1
|
Cobden L, Zhuang J, Lei W, Wentzcovitch R, Trampert J, Tromp J. Full-waveform tomography reveals iron spin crossover in Earth's lower mantle. Nat Commun 2024; 15:1961. [PMID: 38438365 PMCID: PMC10912123 DOI: 10.1038/s41467-024-46040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Three-dimensional models of Earth's seismic structure can be used to identify temperature-dependent phenomena, including mineralogical phase and spin transformations, that are obscured in 1-D spherical averages. Full-waveform tomography maps seismic wave-speeds inside the Earth in three dimensions, at a higher resolution than classical methods. By providing absolute wave speeds (rather than perturbations) and simultaneously constraining bulk and shear wave speeds over the same frequency range, it becomes feasible to distinguish variations in temperature from changes in composition or spin state. We present a quantitative joint interpretation of bulk and shear wave speeds in the lower mantle, using a recently published full-waveform tomography model. At all depths the diversity of wave speeds cannot be explained by an isochemical mantle. Between 1000 and 2500 km depth, hypothetical mantle models containing an electronic spin crossover in ferropericlase provide a significantly better fit to the wave-speed distributions, as well as more realistic temperatures and silica contents, than models without a spin crossover. Below 2500 km, wave speed distributions are explained by an enrichment in silica towards the core-mantle boundary. This silica enrichment may represent the fractionated remains of an ancient basal magma ocean.
Collapse
Affiliation(s)
- Laura Cobden
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, Utrecht, The Netherlands.
| | - Jingyi Zhuang
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10027, USA
| | - Wenjie Lei
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10027, USA
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
- Google Inc., Mountain View, CA, USA
| | - Renata Wentzcovitch
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10027, USA.
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA.
- Lamont Doherty Earth Observatory, Palisades, NY, 10964, USA.
- Data Science Institute, Columbia University, New York, NY, 10027, USA.
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, 10010, USA.
| | - Jeannot Trampert
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, Utrecht, The Netherlands
| | - Jeroen Tromp
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
2
|
Zhang S, Li K, Ma Y, Guo F, Jiang C, Liang Z, Bu Y, Zhang J. Density Functional Studies on the Atomistic Structure and Properties of Iron Oxides: A Parametric Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8316. [PMID: 36499813 PMCID: PMC9740064 DOI: 10.3390/ma15238316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
With the aim to find the best simulation routine to accurately predict the ground-state structures and properties of iron oxides (hematite, magnetite, and wustite) using density functional theory (DFT) with Hubbard-U correction, a significant amount of DFT calculations were conducted to investigate the influence of various simulation parameters (energy cutoff, K-point, U value, magnetization setting, smearing value, etc.) and pseudopotentials on the structures and properties of iron oxides. With optimized simulation parameters, the obtained equation of state, lattice constant, bulk moduli, and band gap is much closer to the experimental values compared with previous studies. Due to the strong coupling between the 2p orbital of O and the 3d orbital of Fe, it was found that Hubbard-U correction obviously improved the results for all three kinds of iron oxides including magnetite which has not yet been tested with U correction before, but the U value should be different for different oxides (3 ev, 4 ev, 4 ev for hematite, magnetite, and wustite, respectively). Two kinds of spin magnetism settings for FeO are considered, which should be chosen according to different calculation purposes. The detailed relationship between the parameter settings and the atomic structures and properties were analyzed, and the general principles for future DFT calculation of iron oxides were provided.
