiliation(s)
- Xian Zhou
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shijie Zhang
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Basic Medical College, Fudan University, Shanghai, China
| | - Fan Yu
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Basic Medical College, Fudan University, Shanghai, China
| | - Gan Zhao
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Basic Medical College, Fudan University, Shanghai, China
| | - Shuang Geng
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Basic Medical College, Fudan University, Shanghai, China
| | - Wencong Yu
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Basic Medical College, Fudan University, Shanghai, China
| | - Xuan-Yi Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Basic Medical College, Fudan University, Shanghai, China.,Children Hospital of Fudan University, Shanghai, China
| |
Collapse
|
9
|
Navarro-Barriuso J, Mansilla MJ, Martínez-Cáceres EM. Searching for the Transcriptomic Signature of Immune Tolerance Induction-Biomarkers of Safety and Functionality for Tolerogenic Dendritic Cells and Regulatory Macrophages. Front Immunol 2018; 9:2062. [PMID: 30298066 PMCID: PMC6160751 DOI: 10.3389/fimmu.2018.02062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The last years have witnessed a breakthrough in the development of cell-based tolerance-inducing cell therapies for the treatment of autoimmune diseases and solid-organ transplantation. Indeed, the use of tolerogenic dendritic cells (tolDC) and regulatory macrophages (Mreg) is currently being tested in Phase I and Phase II clinical trials worldwide, with the aim of finding an effective therapy able to abrogate the inflammatory processes causing these pathologies without compromising the protective immunity of the patients. However, there exists a wide variety of different protocols to generate human tolDC and Mreg and, consequently, the characteristics of each product are heterogeneous. For this reason, the identification of biomarkers able to define their functionality (tolerogenicity) is of great relevance, on the one hand, to guarantee the safety of tolDC and Mreg before administration and, on the other hand, to compare the results between different cell products and laboratories. In this article, we perform an exhaustive review of protocols generating human tolDC and Mreg in the literature, aiming to elucidate if there are any common transcriptomic signature or potential biomarkers of tolerogenicity among the different approaches. However, and although several effectors seem to be induced in common in some of the most reported protocols to generate both tolDC or Mreg, the transcriptomic profile of these cellular products strongly varies depending on the approach used to generate them.
Collapse
Affiliation(s)
- Juan Navarro-Barriuso
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María José Mansilla
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva M Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Hu X, Leak RK, Thomson AW, Yu F, Xia Y, Wechsler LR, Chen J. Promises and limitations of immune cell-based therapies in neurological disorders. Nat Rev Neurol 2018; 14:559-568. [PMID: 29925925 PMCID: PMC6237550 DOI: 10.1038/s41582-018-0028-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The healthy immune system has natural checkpoints that temper pernicious inflammation. Cells mediating these checkpoints include regulatory T cells, regulatory B cells, regulatory dendritic cells, microglia, macrophages and monocytes. Here, we highlight discoveries on the beneficial functions of regulatory immune cells and their mechanisms of action and evaluate their potential use as novel cell-based therapies for brain disorders. Regulatory immune cell therapies have the potential not only to mitigate the exacerbation of brain injury by inflammation but also to promote an active post-injury brain repair programme. By harnessing the reparative properties of these cells, we can reduce over-reliance on medications that mask clinical symptoms but fail to impede or reverse the progression of brain disorders. Although these discoveries encourage further testing and genetic engineering of regulatory immune cells for the clinical management of neurological disorders, a number of challenges must be surmounted to improve their safety and efficacy in humans.
Collapse
Affiliation(s)
- Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuguo Xia
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Vétillard M, Schlecht-Louf G. Glucocorticoid-Induced Leucine Zipper: Fine-Tuning of Dendritic Cells Function. Front Immunol 2018; 9:1232. [PMID: 29915587 PMCID: PMC5994841 DOI: 10.3389/fimmu.2018.01232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that control the induction of both tolerance and immunity. Understanding the molecular mechanisms regulating DCs commitment toward a regulatory- or effector-inducing profile is critical for better designing prophylactic and therapeutic approaches. Initially identified in dexamethasone-treated thymocytes, the glucocorticoid-induced leucine zipper (GILZ) protein has emerged as a critical factor mediating most, but not all, glucocorticoids effects in both non-immune and immune cells. This intracellular protein exerts pleiotropic effects through interactions with transcription factors and signaling proteins, thus modulating signal transduction and gene expression. GILZ has been reported to control the proliferation, survival, and differentiation of lymphocytes, while its expression confers anti-inflammatory phenotype to monocytes and macrophages. In the past twelve years, a growing set of data has also established that GILZ expression in DCs is a molecular switch controlling their T-cell-priming capacity. Here, after a brief presentation of GILZ isoforms and functions, we summarize current knowledge regarding GILZ expression and regulation in DCs, in both health and disease. We further present the functional consequences of GILZ expression on DCs capacity to prime effector or regulatory T-cell responses and highlight recent findings pointing to a broader role of GILZ in the fine tuning of antigen capture, processing, and presentation by DCs. Finally, we discuss future prospects regarding the possible roles for GILZ in the control of DCs function in the steady state and in the context of infections and chronic pathologies.
