1
|
Goeteyn E, Taylor SL, Dicker A, Bollé L, Wauters M, Joossens M, Van Braeckel E, Simpson JL, Burr L, Chalmers JD, Rogers GB, Crabbé A. Aggregatibacter is inversely associated with inflammatory mediators in sputa of patients with chronic airway diseases and reduces inflammation in vitro. Respir Res 2024; 25:368. [PMID: 39395980 PMCID: PMC11471032 DOI: 10.1186/s12931-024-02983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Chronic airway disease (CAD) is characterized by chronic airway inflammation and colonization of the lungs by pro-inflammatory pathogens. However, while various other bacterial species are present in the lower airways, it is not fully understood how they influence inflammation. We aimed to identify novel anti-inflammatory species present in lower airway samples of patients with CAD. METHODS Paired sputum microbiome and inflammatory marker data of adults with CAD across three separate cohorts (Australian asthma and bronchiectasis, Scottish bronchiectasis) was analyzed using Linear discriminant analysis Effect Size (LEfSE) and Spearman correlation analysis to identify species associated with a low inflammatory profile in patients. RESULTS We identified the genus Aggregatibacter as more abundant in patients with lower levels of airway inflammatory markers in two CAD cohorts (Australian asthma and bronchiectasis). In addition, the relative abundance of Aggregatibacter was inversely correlated with sputum IL-8 (Australian bronchiectasis) and IL-1β levels (Australian asthma and bronchiectasis). Subsequent in vitro testing, using a physiologically relevant three-dimensional lung epithelial cell model, revealed that Aggregatibacter spp. (i.e. A. actinomycetemcomitans, A. aphrophilus) and their cell-free supernatant exerted anti-inflammatory activity without influencing host cell viability. CONCLUSIONS These findings suggest that Aggregatibacter spp. might act to reduce airway inflammation in CAD patients.
Collapse
Affiliation(s)
- Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Steven L Taylor
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Alison Dicker
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Laura Bollé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Merel Wauters
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jodie L Simpson
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, NSW, Australia
| | - Lucy Burr
- Department of Respiratory Medicine, Mater Health Sciences, South Brisbane, QLD, Australia
- Mater Research - University of Queensland, Aubigny Place, South Brisbane, QLD, Australia
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Geraint B Rogers
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Lewin GR, Evans ER, Whiteley M. Microbial interactions impact stress tolerance in a model oral community. Microbiol Spectr 2024; 12:e0100524. [PMID: 39269155 PMCID: PMC11448157 DOI: 10.1128/spectrum.01005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Understanding the molecular mechanisms governing microbial interactions is crucial for unraveling the complexities of microbial communities and their ecological impacts. Here, we employed a two-species model system comprising the oral bacteria Aggregatibacter actinomycetemcomitans and Streptococcus gordonii to investigate how synergistic and antagonistic interactions between microbes impact their resilience to environmental change and invasion by other microbes. We used an in vitro colony biofilm model and focused on two S. gordonii-produced extracellular molecules, L-lactate and H2O2, which are known to impact fitness of this dual-species community. While the ability of A. actinomycetemcomitans to cross-feed on S. gordonii-produced L-lactate enhanced its fitness during co-culture, this function showed little impact on the ability of co-cultures to resist environmental change. In fact, the ability of A. actinomycetemcomitans to catabolize L-lactate may be detrimental in the presence of tetracycline, highlighting the complexity of interactions under antimicrobial stress. Furthermore, H2O2, known for its antimicrobial properties, had negative impacts on both species in our model system. However, H2O2 production by S. gordonii enhanced A. actinomycetemcomitans tolerance to tetracycline, suggesting a protective role under antibiotic pressure. Finally, S. gordonii significantly inhibited the bacterium Serratia marcescens from invading in vitro biofilms, but this inhibition was lost during co-culture with A. actinomycetemcomitans and in a murine abscess model, where S. gordonii actually promoted S. marcescens invasion. These data indicate that microbial interactions can impact fitness of a bacterial community upon exposure to stresses, but these impacts are highly environment dependent. IMPORTANCE Microbial interactions are critical modulators of the emergence of microbial communities and their functions. However, how these interactions impact the fitness of microbes in established communities upon exposure to environmental stresses is poorly understood. Here, we utilized a two-species community consisting of Aggregatibacter actinomycetemcomitans and Streptococcus gordonii to examine the impact of synergistic and antagonistic interactions on microbial resilience to environmental fluctuations and susceptibility to microbial invasion. We focused on the S. gordonii-produced extracellular molecules, L-lactate and H2O2, which have been shown to mediate interactions between these two microbes. We discovered that seemingly beneficial functions, such as A. actinomycetemcomitans cross-feeding on S. gordonii-produced L-Lactate, can paradoxically exacerbate vulnerabilities, such as susceptibility to antibiotics. Moreover, our data highlight the context-dependent nature of microbial interactions, emphasizing that a seemingly potent antimicrobial, such as H2O2, can have both synergistic and antagonistic effects on a microbial community dependent on the environment.
Collapse
Affiliation(s)
- Gina R. Lewin
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Emma R. Evans
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Marvin Whiteley
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Rocha CM, Kawamoto D, Martins FH, Bueno MR, Ishikawa KH, Ando-Suguimoto ES, Carlucci AR, Arroteia LS, Casarin RV, Saraiva L, Simionato MRL, Mayer MPA. Experimental Inoculation of Aggregatibacter actinomycetemcomitans and Streptococcus gordonii and Its Impact on Alveolar Bone Loss and Oral and Gut Microbiomes. Int J Mol Sci 2024; 25:8090. [PMID: 39125663 PMCID: PMC11312116 DOI: 10.3390/ijms25158090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 08/12/2024] Open
Abstract
Oral bacteria are implicated not only in oral diseases but also in gut dysbiosis and inflammatory conditions throughout the body. The periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa) often occurs in complex oral biofilms with Streptococcus gordonii (Sg), and this interaction might influence the pathogenic potential of this pathogen. This study aims to assess the impact of oral inoculation with Aa, Sg, and their association (Aa+Sg) on alveolar bone loss, oral microbiome, and their potential effects on intestinal health in a murine model. Sg and/or Aa were orally administered to C57Bl/6 mice, three times per week, for 4 weeks. Aa was also injected into the gingiva three times during the initial experimental week. After 30 days, alveolar bone loss, expression of genes related to inflammation and mucosal permeability in the intestine, serum LPS levels, and the composition of oral and intestinal microbiomes were determined. Alveolar bone resorption was detected in Aa, Sg, and Aa+Sg groups, although Aa bone levels did not differ from that of the SHAM-inoculated group. Il-1β expression was upregulated in the Aa group relative to the other infected groups, while Il-6 expression was downregulated in infected groups. Aa or Sg downregulated the expression of tight junction genes Cldn 1, Cldn 2, Ocdn, and Zo-1 whereas infection with Aa+Sg led to their upregulation, except for Cldn 1. Aa was detected in the oral biofilm of the Aa+Sg group but not in the gut. Infections altered oral and gut microbiomes. The oral biofilm of the Aa group showed increased abundance of Gammaproteobacteria, Enterobacterales, and Alloprevotella, while Sg administration enhanced the abundance of Alloprevotella and Rothia. The gut microbiome of infected groups showed reduced abundance of Erysipelotrichaceae. Infection with Aa or Sg disrupts both oral and gut microbiomes, impacting oral and gut homeostasis. While the combination of Aa with Sg promotes Aa survival in the oral cavity, it mitigates the adverse effects of Aa in the gut, suggesting a beneficial role of Sg associations in gut health.
Collapse
Affiliation(s)
- Catarina Medeiros Rocha
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Fernando Henrique Martins
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Manuela Rocha Bueno
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Division of Periodontics, Faculdade São Leopoldo Mandic, São Leopoldo Mandic Research Institute, Campinas 13045-755, SP, Brazil
| | - Karin H. Ishikawa
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Ellen Sayuri Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Aline Ramos Carlucci
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Leticia Sandoli Arroteia
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.); (R.V.C.)
| | - Renato V. Casarin
- Department of Prosthesis and Periodontology, School of Dentistry, University of Campinas, Campinas 13083-875, SP, Brazil; (L.S.A.); (R.V.C.)
| | - Luciana Saraiva
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Maria Regina Lorenzetti Simionato
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, SP, Brazil; (C.M.R.); (D.K.); (F.H.M.); (M.R.B.); (K.H.I.); (E.S.A.-S.); (A.R.C.); (M.R.L.S.)
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
4
|
Amaechi BT, AbdulAzees PA, Mohseni S, Luong MN, Lin CY, Restrepo-Ceron MC, Kataoka Y, Omosebi TO, Kanthaiah K. Caries preventing efficacy of new Isomalt-containing mouthrinse formulations: a microbial study. BDJ Open 2024; 10:51. [PMID: 38890317 PMCID: PMC11189562 DOI: 10.1038/s41405-024-00241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES The effectiveness of an Isomalt-containing mouthrinse to prevent caries development was investigated. METHODS Human enamel blocks were randomly assigned to five groups (n = 30/group): De-ionized distilled water (DDW), and mouthrinse containing either (IFC) 1% Isomalt, 225 ppm fluoride, and 0.05% cetylpyridinium chloride (CPC), (IF) 1% Isomalt and 225ppm fluoride, (FC) 225 ppm fluoride and 0.05% CPC or (F) 225 ppm fluoride. During 7-day demineralization in a Microbial Caries Model, mouthrinses were applied once daily for 1 min. Demineralization was assessed using Surface Microhardness testing for percentage change in SMH (%ΔSMH) and Transverse Microradiography for mineral loss (ΔZ). Data analysis (α = 0.05) used paired t-test (Intra-group comparison using SMH) and ANOVA/Tukey's for inter-group comparisons (%ΔSMH and ΔZ). RESULTS With SMH, relative to sound enamel baseline, demineralization was significant (P < 0.001) in all groups, except in IFC. Intergroup comparison with %ΔSMH showed significantly (p < 0.001) greater demineralization in DDW compared to other groups, and in IF, FC, and F compared to IFC (P < 0.001). With ΔZ, relative to DDW, all groups significantly (p < 0.0001) inhibited demineralization at varying percentages. CONCLUSIONS Mouthrinse containing Isomalt, fluoride, and CPC inhibited demineralization amidst cariogenic biofilm; thus, highlighting its potential as a more effective caries control tool than mouthrinse with only fluoride.