Collapse
Affiliation(s)
- Shujie Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kejiang Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Ma
- Max−Planck−Institut für Eisenforschung, Max−Planck−Straße 1, 40237 Düsseldorf, Germany
| | - Feng Guo
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Chunhe Jiang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeng Liang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yushan Bu
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianliang Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Hsu H, Umemoto K. Structural transition and re-emergence of iron's total electron spin in (Mg,Fe)O at ultrahigh pressure. Nat Commun 2022; 13:2780. [PMID: 35589702 PMCID: PMC9120148 DOI: 10.1038/s41467-022-30100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/06/2022] [Indexed: 11/14/2022] Open
Abstract
Fe-bearing MgO [(Mg1−xFex)O] is considered a major constituent of terrestrial exoplanets. Crystallizing in the B1 structure in the Earth’s lower mantle, (Mg1−xFex)O undergoes a high-spin (S = 2) to low-spin (S = 0) transition at ∼45 GPa, accompanied by anomalous changes of this mineral’s physical properties, while the intermediate-spin (S = 1) state has not been observed. In this work, we investigate (Mg1−xFex)O (x ≤ 0.25) up to 1.8 TPa via first-principles calculations. Our calculations indicate that (Mg1−xFex)O undergoes a simultaneous structural and spin transition at ∼0.6 TPa, from the B1 phase low-spin state to the B2 phase intermediate-spin state, with Fe’s total electron spin S re-emerging from 0 to 1 at ultrahigh pressure. Upon further compression, an intermediate-to-low spin transition occurs in the B2 phase. Depending on the Fe concentration (x), metal–insulator transition and rhombohedral distortions can also occur in the B2 phase. These results suggest that Fe and spin transition may affect planetary interiors over a vast pressure range. Iron spin transition occurs at ultrahigh pressure. The total electron spin increases from 0 to 1 as the structural transition of (Mg,Fe)O occurs (~0.6 TPa) and drops back to 0 at higher pressure. Its effects on exoplanet interiors are anticipated.
Collapse
Affiliation(s)
- Han Hsu
- Department of Physics, National Central University, Taoyuan City, 320317, Taiwan.
| | - Koichiro Umemoto
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| |
Collapse
|
4
|
Shephard GE, Houser C, Hernlund JW, Valencia-Cardona JJ, Trønnes RG, Wentzcovitch RM. Seismological expression of the iron spin crossover in ferropericlase in the Earth's lower mantle. Nat Commun 2021; 12:5905. [PMID: 34625555 PMCID: PMC8501025 DOI: 10.1038/s41467-021-26115-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
The two most abundant minerals in the Earth’s lower mantle are bridgmanite and ferropericlase. The bulk modulus of ferropericlase (Fp) softens as iron d-electrons transition from a high-spin to low-spin state, affecting the seismic compressional velocity but not the shear velocity. Here, we identify a seismological expression of the iron spin crossover in fast regions associated with cold Fp-rich subducted oceanic lithosphere: the relative abundance of fast velocities in P- and S-wave tomography models diverges in the ~1,400-2,000 km depth range. This is consistent with a reduced temperature sensitivity of P-waves throughout the iron spin crossover. A similar signal is also found in seismically slow regions below ~1,800 km, consistent with broadening and deepening of the crossover at higher temperatures. The corresponding inflection in P-wave velocity is not yet observed in 1-D seismic profiles, suggesting that the lower mantle is composed of non-uniformly distributed thermochemical heterogeneities which dampen the global signature of the Fp spin crossover. This study identifies the predicted seismic expression of the high-to-low iron spin crossover in the deep Earth mineral ferropericlase. A depth-dependent signal is detected in the fastest and slowest regions, related to lateral temperature variations, of several global seismic tomography models.
Collapse
Affiliation(s)
- Grace E Shephard
- Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo, Oslo, Norway.
| | - Christine Houser
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - John W Hernlund
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Reidar G Trønnes
- Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo, Oslo, Norway.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Renata M Wentzcovitch
- Department of Earth and Environmental Sciences, Columbia University, New York City, NY, USA. .,Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA. .,Department of Applied Physics and Applied Mathematics, Columbia University, New York City, NY, USA.
| |
Collapse
|
5
|
Abstract
Nondipolar magnetic fields exhibited at Uranus and Neptune may be derived from a unique geometry of their icy mantle with a thin convective layer on top of a stratified nonconvective layer. The presence of superionic H2O and NH3 has been thought as an explanation to stabilize such nonconvective regions. However, a lack of experimental data on the physical properties of those superionic phases has prevented the clarification of this matter. Here, our Brillouin measurements for NH3 show a two-stage reduction in longitudinal wave velocity (V p) by ∼9% and ∼20% relative to the molecular solid in the temperature range of 1,500 K and 2,000 K above 47 GPa. While the first V p reduction observed at the boundary to the superionic α phase was most likely due to the onset of the hydrogen diffusion, the further one was likely attributed to the transition to another superionic phase, denoted γ phase, exhibiting the higher diffusivity. The reduction rate of V p in the superionic γ phase, comparable to that of the liquid, implies that this phase elastically behaves almost like a liquid. Our measurements show that superionic NH3 becomes convective and cannot contribute to the internal stratification.