Collapse
Affiliation(s)
- Mathias Vétillard
- UMR996-Inflammation, Chimiokines et Immunopathologie, INSERM, Faculté de médecine, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Géraldine Schlecht-Louf
- UMR996-Inflammation, Chimiokines et Immunopathologie, INSERM, Faculté de médecine, Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| |
Collapse
|
12
|
Morath C, Schmitt A, Kälble F, Zeier M, Schmitt M, Sandra-Petrescu F, Opelz G, Terness P, Schaier M, Kleist C. Cell therapeutic approaches to immunosuppression after clinical kidney transplantation. Pediatr Nephrol 2018; 33:199-213. [PMID: 28229281 DOI: 10.1007/s00467-017-3599-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/11/2022]
Abstract
Refinement of immunosuppressive strategies has led to further improvement of kidney graft survival in recent years. Currently, the main limitations to long-term graft survival are life-threatening side effects of immunosuppression and chronic allograft injury, emphasizing the need for innovative immunosuppressive regimens that resolve this therapeutic dilemma. Several cell therapeutic approaches to immunosuppression and donor-specific unresponsiveness have been tested in early phase I and phase II clinical trials in kidney transplantation. The aim of this overview is to summarize current cell therapeutic approaches to immunosuppression in clinical kidney transplantation with a focus on myeloid suppressor cell therapy by mitomycin C-induced cells (MICs). MICs show great promise as a therapeutic agent to achieve the rapid and durable establishment of donor-unresponsiveness in living-donor kidney transplantation. Cell-based therapeutic approaches may eventually revolutionize immunosuppression in kidney transplantation in the near future.
Collapse
Affiliation(s)
- Christian Morath
- Division of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany.
| | - Anita Schmitt
- Department of Internal Medicine V, GMP Core Facility, University of Heidelberg, Heidelberg, Germany
| | - Florian Kälble
- Division of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Martin Zeier
- Division of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, GMP Core Facility, University of Heidelberg, Heidelberg, Germany
| | - Flavius Sandra-Petrescu
- Department of Transplantation Immunology, University of Heidelberg, Heidelberg, Germany.,Department of Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Gerhard Opelz
- Department of Transplantation Immunology, University of Heidelberg, Heidelberg, Germany
| | - Peter Terness
- Department of Transplantation Immunology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schaier
- Division of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Christian Kleist
- Department of Transplantation Immunology, University of Heidelberg, Heidelberg, Germany.,Department of Radiology, Division of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Radu CA, Fischer S, Diehm Y, Hetzel O, Neubrech F, Dittmar L, Kleist C, Gebhard MM, Terness P, Kneser U, Kiefer J. The combination of mitomycin-induced blood cells with a temporary treatment of ciclosporin A prolongs allograft survival in vascularized composite allotransplantation. Langenbecks Arch Surg 2017; 403:83-92. [PMID: 28823033 DOI: 10.1007/s00423-017-1616-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 08/10/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Vascularized composite allotransplantation (VCA) is a rapidly expanding field of transplantation and provides a potential treatment for complex tissue defects. Peripheral blood mononuclear cells (PBMCs) shortly incubated with the antibiotic and chemotherapeutic agent mitomycin C (MMC) can suppress allogeneic T cell response and control allograft rejection in various organ transplantation models. MMC-incubated PBMCs (MICs) are currently being tested in a phase I clinical trial in kidney transplant patients. Previous studies with MICs in a complex VCA model showed the immunomodulatory potential of these cells. The aim of this study is to optimize and evaluate the use of MICs in combination with a standard immunosuppressive drug in VCA. METHODS Fully mismatched rats were used as hind limb donors [Lewis (RT11)] and recipients [Brown-Norway (RT1n)]. Sixty allogeneic hind limb transplantations were performed in six groups. Group A received donor-derived MICs combined with a temporary