1
|
Arshad H, Patel Z, Al-Azzawi ZAM, Amano G, Li L, Mehra S, Eid S, Schmitt-Ulms G, Watts JC. The molecular determinants of a universal prion acceptor. PLoS Pathog 2024; 20:e1012538. [PMID: 39255320 DOI: 10.1371/journal.ppat.1012538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/20/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
In prion diseases, the species barrier limits the transmission of prions from one species to another. However, cross-species prion transmission is remarkably efficient in bank voles, and this phenomenon is mediated by the bank vole prion protein (BVPrP). The molecular determinants of BVPrP's ability to function as a universal prion acceptor remain incompletely defined. Building on our finding that cultured cells expressing BVPrP can replicate both mouse and hamster prion strains, we systematically identified key residues in BVPrP that permit cross-species prion replication. We found that residues N155 and N170 of BVPrP, which are absent in mouse PrP but present in hamster PrP, are critical for cross-species prion replication. Additionally, BVPrP residues V112, I139, and M205, which are absent in hamster PrP but present in mouse PrP, are also required to enable replication of both mouse and hamster prions. Unexpectedly, we found that residues E227 and S230 near the C-terminus of BVPrP severely restrict prion accumulation following cross-species prion challenge, suggesting that they may have evolved to counteract the inherent propensity of BVPrP to misfold. PrP variants with an enhanced ability to replicate both mouse and hamster prions displayed accelerated spontaneous aggregation kinetics in vitro. These findings suggest that BVPrP's unusual properties are governed by a key set of amino acids and that the enhanced misfolding propensity of BVPrP may enable cross-species prion replication.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zeel Patel
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Zaid A M Al-Azzawi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Genki Amano
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Leyao Li
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Mehra S, Bourkas ME, Kaczmarczyk L, Stuart E, Arshad H, Griffin JK, Frost KL, Walsh DJ, Supattapone S, Booth SA, Jackson WS, Watts JC. Convergent generation of atypical prions in knockin mouse models of genetic prion disease. J Clin Invest 2024; 134:e176344. [PMID: 39087478 PMCID: PMC11291267 DOI: 10.1172/jci176344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/11/2024] [Indexed: 08/02/2024] Open
Abstract
Most cases of human prion disease arise due to spontaneous misfolding of WT or mutant prion protein, yet recapitulating this event in animal models has proven challenging. It remains unclear whether spontaneous prion generation can occur within the mouse lifespan in the absence of protein overexpression and how disease-causing mutations affect prion strain properties. To address these issues, we generated knockin mice that express the misfolding-prone bank vole prion protein (BVPrP). While mice expressing WT BVPrP (I109 variant) remained free from neurological disease, a subset of mice expressing BVPrP with mutations (D178N or E200K) causing genetic prion disease developed progressive neurological illness. Brains from spontaneously ill knockin mice contained prion disease-specific neuropathological changes as well as atypical protease-resistant BVPrP. Moreover, brain extracts from spontaneously ill D178N- or E200K-mutant BVPrP-knockin mice exhibited prion seeding activity and transmitted disease to mice expressing WT BVPrP. Surprisingly, the properties of the D178N- and E200K-mutant prions appeared identical before and after transmission, suggesting that both mutations guide the formation of a similar atypical prion strain. These findings imply that knockin mice expressing mutant BVPrP spontaneously develop a bona fide prion disease and that mutations causing prion diseases may share a uniform initial mechanism of action.
Collapse
Affiliation(s)
- Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases and
| | - Matthew E.C. Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases and
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Lech Kaczmarczyk
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases and
| | - Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases and
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Kathy L. Frost
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Surachai Supattapone
- Department of Biochemistry and Cell Biology and
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Stephanie A. Booth
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Walker S. Jackson
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases and
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Björk L, Klingstedt T, Nilsson KPR. Thiophene-Based Ligands: Design, Synthesis and Their Utilization for Optical Assignment of Polymorphic-Disease-Associated Protein Aggregates. Chembiochem 2023; 24:e202300044. [PMID: 36891883 PMCID: PMC10404026 DOI: 10.1002/cbic.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/10/2023]
Abstract
The development of ligands for detecting protein aggregates is of great interest, as these aggregated proteinaceous species are the pathological hallmarks of several devastating diseases, including Alzheimer's disease. In this regard, thiophene-based ligands have emerged as powerful tools for fluorescent assessment of these pathological entities. The intrinsic conformationally sensitive photophysical properties of poly- and oligothiophenes have allowed optical assignment of disease-associated protein aggregates in tissue sections, as well as real-time in vivo imaging of protein deposits. Herein, we recount the chemical evolution of different generations of thiophene-based ligands, and exemplify their use for the optical distinction of polymorphic protein aggregates. Furthermore, the chemical determinants for achieving a superior fluorescent thiophene-based ligand, as well as the next generation of thiophene-based ligands targeting distinct aggregated species are described. Finally, the directions for future research into the chemical design of thiophene-based ligands that can aid in resolving the scientific challenges around protein aggregation diseases are discussed.
Collapse
Affiliation(s)
- Linnea Björk
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
5
|
Block AJ, Bartz JC. Prion strains: shining new light on old concepts. Cell Tissue Res 2023; 392:113-133. [PMID: 35796874 PMCID: PMC11318079 DOI: 10.1007/s00441-022-03665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
Prion diseases are a group of inevitably fatal neurodegenerative disorders affecting numerous mammalian species, including humans. The existence of heritable phenotypes of disease in the natural host suggested that prions exist as distinct strains. Transmission of sheep scrapie to rodent models accelerated prion research, resulting in the isolation and characterization of numerous strains with distinct characteristics. These strains are grouped into categories based on the incubation period of disease in different strains of mice and also by how stable the strain properties were upon serial passage. These classical studies defined the host and agent parameters that affected strain properties, and, prior to the advent of the prion hypothesis, strain properties were hypothesized to be the result of mutations in a nucleic acid genome of a conventional pathogen. The development of the prion hypothesis challenged the paradigm of infectious agents, and, initially, the existence of strains was difficult to reconcile with a protein-only agent. In the decades since, much evidence has revealed how a protein-only infectious agent can perform complex biological functions. The prevailing hypothesis is that strain-specific conformations of PrPSc encode prion strain diversity. This hypothesis can provide a mechanism to explain the observed strain-specific differences in incubation period of disease, biochemical properties of PrPSc, tissue tropism, and subcellular patterns of pathology. This hypothesis also explains how prion strains mutate, evolve, and adapt to new species. These concepts are applicable to prion-like diseases such as Parkinson's and Alzheimer's disease, where evidence of strain diversity is beginning to emerge.
Collapse
Affiliation(s)
- Alyssa J Block
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
6
|
Sun JL, Telling GC. New developments in prion disease research using genetically modified mouse models. Cell Tissue Res 2023; 392:33-46. [PMID: 36929219 DOI: 10.1007/s00441-023-03761-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
While much of what we know about the general principles of protein-based information transfer derives from studies of experimentally adapted rodent prions, these laboratory strains are limited in their ability to recapitulate features of human and animal prions and the diseases they produce. Here, we review how recent approaches using genetically modified mice have informed our understanding of naturally occurring prion diseases, their strain properties, and the factors controlling their transmission and evolution. In light of the increasing importance of chronic wasting disease, the application of mouse transgenesis to study this burgeoning and highly contagious prion disorder, in particular recent insights derived from gene-targeting approaches, will be a major focus of this review.
Collapse
Affiliation(s)
- Julianna L Sun
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA.
| |
Collapse
|
7
|
Vallabh SM, Zou D, Pitstick R, O’Moore J, Peters J, Silvius D, Kriz J, Jackson WS, Carlson GA, Minikel EV, Cabin DE. Therapeutic Trial of anle138b in Mouse Models of Genetic Prion Disease. J Virol 2023; 97:e0167222. [PMID: 36651748 PMCID: PMC9973041 DOI: 10.1128/jvi.01672-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Phenotypic screening has yielded small-molecule inhibitors of prion replication that are effective in vivo against certain prion strains but not others. Here, we sought to test the small molecule anle138b in multiple mouse models of prion disease. In mice inoculated with the RML strain of prions, anle138b doubled survival and durably suppressed astrogliosis measured by live-animal bioluminescence imaging. In knock-in mouse models of the D178N and E200K mutations that cause genetic prion disease, however, we were unable to identify a clear, quantifiable disease endpoint against which to measure therapeutic efficacy. Among untreated animals, the mutations did not impact overall survival, and bioluminescence remained low out to >20 months of age. Vacuolization and PrP deposition were observed in some brain regions in a subset of mutant animals but appeared to be unable to carry the weight of a primary endpoint in a therapeutic study. We conclude that not all animal models of prion disease are suited to well-powered therapeutic efficacy studies, and care should be taken in choosing the models that will support drug development programs. IMPORTANCE There is an urgent need to develop drugs for prion disease, a currently untreatable neurodegenerative disease. In this effort, there is a debate over which animal models can best support a drug development program. While the study of prion disease benefits from excellent animal models because prions naturally afflict many different mammals, different models have different capabilities and limitations. Here, we conducted a therapeutic efficacy study of the drug candidate anle138b in mouse models with two of the most common mutations that cause genetic prion disease. In a more typical model where prions are injected directly into the brain, we found anle138b to be effective. In the genetic models, however, the animals never reached a clear, measurable point of disease onset. We conclude that not all prion disease animal models are ideally suited to drug efficacy studies, and well-defined, quantitative disease metrics should be a priority.
Collapse
Affiliation(s)
- Sonia M. Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Prion Alliance, Cambridge, Massachusetts, USA
| | - Dan Zou
- Montana Veterinary Diagnostic Laboratory, Bozeman, Montana, USA
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Jill O’Moore
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Janet Peters
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Derek Silvius
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Jasna Kriz
- Cervo Brain Research Center, Université Laval, Québec, Québec, Canada
| | - Walker S. Jackson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - George A. Carlson
- Institute for Neurodegenerative Diseases, University of California—San Francisco, San Francisco, California, USA
| | - Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Prion Alliance, Cambridge, Massachusetts, USA
| | | |
Collapse
|
8
|
Jackson GS, Linehan J, Brandner S, Asante EA, Wadsworth JDF, Collinge J. Overexpression of mouse prion protein in transgenic mice causes a non-transmissible spongiform encephalopathy. Sci Rep 2022; 12:17198. [PMID: 36229637 PMCID: PMC9562354 DOI: 10.1038/s41598-022-21608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Transgenic mice over-expressing human PRNP or murine Prnp transgenes on a mouse prion protein knockout background have made key contributions to the understanding of human prion diseases and have provided the basis for many of the fundamental advances in prion biology, including the first report of synthetic mammalian prions. In this regard, the prion paradigm is increasingly guiding the exploration of seeded protein misfolding in the pathogenesis of other neurodegenerative diseases. Here we report that a well-established and widely used line of such mice (Tg20 or tga20), which overexpress wild-type mouse prion protein, exhibit spontaneous aggregation and accumulation of misfolded prion protein in a strongly age-dependent manner, which is accompanied by focal spongiosis and occasional neuronal loss. In some cases a clinical syndrome developed with phenotypic features that closely resemble those seen in prion disease. However, passage of brain homogenate from affected, aged mice failed to transmit this syndrome when inoculated intracerebrally into further recipient animals. We conclude that overexpression of the wild-type mouse prion protein can cause an age-dependent protein misfolding disorder or proteinopathy that is not associated with the production of an infectious agent but can produce a phenotype closely similar to authentic prion disease.