Collapse
|
6
|
Wen T, Wang Y, Li C, Jiang D, Jiang Z, Qu S, Yang W, Wang Y. Site-Specific Pressure-Driven Spin-Crossover in Lu 1-xSc xFeO 3. J Phys Chem Lett 2020; 11:8549-8553. [PMID: 32970442 DOI: 10.1021/acs.jpclett.0c02537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pressure-driven spin-crossover (PSCO) is a collective quantum phenomenon frequently observed in transition-metal-based systems. According to the crystal-field theory, PSCO highly depends on the surrounding coordination environment of a given magnetic ion; nevertheless, it has never been verified experimentally up to now. Herein, we report the observation of a site-specific PSCO phenomenon in Lu1-xScxFeO3, in which octahedrally coordinated Fe3+ in orthorhombic LuFeO3 and trigonal-bipyramidally coordinated Fe3+ in hexagonal Lu0.5Sc0.5FeO3 show distinct PSCO response to external pressure. X-ray emission spectra and DFT calculations reveal the key role of coordination environment in a PSCO process and predict the occurrence of PSCO for trigonal-bipyramidally coordinated Fe3+ above 100 GPa, far beyond that of 50 GPa for octahedrally coordinated Fe3+ in LuFeO3. The demonstration of site-specific PSCO sheds light on the state-of-the-art design of PSCO materials for directional applications.
Collapse
Affiliation(s)
- Ting Wen
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Yiming Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Chen Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Dequan Jiang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Zimin Jiang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Shangqing Qu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| | - Yonggang Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China
| |
Collapse
|
7
|
Spiekermann G, Kupenko I, Petitgirard S, Harder M, Nyrow A, Weis C, Albers C, Biedermann N, Libon L, Sahle CJ, Cerantola V, Glazyrin K, Konôpková Z, Sinmyo R, Morgenroth W, Sergueev I, Yavaş H, Dubrovinsky L, Tolan M, Sternemann C, Wilke M. A portable on-axis laser-heating system for near-90° X-ray spectroscopy: application to ferropericlase and iron silicide. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:414-424. [PMID: 32153280 PMCID: PMC7064108 DOI: 10.1107/s1600577519017041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/20/2019] [Indexed: 05/08/2023]
Abstract
A portable IR fiber laser-heating system, optimized for X-ray emission spectroscopy (XES) and nuclear inelastic scattering (NIS) spectroscopy with signal collection through the radial opening of diamond anvil cells near 90°with respect to the incident X-ray beam, is presented. The system offers double-sided on-axis heating by a single laser source and zero attenuation of incoming X-rays other than by the high-pressure environment. A description of the system, which has been tested for pressures above 100 GPa and temperatures up to 3000 K, is given. The XES spectra of laser-heated Mg0.67Fe0.33O demonstrate the potential to map the iron spin state in the pressure-temperature range of the Earth's lower mantle, and the NIS spectra of laser-heated FeSi give access to the sound velocity of this candidate of a phase inside the Earth's core. This portable system represents one of the few bridges across the gap between laser heating and high-resolution X-ray spectroscopies with signal collection near 90°.