ciclosporin A (CsA) treatment. Group B received MICs in combination with a temporarily administered reduced dose of CsA. Group C served as a control and received a standard CsA dose temporarily without an additional administration of MICs, whereas Group D was solely medicated with a reduced CsA dose. Group E received no immunosuppressive therapy, neither CsA nor MICs. Group F was given a continuous standard immunosuppressive regimen consisting of CsA and prednisolone. The endpoint of the study was the onset of allograft rejection which was assessed clinically and histologically. RESULTS In group A and B, the rejection-free interval of the allograft was significantly prolonged to an average of 23.1 ± 1.7 and 24.7 ± 1.8 days compared to the corresponding control groups (p < 0.01). Rejection in groups C, D, and E was noted after 14.3 ± 1.1, 7.8 ± 0.7, and 6.9 ± 0.6 days. No rejection occurred in control group F during the follow-up period of 100 days. No adverse events have been noted. CONCLUSION The findings of this study show that the combination of MICs with a temporary CsA treatment significantly prolongs the rejection-free interval in a complex VCA model. The combination of MICs with CsA showed no adverse events such as graft-versus-host disease. MICs, which are generated by a simple and reliable in vitro technique, represent a potential therapeutic tool for prolonging allograft survival through immunomodulation.
Collapse
Affiliation(s)
- Christian Andreas Radu
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Sebastian Fischer
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Yannick Diehm
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Otto Hetzel
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Florian Neubrech
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Laura Dittmar
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Christian Kleist
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany.,Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| | - Martha Maria Gebhard
- Department of Experimental Surgery, University of Heidelberg, Heidelberg, Germany
| | - Peter Terness
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Jurij Kiefer
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany.
| |
Collapse
|
14
|
Klaska IP, Muckersie E, Martin-Granados C, Christofi M, Forrester JV. Lipopolysaccharide-primed heterotolerant dendritic cells suppress experimental autoimmune uveoretinitis by multiple mechanisms. Immunology 2016; 150:364-377. [PMID: 27859049 PMCID: PMC5290303 DOI: 10.1111/imm.12691] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Exposure of bone‐marrow‐derived dendritic cells (BMDC) to high‐dose ultrapure lipopolysaccharide for 24 hr (LPS‐primed BMDC) enhances their potency in preventing inter‐photoreceptor retinoid binding protein: complete Freund's adjuvant‐induced experimental autoimmune uveoretinitis (EAU). LPS‐primed BMDC are refractory to further exposure to LPS (= endotoxin tolerance), evidenced here by decreased phosphorylation of TANK‐binding kinase 1, interferon regulatory factor 3 (IRF3), c‐Jun N‐terminal kinase and p38 mitogen‐activated protein kinase as well as impaired nuclear translocation of nuclear factor κB (NF‐κB) and IRF3, resulting in reduced tumour necrosis factor‐α (TNF‐α), interleukin‐6 (IL‐6), IL‐12 and interferon‐β secretion. LPS‐primed BMDC also show reduced surface expression of Toll‐like receptor‐4 and up‐regulation of CD14, followed by increased apoptosis, mediated via nuclear factor of activated T cells (NFATc)‐2 signalling. LPS‐primed BMDC are not only homotolerant to LPS but are heterotolerant to alternative pathogen‐associated molecular pattern ligands, such as mycobacterial protein extract (Mycobacterium tuberculosis). Specifically, while M. tuberculosis protein extract induces secretion of IL‐1β, TNF‐α and IL‐6 in unprimed BMDC, LPS‐primed BMDC fail to secrete these cytokines in response to M. tuberculosis. We propose that LPS priming of BMDC, by exposure to high doses of LPS for 24 hr, stabilizes their tolerogenicity rather than promoting immunogenicity, and does so by multiple mechanisms, namely (i) generation of tolerogenic apoptotic BMDC through CD14:NFATc signalling; (ii) reduction of NF‐κB and IRF3 signalling and downstream pro‐inflammatory cytokine production; and (iii) blockade of inflammasome activation.