Collapse
Affiliation(s)
- Bennett T Amaechi
- Department of Comprehensive Dentistry, University of Texas Health, San Antonio, TX, USA.
| | | | - Sahar Mohseni
- Department of Comprehensive Dentistry, University of Texas Health, San Antonio, TX, USA
| | - Minh N Luong
- Department of Comprehensive Dentistry, University of Texas Health, San Antonio, TX, USA
| | - Chun-Yen Lin
- Department of Comprehensive Dentistry, University of Texas Health, San Antonio, TX, USA
- Department of Dentistry, Tri-Service General Hospital, Taipei City, Taiwan, ROC
| | - Maria Camila Restrepo-Ceron
- Department of Comprehensive Dentistry, University of Texas Health, San Antonio, TX, USA
- CES University, Medellín, Colombia
| | - Yuko Kataoka
- Department of Comprehensive Dentistry, University of Texas Health, San Antonio, TX, USA
| | - Temitope O Omosebi
- Department of Restorative Dentistry, Lagos State University Teaching Hospital, Ikeja, Nigeria
| | - Kannan Kanthaiah
- Department of Comprehensive Dentistry, University of Texas Health, San Antonio, TX, USA
| |
Collapse
|
5
|
da Cruz Nizer WS, Adams ME, Allison KN, Montgomery MC, Mosher H, Cassol E, Overhage J. Oxidative stress responses in biofilms. Biofilm 2024; 7:100203. [PMID: 38827632 PMCID: PMC11139773 DOI: 10.1016/j.bioflm.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
Oxidizing agents are low-molecular-weight molecules that oxidize other substances by accepting electrons from them. They include reactive oxygen species (ROS), such as superoxide anions (O2-), hydrogen peroxide (H2O2), and hydroxyl radicals (HO-), and reactive chlorine species (RCS) including sodium hypochlorite (NaOCl) and its active ingredient hypochlorous acid (HOCl), and chloramines. Bacteria encounter oxidizing agents in many different environments and from diverse sources. Among them, they can be produced endogenously by aerobic respiration or exogenously by the use of disinfectants and cleaning agents, as well as by the mammalian immune system. Furthermore, human activities like industrial effluent pollution, agricultural runoff, and environmental activities like volcanic eruptions and photosynthesis are also sources of oxidants. Despite their antimicrobial effects, bacteria have developed many mechanisms to resist the damage caused by these toxic molecules. Previous research has demonstrated that growing as a biofilm particularly enhances bacterial survival against oxidizing agents. This review aims to summarize the current knowledge on the resistance mechanisms employed by bacterial biofilms against ROS and RCS, focussing on the most important mechanisms, including the formation of biofilms in response to oxidative stressors, the biofilm matrix as a protective barrier, the importance of detoxifying enzymes, and increased protection within multi-species biofilm communities. Understanding the complexity of bacterial responses against oxidative stress will provide valuable insights for potential therapeutic interventions and biofilm control strategies in diverse bacterial species.
Collapse
Affiliation(s)
| | - Madison Elisabeth Adams
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Kira Noelle Allison
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | | | - Hailey Mosher
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| |
Collapse
|
6
|
Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2024; 50:138-167. [PMID: 36622855 DOI: 10.1080/1040841x.2022.2163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marlise I Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
- School of Dentistry, Cruzeiro do Sul University (UNICSUL), Sao Paulo, Brazil
| |
Collapse
|
7
|
Mintz KP, Danforth DR, Ruiz T. The Trimeric Autotransporter Adhesin EmaA and Infective Endocarditis. Pathogens 2024; 13:99. [PMID: 38392837 PMCID: PMC10892112 DOI: 10.3390/pathogens13020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Infective endocarditis (IE), a disease of the endocardial surface of the heart, is usually of bacterial origin and disproportionally affects individuals with underlying structural heart disease. Although IE is typically associated with Gram-positive bacteria, a minority of cases are caused by a group of Gram-negative species referred to as the HACEK group. These species, classically associated with the oral cavity, consist of bacteria from the genera Haemophilus (excluding Haemophilus influenzae), Aggregatibacter, Cardiobacterium, Eikenella, and Kingella. Aggregatibacter actinomycetemcomitans, a bacterium of the Pasteurellaceae family, is classically associated with Aggressive Periodontitis and is also concomitant with the chronic form of the disease. Bacterial colonization of the oral cavity serves as a reservoir for infection at distal body sites via hematological spreading. A. actinomycetemcomitans adheres to and causes disease at multiple physiologic niches using a diverse array of bacterial cell surface structures, which include both fimbrial and nonfimbrial adhesins. The nonfimbrial adhesin EmaA (extracellular matrix binding protein adhesin A), which displays sequence heterogeneity dependent on the serotype of the bacterium, has been identified as a virulence determinant in the initiation of IE. In this chapter, we will discuss the known biochemical, molecular, and structural aspects of this protein, including its interactions with extracellular matrix components and how this multifunctional adhesin may contribute to the pathogenicity of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Keith P. Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA;
| | - David R. Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA;
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA;
| |
Collapse
|
8
|
Klementiev AD, Garg N, Whiteley M. Identification of a glutathione transporter in A. actinomycetemcomitans. Microbiol Spectr 2024; 12:e0351123. [PMID: 38051055 PMCID: PMC10782972 DOI: 10.1128/spectrum.03511-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Microbes produce a large array of extracellular molecules, which serve as signals and cues to promote polymicrobial interactions and alter the function of microbial communities. This has been particularly well studied in the human oral microbiome, where key metabolites have been shown to impact both health and disease. Here, we used an untargeted mass spectrometry approach to comprehensively assess the extracellular metabolome of the pathogen Aggregatibacter actinomycetemcomitans and the commensal Streptococcus gordonii during mono- and co-culture. We generated and made publicly available a metabolomic data set that includes hundreds of potential metabolites and leveraged this data set to identify an operon important for glutathione secretion in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Alexander D. Klementiev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Neha Garg
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Ungor I, Apidianakis Y. Bacterial synergies and antagonisms affecting Pseudomonas aeruginosa virulence in the human lung, skin and intestine. Future Microbiol 2024; 19:141-155. [PMID: 37843410 DOI: 10.2217/fmb-2022-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Pseudomonas aeruginosa requires a significant breach in the host defense to cause an infection. While its virulence factors are well studied, its tropism cannot be explained only by studying its interaction with the host. Why are P. aeruginosa infections so rare in the intestine compared with the lung and skin? There is not enough evidence to claim specificity in virulence factors deployed by P. aeruginosa in each anatomical site, and host physiology differences between the lung and the intestine cannot easily explain the observed differences in virulence. This perspective highlights a relatively overlooked parameter in P. aeruginosa virulence, namely, potential synergies with bacteria found in the human skin and lung, as well as antagonisms with bacteria of the human intestine.
Collapse
Affiliation(s)
- Izel Ungor
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| |
Collapse
|
10
|
Lamont RJ, Hajishengallis G, Koo H. Social networking at the microbiome-host interface. Infect Immun 2023; 91:e0012423. [PMID: 37594277 PMCID: PMC10501221 DOI: 10.1128/iai.00124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Microbial species colonizing host ecosystems in health or disease rarely do so alone. Organisms conglomerate into dynamic heterotypic communities or biofilms in which interspecies and interkingdom interactions drive functional specialization of constituent species and shape community properties, including nososymbiocity or pathogenic potential. Cell-to-cell binding, exchange of signaling molecules, and nutritional codependencies can all contribute to the emergent properties of these communities. Spatial constraints defined by community architecture also determine overall community function. Multilayered interactions thus occur between individual pairs of organisms, and the relative impact can be determined by contextual cues. Host responses to heterotypic communities and impact on host surfaces are also driven by the collective action of the community. Additionally, the range of interspecies interactions can be extended by bacteria utilizing host cells or host diet to indirectly or directly influence the properties of other organisms and the community microenvironment. In contexts where communities transition to a dysbiotic state, their quasi-organismal nature imparts adaptability to nutritional availability and facilitates resistance to immune effectors and, moreover, exploits inflammatory and acidic microenvironments for their persistence.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Ancuta DL, Alexandru DM, Crivineanu M, Coman C. Induction of Periodontitis Using Bacterial Strains Isolated from the Human Oral Microbiome in an Experimental Rat Model. Biomedicines 2023; 11:2098. [PMID: 37626595 PMCID: PMC10452127 DOI: 10.3390/biomedicines11082098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontal disease is that condition resulting in the destruction of periodontal tissues, bone resorption, and tooth loss, the etiology of which is linked to immunological and microbiological factors. The aim of this study was to evaluate the potential trigger of periodontal disease in a rat model using bacterial species incriminated in the pathology of human periodontitis and to establish their optimal concentrations capable of reproducing the disease, with the idea of subsequently developing innovative treatments for the condition. In this study, we included 15 male Wistar rats, aged 20 weeks, which we divided into three groups. In each group, we applied ligatures with gingival retraction wire on the maxillary incisors. The ligature and the gingival sac were contaminated by oral gavage with a mixture of fresh cultures of Aggregatibacter actinomycetemcomitans (A.a), Fusobacterium nucleatum (F.n) and Streptococcus oralis (S.o) in concentrations of 108, 109, and 1010 CFU/mL each for 5 days a week for 4 weeks. During the clinical monitoring period of 28 days, overlapped with the period of oral contamination, we followed the expression of clinical signs specific to periodontitis. We also monitored the evolution of body weight and took weekly samples from the oral cavity for the microbiological identification of the tested bacteria and blood samples for hematological examination. At the end of the study, the animals were euthanized, and the ligated incisors were taken for histopathological analysis. The characteristic symptomatology of periodontal disease was expressed from the first week of the study and was maintained until the end, and we were able to identify the bacteria during each examination. Hematologically, the number of neutrophils decreased dramatically (p < 0.0001) in the case of the 109 group, unlike the other groups, as did the number of lymphocytes. Histopathologically, we identified neutrophilic infiltrate in all groups, as well as the presence of coccobacilli, periodontal tissue hyperplasia, and periodontal lysis. In the 109 group, we also observed pulpal tissue with necrotic bone fragments and pyogranulomatous inflammatory reaction. By corroborating the data, we can conclude that for the development of periodontal disease using A.a, F.n, and S.o, a concentration of 109 or 1010 CFU/mL is required, which must necessarily contaminate a ligature thread applied to the level of the rat's dental pack.
Collapse
Affiliation(s)
- Diana Larisa Ancuta
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Diana Mihaela Alexandru
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
| | - Maria Crivineanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
| | - Cristin Coman
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
12
|
Tristano J, Danforth DR, Wargo MJ, Mintz KP. Regulation of adhesin synthesis in Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2023; 38:237-250. [PMID: 36871155 PMCID: PMC10175207 DOI: 10.1111/omi.12410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Aggregatibacter actinomycetemcomitans is a gram-negative bacterium associated with periodontal disease and a variety of disseminated extra-oral infections. Tissue colonization is mediated by fimbriae and non-fimbriae adhesins resulting in the formation of a sessile bacterial community or biofilm, which confers enhanced resistance to antibiotics and mechanical removal. The environmental changes experienced by A. actinomycetemcomitans during infection are detected and processed by undefined signaling pathways that alter gene expression. In this study, we have characterized the promoter region of the extracellular matrix protein adhesin A (EmaA), which is an important surface adhesin in biofilm biogenesis and disease initiation using a series of deletion constructs consisting of the emaA intergenic region and a promotor-less lacZ sequence. Two regions of the promoter sequence were found to regulate gene transcription and in silico analysis indicated the presence of multiple transcriptional regulatory binding sequences. Analysis of four regulatory elements, CpxR, ArcA, OxyR, and DeoR, was undertaken in this study. Inactivation of arcA, the regulator moiety of the ArcAB two-component signaling pathway involved in redox homeostasis, resulted in a decrease in EmaA synthesis and biofilm formation. Analysis of the promoter sequences of other adhesins identified binding sequences for the same regulatory proteins, which suggests that these proteins are involved in the coordinate regulation of adhesins required for colonization and pathogenesis.