Collapse
Affiliation(s)
- Graham S Jackson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London, W1W 7FF, UK.
| | - Jacqueline Linehan
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London, W1W 7FF, UK
| | - Sebastian Brandner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London, W1W 7FF, UK
- Division of Neuropathology, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Emmanuel A Asante
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London, W1W 7FF, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London, W1W 7FF, UK
| |
Collapse
|
9
|
Ilie IM, Bacci M, Vitalis A, Caflisch A. Antibody binding modulates the dynamics of the membrane-bound prion protein. Biophys J 2022; 121:2813-2825. [PMID: 35672948 PMCID: PMC9382331 DOI: 10.1016/j.bpj.2022.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Misfolding of the cellular prion protein (PrPC) is associated with lethal neurodegeneration. PrPC consists of a flexible tail (residues 23-123) and a globular domain (residues 124-231) whose C-terminal end is anchored to the cell membrane. The neurotoxic antibody POM1 and the innocuous antibody POM6 recognize the globular domain. Experimental evidence indicates that POM1 binding to PrPC emulates the influence on PrPC of the misfolded prion protein (PrPSc) while the binding of POM6 has the opposite biological response. Little is known about the potential interactions between flexible tail, globular domain, and the membrane. Here, we used atomistic simulations to investigate how these interactions are modulated by the binding of the Fab fragments of POM1 and POM6 to PrPC and by interstitial sequence truncations to the flexible tail. The simulations show that the binding of the antibodies restricts the range of orientations of the globular domain with respect to the membrane and decreases the distance between tail and membrane. Five of the six sequence truncations influence only marginally this distance and the contact patterns between tail and globular domain. The only exception is a truncation coupled to a charge inversion mutation of four N-terminal residues, which increases the distance of the flexible tail from the membrane. The interactions of the flexible tail and globular domain are modulated differently by the two antibodies.
Collapse
Affiliation(s)
- Ioana M Ilie
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Marco Bacci
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Andreas Vitalis
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
10
|
Sun (孙迪) D, Chai (柴思敏) S, Huang (黄鑫) X, Wang (王滢莹) Y, Xiao (肖琳琳) L, Xu (徐士霞) S, Yang (杨光) G. Novel Genomic Insights into Body Size Evolution in Cetaceans and a Resolution of Peto’s Paradox. Am Nat 2022; 199:E28-E42. [DOI: 10.1086/717768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Di Sun (孙迪)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Simin Chai (柴思敏)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Xin Huang (黄鑫)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yingying Wang (王滢莹)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Linlin Xiao (肖琳琳)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shixia Xu (徐士霞)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang (杨光)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| |
Collapse
|
11
|
Bian J, Kim S, Kane SJ, Crowell J, Sun JL, Christiansen J, Saijo E, Moreno JA, DiLisio J, Burnett E, Pritzkow S, Gorski D, Soto C, Kreeger TJ, Balachandran A, Mitchell G, Miller MW, Nonno R, Vikøren T, Våge J, Madslien K, Tran L, Vuong TT, Benestad SL, Telling GC. Adaptive selection of a prion strain conformer corresponding to established North American CWD during propagation of novel emergent Norwegian strains in mice expressing elk or deer prion protein. PLoS Pathog 2021; 17:e1009748. [PMID: 34310663 PMCID: PMC8341702 DOI: 10.1371/journal.ppat.1009748] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/05/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Prions are infectious proteins causing fatal, transmissible neurodegenerative diseases of animals and humans. Replication involves template-directed refolding of host encoded prion protein, PrPC, by its infectious conformation, PrPSc. Following its discovery in captive Colorado deer in 1967, uncontrollable contagious transmission of chronic wasting disease (CWD) led to an expanded geographic range in increasing numbers of free-ranging and captive North American (NA) cervids. Some five decades later, detection of PrPSc in free-ranging Norwegian (NO) reindeer and moose marked the first indication of CWD in Europe. To assess the properties of these emergent NO prions and compare them with NA CWD we used transgenic (Tg) and gene targeted (Gt) mice expressing PrP with glutamine (Q) or glutamate (E) at residue 226, a variation in wild type cervid PrP which influences prion strain selection in NA deer and elk. Transmissions of NO moose and reindeer prions to Tg and Gt mice recapitulated the characteristic features of CWD in natural hosts, revealing novel prion strains with disease kinetics, neuropathological profiles, and capacities to infect lymphoid tissues and cultured cells that were distinct from those causing NA CWD. In support of strain variation, PrPSc conformers comprising emergent NO moose and reindeer CWD were subject to selective effects imposed by variation at residue 226 that were different from those controlling established NA CWD. Transmission of particular NO moose CWD prions in mice expressing E at 226 resulted in selection of a kinetically optimized conformer, subsequent transmission of which revealed properties consistent with NA CWD. These findings illustrate the potential for adaptive selection of strain conformers with improved fitness during propagation of unstable NO prions. Their potential for contagious transmission has implications for risk analyses and management of emergent European CWD. Finally, we found that Gt mice expressing physiologically controlled PrP levels recapitulated the lymphotropic properties of naturally occurring CWD strains resulting in improved susceptibilities to emergent NO reindeer prions compared with over-expressing Tg counterparts. These findings underscore the refined advantages of Gt models for exploring the mechanisms and impacts of strain selection in peripheral compartments during natural prion transmission. Prions cause fatal, transmissible neurodegenerative diseases in animals and humans. They are composed of an infectious, neurotoxic protein (PrP) which replicates by imposing pathogenic conformations on its normal, host-encoded counterpart. Chronic wasting disease (CWD) is a contagious prion disorder threatening increasing numbers of free-ranging and captive North American deer, elk, and moose. While CWD detection in Norwegian reindeer and moose in 2016 marked the advent of disease in Europe, its origins and relationship to North American CWD were initially unclear. Here we show, using mice engineered to express deer or elk PrP, that Norwegian reindeer and moose CWD are caused by novel prion strains with properties distinct from those of North American CWD. We found that selection and propagation of North American and Norwegian CWD strains was controlled by a key amino acid residue in host PrP. We also found that particular Norwegian isolates adapted during their propagation in mice to produce prions with characteristics of the North American strain. Our findings defining the transmission profiles of novel Norwegian prions and their unstable potential to produce adapted strains with improved fitness for contagious transmission have implications for risk analyses and management of emergent European CWD.
Collapse
Affiliation(s)
- Jifeng Bian
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sehun Kim
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sarah J. Kane
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jenna Crowell
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julianna L. Sun
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Christiansen
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eri Saijo
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julie A. Moreno
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - James DiLisio
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Emily Burnett
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Damian Gorski
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, Texas, United States of America
| | - Terry J. Kreeger
- Wyoming Game and Fish Department, Wheatland, Wyoming, United States of America
| | - Aru Balachandran
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Gordon Mitchell
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa, Canada
| | - Michael W. Miller
- Colorado Parks and Wildlife, Fort Collins, Colorado, United States of America
| | - Romolo Nonno
- Istituto Superiore di Sanità, Department of Veterinary Public Health, Nutrition and Food Safety, Rome, Italy
| | - Turid Vikøren
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Knut Madslien
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Linh Tran
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Tram Thu Vuong
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Sylvie L. Benestad
- Norwegian Veterinary Institute, OIE Reference laboratory for CWD, Oslo, Norway
| | - Glenn C. Telling
- Prion Research Center (PRC), the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
12
|
Evolution of Transmissible Spongiform Encephalopathies and the Prion Protein Gene (PRNP) in Mammals. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Arifin MI, Hannaoui S, Chang SC, Thapa S, Schatzl HM, Gilch S. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052271. [PMID: 33668798 PMCID: PMC7956812 DOI: 10.3390/ijms22052271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal's susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal's genetics in CWD can help to predict, contain, or prevent transmission of CWD.
Collapse
Affiliation(s)
- Maria Immaculata Arifin
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Samia Hannaoui
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sheng Chun Chang
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hermann M. Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
14
|
Dudas S, Anderson R, Staskevicus A, Mitchell G, Cross JC, Czub S. Exploration of genetic factors resulting in abnormal disease in cattle experimentally challenged with bovine spongiform encephalopathy. Prion 2021; 15:1-11. [PMID: 33397192 PMCID: PMC7801127 DOI: 10.1080/19336896.2020.1869495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Since the discovery of bovine spongiform encephalopathy (BSE), researchers have orally challenged cattle with infected brain material to study various aspects of disease pathogenesis. Unlike most other pathogens, oral BSE challenge does not always result in the expected clinical presentation and pathology. In a recent study, steers were challenged orally with BSE and all developed clinical signs and were sacrificed and tested. However, despite a similar incubation and clinical presentation, one of the steers did not have detectable PrPSc in its brain. Samples from this animal were analysed for genetic differences as well as for the presence of in vitro PrPSc seeding activity or infectivity to determine the BSE status of this animal and the potential reasons that it was different. Seeding activity was detected in the brainstem of the abnormal steer but it was approximately one million times less than that found in the normal BSE positive steers. Intra-cranial challenge of bovinized transgenic mice resulted in no transmission of disease. The abnormal steer had different genetic sequences in non-coding regions of the PRNP gene but detection of similar genotypes in Canadian BSE field cases, that showed the expected brain pathology, suggested these differences may not be the primary cause of the abnormal result. Breed composition analysis showed a higher Hereford content in the abnormal steer as well as in two Canadian atypical BSE field cases and several additional abnormal experimental animals. This study could point towards a possible impact of breed composition on BSE pathogenesis.