Collapse
Affiliation(s)
- Izabela P Klaska
- Institute of Ophthalmology, University College London, London, UK
| | | | | | - Maria Christofi
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Lions Eye Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
15
|
Kleist C, Mohr E, Gaikwad S, Dittmar L, Kuerten S, Platten M, Mier W, Schmitt M, Opelz G, Terness P. Autoantigen-specific immunosuppression with tolerogenic peripheral blood cells prevents relapses in a mouse model of relapsing-remitting multiple sclerosis. J Transl Med 2016; 14:99. [PMID: 27131971 PMCID: PMC4852098 DOI: 10.1186/s12967-016-0860-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 04/12/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dendritic cells (DCs) rendered suppressive by treatment with mitomycin C and loaded with the autoantigen myelin basic protein demonstrated earlier their ability to prevent experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis (MS). This provides an approach for prophylactic vaccination against autoimmune diseases. For clinical application such DCs are difficult to generate and autoantigens hold the risk of exacerbating the disease. METHODS We replaced DCs by peripheral mononuclear cells and myelin autoantigens by glatiramer acetate (Copaxone(®)), a drug approved for the treatment of MS. Spleen cells were loaded with Copaxone(®), incubated with mitomycin C (MICCop) and injected into mice after the first bout of relapsing-remitting EAE. Immunosuppression mediated by MICCop was investigated in vivo by daily assessment of clinical signs of paralysis and in in vitro restimulation assays of peripheral immune cells. Cytokine profiling was performed by enzyme-linked immunosorbent assay (ELISA). Migration of MICCop cells after injection was examined by biodistribution analysis of (111)Indium-labelled MICCop. The number and inhibitory activity of CD4(+)CD25(+)FoxP3(+) regulatory T cells were analysed by histology, flow cytometry and in vitro mixed lymphocyte cultures. In order to assess the specificity of MICCop-induced suppression, treated EAE mice were challenged with the control protein ovalbumin. Humoral and cellular immune responses were then determined by ELISA and in vitro antigen restimulation assay. RESULTS MICCop cells were able to inhibit the harmful autoreactive T-cell response and prevented mice from further relapses without affecting general immune responses. Administered MICCop migrated to various organs leading to an increased infiltration of the spleen and the central nervous system with CD4(+)CD25(+)FoxP3(+) cells displaying a suppressive cytokine profile and inhibiting T-cell responses. CONCLUSION We describe a clinically applicable cell therapeutic approach for controlling relapses in autoimmune encephalomyelitis by specifically silencing the deleterious autoimmune response.
Collapse
Affiliation(s)
- Christian Kleist
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany. .,Department of Radiology, Division of Nuclear Medicine, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Elisabeth Mohr
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.,Hexal AG, 83607, Holzkirchen, Germany
| | - Sadanand Gaikwad
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Quintiles GmbH, 63263, Neu-Isenburg, Germany
| | - Laura Dittmar
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.,Becton Dickinson GmbH, BD Life Sciences, 69120, Heidelberg, Germany
| | - Stefanie Kuerten
- Department of Anatomy I, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.,Department of Anatomy and Cell Biology, University of Wuerzburg, 97070, Würzburg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Neurooncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Walter Mier
- Department of Radiology, Division of Nuclear Medicine, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Gerhard Opelz
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Peter Terness
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.