Collapse
Affiliation(s)
- Jake Tristano
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - David R. Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Keith P. Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| |
Collapse
|
13
|
Zhu Y, Wang Y, Zhang S, Li J, Li X, Ying Y, Yuan J, Chen K, Deng S, Wang Q. Association of polymicrobial interactions with dental caries development and prevention. Front Microbiol 2023; 14:1162380. [PMID: 37275173 PMCID: PMC10232826 DOI: 10.3389/fmicb.2023.1162380] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Dental caries is a common oral disease. In many cases, disruption of the ecological balance of the oral cavity can result in the occurrence of dental caries. There are many cariogenic microbiota and factors, and their identification allows us to take corresponding prevention and control measures. With the development of microbiology, the caries-causing bacteria have evolved from the traditional single Streptococcus mutans to the discovery of oral symbiotic bacteria. Thus it is necessary to systematically organized the association of polymicrobial interactions with dental caries development. In terms of ecology, caries occurs due to an ecological imbalance of the microbiota, caused by the growth and reproduction of cariogenic microbiota due to external factors or the disruption of homeostasis by one's own factors. To reduce the occurrence of dental caries effectively, and considering the latest scientific viewpoints, caries may be viewed from the perspective of ecology, and preventive measures can be taken; hence, this article systematically summarizes the prevention and treatment of dental caries from the aspects of ecological perspectives, in particular the ecological biofilm formation, bacterial quorum sensing, the main cariogenic microbiota, and preventive measures.
Collapse
Affiliation(s)
- Yimei Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Shuyang Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Xin Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yuanyuan Ying
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Jinna Yuan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qingjing Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Hajishengallis G, Lamont RJ, Koo H. Oral polymicrobial communities: Assembly, function, and impact on diseases. Cell Host Microbe 2023; 31:528-538. [PMID: 36933557 PMCID: PMC10101935 DOI: 10.1016/j.chom.2023.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Oral microbial communities assemble into complex spatial structures. The sophisticated physical and chemical signaling systems underlying the community enable their collective functional regulation as well as the ability to adapt by integrating environmental information. The combined output of community action, as shaped by both intra-community interactions and host and environmental variables, dictates homeostatic balance or dysbiotic disease such as periodontitis and dental caries. Oral polymicrobial dysbiosis also exerts systemic effects that adversely affect comorbidities, in part due to ectopic colonization of oral pathobionts in extra-oral tissues. Here, we review new and emerging concepts that explain the collective functional properties of oral polymicrobial communities and how these impact health and disease both locally and systemically.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Park B, Koh H, Patatanian M, Reyes-Caballero H, Zhao N, Meinert J, Holbrook JT, Leinbach LI, Biswal S. The mediating roles of the oral microbiome in saliva and subgingival sites between e-cigarette smoking and gingival inflammation. BMC Microbiol 2023; 23:35. [PMID: 36732713 PMCID: PMC9893987 DOI: 10.1186/s12866-023-02779-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Electronic cigarettes (ECs) have been widely used by young individuals in the U.S. while being considered less harmful than conventional tobacco cigarettes. However, ECs have increasingly been regarded as a health risk, producing detrimental chemicals that may cause, combined with poor oral hygiene, substantial inflammation in gingival and subgingival sites. In this paper, we first report that EC smoking significantly increases the odds of gingival inflammation. Then, through mediation analysis, we seek to identify and explain the mechanism that underlies the relationship between EC smoking and gingival inflammation via the oral microbiome. METHODS We collected saliva and subgingival samples from 75 EC users and 75 non-users between 18 and 34 years in age and profiled their microbial compositions via 16S rRNA amplicon sequencing. We conducted raw sequence data processing, denoising and taxonomic annotations using QIIME2 based on the expanded human oral microbiome database (eHOMD). We then created functional annotations (i.e., KEGG pathways) using PICRUSt2. RESULTS We found significant increases in α-diversity for EC users and disparities in β-diversity between EC users and non-users. We also found significant disparities between EC users and non-users in the relative abundance of 36 microbial taxa in the saliva site and 71 microbial taxa in the subgingival site. Finally, we found that 1 microbial taxon in the saliva site and 18 microbial taxa in the subgingival site significantly mediated the effects of EC smoking on gingival inflammation. The mediators on the genus level, for example, include Actinomyces, Rothia, Neisseria, and Enterococcus in the subgingival site. In addition, we report significant disparities between EC users and non-users in the relative abundance of 71 KEGG pathways in the subgingival site. CONCLUSIONS These findings reveal that continued EC use can further increase microbial dysbiosis that may lead to periodontal disease. Our findings also suggest that continued surveillance for the effect of ECs on the oral microbiome and its transmission to oral diseases is needed.
Collapse
Affiliation(s)
- Bongsoo Park
- Department of Environmental Health and Engineering, Johns Hopkins School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA
- Epigenetics and Stem Cell Aging, Translational Gerontology Branch, National Institute On Aging, National Institute of Health, Baltimore, MD, 21224, USA
| | - Hyunwook Koh
- Department of Applied Mathematics and Statistics, The State University of New York, Korea, Incheon, 21985, South Korea
| | - Michael Patatanian
- Department of Environmental Health and Engineering, Johns Hopkins School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA
| | - Hermes Reyes-Caballero
- Department of Environmental Health and Engineering, Johns Hopkins School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Jill Meinert
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Janet T Holbrook
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Leah I Leinbach
- Department of Health Policy and Management, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA.
- Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Van Holm W, Carvalho R, Delanghe L, Eilers T, Zayed N, Mermans F, Bernaerts K, Boon N, Claes I, Lebeer S, Teughels W. Antimicrobial potential of known and novel probiotics on in vitro periodontitis biofilms. NPJ Biofilms Microbiomes 2023; 9:3. [PMID: 36681674 PMCID: PMC9867767 DOI: 10.1038/s41522-023-00370-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Several oral diseases are characterized by a shift within the oral microbiome towards a pathogenic, dysbiotic composition. Broad-spectrum antimicrobials are often part of patient care. However, because of the rising antibiotic resistance, alternatives are increasingly desirable. Alternatively, supplying beneficial species through probiotics is increasingly showing favorable results. Unfortunately, these probiotics are rarely evaluated comparatively. In this study, the in vitro effects of three known and three novel Lactobacillus strains, together with four novel Streptococcus salivarius strains were comparatively evaluated for antagonistic effects on proximal agar growth, antimicrobial properties of probiotic supernatant and the probiotic's effects on in vitro periodontal biofilms. Strain-specific effects were observed as differences in efficacy between genera and differences within genera. While some of the Lactobacillus candidates were able to reduce the periodontal pathobiont A. actinomycetemcomitans, the S. salivarius strains were not. However, the S. salivarius strains were more effective against periodontal pathobionts P. intermedia, P. gingivalis, and F. nucleatum. Vexingly, most of the Lactobacillus strains also negatively affected the prevalence of commensal species within the biofilms, while this was lower for S. salivarius strains. Both within lactobacilli and streptococci, some strains showed significantly more inhibition of the pathobionts, indicating the importance of proper strain selection. Additionally, some species showed reductions in non-target species, which can result in unexpected and unexplored effects on the whole microbiome.
Collapse
Affiliation(s)
- Wannes Van Holm
- grid.5596.f0000 0001 0668 7884Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium ,grid.5342.00000 0001 2069 7798Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Rita Carvalho
- grid.5596.f0000 0001 0668 7884Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | - Lize Delanghe
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tom Eilers
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Naiera Zayed
- grid.5596.f0000 0001 0668 7884Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium ,grid.5342.00000 0001 2069 7798Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium ,grid.411775.10000 0004 0621 4712Faculty of Pharmacy, Menoufia University, Shibin el Kom, Egypt
| | - Fabian Mermans
- grid.5342.00000 0001 2069 7798Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - Kristel Bernaerts
- grid.5596.f0000 0001 0668 7884Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven, Belgium
| | - Nico Boon
- grid.5342.00000 0001 2069 7798Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | | | - Sarah Lebeer
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Wim Teughels
- grid.5596.f0000 0001 0668 7884Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
17
|
Abstract
Oral commensal streptococci are primary colonizers of the oral cavity. These streptococci produce many adhesins, metabolites, and antimicrobials that modulate microbial succession and diversity within the oral cavity. Often, oral commensal streptococci antagonize cariogenic and periodontal pathogens such as Streptococcus mutans and Porphyromonas gingivalis, respectively. Mechanisms of antagonism are varied and range from the generation of hydrogen peroxide, competitive metabolite scavenging, the generation of reactive nitrogen intermediates, and bacteriocin production. Furthermore, several oral commensal streptococci have been shown to alter the host immune response at steady state and in response to oral pathogens. Collectively, these features highlight the remarkable ability of oral commensal streptococci to regulate the structure and function of the oral microbiome. In this review, we discuss mechanisms used by oral commensal streptococci to interact with diverse oral pathogens, both physically and through the production of antimicrobials. Finally, we conclude by exploring the critical roles of oral commensal streptococci in modulating the host immune response and maintaining health and homeostasis.
Collapse
Affiliation(s)
- Joshua J. Baty
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara N. Stoner
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica A. Scoffield
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
18
|
Van Holm W, Verspecht T, Carvalho R, Bernaerts K, Boon N, Zayed N, Teughels W. Glycerol strengthens probiotic effect of Limosilactobacillus reuteri in oral biofilms: a synergistic synbiotic approach. Mol Oral Microbiol 2022; 37:266-275. [PMID: 36075698 DOI: 10.1111/omi.12386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022]
Abstract
Both in vitro and in vivo studies have shown that the probiotic Limosilactobacillus reuteri can improve oral health. L. reuteri species are known to produce the antimicrobial 'reuterin' from glycerol. In order to further increase its antimicrobial activity, this study evaluated the effect of the combined use of glycerol and Limosilactobacillus reuteri (ATCC PTA 5289) in view of using a synergistic synbiotic over a probiotic. An antagonistic agar growth and a multispecies biofilm model showed that the antimicrobial potential of the probiotic was significantly enhanced against periodontal pathobionts and anaerobic commensals when supplemented with glycerol. Synbiotic biofilms also showed a significant reduction in inflammatory expression of human oral keratinocytes (HOK-18A), but only when the keratinocytes were preincubated with the probiotic. Probiotic preincubation of keratinocytes or probiotic- and synbiotic treatment of biofilms alone were insufficient to significantly reduce inflammatory expression. Overall, this study shows that combining glycerol with the probiotic L. reuteri into a synergistic synbiotic can greatly improve the effectiveness of the latter. One sentence summary: The use of a synbiotic formulation of Limosilactobacillus reuteri with glycerol over the probiotic improves antimicrobial effects and reduced inflammatory response to oral biofilms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wannes Van Holm
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium
| | - Tim Verspecht
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium
| | - Rita Carvalho
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven Chem&Tech, Celestijnenlaan 200F (bus 2424), Leuven, 3001, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium
| | - Naiera Zayed
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium.,Faculty of Pharmacy, Menoufia University, Egypt
| | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium
| |
Collapse
|
19
|
Ozuna H, Snider I, Belibasakis GN, Oscarsson J, Johansson A, Uriarte SM. Aggregatibacter actinomycetemcomitans and Filifactor alocis: Two exotoxin-producing oral pathogens. FRONTIERS IN ORAL HEALTH 2022; 3:981343. [PMID: 36046121 PMCID: PMC9420871 DOI: 10.3389/froh.2022.981343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is a dysbiotic disease caused by the interplay between the microbial ecosystem present in the disease with the dysregulated host immune response. The disease-associated microbial community is formed by the presence of established oral pathogens like Aggregatibacter actinomycetemcomitans as well as by newly dominant species like Filifactor alocis. These two oral pathogens prevail and grow within the periodontal pocket which highlights their ability to evade the host immune response. This review focuses on the virulence factors and potential pathogenicity of both oral pathogens in periodontitis, accentuating the recent description of F. alocis virulence factors, including the presence of an exotoxin, and comparing them with the defined factors associated with A. actinomycetemcomitans. In the disease setting, possible synergistic and/or mutualistic interactions among both oral pathogens might contribute to disease progression.