Collapse
Affiliation(s)
- Sandor Dudas
- National and OIE Reference Laboratory for BSE, National Centre for Animal Diseases, Canadian Food Inspection Agency , Lethbridge, Canada.,Department of Veterinary Medicine, University of Calgary , Calgary, Canada
| | - Renee Anderson
- National and OIE Reference Laboratory for BSE, National Centre for Animal Diseases, Canadian Food Inspection Agency , Lethbridge, Canada
| | - Antanas Staskevicus
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield , Ottawa, Canada
| | - Gordon Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield , Ottawa, Canada
| | - James C Cross
- Department of Veterinary Medicine, University of Calgary , Calgary, Canada
| | - Stefanie Czub
- National and OIE Reference Laboratory for BSE, National Centre for Animal Diseases, Canadian Food Inspection Agency , Lethbridge, Canada.,Department of Veterinary Medicine, University of Calgary , Calgary, Canada
| |
Collapse
|
15
|
Soto P, Claflin IA, Bursott AL, Schwab-McCoy AD, Bartz JC. Cellular prion protein gene polymorphisms linked to differential scrapie susceptibility correlate with distinct residue connectivity between secondary structure elements. J Biomol Struct Dyn 2021; 39:129-139. [PMID: 31900058 PMCID: PMC7340567 DOI: 10.1080/07391102.2019.1708794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The conformational conversion of the cellular prion protein (PrPC) to the misfolded and aggregated isoform, termed scrapie prion protein (PrPSc), is key to the development of a group of neurodegenerative diseases known as transmissible spongiform encephalopathies (TSEs). Although the conversion mechanism is not fully understood, the role of gene polymorphisms in varying susceptibilities to prion diseases is well established. In ovine, specific gene polymorphisms in PrPC alter prion disease susceptibility: the Valine136-Glutamine171 variant (Susceptible structure) displays high susceptibility to classical scrapie while the Alanine136-Arginine171 variant (Resistant structure) displays reduced susceptibility. The opposite trend has been reported in atypical scrapie. Despite the differentiation between classical and atypical scrapie, a complete understanding of the effect of polymorphisms on the structural dynamics of PrPC is lacking. From our structural bioinformatics study, we propose that polymorphisms locally modulate the network of residue interactions in the globular C-terminus of the ovine recombinant prion protein while maintaining the overall fold. Although the two variants we examined exhibit a densely connected group of residues that includes both β-sheets, the β2-α2 loop and the N-terminus of α-helix 2, only in the Resistant structure do most residues of α-helix 2 belong to this group. We identify the structural role of Valine136Alanine and Glutamine171Arginine: modulation of residue interaction networks that affect the connectivity between α-helix 2 and α-helix 3. We propose blocking interactions of residue 171 as a potential target for the design of therapeutics to prevent efficient PrPC misfolding. We discuss our results in the context of initial PrPC conversion and extrapolate to recently proposed PrPSc structures.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patricia Soto
- Department of Physics, Creighton University, Omaha, Nebraska, 68178,Corresponding author: Patricia Soto, Creighton University – Department of Physics, 2500 California Plaza, Omaha, NE 68178, Phone number: 402.280.3361, Fax: 402.280.2140,
| | - India A. Claflin
- Department of Biology, Creighton University, Omaha, Nebraska, 68178
| | | | | | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, 68178
| |
Collapse
|
16
|
Stepanchuk A, Tahir W, Nilsson KPR, Schatzl HM, Stys PK. Early detection of prion protein aggregation with a fluorescent pentameric oligothiophene probe using spectral confocal microscopy. J Neurochem 2020; 156:1033-1048. [PMID: 32799317 DOI: 10.1111/jnc.15148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022]
Abstract
Misfolding of the prion protein (PrP) and templating of its pathological conformation onto cognate proteins causes a number of lethal disorders of central nervous system in humans and animals, such as Creutzfeldt-Jacob disease, chronic wasting disease and bovine spongiform encephalopathy. Structural rearrangement of PrPC into PrPSc promotes aggregation of misfolded proteins into β-sheet-rich fibrils, which can be visualized by conformationally sensitive fluorescent probes. Early detection of prion misfolding and deposition might provide useful insights into its pathophysiology. Pentameric formyl thiophene acetic acid (pFTAA) is a novel amyloid probe that was shown to sensitively detect various misfolded proteins, including PrP. Here, we compared sensitivity of pFTAA staining and spectral microscopy with conventional methods of prion detection in mouse brains infected with mouse-adapted 22L prions. pFTAA bound to prion deposits in mouse brain sections exhibited a red-shifted fluorescence emission spectrum, which quantitatively increased with disease progression. Small prion deposits were detected as early as 50 days post-inoculation, well before appearance of clinical signs. Moreover, we detected significant spectral shifts in the greater brain parenchyma as early as 25 days post-inoculation, rivaling the most sensitive conventional method (real-time quaking-induced conversion). These results showcase the potential of pFTAA staining combined with spectral imaging for screening of prion-infected tissue. Not only does this method have comparable sensitivity to established techniques, it is faster and technically simpler. Finally, this readout provides valuable information about the spatial distribution of prion aggregates across tissue in the earliest stages of infection, potentially providing valuable pathophysiological insight into prion transmission.
Collapse
Affiliation(s)
- Anastasiia Stepanchuk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Waqas Tahir
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Hermann M Schatzl
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Peter K Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Arshad H, Bourkas MEC, Watts JC. The utility of bank voles for studying prion disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:179-211. [PMID: 32958232 DOI: 10.1016/bs.pmbts.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transmission of prions between species is typically an inefficient process due to the species barrier, which represents incompatibility between prion seed and substrate molecules. Bank voles (Myodes glareolus) are an exception to this rule, as they are susceptible to a diverse range of prion strains from many different animal species. In particular, bank voles can be efficiently infected with most types of human prions and have played a critical role in validating variably protease-sensitive prionopathy (VPSPr) and certain forms of Gerstmann-Sträussler-Scheinker (GSS) disease as bona fide prion disorders rather than non-transmissible proteinopathies. The bank vole prion protein (BVPrP) confers a "universal prion acceptor" phenotype when expressed in mice and when used as a substrate for in vitro prion amplification assays, indicating that the unique prion transmission properties of bank voles are mediated by BVPrP. Over-expression of BVPrP in mice can also promote the spontaneous development of prion disease, indicating that BVPrP is intrinsically prone to both spontaneous and template-directed misfolding. Here, we discuss the utility of bank voles and BVPrP for prion research and how they have provided new tools for establishing rapid animal bioassays, modeling spontaneous prion disease, standardizing prion diagnostics, and understanding the molecular basis of the species barrier.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Identification of a homology-independent linchpin domain controlling mouse and bank vole prion protein conversion. PLoS Pathog 2020; 16:e1008875. [PMID: 32898162 PMCID: PMC7508373 DOI: 10.1371/journal.ppat.1008875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/22/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
Prions are unorthodox pathogens that cause fatal neurodegenerative diseases in humans and other mammals. Prion propagation occurs through the self-templating of the pathogenic conformer PrPSc, onto the cell-expressed conformer, PrPC. Here we study the conversion of PrPC to PrPSc using a recombinant mouse PrPSc conformer (mouse protein-only recPrPSc) as a unique tool that can convert bank vole but not mouse PrPC substrates in vitro. Thus, its templating ability is not dependent on sequence homology with the substrate. In the present study, we used chimeric bank vole/mouse PrPC substrates to systematically determine the domain that allows for conversion by Mo protein-only recPrPSc. Our results show that that either the presence of the bank vole amino acid residues E227 and S230 or the absence of the second N-linked glycan are sufficient to allow PrPC substrates to be converted by Mo protein-only recPrPSc and several native infectious prion strains. We propose that residues 227 and 230 and the second glycan are part of a C-terminal domain that acts as a linchpin for bank vole and mouse prion conversion. Prions are unconventional infectious agents that lack nucleic acids such as DNA and RNA, and the mechanism by which prions replicate is not fully understood. It has been established that a central feature of the replication mechanism involves the misfolding of a host protein (PrPC) into an infectious shape termed PrPSc, but it is unclear how this misfolding occurs. Interestingly, it has been observed that a particular animal species, the European bank vole, is unusually susceptible to prion infection and that this near-universal susceptibility is caused by the specific PrPC sequence of this protein. Here we use a powerful and unique biochemical system to determine the specific region of bank vole PrPC that is primarily responsible for its propensity to misfold into PrPSc. This critical region, which is located at the extreme C-terminal end of the protein, appears to act as a linchpin domain that normally stabilizes the shape of PrPC and thereby regulates its misfolding into PrPSc.
Collapse
|
19
|
Chandrasekaran P, Santosh Kumar C, Rangachari K, Sekar K. Disassociation of β1-α1-β2 from the α2-α3 domain of prion protein (PrP) is a prerequisite for the conformational conversion of PrPC into PrPSc: Driven by the free energy landscape. Int J Biol Macromol 2019; 136:368-376. [DOI: 10.1016/j.ijbiomac.2019.06.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
|
20
|
Liberski PP. Axonal changes in experimental prion diseases recapitulate those following constriction of postganglionic branches of the superior cervical ganglion: a comparison 40 years later. Prion 2019; 13:83-93. [PMID: 30966865 PMCID: PMC7000151 DOI: 10.1080/19336896.2019.1595315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The major neurological feature of prion diseases is a neuronal loss accomplished through either apoptosis or autophagy. In this review, I compared axonal alterations in prion diseases to those described 40 years earlier as a result of nerve ligation. I also demonstrated that autophagic vacuoles and autophagosomes are a major part of dystrophic neurites. Furthermore, I summarized the current status of the autophagy in prion diseases and hypothesize, that spongiform change may originate from the autophagic vacuoles. This conclusion should be supported by other methods, in particular laser confocal microscopy. We observed neuronal autophagic vacuoles in different stages of formation, and our interpretation of the ‘maturity’ of their formation may or may not equate to actual developmental stages. Initially, a part of the neuronal cytoplasm was sequestrated within double or multiple membranes (phagophores) and often exhibited increased electron-density. The intracytoplasmic membranes formed labyrinth-like structures that suggest a multiplication of those membranes. The autophagic vacuoles then expand and eventually, a vast area of the cytoplasm was transformed into a merging mass of autophagic vacuoles. Margaret R. Matthews published a long treatise in the Philosophical Transactions of the Royal Society of London in which she had described in great detail the ultrastructure of postganglionic branches of the superior cervical ganglion in the rat following ligation of them. The earliest changes observed by Matthews between 6 h to 2 days in the proximal stump were distensions of proximal axons. Analogously, in our models, an increased number of ‘regular’ (round) and ‘irregular’ MVB and some autophagic vacuoles were observed collectively, both processes were similar.