| |
Collapse
|
16
|
Radu CA, Kiefer J, Gebhard MM, Bigdeli AK, Schmidt VJ, Germann G, Lehnhardt M, Terness P, Kneser U, Kremer T. Local administration of Mitomycin-C-Treated peripheral blood mononuclear cells (PBMCs) prolongs allograft survival in vascularized composite allotransplantation. Microsurgery 2015; 36:417-425. [DOI: 10.1002/micr.30003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/15/2015] [Accepted: 10/23/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Christian Andreas Radu
- Department of Hand- Plastic- and Reconstructive Surgery; Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery-University of Heidelberg, Heidelberg; Germany
| | - Jurij Kiefer
- Department of Hand- Plastic- and Reconstructive Surgery; Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery-University of Heidelberg, Heidelberg; Germany
| | - Martha Maria Gebhard
- Department of Experimental Surgery; University of Heidelberg, Heidelberg; Germany
| | - Amir Khosrow Bigdeli
- Department of Hand- Plastic- and Reconstructive Surgery; Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery-University of Heidelberg, Heidelberg; Germany
| | - Volker Jürgen Schmidt
- Department of Hand- Plastic- and Reconstructive Surgery; Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery-University of Heidelberg, Heidelberg; Germany
| | - Guenter Germann
- Department of Hand- Plastic- and Reconstructive Surgery, Clinic for Plastic and Reconstructive Surgery; Aesthetic and Preventive Medicine at Heidelberg University Hospital; Ethianum Heidelberg Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery; Burn Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil; Bochum Germany
| | - Peter Terness
- Department of Transplant Immunology; Institute for Immunology, University of Heidelberg, Heidelberg; Germany
| | - Ulrich Kneser
- Department of Hand- Plastic- and Reconstructive Surgery; Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery-University of Heidelberg, Heidelberg; Germany
| | - Thomas Kremer
- Department of Hand- Plastic- and Reconstructive Surgery; Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery-University of Heidelberg, Heidelberg; Germany
| |
Collapse
|
17
|
Mackern-Oberti JP, Llanos C, Riedel CA, Bueno SM, Kalergis AM. Contribution of dendritic cells to the autoimmune pathology of systemic lupus erythematosus. Immunology 2015; 146:497-507. [PMID: 26173489 DOI: 10.1111/imm.12504] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 07/03/2015] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease in which excessive inflammation, autoantibodies and complement activation lead to multisystem tissue damage. The contribution of the individual genetic composition has been extensively studied, and several susceptibility genes related to immune pathways that participate in SLE pathogenesis have been identified. It has been proposed that SLE takes place when susceptibility factors interact with environmental stimuli leading to a deregulated immune response. Experimental evidence suggests that such events are related to the failure of T-cell and B-cell suppression mediated by defects in cell signalling, immune tolerance and apoptotic mechanism promoting autoimmunity. In addition, it has been reported that dendritic cells (DCs) from SLE patients, which are crucial in the modulation of peripheral tolerance to self-antigens, show an increased ratio of activating/inhibitory receptors on their surfaces. This phenotype and an augmented expression of co-stimulatory molecules is thought to be critical for disease pathogenesis. Accordingly, tolerogenic DCs can be a potential strategy for developing antigen-specific therapies to reduce detrimental inflammation without causing systemic immunosuppression. In this review article we discuss the most relevant data relative to the contribution of DCs to the triggering of SLE.
Collapse
Affiliation(s)
- Juan P Mackern-Oberti
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), Science and Technology Center (CCT) of Mendoza, National Council of Scientific and Technical Research (CONICET), Mendoza, Argentina.,Institute of Physiology, School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Carolina Llanos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| |
Collapse
|
18
|
Morath C, Schmitt A, Zeier M, Schmitt M, Sandra-Petrescu F, Opelz G, Terness P, Schaier M, Kleist C. Cell therapy for immunosuppression after kidney transplantation. Langenbecks Arch Surg 2015; 400:541-50. [PMID: 26077202 DOI: 10.1007/s00423-015-1313-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 01/03/2023]
Abstract
PURPOSE To give an overview over cell therapeutic approaches to immunosuppression in clinical kidney transplantation. A focus is on myeloid suppressor cell therapy by mitomycin C-induced cells (MICs). METHODS Literature review with an emphasis on already existing therapies. RESULTS Several cell therapeutic approaches to immunosuppression and donor-specific unresponsiveness are now being tested in early phase I and phase II trials in clinical kidney transplantation. Cell products such as regulatory T cells or regulatory macrophages, or other myeloid suppressor cell therapies, may either consist of donor-specific, third-party, or autologous cell preparations. Major problems are the identification of the suppressive cell populations and their expansion to have sufficient amount of cells to achieve donor unresponsiveness (e.g., with regulatory T cells). We show a simple and safe way to establish donor unresponsiveness in living-donor kidney transplantation by MIC therapy. A phase I clinical trial is now under way to test the safety and efficacy of this cell therapeutic approach. CONCLUSIONS Cell therapeutic approaches to immunosuppression after kidney transplantation may revolutionize clinical transplantation in the future.