Collapse
Affiliation(s)
- Hazel Ozuna
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Ian Snider
- Department of Biology, School of Arts and Sciences, University of Louisville, Louisville, KY, United States
| | | | - Jan Oscarsson
- Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Silvia M. Uriarte
| |
Collapse
|
20
|
El-Awady AR, Elashiry M, Morandini AC, Meghil MM, Cutler CW. Dendritic cells a critical link to alveolar bone loss and systemic disease risk in periodontitis: Immunotherapeutic implications. Periodontol 2000 2022; 89:41-50. [PMID: 35244951 DOI: 10.1111/prd.12428] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extensive research in humans and animal models has begun to unravel the complex mechanisms that drive the immunopathogenesis of periodontitis. Neutrophils mount an early and rapid response to the subgingival oral microbiome, producing destructive enzymes to kill microbes. Chemokines and cytokines are released that attract macrophages, dendritic cells, and T cells to the site. Dendritic cells, the focus of this review, are professional antigen-presenting cells on the front line of immune surveillance. Dendritic cells consist of multiple subsets that reside in the epithelium, connective tissues, and major organs. Our work in humans and mice established that myeloid dendritic cells are mobilized in periodontitis. This occurs in lymphoid and nonlymphoid oral tissues, in the bloodstream, and in response to Porphyromonas gingivalis. Moreover, the dendritic cells mature in situ in gingival lamina propria, forming immune conjugates with cluster of differentiation (CD) 4+ T cells, called oral lymphoid foci. At such foci, the decisions are made as to whether to promote bone destructive T helper 17 or bone-sparing regulatory T cell responses. Interestingly, dendritic cells lack potent enzymes and reactive oxygen species needed to kill and degrade endocytosed microbes. The keystone pathogen P. gingivalis exploits this vulnerability by invading dendritic cells in the tissues and peripheral blood using its distinct fimbrial adhesins. This promotes pathogen dissemination and inflammatory disease at distant sites, such as atherosclerotic plaques. Interestingly, our recent studies indicate that such P. gingivalis-infected dendritic cells release nanosized extracellular vesicles called exosomes, in higher numbers than uninfected dendritic cells do. Secreted exosomes and inflammasome-related cytokines are a key feature of the senescence-associated secretory phenotype. Exosomes communicate in paracrine with neighboring stromal cells and immune cells to promote and amplify cellular senescence. We have shown that dendritic cell-derived exosomes can be custom tailored to target and reprogram specific immune cells responsible for inflammatory bone loss in mice. The long-term goal of these immunotherapeutic approaches, ongoing in our laboratory and others, is to promote human health and longevity.
Collapse
Affiliation(s)
- Ahmed R El-Awady
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ana C Morandini
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mohamed M Meghil
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
21
|
Ptasiewicz M, Grywalska E, Mertowska P, Korona-Głowniak I, Poniewierska-Baran A, Niedźwiedzka-Rystwej P, Chałas R. Armed to the Teeth-The Oral Mucosa Immunity System and Microbiota. Int J Mol Sci 2022; 23:882. [PMID: 35055069 PMCID: PMC8776045 DOI: 10.3390/ijms23020882] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The oral cavity is inhabited by a wide spectrum of microbial species, and their colonization is mostly based on commensalism. These microbes are part of the normal oral flora, but there are also opportunistic species that can cause oral and systemic diseases. Although there is a strong exposure to various microorganisms, the oral mucosa reduces the colonization of microorganisms with high rotation and secretion of various types of cytokines and antimicrobial proteins such as defensins. In some circumstances, the imbalance between normal oral flora and pathogenic flora may lead to a change in the ratio of commensalism to parasitism. Healthy oral mucosa has many important functions. Thanks to its integrity, it is impermeable to most microorganisms and constitutes a mechanical barrier against their penetration into tissues. Our study aims to present the role and composition of the oral cavity microbiota as well as defense mechanisms within the oral mucosa which allow for maintaining a balance between such numerous species of microorganisms. We highlight the specific aspects of the oral mucosa protecting barrier and discuss up-to-date information on the immune cell system that ensures microbiota balance. This study presents the latest data on specific tissue stimuli in the regulation of the immune system with particular emphasis on the resistance of the gingival barrier. Despite advances in understanding the mechanisms regulating the balance on the microorganism/host axis, more research is still needed on how the combination of these diverse signals is involved in the regulation of immunity at the oral mucosa barrier.
Collapse
Affiliation(s)
- Maja Ptasiewicz
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | | | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| |
Collapse
|
22
|
|
23
|
Vaernewyck V, Arzi B, Sanders NN, Cox E, Devriendt B. Mucosal Vaccination Against Periodontal Disease: Current Status and Opportunities. Front Immunol 2021; 12:768397. [PMID: 34925337 PMCID: PMC8675580 DOI: 10.3389/fimmu.2021.768397] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Approximately 9 out of 10 adults have some form of periodontal disease, an infection-induced inflammatory disease of the tooth-supporting tissues. The initial form, gingivitis, often remains asymptomatic, but this can evolve into periodontitis, which is typically associated with halitosis, oral pain or discomfort, and tooth loss. Furthermore, periodontitis may contribute to systemic disorders like cardiovascular disease and type 2 diabetes mellitus. Control options remain nonspecific, time-consuming, and costly; largely relying on the removal of dental plaque and calculus by mechanical debridement. However, while dental plaque bacteria trigger periodontal disease, it is the host-specific inflammatory response that acts as main driver of tissue destruction and disease progression. Therefore, periodontal disease control should aim to alter the host's inflammatory response as well as to reduce the bacterial triggers. Vaccines may provide a potent adjunct to mechanical debridement for periodontal disease prevention and treatment. However, the immunopathogenic complexity and polymicrobial aspect of PD appear to complicate the development of periodontal vaccines. Moreover, a successful periodontal vaccine should induce protective immunity in the oral cavity, which proves difficult with traditional vaccination methods. Recent advances in mucosal vaccination may bridge the gap in periodontal vaccine development. In this review, we offer a comprehensive overview of mucosal vaccination strategies to induce protective immunity in the oral cavity for periodontal disease control. Furthermore, we highlight the need for additional research with appropriate and clinically relevant animal models. Finally, we discuss several opportunities in periodontal vaccine development such as multivalency, vaccine formulations, and delivery systems.
Collapse
Affiliation(s)
- Victor Vaernewyck
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, United States
- Veterinary Institute for Regenerative Cures (VIRC) School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Niek N. Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
24
|
Transcriptomic Responses to Coaggregation between Streptococcus gordonii and Streptococcus oralis. Appl Environ Microbiol 2021; 87:e0155821. [PMID: 34469191 PMCID: PMC8552878 DOI: 10.1128/aem.01558-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell-cell adhesion between oral bacteria plays a key role in the development of polymicrobial communities such as dental plaque. Oral streptococci such as Streptococcus gordonii and Streptococcus oralis are important early colonizers of dental plaque and bind to a wide range of different oral microorganisms, forming multispecies clumps or "coaggregates." S. gordonii actively responds to coaggregation by regulating gene expression. To further understand these responses, we assessed gene regulation in S. gordonii and S. oralis following coaggregation in 25% human saliva. Coaggregates were formed by mixing, and after 30 min, RNA was extracted for dual transcriptome sequencing (RNA-Seq) analysis. In S. oralis, 18 genes (6 upregulated and 12 downregulated) were regulated by coaggregation. Significantly downregulated genes encoded functions such as amino acid and antibiotic biosynthesis, ribosome, and central carbon metabolism. In total, 28 genes were differentially regulated in Streptococcus gordonii (25 upregulated and 3 downregulated). Many genes associated with transporters and a two-component (NisK/SpaK) regulatory system were upregulated following coaggregation. Our comparative analyses of S. gordonii-S. oralis with different previously published S. gordonii pairings (S. gordonii-Fusobacterium nucleatum and S. gordonii-Veillonella parvula) suggest that the gene regulation is specific to each pairing, and responses do not appear to be conserved. This ability to distinguish between neighboring bacteria may be important for S. gordonii to adapt appropriately during the development of complex biofilms such as dental plaque. IMPORTANCE Dental plaque is responsible for two of the most prevalent diseases in humans, dental caries and periodontitis. Controlling the formation of dental plaque and preventing the transition from oral health to disease requires a detailed understanding of microbial colonization and biofilm development. Streptococci are among the most common colonizers of dental plaque. This study identifies key genes that are regulated when oral streptococci bind to one another, as they do in the early stages of dental plaque formation. We show that specific genes are regulated in two different oral streptococci following the formation of mixed-species aggregates. The specific responses of S. gordonii to coaggregation with S. oralis are different from those to coaggregation with other oral bacteria. Targeting the key genes that are upregulated during interspecies interactions may be a powerful approach to control the development of biofilm and maintain oral health.
Collapse
|
25
|
Kikuchi Y, Okamoto-Shibayama K, Kokubu E, Ishihara K. OxyR inactivation reduces the growth rate and oxidative stress defense in Capnocytophaga ochracea. Anaerobe 2021; 72:102466. [PMID: 34673216 DOI: 10.1016/j.anaerobe.2021.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/22/2021] [Accepted: 10/17/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The human oral cavity harbors several bacteria. Among them, Capnocytophaga ochracea, a facultative anaerobe, is responsible for the early phase of dental plaque formation. In this phase, the tooth surface or tissue is exposed to various oxidative stresses. For colonization in the dental plaque phase, a response by hydrogen peroxide (H2O2)-sensing transcriptional regulators, such as OxyR, may be necessary. However, to date, no study has elucidated the role of OxyR protein in C. ochracea. METHODS Insertional mutagenesis was used to create an oxyR mutant, and gene expression was evaluated by reverse transcription-polymerase chain reaction and quantitative real-time reverse transcription-polymerase chain reaction. Bacterial growth curves were generated by turbidity measurement, and the sensitivity of the oxyR mutant to H2O2 was assessed using the disc diffusion assay. Finally, a two-compartment system was used to assess biofilm formation. RESULTS The oxyR mutant grew slower than the wild-type under anaerobic conditions. The agar diffusion assay revealed that the oxyR mutant had increased sensitivity to H2O2. The transcript levels of oxidative stress defense genes, sod, ahpC, and trx, were lower in the oxyR mutant than in the wild-type strain. The turbidity of C. ochracea, simultaneously co-cultured with Streptococcus gordonii, was lower than that observed under conditions of homotypic growth. Moreover, the percentage decrease in growth of the oxyR mutant was significantly higher than that of the wild-type. CONCLUSIONS These results show that OxyR in C. ochracea regulates adequate in vitro growth and escapes oxidative stress.