Collapse
Affiliation(s)
- Georg Spiekermann
- Insitute of Geosciences, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
- Deutsches Elektronen-Synchrotron (DESY), Photon Science, 22607 Hamburg, Germany
- GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
- Correspondence e-mail:
| | - Ilya Kupenko
- Institut für Mineralogie, Universität Münster, 48149 Münster, Germany
| | | | - Manuel Harder
- Deutsches Elektronen-Synchrotron (DESY), Photon Science, 22607 Hamburg, Germany
| | - Alexander Nyrow
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Christopher Weis
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Christian Albers
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Nicole Biedermann
- Insitute of Geosciences, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
- European XFEL, 22869 Schenefeld, Germany
| | - Lélia Libon
- Insitute of Geosciences, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | | | | | - Konstantin Glazyrin
- Deutsches Elektronen-Synchrotron (DESY), Photon Science, 22607 Hamburg, Germany
| | | | - Ryosuke Sinmyo
- School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Wolfgang Morgenroth
- Institut für Geowissenschaften, Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Ilya Sergueev
- Deutsches Elektronen-Synchrotron (DESY), Photon Science, 22607 Hamburg, Germany
| | - Hasan Yavaş
- Deutsches Elektronen-Synchrotron (DESY), Photon Science, 22607 Hamburg, Germany
- Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | | | - Metin Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44227 Dortmund, Germany
| | | | - Max Wilke
- Insitute of Geosciences, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Thomson AR, Crichton WA, Brodholt JP, Wood IG, Siersch NC, Muir JMR, Dobson DP, Hunt SA. Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth’s lower mantle. Nature 2019; 572:643-647. [DOI: 10.1038/s41586-019-1483-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/06/2019] [Indexed: 11/09/2022]
|
9
|
Pressure-induced spin transition and site-selective metallization in CoCl 2. Sci Rep 2019; 9:5448. [PMID: 30931950 PMCID: PMC6443712 DOI: 10.1038/s41598-019-41337-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/07/2019] [Indexed: 11/13/2022] Open
Abstract
The interplay between spin states and metallization in compressed CoCl2 is investigated by combining diffraction, resistivity and spectroscopy techniques under high-pressure conditions and ab-initio calculations. A pressure-induced metallization along with a Co2+ high-spin (S = 3/2) to low-spin (S = 1/2) crossover transition is observed at high pressure near 70 GPa. This metallization process, which is associated with the p-d charge-transfer band gap closure, maintains the localization of 3d electrons around Co2+, demonstrating that metallization and localized Co2+ -3d low-spin magnetism can coexist prior to the full 3d-electron delocalization (Mott-Hubbard d-d breakdown) at pressures greater than 180 GPa.
Collapse
|
10
|
Effects of iron spin transition on the electronic structure, thermal expansivity and lattice thermal conductivity of ferropericlase: a first principles study. Sci Rep 2019; 9:4172. [PMID: 30862901 PMCID: PMC6414721 DOI: 10.1038/s41598-019-40454-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/14/2019] [Indexed: 11/08/2022] Open
Abstract
The effects of the spin transition on the electronic structure, thermal expansivity and lattice thermal conductivity of ferropericlase are studied by first principles calculations at high pressures. The electronic structures indicate that ferropericlase is an insulator for high-spin and low-spin states. Combined with the quasiharmonic approximation, our calculations show that the thermal expansivity is larger in the high-spin state than in the low-spin state at ambient pressure, while the magnitude exhibits a crossover between high-spin and low-spin with increasing pressure. The calculated lattice thermal conductivity exhibits a drastic reduction upon the inclusion of ferrous iron, which is consistent with previous experimental studies. However, a subsequent enhancement in the thermal conductivity is obtained, which is associated with the spin transition. Mechanisms are discussed for the variation in thermal conductivity by the inclusion of ferrous iron and the spin transition.
Collapse
|
11
|
Soft X-ray Absorption Spectroscopy Study of Spin Crossover Fe-Compounds: Persistent High Spin Configurations under Soft X-ray Irradiation. CRYSTALS 2018. [DOI: 10.3390/cryst8110433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metal-organic complex exhibiting spin crossover (SCO) behavior has drawn attention for its functionality as a nanoscale spin switch. The spin states in the metal ions can be tuned by external stimuli such as temperature or light. This article demonstrates a soft X-ray–induced excited spin state trapping (SOXEISST) effect in Hofmann-like SCO coordination polymers of FeII(4-methylpyrimidine)2[Au(CN)2]2 and FeII(pyridine)2[Ni(CN)4]. A soft X-ray absorption spectroscopy (XAS) study on these polymers showed that the high spin configuration (HS; S = 2) was prevalent in Fe2+ ions during the measurement even at temperatures much lower than the critical temperatures (>170 K), manifesting HS trapping due to the X-ray irradiation. This is in strong contrast to the normal SCO behavior observed in FeII(1,10-phenanthroline)2(NCS)2, implying that the structure of the ligand chains in the polymers with relatively loose Fe-N coordination might allow a structural adaptation to stabilize the metastable HS state under the soft X-ray irradiation.