Collapse
Affiliation(s)
- Christian Morath
- Division of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Herpes Simplex Virus 1 Suppresses the Function of Lung Dendritic Cells via Caveolin-1. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:883-95. [PMID: 26018534 DOI: 10.1128/cvi.00170-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/20/2015] [Indexed: 12/24/2022]
Abstract
Caveolin-1 (Cav-1), the principal structural protein of caveolae, has been implicated as a regulator of virus-host interactions. Several viruses exploit caveolae to facilitate viral infections. However, the roles of Cav-1 in herpes simplex virus 1 (HSV-1) infection have not fully been elucidated. Here, we report that Cav-1 downregulates the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) in dendritic cells (DCs) during HSV-1 infection. As a result, Cav-1 deficiency led to an accelerated elimination of virus and less lung pathological change following HSV-1 infection. This protection was dependent on iNOS and NO production in DCs. Adoptive transfer of DCs with Cav-1 knockdown was sufficient to confer the protection to wild-type (WT) mice. In addition, Cav-1 knockout (KO) (Cav-1(-/-)) mice treated with an iNOS inhibitor exhibited significantly reduced survival compared to that of the nontreated controls. We found that Cav-1 colocalized with iNOS and HSV-1 in caveolae in HSV-1-infected DCs, suggesting their interaction. Taken together, our results identified Cav-1 as a novel regulator utilized by HSV-1 to evade the host antiviral response mediated by NO production. Therefore, Cav-1 might be a valuable target for therapeutic approaches against herpesvirus infections.
Collapse
|
20
|
Abstract
Our previous studies in rats showed that incubation of monocytic dendritic cells (DCs) with the chemotherapeutic drug mitomycin C (MMC) renders the cells immunosuppressive. Donor-derived MMC-DCs injected into the recipient prior to transplantation prolonged heart allograft survival. Although the generation of DCs is labour-intensive and time-consuming, peripheral blood mononuclear cells (PBMCs) can be easily harvested. In the present study, we analyse under which conditions DCs can be replaced by PBMCs and examine their mode of action. When injected into rats, MMC-incubated donor PBMCs (MICs) strongly prolonged heart allograft survival. Removal of monocytes from PBMCs completely abrogated their suppressive effect, indicating that monocytes are the active cell population. Suppression of rejection was donor-specific. The injected MICs migrated into peripheral lymphoid organs and led to an increased number of regulatory T-cells (Tregs) expressing cluster of differentiation (CD) markers CD4 and CD25 and forkhead box protein 3 (FoxP3). Tolerance could be transferred to syngeneic recipients with blood or spleen cells. Depletion of Tregs from tolerogenic cells abrogated their suppressive effect, arguing for mediation of immunosuppression by CD4⁺CD25⁺FoxP3⁺ Tregs. Donor-derived MICs also prolonged kidney allograft survival in pigs. MICs generated from donor monocytes were applied for the first time in humans in a patient suffering from therapy-resistant rejection of a haploidentical stem cell transplant. We describe, in the present paper, a simple method for in vitro generation of suppressor blood cells for potential use in clinical organ transplantation. Although the case report does not allow us to draw any conclusion about their therapeutic effectiveness, it shows that MICs can be easily generated and applied in humans.
Collapse
|
21
|
Thomé R, Issayama LK, Alves da Costa T, Gangi RD, Ferreira IT, Rapôso C, Lopes SCP, da Cruz Höfling MA, Costa FTM, Verinaud L. Dendritic cells treated with crude Plasmodium berghei extracts acquire immune-modulatory properties and suppress the development of autoimmune neuroinflammation. Immunology 2014; 143:164-73. [PMID: 24689455 DOI: 10.1111/imm.12298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/02/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells specifically targeted during Plasmodium infection. Upon infection, DCs show impaired antigen presentation and T-cell activation abilities. In this study, we aimed to evaluate whether cellular extracts obtained from Plasmodium berghei-infected erythrocytes (PbX) modulate DCs phenotypically and functionally and the potential therapeutic usage of PbX-modulated DCs in the control of experimental autoimmune encephalomyelitis (EAE, the mouse model for human multiple sclerosis). We found that PbX-treated DCs have impaired maturation and stimulated the generation of regulatory T cells when cultured with naive T lymphocytes in vitro. When adoptively transferred to C57BL/6 mice the EAE severity was reduced. Disease amelioration correlated with a diminished infiltration of cytokine-producing T