Collapse
Affiliation(s)
- Yuichiro Kikuchi
- Oral Health Science Center, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan; Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Kazuko Okamoto-Shibayama
- Oral Health Science Center, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan; Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Eitoyo Kokubu
- Oral Health Science Center, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan; Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Kazuyuki Ishihara
- Oral Health Science Center, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan; Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| |
Collapse
|
26
|
Niggli S, Wechsler T, Kümmerli R. Single-Cell Imaging Reveals That Staphylococcus aureus Is Highly Competitive Against Pseudomonas aeruginosa on Surfaces. Front Cell Infect Microbiol 2021; 11:733991. [PMID: 34513736 PMCID: PMC8426923 DOI: 10.3389/fcimb.2021.733991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus frequently occur together in polymicrobial infections, and their interactions can complicate disease progression and treatment options. While interactions between P. aeruginosa and S. aureus have been extensively described using planktonic batch cultures, little is known about whether and how individual cells interact with each other on solid substrates. This is important because both species frequently colonize surfaces to form aggregates and biofilms in infections. Here, we performed single-cell time-lapse fluorescence microscopy, combined with automated image analysis, to describe interactions between P. aeruginosa PAO1 with three different S. aureus strains (Cowan I, 6850, JE2) during microcolony growth on agarose surfaces. While P. aeruginosa is usually considered the dominant species, we found that the competitive balance tips in favor of S. aureus on surfaces. We observed that all S. aureus strains accelerated the onset of microcolony growth in competition with P. aeruginosa and significantly compromised P. aeruginosa growth prior to physical contact. Upon direct contact, JE2 was the most competitive S. aureus strain, simply usurping P. aeruginosa microcolonies, while 6850 was the weakest competitor itself suppressed by P. aeruginosa. Moreover, P. aeruginosa reacted to the assault of S. aureus by showing increased directional growth and expedited expression of quorum sensing regulators controlling the synthesis of competitive traits. Altogether, our results reveal that quantitative single-cell live imaging has the potential to uncover microbial behaviors that cannot be predicted from batch culture studies, and thereby contribute to our understanding of interactions between pathogens that co-colonize host-associated surfaces during polymicrobial infections.
Collapse
Affiliation(s)
- Selina Niggli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Influence of the Alternative Sigma Factor RpoN on Global Gene Expression and Carbon Catabolism in Enterococcus faecalis V583. mBio 2021; 12:mBio.00380-21. [PMID: 34006651 PMCID: PMC8262876 DOI: 10.1128/mbio.00380-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The alternative sigma factor σ54 has been shown to regulate the expression of a wide array of virulence-associated genes, as well as central metabolism, in bacterial pathogens. In Gram-positive organisms, the σ54 is commonly associated with carbon metabolism. In this study, we show that the Enterococcus faecalis alternative sigma factor σ54 (RpoN) and its cognate enhancer binding protein MptR are essential for mannose utilization and are primary contributors to glucose uptake through the Mpt phosphotransferase system. To gain further insight into how RpoN contributes to global transcriptional changes, we performed microarray transcriptional analysis of strain V583 and an isogenic rpoN mutant grown in a chemically defined medium with glucose as the sole carbon source. Transcripts of 340 genes were differentially affected in the rpoN mutant; the predicted functions of these genes mainly related to nutrient acquisition. These differentially expressed genes included those with predicted catabolite-responsive element (cre) sites, consistent with loss of repression by the major carbon catabolite repressor CcpA. To determine if the inability to efficiently metabolize glucose/mannose affected infection outcome, we utilized two distinct infection models. We found that the rpoN mutant is significantly attenuated in both rabbit endocarditis and murine catheter-associated urinary tract infection (CAUTI). Here, we examined a ccpA mutant in the CAUTI model and showed that the absence of carbon catabolite control also significantly attenuates bacterial tissue burden in this model. Our data highlight the contribution of central carbon metabolism to growth of E. faecalis at various sites of infection.
Collapse
|
28
|
Hajishengallis G, Lamont RJ. Polymicrobial communities in periodontal disease: Their quasi-organismal nature and dialogue with the host. Periodontol 2000 2021; 86:210-230. [PMID: 33690950 DOI: 10.1111/prd.12371] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
In health, indigenous polymicrobial communities at mucosal surfaces maintain an ecological balance via both inter-microbial and host-microbial interactions that promote their own and the host's fitness, while preventing invasion by exogenous pathogens. However, genetic and acquired destabilizing factors (including immune deficiencies, immunoregulatory defects, smoking, diet, obesity, diabetes and other systemic diseases, and aging) may disrupt this homeostatic balance, leading to selective outgrowth of species with the potential for destructive inflammation. This process, known as dysbiosis, underlies the development of periodontitis in susceptible hosts. The pathogenic process is not linear but involves a positive-feedback loop between dysbiosis and the host inflammatory response. The dysbiotic community is essentially a quasi-organismal entity, where constituent organisms communicate via sophisticated physical and chemical signals and display functional specialization (eg, accessory pathogens, keystone pathogens, pathobionts), which enables polymicrobial synergy and dictates the community's pathogenic potential or nososymbiocity. In this review, we discuss early and recent studies in support of the polymicrobial synergy and dysbiosis model of periodontal disease pathogenesis. According to this concept, disease is not caused by individual "causative pathogens" but rather by reciprocally reinforced interactions between physically and metabolically integrated polymicrobial communities and a dysregulated host inflammatory response.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
29
|
Ishikawa KH, Bueno MR, Kawamoto D, Simionato MRL, Mayer MPA. Lactobacilli postbiotics reduce biofilm formation and alter transcription of virulence genes of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2021; 36:92-102. [PMID: 33372378 DOI: 10.1111/omi.12330] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
Periodontitis is characterized by a dysbiotic microbial community and treatment strategies include the reestablishment of symbiosis by reducing pathogens abundance. Aggregatibacter actinomycetemcomitans (Aa) is frequently associated with rapidly progressing periodontitis. Since the oral ecosystem may be affected by metabolic end-products of bacteria, we evaluated the effect of soluble compounds released by probiotic lactobacilli, known as postbiotics, on Aa biofilm and expression of virulence-associated genes. Cell-free pH-neutralized supernatants (CFS) of Lactobacillus rhamnosus Lr32, L. rhamnosus HN001, Lactobacillus acidophilus LA5, and L. acidophilus NCFM were tested against a fimbriated clinical isolate of Aa JP2 genotype (1 × 107 CFU/well) on biofilm formation for 24 hr, and early and mature preformed biofilms (2 and 24 hr). Lactobacilli CFS partially reduced Aa viable counts and biofilms biomass, but did not affect the number of viable non-adherent bacteria, except for LA5 CFS. Furthermore, LA5 CFS and, in a lesser extent HN001 CFS, influenced Aa preformed biofilms. Lactobacilli postbiotics altered expression profile of Aa in a strain-specific fashion. Transcription of cytolethal distending toxin (cdtB) and leukotoxin (ltxA) was downregulated by CFS of LA5 and LR32 CFS. Although all probiotics produced detectable peroxide, transcription of katA was downregulated by lactobacilli CFS. Transcription of dspB was abrogated by LR32 and NCFM CFS, but increased by HN001, whereas expression of pgA was not affected by any postbiotic. Our data indicated the potential of postbiotics from lactobacilli, especially LA5, to reduce colonization levels of Aa and to modulate the expression of virulence factors implicated in evasion of host defenses.
Collapse
Affiliation(s)
- Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Manuela R Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria R L Simionato
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Dostert M, Trimble MJ, Hancock REW. Antibiofilm peptides: overcoming biofilm-related treatment failure. RSC Adv 2021; 11:2718-2728. [PMID: 35424252 PMCID: PMC8694000 DOI: 10.1039/d0ra09739j] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Health leaders and scientists worldwide consider antibiotic resistance among the world's most dangerous pathogens as one of the biggest threats to global health. Antibiotic resistance has largely been attributed to genetic changes, but the role and recalcitrance of biofilms, largely due to growth state dependent adaptive resistance, is becoming increasingly appreciated. Biofilms are mono- and multi-species microbial communities embedded in an extracellular, protective matrix. In this growth state, bacteria are transcriptionally primed to survive extracellular stresses. Adaptations, affecting metabolism, regulation, surface charge, immune recognition and clearance, allow bacteria to thrive in the human body and withstand antibiotics and the host immune system. Biofilms resist clearance by multiple antibiotics and have a major role in chronic infections, causing more than 65% of all infections. No specific antibiofilm agents have been developed. Thus, there is a pressing need for alternatives to traditional antibiotics that directly inhibit and/or eradicate biofilms. Host defence peptides (HDPs) are small cationic peptides that are part of the innate immune system to both directly kill microbes but also function to modulate the immune response. Specific HDPs and their derivatives demonstrate broad-spectrum activity against biofilms. In vivo biofilm assays show efficacy in abscess, respiratory, in-dwelling device, contact lens and skin infection models. Further progress has been made through the study of ex vivo organoid and air-liquid interface models to better understand human infections and treatment while relieving the burden and complex nature of animal models. These avenues pave the way for a better understanding and treatment of the underlying cause of chronic infections that challenge the healthcare system.
Collapse
Affiliation(s)
- Melanie Dostert
- Department of Microbiology and Immunology, University of British Columbia Vancouver British Columbia Canada
| | - Michael J Trimble
- Department of Microbiology and Immunology, University of British Columbia Vancouver British Columbia Canada
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
31
|
de Lima HG, Pinke KH, Lopes MMR, Buzalaf CP, Campanelli AP, Lara VS. Mast cells exhibit intracellular microbicidal activity against Aggregatibacter actinomycetemcomitans. J Periodontal Res 2020; 55:744-752. [PMID: 32725826 DOI: 10.1111/jre.12763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/27/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Several studies have demonstrated that mast cells are equipped with versatile tools to combat and kill bacteria. Additionally, mast cells produce and secrete a variety of mediators, which either regulate the host's immune system or directly attack bacteria. In this study, the intracellular microbicidal capacity of mast cells against Aggregatibacter actinomycetemcomitans was evaluated. METHODS Murine mast cells were challenged in vitro with A actinomycetemcomitans for 3, 5, 10, and 24 hours. Subsequently, the colony-forming units were counted. Additionally, the production and release of nitric oxide and hydrogen peroxide were analyzed by DAF-FM diacetate, the Griess reaction, and the Amplex Red kit, respectively. Cell death was evaluated using FITC Annexin V and propidium iodide staining. RESULTS Mast cells are able to efficiently eliminate periodontopathogen, with best results after 10 hours of intracellular challenge. The production/release of nitric oxide-and to a lesser extent of hydrogen peroxide-by mast cells was in agreement with its microbicidal capacity. Ninety percent of the mast cells maintained their cellular viability even after 24 hours of bacterial challenge. CONCLUSIONS This is-to the best of our knowledge-the first report to describe the intracellular microbicidal activity of mast cells against A actinomycetemcomitans, concerning the production and release of potentially bactericidal substances. Further, the low number of cell deaths confirms that the decreased number of colony-forming units was due to the higher antimicrobial activity of mast cells. The results highlight the importance of these cells in the defense mechanisms of biofilm-induced periodontal disease.