Collapse
|
12
|
Valence and spin states of iron are invisible in Earth's lower mantle. Nat Commun 2018; 9:1284. [PMID: 29599446 PMCID: PMC5876394 DOI: 10.1038/s41467-018-03671-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 03/05/2018] [Indexed: 11/09/2022] Open
Abstract
Heterogeneity in Earth's mantle is a record of chemical and dynamic processes over Earth's history. The geophysical signatures of heterogeneity can only be interpreted with quantitative constraints on effects of major elements such as iron on physical properties including density, compressibility, and electrical conductivity. However, deconvolution of the effects of multiple valence and spin states of iron in bridgmanite (Bdg), the most abundant mineral in the lower mantle, has been challenging. Here we show through a study of a ferric-iron-only (Mg0.46Fe3+0.53)(Si0.49Fe3+0.51)O3 Bdg that Fe3+ in the octahedral site undergoes a spin transition between 43 and 53 GPa at 300 K. The resolved effects of the spin transition on density, bulk sound velocity, and electrical conductivity are smaller than previous estimations, consistent with the smooth depth profiles from geophysical observations. For likely mantle compositions, the valence state of iron has minor effects on density and sound velocities relative to major cation composition.
Collapse
|
13
|
Deng J, Lee KKM. Viscosity jump in the lower mantle inferred from melting curves of ferropericlase. Nat Commun 2017; 8:1997. [PMID: 29222478 PMCID: PMC5722891 DOI: 10.1038/s41467-017-02263-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
Convection provides the mechanism behind plate tectonics, which allows oceanic lithosphere to be subducted into the mantle as "slabs" and new rock to be generated by volcanism. Stagnation of subducting slabs and deflection of rising plumes in Earth's shallow lower mantle have been suggested to result from a viscosity increase at those depths. However, the mechanism for this increase remains elusive. Here, we examine the melting behavior in the MgO-FeO binary system at high pressures using the laser-heated diamond-anvil cell and show that the liquidus and solidus of (Mg x Fe1-x )O ferropericlase (x = ~0.52-0.98), exhibit a local maximum at ~40 GPa, likely caused by the spin transition of iron. We calculate the relative viscosity profiles of ferropericlase using homologous temperature scaling and find that viscosity increases 10-100 times from ~750 km to ~1000-1250 km, with a smaller decrease at deeper depths, pointing to a single mechanism for slab stagnation and plume deflection.
Collapse
Affiliation(s)
- Jie Deng
- Department of Geology and Geophysics, Yale University, New Haven, CT, 06511, USA.
| | - Kanani K M Lee
- Department of Geology and Geophysics, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
14
|
Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions. Proc Natl Acad Sci U S A 2017; 114:6468-6473. [PMID: 28584106 DOI: 10.1073/pnas.1614036114] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our current understanding of the electronic state of iron in lower-mantle minerals leads to a considerable disagreement in bulk sound speed with seismic measurements if the lower mantle has the same composition as the upper mantle (pyrolite). In the modeling studies, the content and oxidation state of Fe in the minerals have been assumed to be constant throughout the lower mantle. Here, we report high-pressure experimental results in which Fe becomes dominantly Fe2+ in bridgmanite synthesized at 40-70 GPa and 2,000 K, while it is in mixed oxidation state (Fe3+/∑Fe = 60%) in the samples synthesized below and above the pressure range. Little Fe3+ in bridgmanite combined with the strong partitioning of Fe2+ into ferropericlase will alter the Fe content for these minerals at 1,100- to 1,700-km depths. Our calculations show that the change in iron content harmonizes the bulk sound speed of pyrolite with the seismic values in this region. Our experiments support no significant changes in bulk composition for most of the mantle, but possible changes in physical properties and processes (such as viscosity and mantle flow patterns) in the midmantle.