Collapse
Affiliation(s)
- Paweł P Liberski
- a Laboratory of Electron Microscopy and Neuropathology, Department of Molecular Pathology and Neuropathology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
21
|
Kobayashi A, Matsuura Y, Takeuchi A, Yamada M, Miyoshi I, Mohri S, Kitamoto T. A domain responsible for spontaneous conversion of bank vole prion protein. Brain Pathol 2018; 29:155-163. [PMID: 30051525 DOI: 10.1111/bpa.12638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/18/2018] [Indexed: 11/28/2022] Open
Abstract
Bank vole is a small rodent that shows high susceptibility to infection with diverse prion strains. To determine whether the increased susceptibility of bank voles to prion diseases can be attributed to the intrinsic nature of bank vole prion protein (PrP) or to host factors other than PrP, we produced transgenic mice overexpressing bank vole PrP. These transgenic mice spontaneously developed neurological illness with spongiform changes and the accumulation of abnormal PrP in the brain. Then, we produced transgenic mice overexpressing chimeric mouse/bank vole PrP, which differs from mouse PrP only at two residues located at the C-terminus, to determine the minimum essential domain for the induction of spontaneous generation of abnormal PrP. These transgenic mice also developed spontaneous neurological illness with spongiform changes and the accumulation of abnormal PrP in the brain. In addition, knock-in mice expressing bank vole PrP at the same level as that of wild-type mice did not develop spontaneous disease but showed high susceptibility to infection with diverse prion strains, similarly to bank voles. Taken together, these findings show that bank vole PrP has a high propensity for the conformational conversion both in spontaneous disease and in prion infection, probably due to the characteristic structural properties of the C-terminal domain.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichi Matsuura
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Atsuko Takeuchi
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ichiro Miyoshi
- Center for Experimental Animal Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Laboratory Animal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shirou Mohri
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Ladner-Keay CL, Ross L, Perez-Pineiro R, Zhang L, Bjorndahl TC, Cashman N, Wishart DS. A simple in vitro assay for assessing the efficacy, mechanisms and kinetics of anti-prion fibril compounds. Prion 2018; 12:280-300. [PMID: 30223704 PMCID: PMC6277192 DOI: 10.1080/19336896.2018.1525254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/01/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022] Open
Abstract
Prion diseases are caused by the conversion of normal cellular prion proteins (PrP) into lethal prion aggregates. These prion aggregates are composed of proteinase K (PK) resistant fibrils and comparatively PK-sensitive oligomers. Currently there are no anti-prion pharmaceuticals available to treat or prevent prion disease. Methods of discovering anti-prion molecules rely primarily on relatively complex cell-based, tissue slice or animal-model assays that measure the effects of small molecules on the formation of PK-resistant prion fibrils. These assays are difficult to perform and do not detect the compounds that directly inhibit oligomer formation or alter prion conversion kinetics. We have developed a simple cell-free method to characterize the impact of anti-prion fibril compounds on both the oligomer and fibril formation. In particular, this assay uses shaking-induced conversion (ShIC) of recombinant PrP in a 96-well format and resolution enhanced native acidic gel electrophoresis (RENAGE) to generate, assess and detect PrP fibrils in a high throughput fashion. The end-point PrP fibrils from this assay can be further characterized by PK analysis and negative stain transmission electron microscopy (TEM). This cell-free, gel-based assay generates metrics to assess anti-prion fibril efficacy and kinetics. To demonstrate its utility, we characterized the action of seven well-known anti-prion molecules: Congo red, curcumin, GN8, quinacrine, chloropromazine, tetracycline, and TUDCA (taurourspdeoxycholic acid), as well as four suspected anti-prion compounds: trans-resveratrol, rosmarinic acid, myricetin and ferulic acid. These findings suggest that this in vitro assay could be useful in identifying and comprehensively assessing novel anti-prion fibril compounds. Abbreviations: PrP, prion protein; PK, proteinase K; ShIC, shaking-induced conversion; RENAGE, resolution enhanced native acidic gel electrophoresis; TEM, transmission electron microscopy; TUDCA, taurourspdeoxycholic acid; BSE, bovine spongiform encephalopathy; CWD, chronic wasting disease; CJD, Creutzfeldt Jakob disease; GSS, Gerstmann-Sträussler-Scheinker syndrome; FFI, fatal familial insomnia; PrPc, cellular prion protein; recPrPC, recombinant monomeric prion protein; PrPSc, infectious particle of misfolded prion protein; RT-QuIC, real-time quaking-induced conversion; PMCA, Protein Misfolding Cyclic Amplification; LPS, lipopolysaccharide; EGCG, epigallocatechin gallate; GN8, 2-pyrrolidin-1-yl-N-[4-[4-(2-pyrrolidin-1-yl-acetylamino)-benzyl]-phenyl]-acetamide; DMSO, dimethyl sulfoxide; ScN2A, scrapie infected neuroblastoma cells; IC50, inhibitory concentration for 50% reduction; recMoPrP 23-231, recombinant full-length mouse prion protein residues 23-231; EDTA; PICUP, photo-induced cross-linking of unmodified protein; BSA, bovine serum albumin;; PMSF, phenylmethanesulfonyl fluoride.
Collapse
Affiliation(s)
| | - Li Ross
- Brain Research Centre, University of British Columbia, Vancouver, Canada
| | | | - Lun Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Trent C. Bjorndahl
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Neil Cashman
- Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Computing Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
23
|
Benestad SL, Telling GC. Chronic wasting disease: an evolving prion disease of cervids. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:135-151. [PMID: 29887133 DOI: 10.1016/b978-0-444-63945-5.00008-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic wasting disease (CWD) is a relatively new and burgeoning prion epidemic of deer, elk, reindeer, and moose, which are members of the cervid family. While the disease was first described in captive deer, its subsequent discovery in various species of free-ranging animals makes it the only currently recognized prion disorder of both wild and farmed animals. In addition to its expanding range of host species, CWD continues to spread from North America to new geographic areas, including South Korea, and most recently Norway, marking the first time this disease was detected in Europe. Its unparalleled efficiency of contagious transmission, combined with high densities of deer in certain areas, complicates strategies for controlling CWD, raising concerns about its potential for spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, and since prions from cattle with bovine spongiform encephalopathy have been transmitted to humans causing variant Creutzfeldt-Jakob disease, the possibility of zoonotic transmission of CWD is particularly concerning. Here we review the clinical and pathologic features of CWD and its disturbing epidemiology, and discuss features that affect its transmission, including genetic susceptibility, pathogenesis, and agent strain variability. Finally, we discuss evidence that speaks to the potential for zoonotic transmission of this emerging disease.
Collapse
Affiliation(s)
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
24
|
Moreno JA, Telling GC. Molecular Mechanisms of Chronic Wasting Disease Prion Propagation. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a024448. [PMID: 28193766 DOI: 10.1101/cshperspect.a024448] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prion disease epidemics, which have been unpredictable recurrences, are of significant concern for animal and human health. Examples include kuru, once the leading cause of death among the Fore people in Papua New Guinea and caused by mortuary feasting; bovine spongiform encephalopathy (BSE) and its subsequent transmission to humans in the form of variant Creutzfeldt-Jakob disease (vCJD), and repeated examples of large-scale prion disease epidemics in animals caused by contaminated vaccines. The etiology of chronic wasting disease (CWD), a relatively new and burgeoning prion epidemic in deer, elk, and moose (members of the cervid family), is more enigmatic. The disease was first described in captive and later in wild mule deer and subsequently in free-ranging as well as captive Rocky Mountain elk, white-tailed deer, and most recently moose. It is therefore the only recognized prion disorder of both wild and captive animals. In addition to its expanding range of hosts, CWD continues to spread to new geographical areas, including recent cases in Norway. The unparalleled efficiency of the contagious transmission of the disease combined with high densities of deer in certain areas of North America complicates strategies for controlling CWD and raises concerns about its potential spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, the possibility of zoonotic transmission is particularly concerning. Here, we review the current status of naturally occurring CWD and describe advances in our understanding of its molecular pathogenesis, as shown by studies of CWD prions in novel in vivo and in vitro systems.
Collapse
Affiliation(s)
- Julie A Moreno
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80525
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80525
| |
Collapse
|
25
|
Herbst A, Velásquez CD, Triscott E, Aiken JM, McKenzie D. Chronic Wasting Disease Prion Strain Emergence and Host Range Expansion. Emerg Infect Dis 2018; 23:1598-1600. [PMID: 28820384 PMCID: PMC5572867 DOI: 10.3201/eid2309.161474] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Human and mouse prion proteins share a structural motif that regulates resistance to common chronic wasting disease (CWD) prion strains. Successful transmission of an emergent strain of CWD prion, H95+, into mice resulted in infection. Thus, emergent CWD prion strains may have higher zoonotic potential than common strains.
Collapse
|
26
|
Baral PK, Swayampakula M, Aguzzi A, James MNG. Structural characterization of
POM
6 Fab and mouse prion protein complex identifies key regions for prions conformational conversion. FEBS J 2018; 285:1701-1714. [DOI: 10.1111/febs.14438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/02/2018] [Accepted: 03/16/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Pravas Kumar Baral
- Department of Biochemistry Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Mridula Swayampakula
- Department of Biochemistry Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Adriano Aguzzi
- Institute of Neuropathology University of Zurich Switzerland
| | - Michael N. G. James
- Department of Biochemistry Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| |
Collapse
|
27
|
Fändrich M, Nyström S, Nilsson KPR, Böckmann A, LeVine H, Hammarström P. Amyloid fibril polymorphism: a challenge for molecular imaging and therapy. J Intern Med 2018; 283:218-237. [PMID: 29360284 PMCID: PMC5820168 DOI: 10.1111/joim.12732] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The accumulation of misfolded proteins (MPs), both unique and common, for different diseases is central for many chronic degenerative diseases. In certain patients, MP accumulation is systemic (e.g. TTR amyloid), and in others, this is localized to a specific cell type (e.g. Alzheimer's disease). In neurodegenerative diseases, NDs, it is noticeable that the accumulation of MP progressively spreads throughout the nervous system. Our main hypothesis of this article is that MPs are not only markers but also active carriers of pathogenicity. Here, we discuss studies from comprehensive molecular approaches aimed at understanding MP conformational variations (polymorphism) and their bearing on spreading of MPs, MP toxicity, as well as MP targeting in imaging and therapy. Neurodegenerative disease (ND) represents a major and growing societal challenge, with millions of people worldwide suffering from Alzheimer's or Parkinson's diseases alone. For all NDs, current treatment is palliative without addressing the primary cause and is not curative. Over recent years, particularly the shape-shifting properties of misfolded proteins and their spreading pathways have been intensively researched. The difficulty in addressing ND has prompted most major pharma companies to severely downsize their nervous system disorder research. Increased academic research is pivotal for filling this void and to translate basic research into tools for medical professionals. Recent discoveries of targeting drug design against MPs and improved model systems to study structure, pathology spreading and toxicity strongly encourage future studies along these lines to provide an opportunity for selective imaging, prognostic diagnosis and therapy.