Collapse
Affiliation(s)
- Heliton G de Lima
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Karen H Pinke
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Marcelo M R Lopes
- Integrated Research Center, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Camila P Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Vanessa S Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
32
|
Lindholm M, Metsäniitty M, Granström E, Oscarsson J. Outer membrane vesicle-mediated serum protection in Aggregatibacter actinomycetemcomitans. J Oral Microbiol 2020; 12:1747857. [PMID: 32363008 PMCID: PMC7178816 DOI: 10.1080/20002297.2020.1747857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/23/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans belongs to the HACEK group of fastidious Gram-negative organisms, a recognized cause of infective endocarditis. A. actinomycetemcomitans is also implicated in periodontitis, with rapid progress in adolescents. We recently demonstrated that the major outer membrane protein, OmpA1 was critical for serum survival of the A. actinomycetemcomitans serotype a model strain, D7SS, and that the paralogue, OmpA2 could operate as a functional homologue to OmpA1 in mediating serum resistance. In the present work, an essentially serum-sensitive ompA1 ompA2 double mutant A. actinomycetemcomitans strain derivative was exploited to elucidate if A. actinomycetemcomitans OMVs can contribute to bacterial serum resistance. Indeed, supplementation of OMVs resulted in a dose-dependent increase of the survival of the serum-sensitive strain in incubations in 50% normal human serum (NHS). Whereas neither OmpA1 nor OmpA2 was required for the OMV-mediated serum protection, OMVs and LPS from an A. actinomycetemcomitans strain lacking the LPS O-antigen polysaccharide part were significantly impaired in protecting D7SS ompA1 ompA2. Our results using a complement system screen assay support a model where A. actinomycetemcomitans OMVs can act as a decoy, which can trigger complement activation in an LPS-dependent manner, and consume complement components to protect serum-susceptible bacterial cells.
Collapse
Affiliation(s)
- Mark Lindholm
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Marjut Metsäniitty
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| |
Collapse
|
33
|
Abstract
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
34
|
Ji Y, Bolhuis A, Watson ML. Staphylococcus aureus products subvert the Burkholderia cenocepacia-induced inflammatory response in airway epithelial cells. J Med Microbiol 2019; 68:1813-1822. [PMID: 31674896 DOI: 10.1099/jmm.0.001100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction. Chronic pulmonary infection is associated with colonization with multiple micro-organisms but host-microbe and microbe-microbe interactions are poorly understood.Aim. This study aims to investigate the differences in host responses to mono- and co-infection with S. aureus and B. cenocepacia in human airway epithelial cells.Methodology. We assessed the effect of co-infection with B. cenocepacia and S. aureus on host signalling and inflammatory responses in the human airway epithelial cell line 16HBE, using ELISA and western blot analysis.Results. The results show that B. cenocepacia activates MAPK and NF-κB signalling pathways, subsequently eliciting robust interleukin (IL)-8 production. However, when airway epithelial cells were co-treated with live B. cenocepacia bacteria and S. aureus supernatants (conditioned medium), the pro-inflammatory response was attenuated. This anti-inflammatory effect was widely exhibited in the S. aureus isolates tested and was mediated via reduced MAPK and NF-κB signalling, but not via IL-1 receptor or tumour necrosis factor receptor modulation. The staphylococcal effectors were characterized as small, heat-stable, non-proteinaceous and not cell wall-related factors.Conclusion. This study demonstrates for the first time the host response in a S. aureus/B. cenocepacia co-infection model and provides insight into a staphylococcal immune evasion mechanism, as well as a therapeutic intervention for excessive inflammation.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK
| | - Albert Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK
| | - Malcolm L Watson
- Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK
| |
Collapse
|
35
|
Transcriptomic Analysis of Aggregatibacter actinomycetemcomitans Core and Accessory Genes in Different Growth Conditions. Pathogens 2019; 8:pathogens8040282. [PMID: 31816971 PMCID: PMC6963384 DOI: 10.3390/pathogens8040282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/21/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans genome can be divided into an accessory gene pool (found in some but not all strains) and a core gene pool (found in all strains). The functions of the accessory genes (genomic islands and non-island accessory genes) are largely unknown. We hypothesize that accessory genes confer critical functions for A. actinomycetemcomitans in vivo. This study examined the expression patterns of accessory and core genes of A. actinomycetemcomitans in distinct growth conditions. We found similar expression patterns of island and non-island accessory genes, which were generally lower than the core genes in all growth conditions. The median expression levels of genomic islands were 29%–37% of the core genes in enriched medium but elevated to as high as 63% of the core genes in nutrient-limited media. Several putative virulence genes, including the cytolethal distending toxin operon, were found to be activated in nutrient-limited conditions. In conclusion, genomic islands and non-island accessory genes exhibited distinct patterns of expression from the core genes and may play a role in the survival of A. actinomycetemcomitans in nutrient-limited environments.
Collapse
|
36
|
Phalak P, Henson MA. Metabolic modelling of chronic wound microbiota predicts mutualistic interactions that drive community composition. J Appl Microbiol 2019; 127:1576-1593. [PMID: 31436369 PMCID: PMC6790277 DOI: 10.1111/jam.14421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022]
Abstract
AIMS To identify putative mutualistic interactions driving community composition in polymicrobial chronic wound infections using metabolic modelling. METHODS AND RESULTS We developed a 12 species metabolic model that covered 74% of 16S rDNA pyrosequencing reads of dominant genera from 2963 chronic wound patients. The community model was used to predict species abundances averaged across this large patient population. We found that substantially improved predictions were obtained when the model was constrained with genera prevalence data and predicted abundances were averaged over 5000 ensemble simulations with community participants randomly determined according to the experimentally determined prevalences. Staphylococcus and Pseudomonas were predicted to exhibit a strong mutualistic relationship that resulted in community growth rate and diversity simultaneously increasing, suggesting that these two common chronic wound pathogens establish dominance by cooperating with less harmful commensal species. In communities lacking one or both dominant pathogens, other mutualistic relationship including Staphylococcus/Acinetobacter, Pseudomonas/Serratia and Streptococcus/Enterococcus were predicted consistent with published experimental data. CONCLUSIONS Mutualistic interactions were predicted to be driven by crossfeeding of organic acids, alcohols and amino acids that could potentially be disrupted to slow chronic wound disease progression. SIGNIFICANCE AND IMPACT OF THE STUDY Approximately 2% of the US population suffers from nonhealing chronic wounds infected by a combination of commensal and pathogenic bacteria. These polymicrobial infections are often resilient to antibiotic treatment due to the nutrient-rich wound environment and species interactions that promote community stability and robustness. The simulation results from this study were used to identify putative mutualistic interactions between bacteria that could be targeted to enhance treatment efficacy.
Collapse
Affiliation(s)
- Poonam Phalak
- Department of Chemical Engineering and Institute for Applied Life Science, University of Massachusetts, Amherst MA 01003, USA
| | - Michael A. Henson
- Department of Chemical Engineering and Institute for Applied Life Science, University of Massachusetts, Amherst MA 01003, USA
| |
Collapse
|
37
|
Ingendoh‐Tsakmakidis A, Mikolai C, Winkel A, Szafrański SP, Falk CS, Rossi A, Walles H, Stiesch M. Commensal and pathogenic biofilms differently modulate peri-implant oral mucosa in an organotypic model. Cell Microbiol 2019; 21:e13078. [PMID: 31270923 PMCID: PMC6771885 DOI: 10.1111/cmi.13078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
The impact of oral commensal and pathogenic bacteria on peri-implant mucosa is not well understood, despite the high prevalence of peri-implant infections. Hence, we investigated responses of the peri-implant mucosa to Streptococcus oralis or Aggregatibacter actinomycetemcomitans biofilms using a novel in vitro peri-implant mucosa-biofilm model. Our 3D model combined three components, organotypic oral mucosa, implant material, and oral biofilm, with structural assembly close to native situation. S. oralis induced a protective stress response in the peri-implant mucosa through upregulation of heat shock protein (HSP70) genes. Attenuated inflammatory response was indicated by reduced cytokine levels of interleukin-6 (IL-6), interleukin-8 (CXCL8), and monocyte chemoattractant protein-1 (CCL2). The inflammatory balance was preserved through increased levels of tumor necrosis factor-alpha (TNF-α). A. actinomycetemcomitans induced downregulation of genes important for cell survival and host inflammatory response. The reduced cytokine levels of chemokine ligand 1 (CXCL1), CXCL8, and CCL2 also indicated a diminished inflammatory response. The induced immune balance by S. oralis may support oral health, whereas the reduced inflammatory response to A. actinomycetemcomitans may provide colonisation advantage and facilitate later tissue invasion. The comprehensive characterisation of peri-implant mucosa-biofilm interactions using our 3D model can provide new knowledge to improve strategies for prevention and therapy of peri-implant disease.
Collapse
Affiliation(s)
| | - Carina Mikolai
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolHannoverGermany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolHannoverGermany
| | - Szymon P. Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolHannoverGermany
| | - Christine S. Falk
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
| | - Angela Rossi
- Translational Center for Regenerative TherapiesFraunhofer Institute of Silicate Research ISCWürzburgGermany
| | - Heike Walles
- Translational Center for Regenerative TherapiesFraunhofer Institute of Silicate Research ISCWürzburgGermany
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital of WürzburgWürzburgGermany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical SchoolHannoverGermany
| |
Collapse
|
38
|
Schwartzman JA, Lynch JB, Ramos SF, Zhou L, Apicella MA, Yew JY, Ruby EG. Acidic pH promotes lipopolysaccharide modification and alters colonization in a bacteria-animal mutualism. Mol Microbiol 2019; 112:1326-1338. [PMID: 31400167 PMCID: PMC6823639 DOI: 10.1111/mmi.14365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Environmental pH can be an important cue for symbiotic bacteria as they colonize their eukaryotic hosts. Using the model mutualism between the marine bacterium Vibrio fischeri and the Hawaiian bobtail squid, we characterized the bacterial transcriptional response to acidic pH experienced during the shift from planktonic to host-associated lifestyles. We found several genes involved in outer membrane structure were differentially expressed based on pH, indicating alterations in membrane physiology as V. fischeri initiates its symbiotic program. Exposure to host-like pH increased the resistance of V. fischeri to the cationic antimicrobial peptide polymixin B, which resembles antibacterial molecules that are produced by the squid to select V. fischeri from the ocean microbiota. Using a forward genetic screen, we identified a homolog of eptA, a predicted phosphoethanolamine transferase, as critical for antimicrobial defense. We used MALDI-MS to verify eptA as an ethanolamine transferase for the lipid-A portion of V. fischeri lipopolysaccharide. We then used a DNA pulldown approach to discover that eptA transcription is activated by the global regulator H-NS. Finally, we revealed that eptA promotes successful squid colonization by V. fischeri, supporting its potential role in initiation of this highly specific symbiosis.