cells in the central nervous system as well as the suppression of encephalitogenic T cells. Our study shows that extracts obtained from P. berghei-infected erythrocytes modulate DCs towards an immunosuppressive phenotype. In addition, the adoptive transfer of PbX-modulated DCs was able to ameliorate EAE development through the suppression of specific cellular immune responses towards neuro-antigens. To our knowledge, this is the first study to present evidence that DCs treated with P. berghei extracts are able to control autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Calmette J, Ellouze M, Tran T, Karaki S, Ronin E, Capel F, Pallardy M, Bachelerie F, Krzysiek R, Emilie D, Schlecht-Louf G, Godot V. Glucocorticoid-Induced Leucine Zipper Enhanced Expression in Dendritic Cells Is Sufficient To Drive Regulatory T Cells Expansion In Vivo. THE JOURNAL OF IMMUNOLOGY 2014; 193:5863-72. [DOI: 10.4049/jimmunol.1400758] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Dendritic cells treated with chloroquine modulate experimental autoimmune encephalomyelitis. Immunol Cell Biol 2013; 92:124-32. [PMID: 24217811 DOI: 10.1038/icb.2013.73] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/03/2013] [Accepted: 10/11/2013] [Indexed: 12/22/2022]
Abstract
Chloroquine (CQ), an antimalarial drug, has been shown to modulate the immune system and reduce the severity of experimental autoimmune encephalomyelitis (EAE). The mechanisms of disease suppression are dependent on regulatory T cell induction, although Tregs-independent mechanisms exist. We aimed to evaluate whether CQ is capable to modulate bone marrow-derived dendritic cells (DCs) both phenotypically and functionally as well as whether transfer of CQ-modulated DCs reduces EAE course. Our results show that CQ-treated DCs presented altered ultrastructure morphology and lower expression of molecules involved in antigen presentation. Consequently, T cell proliferation was diminished in coculture experiments. When transferred into EAE mice, DC-CQ was able to reduce the clinical manifestation of the disease through the modulation of the immune response against neuroantigens. The data presented herein indicate that chloroquine-mediated modulation of the immune system is achieved by a direct effect on DCs and that DC-CQ adoptive transfer may be a promising approach for avoiding drug toxicity.
Collapse
|
24
|
Chowdhury S, Chen Y, Yao TW, Ajami K, Wang XM, Popov Y, Schuppan D, Bertolino P, McCaughan GW, Yu DMT, Gorrell MD. Regulation of dipeptidyl peptidase 8 and 9 expression in activated lymphocytes and injured liver. World J Gastroenterol 2013; 19:2883-93. [PMID: 23704821 PMCID: PMC3660813 DOI: 10.3748/wjg.v19.i19.2883] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/17/2013] [Accepted: 02/02/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression of dipeptidyl peptidase (DPP) 8 and DPP9 in lymphocytes and various models of liver fibrosis. METHODS DPP8 and DPP9 expression were measured in mouse splenic CD4⁺ T-cells, CD8⁺ T-cells and B-cells (B220⁺), human lymphoma cell lines and mouse splenocytes stimulated with pokeweed mitogen (PWM) or lipopolysaccharide (LPS), and in dithiothreitol (DTT) and mitomycin-C treated Raji cells. DPP8 and DPP9 expression were measured in epidermal growth factor (EGF) treated Huh7 hepatoma cells, in fibrotic liver samples from mice treated with carbon tetrachloride (CCl₄) and from multidrug resistance gene 2 (Mdr2/Abcb4) gene knockout (gko) mice with biliary fibrosis, and in human end stage primary biliary cirrhosis (PBC). RESULTS All three lymphocyte subsets expressed DPP8 and DPP9 mRNA. DPP8 and DPP9 expression were upregulated in both PWM and LPS stimulated mouse splenocytes and in both Jurkat T- and Raji B-cell lines. DPP8 and DPP9 were downregulated in DTT treated and upregulated in mitomycin-C treated Raji cells. DPP9-transfected Raji cells exhibited more annexin V⁺ cells and associated apoptosis. DPP8 and DPP9 mRNA were upregulated in CCl₄ induced fibrotic livers but not in the lymphocytes isolated from such livers, while DPP9 was upregulated in EGF stimulated Huh7 cells. In contrast, intrahepatic DPP8 and DPP9 mRNA expression levels were low in the Mdr2 gko mouse and in human PBC compared to non-diseased livers. CONCLUSION These expression patterns point to biological roles for DPP8 and DPP9 in lymphocyte activation and apoptosis and in hepatocytes during liver disease pathogenesis.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Adult
- Aged
- Animals
- Apoptosis
- Carbon Tetrachloride
- Chemical and Drug Induced Liver Injury/enzymology
- Chemical and Drug Induced Liver Injury/etiology
- Chemical and Drug Induced Liver Injury/genetics
- Chemical and Drug Induced Liver Injury/immunology
- Chemical and Drug Induced Liver Injury/pathology
- Dipeptidases/genetics