Collapse
Affiliation(s)
- Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, division of Chemistry, Linköping University, Linköping, Sweden
| | - K. Peter R. Nilsson
- Department of Physics, Chemistry and Biology, division of Chemistry, Linköping University, Linköping, Sweden
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Harry LeVine
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, division of Chemistry, Linköping University, Linköping, Sweden
| |
Collapse
|
28
|
Honda R, Kuwata K. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils. FASEB J 2018; 32:3641-3652. [PMID: 29401635 DOI: 10.1096/fj.201701183rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Amyloid fibrils are filamentous protein aggregates associated with the pathogenesis of a wide variety of human diseases. The formation of such aggregates typically follows nucleation-dependent kinetics, wherein the assembly and structural conversion of amyloidogenic proteins into oligomeric aggregates (nuclei) is the rate-limiting step of the overall reaction. In this study, we sought to gain structural insights into the oligomeric nuclei of the human prion protein (PrP) by preparing a series of deletion mutants lacking 14-44 of the C-terminal 107 residues of PrP and examined the kinetics and thermodynamics of these mutants in amyloid formation. An analysis of the experimental data using the concepts of the Φ-value analysis indicated that the helix 2 region (residues 168-196) acquires an amyloid-like β-sheet during nucleation, whereas the other regions preserves a relatively disordered structure in the nuclei. This finding suggests that the helix 2 region serves as the nucleation site for the assembly of amyloid fibrils.-Honda, R., Kuwata, K. Evidence for a central role of PrP helix 2 in the nucleation of amyloid fibrils.
Collapse
Affiliation(s)
- Ryo Honda
- Department of Molecular Pathobiochemistry, Graduate School of Medicine, Gifu University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.,Department of Gene and Development, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
29
|
Mercer RCC, Daude N, Dorosh L, Fu ZL, Mays CE, Gapeshina H, Wohlgemuth SL, Acevedo-Morantes CY, Yang J, Cashman NR, Coulthart MB, Pearson DM, Joseph JT, Wille H, Safar JG, Jansen GH, Stepanova M, Sykes BD, Westaway D. A novel Gerstmann-Sträussler-Scheinker disease mutation defines a precursor for amyloidogenic 8 kDa PrP fragments and reveals N-terminal structural changes shared by other GSS alleles. PLoS Pathog 2018; 14:e1006826. [PMID: 29338055 PMCID: PMC5786331 DOI: 10.1371/journal.ppat.1006826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/26/2018] [Accepted: 12/18/2017] [Indexed: 11/29/2022] Open
Abstract
To explore pathogenesis in a young Gerstmann-Sträussler-Scheinker Disease (GSS) patient, the corresponding mutation, an eight-residue duplication in the hydrophobic region (HR), was inserted into the wild type mouse PrP gene. Transgenic (Tg) mouse lines expressing this mutation (Tg.HRdup) developed spontaneous neurologic syndromes and brain extracts hastened disease in low-expressor Tg.HRdup mice, suggesting de novo formation of prions. While Tg.HRdup mice exhibited spongiform change, PrP aggregates and the anticipated GSS hallmark of a proteinase K (PK)-resistant 8 kDa fragment deriving from the center of PrP, the LGGLGGYV insertion also imparted alterations in PrP's unstructured N-terminus, resulting in a 16 kDa species following thermolysin exposure. This species comprises a plausible precursor to the 8 kDa PK-resistant fragment and its detection in adolescent Tg.HRdup mice suggests that an early start to accumulation could account for early disease of the index case. A 16 kDa thermolysin-resistant signature was also found in GSS patients with P102L, A117V, H187R and F198S alleles and has coordinates similar to GSS stop codon mutations. Our data suggest a novel shared pathway of GSS pathogenesis that is fundamentally distinct from that producing structural alterations in the C-terminus of PrP, as observed in other prion diseases such as Creutzfeldt-Jakob Disease and scrapie. Prion diseases can be sporadic, infectious or genetic. The central event of all prion diseases is the structural conversion of the cellular prion protein (PrPC) to its disease associated conformer, PrPSc. Gerstmann-Sträussler-Scheinker Disease (GSS) is a genetic prion disease presenting as a multi-systemic neurological syndrome. A novel mutation, an eight amino acid insertion, was discovered in a young GSS patient. We created transgenic mice expressing this mutation and found that they recapitulate key features of the disease; namely PrP deposition in the brain and a low molecular weight proteinase K (PK) resistant internal PrP fragment. While structural investigations did not reveal a gross alteration in the conformation of this mutant PrP, the insertion lying at the boundary of the globular domain causes alterations in the unstructured amino terminal portion of the protein such that it becomes resistant to digestion by the enzyme thermolysin. We demonstrate by kinetic analysis and sequential digestion that this novel thermolysin resistant species is a precursor to the pathognomonic PK resistant fragment. Analysis of samples from other GSS patients revealed this same signature, suggesting a common molecular pathway.
Collapse
Affiliation(s)
- Robert C. C. Mercer
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Lyudmyla Dorosh
- National Research Council of Canada, Edmonton, Alberta, Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ze-Lin Fu
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Charles E. Mays
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Hristina Gapeshina
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Serene L. Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Neil R. Cashman
- Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael B. Coulthart
- Canadian Creutzfeldt-Jakob Disease Surveillance System, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Dawn M. Pearson
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey T. Joseph
- Hotchkiss Brain Institute and Calgary Laboratory Services, University of Calgary, Calgary, Alberta, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jiri G. Safar
- Departments of Pathology and Neurology, School of Medicine Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gerard H. Jansen
- Canadian Creutzfeldt-Jakob Disease Surveillance System, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, Ontario, Canada
- Division of Anatomical Pathology, University of Ottawa, Ottawa, Ontario, Canada
| | - Maria Stepanova
- National Research Council of Canada, Edmonton, Alberta, Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Brian D. Sykes
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
30
|
Nilsson KPR, Lindgren M, Hammarström P. Luminescent-Conjugated Oligothiophene Probe Applications for Fluorescence Imaging of Pure Amyloid Fibrils and Protein Aggregates in Tissues. Methods Mol Biol 2018; 1779:485-496. [PMID: 29886552 DOI: 10.1007/978-1-4939-7816-8_30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Luminescent-conjugated oligo- and polythiophenes (LCOs and LCPs) are valuable tools for optical imaging of a plethora of protein aggregates associated with amyloidoses. Here, we outline updated protocols for the application of the anionic pentameric LCO, p-FTAA, for staining and hyperspectral imaging of protein aggregates in a variety of settings such as in vitro formed amyloid fibrils, ex vivo tissue sections, and whole brain Drosophila.
Collapse
Affiliation(s)
- K Peter R Nilsson
- IFM-Department of Chemistry, Linköping University, Linköping, Sweden
| | - Mikael Lindgren
- IFM-Department of Chemistry, Linköping University, Linköping, Sweden.,Department of Physics, The Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Per Hammarström
- IFM-Department of Chemistry, Linköping University, Linköping, Sweden.
| |
Collapse
|
31
|
Houston F, Andréoletti O. The zoonotic potential of animal prion diseases. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:447-462. [PMID: 29887151 DOI: 10.1016/b978-0-444-63945-5.00025-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bovine spongiform encephalopathy (BSE) is the only animal prion disease that has been demonstrated to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans. The link between BSE and vCJD was established by careful surveillance, epidemiologic investigations, and experimental studies using in vivo and in vitro models of cross-species transmission. Similar approaches have been used to assess the zoonotic potential of other animal prion diseases, including atypical forms identified through active surveillance. There is no epidemiologic evidence that classical or atypical scrapie, atypical forms of BSE, or chronic wasting disease (CWD) is associated with human prion disease, but the limitations of the epidemiologic data should be taken into account when interpreting these results. Transmission experiments in nonhuman primates and human PrP transgenic mice suggest that classic scrapie, L-type atypical BSE (L-BSE), and CWD may have zoonotic potential, which for L-BSE appears to be equal to or greater than that of classic BSE. The results of in vitro conversion assays to analyze the human transmission barrier correlate well with the in vivo data. However, it is still difficult to predict the likelihood that an animal prion disease will transmit to humans under conditions of field exposure from the results of in vivo or in vitro experiments. This emphasizes the importance of continuing systematic surveillance for both human and animal prion diseases in identifying zoonotic transmission of diseases other than classic BSE.
Collapse
Affiliation(s)
- Fiona Houston
- Neurobiology Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom.
| | | |
Collapse
|
32
|
Discovery of small molecules binding to the normal conformation of prion by combining virtual screening and multiple biological activity evaluation methods. J Comput Aided Mol Des 2017; 31:1053-1062. [PMID: 29159521 DOI: 10.1007/s10822-017-0086-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/15/2017] [Indexed: 11/27/2022]
Abstract
Conformational conversion of the normal cellular prion protein, PrPC, into the misfolded isoform, PrPSc, is considered to be a central event in the development of fatal neurodegenerative diseases. Stabilization of prion protein at the normal cellular form (PrPC) with small molecules is a rational and efficient strategy for treatment of prion related diseases. However, few compounds have been identified as potent prion inhibitors by binding to the normal conformation of prion. In this work, to rational screening of inhibitors capable of stabilizing cellular form of prion protein, multiple approaches combining docking-based virtual screening, steady-state fluorescence quenching, surface plasmon resonance and thioflavin T fluorescence assay were used to discover new compounds interrupting PrPC to PrPSc conversion. Compound 3253-0207 that can bind to PrPC with micromolar affinity and inhibit prion fibrillation was identified from small molecule databases. Molecular dynamics simulation indicated that compound 3253-0207 can bind to the hotspot residues in the binding pocket composed by β1, β2 and α2, which are significant structure moieties in conversion from PrPC to PrPSc.