Collapse
|
15
|
Fu S, Yang J, Lin JF. Abnormal Elasticity of Single-Crystal Magnesiosiderite across the Spin Transition in Earth's Lower Mantle. PHYSICAL REVIEW LETTERS 2017; 118:036402. [PMID: 28157335 DOI: 10.1103/physrevlett.118.036402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Brillouin light scattering and impulsive stimulated light scattering have been used to determine the full elastic constants of magnesiosiderite [(Mg_{0.35}Fe_{0.65})CO_{3}] up to 70 GPa at room temperature in a diamond-anvil cell. Drastic softening in C_{11}, C_{33}, C_{12}, and C_{13} elastic moduli associated with the compressive stress component and stiffening in C_{44} and C_{14} moduli associated with the shear stress component are observed to occur within the spin transition between ∼42.4 and ∼46.5 GPa. Negative values of C_{12} and C_{13} are also observed within the spin transition region. The Born criteria constants for the crystal remain positive within the spin transition, indicating that the mixed-spin state remains mechanically stable. Significant auxeticity can be related to the electronic spin transition-induced elastic anomalies based on the analysis of Poisson's ratio. These elastic anomalies are explained using a thermoelastic model for the rhombohedral system. Finally, we conclude that mixed-spin state ferromagnesite, which is potentially a major deep-carbon carrier, is expected to exhibit abnormal elasticity, including a negative Poisson's ratio of -0.6 and drastically reduced V_{P} by 10%, in Earth's midlower mantle.
Collapse
Affiliation(s)
- Suyu Fu
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jing Yang
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jung-Fu Lin
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
16
|
Özçelik VO, White CE. Nanoscale Charge-Balancing Mechanism in Alkali-Substituted Calcium-Silicate-Hydrate Gels. J Phys Chem Lett 2016; 7:5266-5272. [PMID: 27973859 DOI: 10.1021/acs.jpclett.6b02233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Alkali-activated materials and related alternative cementitious systems are sustainable technologies that have the potential to substantially lower the CO2 emissions associated with the construction industry. However, these systems have augmented chemical compositions as compared to ordinary Portland cement (OPC), which may impact the evolution of the hydrate phases. In particular, calcium-silicate-hydrate (C-S-H) gel, the main hydrate phase in OPC, is likely to be altered at the atomic scale due to changes in the bulk chemical composition, specifically via the addition of alkalis (i.e., Na or K) and aluminum. Here, via density functional theory calculations, we reveal the presence of a charge balancing mechanism at the molecular level in C-S-H gel (as modeled using crystalline 14 Å tobermorite) when alkalis and aluminum atoms are introduced into the structure. Different structural representations are obtained depending on the level of substitution and the degree of charge balancing incorporated in the structures. The impact of these substitutional and charge balancing effects on the structures is assessed by analyzing the formation energies, local bonding environments, diffusion barriers and mechanical properties. The results of this computational study provide information on the phase stability of alkali/aluminum containing C-S-H gels, shedding light on the fundamental atomic level mechanisms that play a crucial role in these complex disordered materials.
Collapse
Affiliation(s)
- V Ongun Özçelik
- Andlinger Center for Energy and the Environment, and ‡Department of Civil and Environmental Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Claire E White
- Andlinger Center for Energy and the Environment, and ‡Department of Civil and Environmental Engineering, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
17
|
Wang Y, Zhou Z, Wen T, Zhou Y, Li N, Han F, Xiao Y, Chow P, Sun J, Pravica M, Cornelius AL, Yang W, Zhao Y. Pressure-Driven Cooperative Spin-Crossover, Large-Volume Collapse, and Semiconductor-to-Metal Transition in Manganese(II) Honeycomb Lattices. J Am Chem Soc 2016; 138:15751-15757. [PMID: 27934025 DOI: 10.1021/jacs.6b10225] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spin-crossover (SCO) is generally regarded as a spectacular molecular magnetism in 3d4-3d7 metal complexes and holds great promise for various applications such as memory, displays, and sensors. In particular, SCO materials can be multifunctional when a classical light- or temperature-induced SCO occurs along with other cooperative structural and/or electrical transport alterations. However, such a cooperative SCO has rarely been observed in condensed matter under hydrostatic pressure (an alternative external stimulus to light or temperature), probably due to the lack of synergy between metal neighbors under compression. Here, we report the observation of a pressure-driven, cooperative SCO in the two-dimensional (2D) honeycomb antiferromagnets MnPS3 and MnPSe3 at room temperature. Applying pressure to this confined 2D system leads to a dramatic magnetic moment collapse of Mn2+ (d5) from S = 5/2 to S = 1/2. Significantly, a number of collective phenomena were observed along with the SCO, including a large lattice collapse (∼20% in volume), the formation of metallic bonding, and a semiconductor-to-metal transition. Experimental evidence shows that all of these events occur in the honeycomb lattice, indicating a strongly cooperative mechanism that facilitates the occurrence of the abrupt pressure-driven SCO. We believe that the observation of this cooperative pressure-driven SCO in a 2D system can provide a rare model for theoretical investigations and lead to the discovery of more pressure-responsive multifunctional materials.