Collapse
Affiliation(s)
- Julia A. Schwartzman
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI, USA
| | - Jonathan B. Lynch
- Pacific Biosciences Research Center, University of Hawaii-Manoa, Honolulu HI, USA
| | | | - Lawrence Zhou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI, USA
| | - Michael A. Apicella
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City IA, USA
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaii-Manoa, Honolulu HI, USA
| | - Edward G. Ruby
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI, USA
- Pacific Biosciences Research Center, University of Hawaii-Manoa, Honolulu HI, USA
| |
Collapse
|
39
|
Lewin GR, Stacy A, Michie KL, Lamont RJ, Whiteley M. Large-scale identification of pathogen essential genes during coinfection with sympatric and allopatric microbes. Proc Natl Acad Sci U S A 2019; 116:19685-19694. [PMID: 31427504 PMCID: PMC6765283 DOI: 10.1073/pnas.1907619116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Recent evidence suggests that the genes an organism needs to survive in an environment drastically differ when alone or in a community. However, it is not known if there are universal functions that enable microbes to persist in a community and if there are functions specific to interactions between microbes native to the same (sympatric) or different (allopatric) environments. Here, we ask how the essential functions of the oral pathogen Aggregatibacter actinomycetemcomitans change during pairwise coinfection in a murine abscess with each of 15 microbes commonly found in the oral cavity and 10 microbes that are not. A. actinomycetemcomitans was more abundant when coinfected with allopatric than with sympatric microbes, and this increased fitness correlated with expanded metabolic capacity of the coinfecting microbes. Using transposon sequencing, we discovered that 33% of the A. actinomycetemcomitans genome is required for coinfection fitness. Fifty-nine "core" genes were required across all coinfections and included genes necessary for aerobic respiration. The core genes were also all required in monoinfection, indicating the essentiality of these genes cannot be alleviated by a coinfecting microbe. Furthermore, coinfection with some microbes, predominately sympatric species, induced the requirement for over 100 new community-dependent essential genes. In contrast, in other coinfections, predominately with nonoral species, A. actinomycetemcomitans required 50 fewer genes than in monoinfection, demonstrating that some allopatric microbes can drastically alleviate gene essentialities. These results expand our understanding of how diverse microbes alter growth and gene essentiality within polymicrobial infections.
Collapse
Affiliation(s)
- Gina R Lewin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30324
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332
| | - Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, Bethesda, MD 20892
| | - Kelly L Michie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30324
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332;
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30324
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
40
|
Oscarsson J, Claesson R, Lindholm M, Höglund Åberg C, Johansson A. Tools of Aggregatibacter actinomycetemcomitans to Evade the Host Response. J Clin Med 2019; 8:E1079. [PMID: 31336649 PMCID: PMC6678183 DOI: 10.3390/jcm8071079] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an infection-induced inflammatory disease that affects the tooth supporting tissues, i.e., bone and connective tissues. The initiation and progression of this disease depend on dysbiotic ecological changes in the oral microbiome, thereby affecting the severity of disease through multiple immune-inflammatory responses. Aggregatibacter actinomycetemcomitans is a facultative anaerobic Gram-negative bacterium associated with such cellular and molecular mechanisms associated with the pathogenesis of periodontitis. In the present review, we outline virulence mechanisms that help the bacterium to escape the host response. These properties include invasiveness, secretion of exotoxins, serum resistance, and release of outer membrane vesicles. Virulence properties of A. actinomycetemcomitans that can contribute to treatment resistance in the infected individuals and upon translocation to the circulation, also induce pathogenic mechanisms associated with several systemic diseases.
Collapse
Affiliation(s)
- Jan Oscarsson
- Department of Odontology, Oral Microbiology, Umeå University, S-90187 Umeå, Sweden
| | - Rolf Claesson
- Department of Odontology, Oral Microbiology, Umeå University, S-90187 Umeå, Sweden
| | - Mark Lindholm
- Department of Odontology, Oral Microbiology, Umeå University, S-90187 Umeå, Sweden
| | - Carola Höglund Åberg
- Department of Odontology, Molecular Periodontology, Umeå University, S-901 87 Umeå, Sweden
| | - Anders Johansson
- Department of Odontology, Molecular Periodontology, Umeå University, S-901 87 Umeå, Sweden.
| |
Collapse
|
41
|
A Genomic Approach To Identify Klebsiella pneumoniae and Acinetobacter baumannii Strains with Enhanced Competitive Fitness in the Lungs during Multistrain Pneumonia. Infect Immun 2019; 87:IAI.00871-18. [PMID: 30936161 DOI: 10.1128/iai.00871-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Microbial competition is most often studied at the genus or species level, but interstrain competition has been less thoroughly examined. Klebsiella pneumoniae is an important pathogen in the context of hospital-acquired pneumonia, and a better understanding of strain competition in the lungs could explain why some strains of this bacterium are more frequently isolated from pneumonia patients than others. We developed a barcode-free method called "StrainSeq" to simultaneously track the abundances of 10 K. pneumoniae strains in a murine pneumonia model. We demonstrate that one strain (KPPR1) repeatedly achieved a marked numerical dominance at 20 h postinoculation during pneumonia but did not exhibit a similar level of dominance in in vitro mixed-growth experiments. The emergence of a single dominant strain was also observed with a second respiratory pathogen, Acinetobacter baumannii, indicating that the phenomenon was not unique to K. pneumoniae When KPPR1 was removed from the inoculum, a second strain emerged to achieve high numbers in the lungs, and when KPPR1 was introduced into the lungs 1 h after the other nine strains, it no longer exhibited a dominant phenotype. Our findings indicate that certain strains of K. pneumoniae have the ability to outcompete others in the pulmonary environment and cause severe pneumonia and that a similar phenomenon occurs with A. baumannii In the context of the pulmonary microbiome, interstrain competitive fitness may be another factor that influences the success and spread of certain lineages of these hospital-acquired respiratory pathogens.
Collapse
|
42
|
Aggregatibacter actinomycetemcomitans mediates protection of Porphyromonas gingivalis from Streptococcus sanguinis hydrogen peroxide production in multi-species biofilms. Sci Rep 2019; 9:4944. [PMID: 30894650 PMCID: PMC6426879 DOI: 10.1038/s41598-019-41467-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/06/2019] [Indexed: 01/10/2023] Open
Abstract
Mixed species biofilms are shaped and influenced by interactions between species. In the oral cavity, dysbiosis of the microbiome leads to diseases such as periodontitis. Porphyromonas gingivalis is a keystone pathogen of periodontitis. In this study, we showed that polymicrobial biofilm formation promoted the tolerance of Porphyromonas gingivalis to oxidative stress under micro-aerobic conditions. The presence of Streptococcus sanguinis, an oral commensal bacterium, inhibited the survival of P. gingivalis in dual-species biofilms via the secretion of hydrogen peroxide (H2O2). Interestingly, this repression could be attenuated by the presence of Aggregatibacter actinomycetemcomitans in tri-species biofilms. It was also shown that the katA gene, encoding a cytoplasmic catalase in A. actinomycetemcomitans, was responsible for the reduction of H2O2 produced by S. sanguinis, which consequently increased the biomass of P. gingivalis in tri-species biofilms. Collectively, these findings reveal that polymicrobial interactions play important roles in shaping bacterial community in biofilm. The existence of catalase producers may support the colonization of pathogens vulnerable to H2O2, in the oral cavity. The catalase may be a potential drug target to aid in the prevention of periodontitis.
Collapse
|
43
|
Abstract
The dynamic and polymicrobial oral microbiome is a direct precursor of diseases such as dental caries and periodontitis, two of the most prevalent microbially induced disorders worldwide. Distinct microenvironments at oral barriers harbour unique microbial communities, which are regulated through sophisticated signalling systems and by host and environmental factors. The collective function of microbial communities is a major driver of homeostasis or dysbiosis and ultimately health or disease. Despite different aetiologies, periodontitis and caries are each driven by a feedforward loop between the microbiota and host factors (inflammation and dietary sugars, respectively) that favours the emergence and persistence of dysbiosis. In this Review, we discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis that have both enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches for oral diseases.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Choo SW, Jakubovics NS. Transcriptional responses of Streptococcus gordonii
and Fusobacterium nucleatum
to coaggregation. Mol Oral Microbiol 2018; 33:450-464. [DOI: 10.1111/omi.12248] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Naresh V. R. Mutha
- Institute of Biological Sciences, Faculty of Science; University of Malaya; Kuala Lumpur Malaysia
| | - Waleed K. Mohammed
- School of Dental Sciences; Centre for Oral Health Research, Newcastle University; Newcastle upon Tyne UK
- Department of Basic Science, College of Dentistry; University of Anbar; Anbar Iraq
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing; Newcastle University; Newcastle upon Tyne UK
| | - Geok Y. A. Tan
- Institute of Biological Sciences, Faculty of Science; University of Malaya; Kuala Lumpur Malaysia
| | - Siew W. Choo
- Department of Biological Sciences; Xi’an Jiaotong-Liverpool University, Suzhou Dushu Lake Science and Education Innovation District; Suzhou China
- Suzhou Genome Centre (SGC); Health Technologies University Research Centre (HT-URC), Xi’an Jiaotong-Liverpool University, Suzhou Dushu Lake Science and Education Innovation District; Suzhou China
| | - Nicholas S. Jakubovics
- School of Dental Sciences; Centre for Oral Health Research, Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|
45
|
Ahlstrand T, Torittu A, Elovaara H, Välimaa H, Pöllänen MT, Kasvandik S, Högbom M, Ihalin R. Interactions between the Aggregatibacter actinomycetemcomitans secretin HofQ and host cytokines indicate a link between natural competence and interleukin-8 uptake. Virulence 2018; 9:1205-1223. [PMID: 30088437 PMCID: PMC6086316 DOI: 10.1080/21505594.2018.1499378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Naturally competent bacteria acquire DNA from their surroundings to survive in nutrient-poor environments and incorporate DNA into their genomes as new genes for improved survival. The secretin HofQ from the oral pathogen Aggregatibacter actinomycetemcomitans has been associated with DNA uptake. Cytokine sequestering is a potential virulence mechanism in various bacteria and may modulate both host defense and bacterial physiology. The objective of this study was to elucidate a possible connection between natural competence and cytokine uptake in A. actinomycetemcomitans. The extramembranous domain of HofQ (emHofQ) was shown to interact with various cytokines, of which IL-8 exhibited the strongest interaction. The dissociation constant between emHofQ and IL-8 was 43 nM in static settings and 2.4 μM in dynamic settings. The moderate binding affinity is consistent with the hypothesis that emHofQ recognizes cytokines before transporting them into the cells. The interaction site was identified via crosslinking and mutational analysis. By structural comparison, relateda type I KH domain with a similar interaction site was detected in the Neisseria meningitidis secretin PilQ, which has been shown to participate in IL-8 uptake. Deletion of hofQ from the A. actinomycetemcomitans genome decreased the overall biofilm formation of this organism, abolished the response to cytokines, i.e., decreased eDNA levels in the presence of cytokines, and increased the susceptibility of the biofilm to tested β-lactams. Moreover, we showed that recombinant IL-8 interacted with DNA. These results can be used in further studies on the specific role of cytokine uptake in bacterial virulence without interfering with natural-competence-related DNA uptake.