Collapse
|
33
|
Genetic human prion disease modelled in PrP transgenic Drosophila. Biochem J 2017; 474:3253-3267. [PMID: 28814578 PMCID: PMC5606059 DOI: 10.1042/bcj20170462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022]
Abstract
Inherited human prion diseases, such as fatal familial insomnia (FFI) and familial Creutzfeldt–Jakob disease (fCJD), are associated with autosomal dominant mutations in the human prion protein gene PRNP and accumulation of PrPSc, an abnormal isomer of the normal host protein PrPC, in the brain of affected individuals. PrPSc is the principal component of the transmissible neurotoxic prion agent. It is important to identify molecular pathways and cellular processes that regulate prion formation and prion-induced neurotoxicity. This will allow identification of possible therapeutic interventions for individuals with, or at risk from, genetic human prion disease. Increasingly, Drosophila has been used to model human neurodegenerative disease. An important unanswered question is whether genetic prion disease with concomitant spontaneous prion formation can be modelled in Drosophila. We have used pUAST/PhiC31-mediated site-directed mutagenesis to generate Drosophila transgenic for murine or hamster PrP (prion protein) that carry single-codon mutations associated with genetic human prion disease. Mouse or hamster PrP harbouring an FFI (D178N) or fCJD (E200K) mutation showed mild Proteinase K resistance when expressed in Drosophila. Adult Drosophila transgenic for FFI or fCJD variants of mouse or hamster PrP displayed a spontaneous decline in locomotor ability that increased in severity as the flies aged. Significantly, this mutant PrP-mediated neurotoxic fly phenotype was transferable to recipient Drosophila that expressed the wild-type form of the transgene. Collectively, our novel data are indicative of the spontaneous formation of a PrP-dependent neurotoxic phenotype in FFI- or CJD-PrP transgenic Drosophila and show that inherited human prion disease can be modelled in this invertebrate host.
Collapse
|
34
|
Herbst A, Velásquez CD, Triscott E, Aiken JM, McKenzie D. Chronic Wasting Disease Prion Strain Emergence and Host Range Expansion. Emerg Infect Dis 2017. [DOI: 10.3201/eid2309.161747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Abstract
In transmissible spongiform encephalopathies (TSEs), which are lethal neurodegenerative diseases that affect humans and a wide range of other mammalian species, the normal "cellular" prion protein ([Formula: see text]) is transformed into amyloid aggregates representing the "scrapie form" of the protein ([Formula: see text]). Continued research on this system is of keen interest, since new information on the physiological function of [Formula: see text] in healthy organisms is emerging, as well as new data on the mechanism of the transformation of [Formula: see text] to [Formula: see text] In this paper we used two different approaches: a combination of the well-tempered ensemble (WTE) and parallel tempering (PT) schemes and metadynamics (MetaD) to characterize the conformational free-energy surface of [Formula: see text] The focus of the data analysis was on an 11-residue polypeptide segment in mouse [Formula: see text](121-231) that includes the [Formula: see text]2-[Formula: see text]2 loop of residues 167-170, for which a correlation between structure and susceptibility to prion disease has previously been described. This study includes wild-type mouse [Formula: see text] and a variant with the single-residue replacement Y169A. The resulting detailed conformational landscapes complement in an integrative manner the available experimental data on [Formula: see text], providing quantitative insights into the nature of the structural transition-related function of the [Formula: see text]2-[Formula: see text]2 loop.
Collapse
|
36
|
Lamour G, Nassar R, Chan PHW, Bozkurt G, Li J, Bui JM, Yip CK, Mayor T, Li H, Wu H, Gsponer JA. Mapping the Broad Structural and Mechanical Properties of Amyloid Fibrils. Biophys J 2017; 112:584-594. [PMID: 28256219 DOI: 10.1016/j.bpj.2016.12.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022] Open
Abstract
Amyloids are fibrillar nanostructures of proteins that are assembled in several physiological processes in human cells (e.g., hormone storage) but also during the course of infectious (prion) and noninfectious (nonprion) diseases such as Creutzfeldt-Jakob and Alzheimer's diseases, respectively. How the amyloid state, a state accessible to all proteins and peptides, can be exploited for functional purposes but also have detrimental effects remains to be determined. Here, we measure the nanomechanical properties of different amyloids and link them to features found in their structure models. Specifically, we use shape fluctuation analysis and sonication-induced scission in combination with full-atom molecular dynamics simulations to reveal that the amyloid fibrils of the mammalian prion protein PrP are mechanically unstable, most likely due to a very low hydrogen bond density in the fibril structure. Interestingly, amyloid fibrils formed by HET-s, a fungal protein that can confer functional prion behavior, have a much higher Young's modulus and tensile strength than those of PrP, i.e., they are much stiffer and stronger due to a tighter packing in the fibril structure. By contrast, amyloids of the proteins RIP1/RIP3 that have been shown to be of functional use in human cells are significantly stiffer than PrP fibrils but have comparable tensile strength. Our study demonstrates that amyloids are biomaterials with a broad range of nanomechanical properties, and we provide further support for the strong link between nanomechanics and β-sheet characteristics in the amyloid core.
Collapse
Affiliation(s)
- Guillaume Lamour
- Michael Smith Laboratories-Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roy Nassar
- Michael Smith Laboratories-Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick H W Chan
- Michael Smith Laboratories-Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gunes Bozkurt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Jixi Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jennifer M Bui
- Michael Smith Laboratories-Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thibault Mayor
- Michael Smith Laboratories-Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Jörg A Gsponer
- Michael Smith Laboratories-Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
37
|
Leske H, Hornemann S, Herrmann US, Zhu C, Dametto P, Li B, Laferriere F, Polymenidou M, Pelczar P, Reimann RR, Schwarz P, Rushing EJ, Wüthrich K, Aguzzi A. Protease resistance of infectious prions is suppressed by removal of a single atom in the cellular prion protein. PLoS One 2017; 12:e0170503. [PMID: 28207746 PMCID: PMC5313174 DOI: 10.1371/journal.pone.0170503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 12/16/2016] [Indexed: 11/18/2022] Open
Abstract
Resistance to proteolytic digestion has long been considered a defining trait of prions in tissues of organisms suffering from transmissible spongiform encephalopathies. Detection of proteinase K-resistant prion protein (PrPSc) still represents the diagnostic gold standard for prion diseases in humans, sheep and cattle. However, it has become increasingly apparent that the accumulation of PrPSc does not always accompany prion infections: high titers of prion infectivity can be reached also in the absence of protease resistant PrPSc. Here, we describe a structural basis for the phenomenon of protease-sensitive prion infectivity. We studied the effect on proteinase K (PK) resistance of the amino acid substitution Y169F, which removes a single oxygen atom from the β2–α2 loop of the cellular prion protein (PrPC). When infected with RML or the 263K strain of prions, transgenic mice lacking wild-type (wt) PrPC but expressing MoPrP169F generated prion infectivity at levels comparable to wt mice. The newly generated MoPrP169F prions were biologically indistinguishable from those recovered from prion-infected wt mice, and elicited similar pathologies in vivo. Surprisingly, MoPrP169F prions showed greatly reduced PK resistance and density gradient analyses showed a significant reduction in high-density aggregates. Passage of MoPrP169F prions into mice expressing wt MoPrP led to full recovery of protease resistance, indicating that no strain shift had taken place. We conclude that a subtle structural variation in the β2–α2 loop of PrPC affects the sensitivity of PrPSc to protease but does not impact prion replication and infectivity. With these findings a specific structural feature of PrPC can be linked to a physicochemical property of the corresponding PrPSc.
Collapse
Affiliation(s)
- Henning Leske
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, Switzerland
| | - Uli Simon Herrmann
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, Switzerland
| | - Caihong Zhu
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, Switzerland
| | - Paolo Dametto
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, Switzerland
| | - Bei Li
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, Switzerland
| | - Florent Laferriere
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Magdalini Polymenidou
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Pawel Pelczar
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, Zurich, Switzerland
| | - Regina Rose Reimann
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, Switzerland
| | - Elisabeth Jane Rushing
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, Switzerland
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail: (AA); , (KW)
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, Switzerland
- * E-mail: (AA); , (KW)
| |
Collapse
|
38
|
De Novo Generation of a Unique Cervid Prion Strain Using Protein Misfolding Cyclic Amplification. mSphere 2017; 2:mSphere00372-16. [PMID: 28144628 PMCID: PMC5266495 DOI: 10.1128/msphere.00372-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/11/2017] [Indexed: 11/29/2022] Open
Abstract
CWD is the only known TSE that affects free-ranging wildlife, specifically cervids such as elk, deer, moose, caribou, and reindeer. CWD has become endemic in both free-ranging and captive herds in North America, South Korea, and, most recently, northern Europe. The prion research community continues to debate the origins of CWD. Original foci of CWD emergence in Colorado and Wyoming coincident with the sheep TSE scrapie suggest that scrapie prions may have adapted to cervids to cause CWD. However, emerging evidence supports the idea that cervid PrPC may be more prone to misfolding to the pathological isoform. Here we test the hypothesis that cervid PrPC can spontaneously misfold to create de novo prions. Whether CWD can arise spontaneously as a sporadic TSE or represents a new TSE caused by cervid-adapted scrapie prions profoundly impacts surveillance and mitigation strategies. Substantial evidence supports the hypothesis that prions are misfolded, infectious, insoluble, and protease-resistant proteins (PrPRES) devoid of instructional nucleic acid that cause transmissible spongiform encephalopathies (TSEs). Protein misfolding cyclic amplification (PMCA) has provided additional evidence that PrPRes acts as a template that can convert the normal cellular prion protein (PrPC) present in uninfected normal brain homogenate (NBH) into the infectious misfolded PrPRES isoform. Human PrPC has been shown to spontaneously convert to a misfolded pathological state causing sporadic Creutzfeldt-Jakob disease (sCJD). Several investigators have reported spontaneous generation of prions by in vitro assays, including PMCA. Here we tested the rate of de novo generation of cervid prions in our laboratory using our standard PMCA protocol and NBH from transgenic mice expressing cervid PrPC (TgCerPrP mice). We generated de novo prions in rounds 4, 5, and 7 at low cumulative rates of 1.6, 5.0, and 6.7%, respectively. The prions caused infectious chronic wasting disease (CWD) upon inoculation into normal uninfected TgCerPrP mice and displayed unique biochemical characteristics compared to other cervid prion strains. We conclude that PMCA of cervid PrPC from normal brain homogenate spontaneously generated a new cervid prion strain. These data support the potential for cervids to develop sporadic CWD. IMPORTANCE CWD is the only known TSE that affects free-ranging wildlife, specifically cervids such as elk, deer, moose, caribou, and reindeer. CWD has become endemic in both free-ranging and captive herds in North America, South Korea, and, most recently, northern Europe. The prion research community continues to debate the origins of CWD. Original foci of CWD emergence in Colorado and Wyoming coincident with the sheep TSE scrapie suggest that scrapie prions may have adapted to cervids to cause CWD. However, emerging evidence supports the idea that cervid PrPC may be more prone to misfolding to the pathological isoform. Here we test the hypothesis that cervid PrPC can spontaneously misfold to create de novo prions. Whether CWD can arise spontaneously as a sporadic TSE or represents a new TSE caused by cervid-adapted scrapie prions profoundly impacts surveillance and mitigation strategies. Podcast: A podcast concerning this article is available.