- Dipeptidases/metabolism
- Dipeptidyl Peptidase 4/deficiency
- Dipeptidyl Peptidase 4/genetics
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism
- Endopeptidases
- Female
- Gelatinases/deficiency
- Gelatinases/genetics
- Humans
- Jurkat Cells
- Liver/enzymology
- Liver/innervation
- Liver/pathology
- Liver Cirrhosis, Biliary/enzymology
- Liver Cirrhosis, Biliary/etiology
- Liver Cirrhosis, Biliary/genetics
- Liver Cirrhosis, Biliary/immunology
- Liver Cirrhosis, Biliary/pathology
- Liver Cirrhosis, Experimental/enzymology
- Liver Cirrhosis, Experimental/etiology
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/immunology
- Liver Cirrhosis, Experimental/pathology
- Lymphocyte Activation
- Lymphocyte Subsets/enzymology
- Lymphocyte Subsets/immunology
- Male
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- RNA, Messenger/metabolism
- Serine Endopeptidases/deficiency
- Serine Endopeptidases/genetics
- Time Factors
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
|
25
|
Dendritic cells as a tool to induce transplantation tolerance: obstacles and opportunities. Transplantation 2011; 91:2-7. [PMID: 21452405 DOI: 10.1097/tp.0b013e31820263b3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells are the key component to regulate and coordinate adaptive immune responses, including tolerance. This overview will briefly summarize different strategies to generate tolerogenic dendritic cell and the in vivo use of these cells in experimental transplantation models. We discuss some obstacles and possible solutions including alternative strategies for the use of negative vaccination in the context of organ transplantation.
Collapse
|
26
|
Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol 2010; 221:7-14. [PMID: 19931190 DOI: 10.1016/j.jneuroim.2009.10.015] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/05/2009] [Accepted: 10/06/2009] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease with heterogeneous clinical presentations and course. MS is considered to be a T cell mediated disease but in recent years contribution of innate immune cells in mediating MS pathogenesis is being appreciated. In this review, we have discussed the role of various innate immune cells in mediating MS. In particular, we have provided an overview of potential anti-inflammatory or pro-inflammatory function of DCs, microglial Cells, NK cells, NK-T cells and gamma delta T cells along with their interaction among themselves and with myelin. Given the understanding of the role of the innate immune cells in MS, it is possible that immunotherapeutic intervention targeting these cells may provide a better and effective treatment.
Collapse
|
27
|
Harnessing dendritic cells for the induction of transplantation tolerance. Curr Opin Organ Transplant 2009; 14:344-50. [DOI: 10.1097/mot.0b013e32832c6a1d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Mitomycin C-treated antigen-presenting cells as a tool for control of allograft rejection and autoimmunity: from bench to bedside. Hum Immunol 2009; 70:506-12. [PMID: 19393276 DOI: 10.1016/j.humimm.2009.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/15/2009] [Indexed: 01/09/2023]
Abstract
Cells have been previously used in experimental models for tolerance induction in organ transplantation and autoimmune diseases. One problem with the therapeutic use of cells is standardization of their preparation. We discuss an immunosuppressive strategy relying on cells irreversibly transformed by a chemotherapeutic drug. Dendritic cells (DCs) of transplant donors pretreated with mitomycin C (MMC) strongly prolonged rat heart allograft survival when injected into recipients before transplantation. Likewise, MMC-DCs loaded with myelin basic protein suppressed autoreactive T cells of MS patients in vitro and prevented experimental autoimmune encephalitis in mice. Comprehensive gene microarray analysis identified genes that possibly make up the suppressive phenotype, comprising glucocorticoid leucine zipper, immunoglobulin-like transcript 3, CD80, CD83, CD86, and apoptotic genes. Based on these findings, a hypothetical model of tolerance induction by MMC-treated DCs is delineated. Finally, we describe the first clinical application of MMC-treated monocyte-enriched donor cells in an attempt to control the rejection of a haploidentical stem cell transplant in a sensitized recipient and discuss the pros and cons of using MMC-treated antigen-presenting cells for tolerance induction. Although many questions remain, MMC-treated cells are a promising clinical tool for controlling allograft rejection and deleterious immune responses in autoimmune diseases.
Collapse
|
29
|
Harrington M. Vaccinating against autoimmunity? Lab Anim (NY) 2009. [DOI: 10.1038/laban0109-2b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|