Collapse
Affiliation(s)
- Tuuli Ahlstrand
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Annamari Torittu
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Heli Elovaara
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Hannamari Välimaa
- b Department of Virology , University of Helsinki , Helsinki , Finland.,c Department of Oral and Maxillofacial Surgery , Helsinki University Hospital , Helsinki , Finland
| | - Marja T Pöllänen
- d Institute of Dentistry , University of Turku , Turku , Finland
| | - Sergo Kasvandik
- e Institute of Technology , University of Tartu , Tartu , Estonia
| | - Martin Högbom
- f Department of Biochemistry and Biophysics , Stockholm University , Stockholm , Sweden
| | - Riikka Ihalin
- a Department of Biochemistry , University of Turku , Turku , Finland
| |
Collapse
|
46
|
Lindholm M, Min Aung K, Nyunt Wai S, Oscarsson J. Role of OmpA1 and OmpA2 in Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus serum resistance. J Oral Microbiol 2018; 11:1536192. [PMID: 30598730 PMCID: PMC6225413 DOI: 10.1080/20002297.2018.1536192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus belong to the HACEK group of fastidious Gram-negative organisms, a recognized cause of infective endocarditis. A. actinomycetemcomitans is also implicated in aggressive forms of periodontitis. We demonstrated that A. aphrophilus strains, as A. actinomycetemcomitans are ubiquitously serum resistant. Both species encode two Outer membrane protein A paralogues, here denoted OmpA1 and OmpA2. As their respective pangenomes contain several OmpA1 and OmpA2 alleles, they represent potential genotypic markers. A naturally competent strain of A. actinomycetemcomitans and A. aphrophilus, respectively were used to elucidate if OmpA1 and OmpA2 contribute to serum resistance. Whereas OmpA1 was critical for survival of A. actinomycetemcomitans D7SS in 50% normal human serum (NHS), serum resistant ompA1 mutants were fortuitously obtained, expressing enhanced levels of OmpA2. Similarly, OmpA1 rather than OmpA2 was a major contributor to serum resistance of A. aphrophilus HK83. Far-Western blot revealed that OmpA1AA, OmpA2AA, and OmpA1AP can bind to C4-binding protein, an inhibitor of classical and mannose-binding lectin (MBL) complement activation. Indeed, ompA1 mutants were susceptible to these pathways, but also to alternative complement activation. This may at least partly reflect a compromised outer membrane integrity but is also consistent with alternative mechanisms involved in OmpA-mediated serum resistance.
Collapse
Affiliation(s)
- Mark Lindholm
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Kyaw Min Aung
- Department of Molecular Biology and the Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology and the Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| |
Collapse
|
47
|
Redanz S, Cheng X, Giacaman RA, Pfeifer CS, Merritt J, Kreth J. Live and let die: Hydrogen peroxide production by the commensal flora and its role in maintaining a symbiotic microbiome. Mol Oral Microbiol 2018; 33:337-352. [PMID: 29897662 DOI: 10.1111/omi.12231] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 02/05/2023]
Abstract
The majority of commensal oral streptococci are able to generate hydrogen peroxide (H2 O2 ) during aerobic growth, which can diffuse through the cell membrane and inhibit competing species in close proximity. Competing H2 O2 production is mainly dependent upon the pyruvate oxidase SpxB, and to a lesser extent the lactate oxidase LctO, both of which are important for energy generation in aerobic environments. Several studies point to a broad impact of H2 O2 production in the oral environment, including a potential role in biofilm homeostasis, signaling, and interspecies interactions. Here, we summarize the current research regarding oral streptococcal H2 O2 generation, resistance mechanisms, and the ecological impact of H2 O2 production. We also discuss the potential therapeutic utility of H2 O2 for the prevention/treatment of dysbiotic diseases as well as its potential role as a biomarker of oral health.
Collapse
Affiliation(s)
- Sylvio Redanz
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Xingqun Cheng
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,The Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation and Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), University of Talca, Talca, Chile
| | - Carmen S Pfeifer
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
48
|
Estrela S, Brown SP. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLoS Comput Biol 2018; 14:e1006179. [PMID: 29927925 PMCID: PMC6013025 DOI: 10.1371/journal.pcbi.1006179] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/06/2018] [Indexed: 01/21/2023] Open
Abstract
Polymicrobial interactions play an important role in shaping the outcome of antibiotic treatment, yet how multispecies communities respond to antibiotic assault is still little understood. Here we use an individual-based simulation model of microbial biofilms to investigate how competitive and mutualistic interactions between an antibiotic-resistant and a susceptible strain (or species) influence the two-lineage community response to antibiotic exposure. Our model predicts that while increasing competition and antibiotics leads to increasing competitive release of the antibiotic-resistant strain, hitting a mutualistic community of cross-feeding species with antibiotics leads to a mutualistic suppression effect where both susceptible and resistant species are harmed. We next show that the impact of antibiotics is further governed by emergent spatial feedbacks within communities. Mutualistic cross-feeding communities can rescue susceptible members by subsidizing their growth inside the biofilm despite lack of access to the nutrient-rich and high-antibiotic growing front. Moreover, we show that antibiotic detoxification by resistant cells can protect nearby susceptible cells, but such cross-protection is more effective in mutualistic communities because mutualism drives mixing of resistant and susceptible cells. In contrast, competition leads to segregation, which ultimately prevents susceptible cells to profit from detoxification. Understanding how the interplay between microbial metabolic interactions and community spatial structuring shapes the outcome of antibiotic treatment can be key to effectively leverage the power of antibiotics and promote microbiome health. Pathogens -microorganisms that make us sick- often live within dynamic and complex multispecies communities, where they may not only compete for limiting resources but also exchange beneficial resources or services with other resident species. While antibiotics are commonly used to get rid of such harmful microbes, the community-wide effects of antibiotic treatment and its consequences for antibiotic resistance are still not well understood. How do competitive or mutually beneficial interactions between antibiotic resistant and susceptible species influence community resistance to antibiotics? Here we investigate this question using a computational model. We find that antibiotic exposure favours the resistant lineage when resistant and susceptible strains are competitors but harms both types when they are mutualists. With antibiotic-detoxifying resistant cells, cross-protection of susceptible cells is more effective in mutualistic communities because mutualism drives mixing of susceptible and resistant cells. In contrast, competition leads to their segregation, precluding susceptible cells to profit from their competitor’s local detoxification. Our findings highlight that knowing not only what species are present but also how they interact with each other and arrange themselves in space is central to understanding antibiotic resistance and to informing the development of strategies that promote microbiome health.
Collapse
Affiliation(s)
- Sylvie Estrela
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- * E-mail:
| | - Sam P. Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
49
|
Distinct Regulatory Role of Carbon Catabolite Protein A (CcpA) in Oral Streptococcal spxB Expression. J Bacteriol 2018; 200:JB.00619-17. [PMID: 29378884 DOI: 10.1128/jb.00619-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Pyruvate oxidase (SpxB)-dependent H2O2 production is under the control of carbon catabolite protein A (CcpA) in the oral species Streptococcus sanguinis and Streptococcus gordonii Interestingly, both species react differently to the presence of the preferred carbohydrate source glucose. S. gordonii CcpA-dependent regulation of spxB follows classical carbon catabolite repression. Conversely, spxB expression in S. sanguinis is not influenced by glucose but is repressed by CcpA. Here, we constructed strains expressing the heterologous versions of CcpA or the spxB promoter region to learn if the distinct regulation of spxB expression is transferable from S. gordonii to S. sanguinis and vice versa. While cross-species binding of CcpA to the spxB promoter is conserved in vitro, we were unable to swap the species-specific regulation. This suggests that a regulatory mechanism upstream of CcpA most likely is responsible for the observed difference in spxB expression. Moreover, the overall ecological significance of differential spxB regulation in the presence of various glucose concentrations was tested with additional oral streptococcus isolates and demonstrated that carbohydrate-dependent and carbohydrate-independent mechanisms exist to control expression of spxB in the oral biofilm. Overall, our data demonstrate the unexpected finding that metabolic pathways between two closely related oral streptococcal species can be regulated differently despite an exceptionally high DNA sequence identity.IMPORTANCE Polymicrobial diseases are the result of interactions among the residential microbes, which can lead to a dysbiotic community. Streptococcus sanguinis and Streptococcus gordonii are considered commensal species that are present in the healthy dental biofilm. Both species are able to produce significant amounts of H2O2 via the enzymatic action of the pyruvate oxidase SpxB. H2O2 is able to inhibit species associated with oral diseases. SpxB and its gene-regulatory elements present in both species are highly conserved. Nonetheless, a differential response to the presence of glucose was observed. Here, we investigate the mechanisms that lead to this differential response. Detailed knowledge of the regulatory mechanisms will aid in a better understanding of oral disease development and how to prevent dysbiosis.
Collapse
|
50
|
Enterococcus faecalis Demonstrates Pathogenicity through Increased Attachment in an Ex Vivo Polymicrobial Pulpal Infection. Infect Immun 2018; 86:IAI.00871-17. [PMID: 29483293 DOI: 10.1128/iai.00871-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/21/2018] [Indexed: 11/20/2022] Open
Abstract
This study investigated the host response to a polymicrobial pulpal infection consisting of Streptococcus anginosus and Enterococcus faecalis, bacteria commonly implicated in dental abscesses and endodontic failure, using a validated ex vivo rat tooth model. Tooth slices were inoculated with planktonic cultures of S. anginosus or E. faecalis alone or in coculture at S. anginosus/E. faecalis ratios of 50:50 and 90:10. Attachment was semiquantified by measuring the area covered by fluorescently labeled bacteria. Host response was established by viable histological cell counts, and inflammatory response was measured using reverse transcription-quantitative PCR (RT-qPCR) and immunohistochemistry. A significant reduction in cell viability was observed for single and polymicrobial infections, with no significant differences between infection types (∼2,000 cells/mm2 for infected pulps compared to ∼4,000 cells/mm2 for uninfected pulps). E. faecalis demonstrated significantly higher levels of attachment (6.5%) than S. anginosus alone (2.3%) and mixed-species infections (3.4% for 50:50 and 2.3% for 90:10), with a remarkable affinity for the pulpal vasculature. Infections with E. faecalis demonstrated the greatest increase in tumor necrosis factor alpha (TNF-α) (47.1-fold for E. faecalis, 14.6-fold for S. anginosus, 60.1-fold for 50:50, and 25.0-fold for 90:10) and interleukin 1β (IL-1β) expression (54.8-fold for E. faecalis, 8.8-fold for S. anginosus, 54.5-fold for 50:50, and 39.9-fold for 90:10) compared to uninfected samples. Immunohistochemistry confirmed this, with the majority of inflammation localized to the pulpal vasculature and odontoblast regions. Interestingly, E. faecalis supernatant and heat-killed E. faecalis treatments were unable to induce the same inflammatory response, suggesting E. faecalis pathogenicity in pulpitis is linked to its greater ability to attach to the pulpal vasculature.
Collapse
|