Collapse
|
39
|
Prion replication without host adaptation during interspecies transmissions. Proc Natl Acad Sci U S A 2017; 114:1141-1146. [PMID: 28096357 DOI: 10.1073/pnas.1611891114] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adaptation of prions to new species is thought to reflect the capacity of the host-encoded cellular form of the prion protein (PrPC) to selectively propagate optimized prion conformations from larger ensembles generated in the species of origin. Here we describe an alternate replicative process, termed nonadaptive prion amplification (NAPA), in which dominant conformers bypass this requirement during particular interspecies transmissions. To model susceptibility of horses to prions, we produced transgenic (Tg) mice expressing cognate PrPC Although disease transmission to only a subset of infected TgEq indicated a significant barrier to EqPrPC conversion, the resulting horse prions unexpectedly failed to cause disease upon further passage to TgEq. TgD expressing deer PrPC was similarly refractory to deer prions from diseased TgD infected with mink prions. In both cases, the resulting prions transmitted to mice expressing PrPC from the species of prion origin, demonstrating that transmission barrier eradication of the originating prions was ephemeral and adaptation superficial in TgEq and TgD. Horse prions produced in vitro by protein misfolding cyclic amplification of mouse prions using horse PrPC also failed to infect TgEq but retained tropism for wild-type mice. Concordant patterns of neuropathology and prion deposition in susceptible mice infected with NAPA prions and the corresponding prion of origin confirmed preservation of strain properties. The comparable responses of both prion types to guanidine hydrochloride denaturation indicated this occurs because NAPA precludes selection of novel prion conformations. Our findings provide insights into mechanisms regulating interspecies prion transmission and a framework to reconcile puzzling epidemiological features of certain prion disorders.
Collapse
|
40
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Sanaa M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Ru G, Telling GC, Tryland M, Ortiz Pelaez A, Simmons M. Chronic wasting disease (CWD) in cervids. EFSA J 2017; 15:e04667. [PMID: 32625260 PMCID: PMC7010154 DOI: 10.2903/j.efsa.2017.4667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In April and May of 2016, Norway confirmed two cases of chronic wasting disease (CWD) in a wild reindeer and a wild moose, respectively. In the light of this emerging issue, the European Commission requested EFSA to recommend surveillance activities and, if necessary, additional animal health risk-based measures to prevent the introduction of the disease and the spread into/within the EU, specifically Estonia, Finland, Iceland, Latvia, Lithuania, Norway, Poland and Sweden, and considering seven wild, semidomesticated and farmed cervid species (Eurasian tundra reindeer, Finnish (Eurasian) forest reindeer, moose, roe deer, white-tailed deer, red deer and fallow deer). It was also asked to assess any new evidence on possible public health risks related to CWD. A 3-year surveillance system is proposed, differing for farmed and wild or semidomesticated cervids, with a two-stage sampling programme at the farm/geographically based population unit level (random sampling) and individual level (convenience sampling targeting high-risk animals). The current derogations of Commission Implementing Decision (EU) 2016/1918 present a risk of introduction of CWD into the EU. Measures to prevent the spread of CWD within the EU are dependent upon the assumption that the disease is already present; this is currently unknown. The measures listed are intended to contain (limit the geographic extent of a focus) and/or to control (actively stabilise/reduce infection rates in an affected herd or population) the disease where it occurs. With regard to the zoonotic potential, the human species barrier for CWD prions does not appear to be absolute. These prions are present in the skeletal muscle and other edible tissues, so humans may consume infected material in enzootic areas. Epidemiological investigations carried out to date make no association between the occurrence of sporadic Creutzfeldt-Jakob disease in humans and exposure to CWD prions.
Collapse
|
41
|
Structural Modeling of Human Prion Protein's Point Mutations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:105-122. [DOI: 10.1016/bs.pmbts.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Moreno JA, Telling GC. Insights into Mechanisms of Transmission and Pathogenesis from Transgenic Mouse Models of Prion Diseases. Methods Mol Biol 2017; 1658:219-252. [PMID: 28861793 DOI: 10.1007/978-1-4939-7244-9_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSEs), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSEs is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer's and Parkinson's diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect interspecies prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals, and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review, we will focus on advances in our understanding of prion biology that occurred in the past 8 years since our last review of this topic.
Collapse
Affiliation(s)
- Julie A Moreno
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Glenn C Telling
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
43
|
Amyloid fibrils from the N-terminal prion protein fragment are infectious. Proc Natl Acad Sci U S A 2016; 113:13851-13856. [PMID: 27849581 DOI: 10.1073/pnas.1610716113] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinant C-terminally truncated prion protein PrP23-144 (which corresponds to the Y145Stop PrP variant associated with a Gerstmann-Sträussler-Scheinker-like prion disease) spontaneously forms amyloid fibrils with a parallel in-register β-sheet architecture and β-sheet core mapping to residues ∼112-139. Here we report that mice (both tga20 and wild type) inoculated with a murine (moPrP23-144) version of these fibrils develop clinical prion disease with a 100% attack rate. Remarkably, even though fibrils in the inoculum lack the entire C-terminal domain of PrP, brains of clinically sick mice accumulate longer proteinase K-resistant (PrPres) fragments of ∼17-32 kDa, similar to those observed in classical scrapie strains. Shorter, Gerstmann-Sträussler-Scheinker-like PrPres fragments are also present. The evidence that moPrP23-144 amyloid fibrils generated in the absence of any cofactors are bona fide prions provides a strong support for the protein-only hypothesis of prion diseases in its pure form, arguing against the notion that nonproteinaceous cofactors are obligatory structural components of all infectious prions. Furthermore, our finding that a relatively short β-sheet core of PrP23-144 fibrils (residues ∼112-139) with a parallel in-register organization of β-strands is capable of seeding the conversion of full-length prion protein to the infectious form has important implications for the ongoing debate regarding structural aspects of prion protein conversion and molecular architecture of mammalian prions.
Collapse
|
44
|
Watts JC, Giles K, Bourkas MEC, Patel S, Oehler A, Gavidia M, Bhardwaj S, Lee J, Prusiner SB. Towards authentic transgenic mouse models of heritable PrP prion diseases. Acta Neuropathol 2016; 132:593-610. [PMID: 27350609 DOI: 10.1007/s00401-016-1585-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 11/27/2022]
Abstract
Attempts to model inherited human prion disorders such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) disease, and fatal familial insomnia (FFI) using genetically modified mice have produced disappointing results. We recently demonstrated that transgenic (Tg) mice expressing wild-type bank vole prion protein (BVPrP) containing isoleucine at polymorphic codon 109 develop a spontaneous neurodegenerative disorder that exhibits many of the hallmarks of prion disease. To determine if mutations causing inherited human prion disease alter this phenotype, we generated Tg mice expressing BVPrP containing the D178N mutation, which causes FFI; the E200K mutation, which causes familial CJD; or an anchorless PrP mutation similar to mutations that cause GSS. Modest expression levels of mutant BVPrP resulted in highly penetrant spontaneous disease in Tg mice, with mean ages of disease onset ranging from ~120 to ~560 days. The brains of spontaneously ill mice exhibited prominent features of prion disease-specific neuropathology that were unique to each mutation and distinct from Tg mice expressing wild-type BVPrP. An ~8-kDa proteinase K-resistant PrP fragment was found in the brains of spontaneously ill Tg mice expressing either wild-type or mutant BVPrP. The spontaneously formed mutant BVPrP prions were transmissible to Tg mice expressing wild-type or mutant BVPrP as well as to Tg mice expressing mouse PrP. Thus, Tg mice expressing mutant BVPrP exhibit many of the hallmarks of heritable prion disorders in humans including spontaneous disease, protease-resistant PrP, and prion infectivity.
Collapse
Affiliation(s)
- Joel C Watts
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Biochemistry, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Biochemistry, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Smita Patel
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Marta Gavidia
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Sumita Bhardwaj
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Joanne Lee
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
45
|
Specificity, Size, and Frequency of Spaces That Characterize the Mechanism of Bulk Transepithelial Transport of Prions in the Nasal Cavities of Hamsters and Mice. J Virol 2016; 90:8293-301. [PMID: 27384659 DOI: 10.1128/jvi.01103-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Inhalation of infected brain homogenate results in transepithelial transport of prions across the nasal mucosa of hamsters, some of which occurs rapidly in relatively large amounts between cells (A. E. Kincaid, K. F. Hudson, M. W. Richey, and J. C. Bartz, J. Virol 86:12731-12740, 2012, doi:http://dx.doi.org/10.1128/JVI.01930-12). Bulk transepithelial transport in the nasal cavity has not been studied to date. In the present study, we characterized the frequency, size, and specificity of the intercellular spaces that mediate the bulk transport of inhaled prions between cells of mice or hamsters following extranasal inoculation with mock-infected brain homogenate, different strains of prion-infected brain homogenate, or brain homogenate mixed with India ink. Infected or mock-infected inoculum was identified within lymphatic vessels of the lamina propria and in spaces of >5 μm between a small number of cells of the nasal mucosa in >90% of animals from 5 to 60 min after inhalation. The width of the spaces between cells, the amount of the inoculum within the lumen of lymphatic vessels, and the timing of the transport indicate that this type of transport was taking place through preexisting spaces in the nasal cavity that were orders of magnitude wider than what is normally reported for paracellular transport. The indiscriminate rapid bulk transport of brain homogenate in the nasal cavity results in immediate entry into nasal cavity lymphatics following inhalation. This novel mechanism may underlie the recent report of the early detection of prions in blood following inhalation and has implications for horizontal prion transmission. IMPORTANCE The results of these studies demonstrate that the nasal mucosa of mice and hamsters is not an absolute anatomical barrier to inhaled prion-infected or uninfected brain homogenate. Relatively large amounts of infected and uninfected brain homogenate rapidly cross the nasal mucosa and enter the lumen of lymphatic vessels following inhalation. These bulk transepithelial transport events were relatively rare but present in >90% of animals 5 to 60 min following inhalation. This novel mechanism of bulk transepithelial transport was seen in experimental and control hamsters and mice, indicating that it was not species specific or in response to prion exposure. The indiscriminate bulk intercellular transport of inhaled pathogens across the nasal mucosa followed by entry into the lymphatic system may be a mechanism that underlies the entry and spread of other toxins and pathogens in olfactory system-driven animals.
Collapse
|
46
|
Landreh M, Sawaya MR, Hipp MS, Eisenberg DS, Wüthrich K, Hartl FU. The formation, function and regulation of amyloids: insights from structural biology. J Intern Med 2016; 280:164-76. [PMID: 27237473 DOI: 10.1111/joim.12500] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amyloid diseases are characterized by the accumulation of insoluble, β-strand-rich aggregates. The underlying structural conversions are closely associated with cellular toxicity, but can also drive the formation of functional protein assemblies. In recent years, studies in the field of structural studies have revealed astonishing insights into the origins, mechanisms and implications of amyloid formation. Notably, high-resolution crystal structures of peptides in amyloid-like fibrils and prefibrillar oligomers have become available despite their challenging chemical nature. Nuclear magnetic resonance spectroscopy has revealed that dynamic local polymorphisms in the benign form of the prion protein affect the transformation into amyloid fibrils and the transmissibility of prion diseases. Studies of the structures and interactions of chaperone proteins help us to understand how the cellular proteostasis network is able to recognize different stages of aberrant protein folding and prevent aggregation. In this review, we will focus on recent developments that connect the different aspects of amyloid biology and discuss how understanding the process of amyloid formation and the associated defence mechanisms can reveal targets for pharmacological intervention that may become the first steps towards clinically viable treatment strategies.
Collapse
Affiliation(s)
- M Landreh
- Department of Chemistry, University of Oxford, Oxford, UK
| | - M R Sawaya
- Departments of Biological Chemistry and Chemistry & Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, Los Angeles, CA, USA
| | - M S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - D S Eisenberg
- Departments of Biological Chemistry and Chemistry & Biochemistry, Howard Hughes Medical Institute, UCLA-DOE Institute, Los Angeles, CA, USA
| | - K Wüthrich
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.,Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - F U Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
47
|
Narayanan SP, Nair DG, Schaal D, Barbosa de Aguiar M, Wenzel S, Kremer W, Schwarzinger S, Kalbitzer HR. Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain. Sci Rep 2016; 6:28419. [PMID: 27341298 PMCID: PMC4920026 DOI: 10.1038/srep28419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/26/2016] [Indexed: 01/11/2023] Open
Abstract
Fatal neurodegenerative disorders termed transmissible spongiform encephalopathies (TSEs) are associated with the accumulation of fibrils of misfolded prion protein PrP. The noble gas xenon accommodates into four transiently enlarged hydrophobic cavities located in the well-folded core of human PrP(23–230) as detected by [1H, 15N]-HSQC spectroscopy. In thermal equilibrium a fifth xenon binding site is formed transiently by amino acids A120 to L125 of the presumably disordered N-terminal domain and by amino acids K185 to T193 of the well-folded domain. Xenon bound PrP was modelled by restraint molecular dynamics. The individual microscopic and macroscopic dissociation constants could be derived by fitting the data to a model including a dynamic opening and closing of the cavities. As observed earlier by high pressure NMR spectroscopy xenon binding influences also other amino acids all over the N-terminal domain including residues of the AGAAAAGA motif indicating a structural coupling between the N-terminal domain and the core domain. This is in agreement with spin labelling experiments at positions 93 or 107 that show a transient interaction between the N-terminus and the start of helix 2 and the end of helix 3 of the core domain similar to that observed earlier by Zn2+-binding to the octarepeat motif.
Collapse
Affiliation(s)
- Sunilkumar Puthenpurackal Narayanan
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (CMRCB), University of Regensburg, 93040 Regensburg, Germany
| | - Divya Gopalakrishnan Nair
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (CMRCB), University of Regensburg, 93040 Regensburg, Germany
| | - Daniel Schaal
- Research Center for Bio-Macromolecules and Department of Biopolymers, NW1/BGI, University of Bayreuth, 95447 Bayreuth, Germany
| | - Marisa Barbosa de Aguiar
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (CMRCB), University of Regensburg, 93040 Regensburg, Germany
| | - Sabine Wenzel
- Research Center for Bio-Macromolecules and Department of Biopolymers, NW1/BGI, University of Bayreuth, 95447 Bayreuth, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (CMRCB), University of Regensburg, 93040 Regensburg, Germany
| | - Stephan Schwarzinger
- Research Center for Bio-Macromolecules and Department of Biopolymers, NW1/BGI, University of Bayreuth, 95447 Bayreuth, Germany
| | - Hans Robert Kalbitzer
- Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (CMRCB), University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
48
|
Sjölander D, Röcken C, Westermark P, Westermark GT, Nilsson KPR, Hammarström P. Establishing the fluorescent amyloid ligand h-FTAA for studying human tissues with systemic and localized amyloid. Amyloid 2016; 23:98-108. [PMID: 26987044 DOI: 10.3109/13506129.2016.1158159] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid and accurate detection of amyloid deposits in routine surgical pathology settings are of great importance. The use of fluorescence microscopy in combination with appropriate amyloid specific dyes is very promising in this regard. Here we report that a luminescent conjugated oligothiophene, h-FTAA, rapidly and with high sensitivity and selectivity detects amyloid deposits in verified clinical samples from systemic amyloidosis patients with AA, AL and ATTR types; as well as in tissues laden with localized amyloidosis of AANF, AIAPP and ASem1 type. The probe h-FTAA emitted yellow red fluorescence on binding to amyloid deposits, whereas no apparent staining was observed in surrounding tissue. The only functional structure stained with h-FTAA showing the amyloidotypic fluorescence spectrum was Paneth cell granules in intestine. Screening of 114 amyloid containing tissues derived from 107 verified (Congo red birefringence and/or immunohistochemistry) amyloidosis patients revealed complete correlation between h-FTAA and Congo red fluorescence (107/107, 100% sensitivity). The majority of Congo red negative control cases (27 of 32, 85% specificity) were negative with h-FTAA. Small Congo red negative aggregates in kidney, liver, pancreas and duodenum were found by h-FTAA fluorescence in five control patients aged 72-83 years suffering from diverse diseases. The clinical significance of these false-positive lesions is currently not known. Because h-FTAA fluorescence is one magnitude brighter than Congo red and as the staining is performed four magnitudes lower than the concentration of dye, we believe that these inclusions are beyond detection by Congo red. We conclude that h-FTAA is a fluorescent hypersensitive, rapid and powerful tool for identifying amyloid deposits in tissue sections. Use of h-FTAA can be exploited as a rapid complementary technique for accurate detection of amyloid in routine surgical pathology settings. Our results also implicate the potential of the technique for detection of prodromal amyloidosis as well as for discovery of new amyloid-like protein aggregates in humans.
Collapse
Affiliation(s)
- Daniel Sjölander
- a IFM-Department of Chemistry , Linköping University , Linköping , Sweden
| | - Christoph Röcken
- b Institute of Pathology, Christian-Albrechts-University , Kiel , Germany
| | - Per Westermark
- c Department of Immunology , Genetics and Pathology , and
| | | | - K Peter R Nilsson
- a IFM-Department of Chemistry , Linköping University , Linköping , Sweden
| | - Per Hammarström
- a IFM-Department of Chemistry , Linköping University , Linköping , Sweden
| |
Collapse
|
49
|
Kaczmarczyk L, Mende Y, Zevnik B, Jackson WS. Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS One 2016; 11:e0154604. [PMID: 27128441 PMCID: PMC4851410 DOI: 10.1371/journal.pone.0154604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/16/2016] [Indexed: 01/01/2023] Open
Abstract
The mammalian prion protein (PrP, encoded by Prnp) is most infamous for its central role in prion diseases, invariably fatal neurodegenerative diseases affecting humans, food animals, and animals in the wild. However, PrP is also hypothesized to be an important receptor for toxic protein conformers in Alzheimer's disease, and is associated with other clinically relevant processes such as cancer and stroke. Thus, key insights into important clinical areas, as well as into understanding PrP functions in normal physiology, can be obtained from studying transgenic mouse models and cell culture systems. However, the Prnp locus is difficult to manipulate by homologous recombination, making modifications of the endogenous locus rarely attempted. Fortunately in recent years genome engineering technologies, like TALENs or CRISPR/Cas9 (CC9), have brought exceptional new possibilities for manipulating Prnp. Herein, we present our observations made during systematic experiments with the CC9 system targeting the endogenous mouse Prnp locus, to either modify sequences or to boost PrP expression using CC9-based synergistic activation mediators (SAMs). It is our hope that this information will aid and encourage researchers to implement gene-targeting techniques into their research program.
Collapse
Affiliation(s)
- Lech Kaczmarczyk
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ylva Mende
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | - Branko Zevnik
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | - Walker S. Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- * E-mail:
| |
Collapse
|
50
|
Makarava N, Savtchenko R, Alexeeva I, Rohwer RG, Baskakov IV. New Molecular Insight into Mechanism of Evolution of Mammalian Synthetic Prions. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1006-14. [PMID: 26873446 DOI: 10.1016/j.ajpath.2015.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/29/2015] [Accepted: 11/19/2015] [Indexed: 12/19/2022]
Abstract
Previous studies established that transmissible prion diseases could be induced by in vitro-produced recombinant prion protein (PrP) fibrils with structures that are fundamentally different from that of authentic PrP scrapie isoform (PrP(Sc)). To explain evolution of synthetic prions, a new mechanism referred to as deformed templating was introduced. Here, we asked whether an increase in expression level of the cellular form of PrP (PrP(C)) speeds up the evolution of synthetic strains in vivo. We found that in transgenic mice that overexpress hamster PrP(C), PrP(C) overexpression accelerated recombinant PrP fibril-induced conversion of PrP(C) to the abnormal proteinase K-resistant state, referred to as atypical PrPres, which was the first product of PrP(C) misfolding in vivo. However, overexpression of PrP(C) did not facilitate the second step of synthetic strain evolution-transition from atypical PrPres to PrP(Sc), which is attributed to the stochastic nature of rare deformed templating events. In addition, the potential of atypical PrPres to interfere with replication of a short-incubation time prion strain was investigated. Atypical PrPres was found to interfere strongly with replication of 263K in vitro; however, it did not delay prion disease in animals. The rate of deformed templating does not depend on the concentration of substrate and is hence more likely to be controlled by the intrinsic rate of conformational errors in templating alternative self-propagating states.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Regina Savtchenko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Irina Alexeeva
- Medical Research Service, Veterans Affairs Medical Center, University of Maryland, Baltimore, Maryland
| | - Robert G Rohwer
- Medical Research Service, Veterans Affairs Medical Center, University of Maryland, Baltimore, Maryland; Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|