Collapse
Affiliation(s)
- Yonggang Wang
- High Pressure Science and Engineering Center, University of Nevada , Las Vegas, Nevada 89154, United States.,HPSynC, Geophysical Laboratory, Carnegie Institution of Washington , Argonne, Illinois 60439, United States
| | - Zhengyang Zhou
- College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China.,College of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400044, China
| | - Ting Wen
- Institute of Nanostructured Functional Materials, Huanghe Science and Technology College , Zhengzhou, Henan 450006, China
| | - Yannan Zhou
- Institute of Nanostructured Functional Materials, Huanghe Science and Technology College , Zhengzhou, Henan 450006, China
| | - Nana Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR) , Pudong, Shanghai 201203, China
| | - Fei Han
- HPSynC, Geophysical Laboratory, Carnegie Institution of Washington , Argonne, Illinois 60439, United States.,Center for High Pressure Science and Technology Advanced Research (HPSTAR) , Pudong, Shanghai 201203, China.,Center for the Study of Matter at Extreme Conditions, Department of Mechanical and Materials Engineering, Florida International University , Miami, Florida 33199, United States
| | - Yuming Xiao
- High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington , Argonne, Illinois 60439, United States
| | - Paul Chow
- High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington , Argonne, Illinois 60439, United States
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Michael Pravica
- High Pressure Science and Engineering Center, University of Nevada , Las Vegas, Nevada 89154, United States
| | - Andrew L Cornelius
- High Pressure Science and Engineering Center, University of Nevada , Las Vegas, Nevada 89154, United States
| | - Wenge Yang
- HPSynC, Geophysical Laboratory, Carnegie Institution of Washington , Argonne, Illinois 60439, United States.,Center for High Pressure Science and Technology Advanced Research (HPSTAR) , Pudong, Shanghai 201203, China
| | - Yusheng Zhao
- High Pressure Science and Engineering Center, University of Nevada , Las Vegas, Nevada 89154, United States.,Southern University of Science and Technology , Shenzhen 518055, China
| |
Collapse
|
18
|
Affiliation(s)
- Maxwell L Rudolph
- Department of Geology, Portland State University, Post Office Box 751, Portland, OR 97207, USA.
| | - Vedran Lekić
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
19
|
Elasticity of Ferropericlase across the Spin Crossover in the Earth's Lower Mantle. Sci Rep 2015; 5:17188. [PMID: 26621579 PMCID: PMC4664863 DOI: 10.1038/srep17188] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022] Open
Abstract
Knowing the elasticity of ferropericlase across the spin transition can help explain seismic and mineralogical models of the lower-mantle including the origin of seismic heterogeneities in the middle to lowermost parts of the lower mantle1234. However, the effects of spin transition on full elastic constants of ferropericlase remain experimentally controversial due to technical challenges in directly measuring sound velocities under lower-mantle conditions12345. Here we have reliably measured both VP and VS of a single-crystal ferropericlase ((Mg0.92,Fe0.08)O) using complementary Brillouin Light Scattering and Impulsive Stimulated Light Scattering coupled with a diamond anvil cell up to 96 GPa. The derived elastic constants show drastically softened C11 and C12 within the spin transition at 40–60 GPa while C44 is not affected. The spin transition is associated with a significant reduction of the aggregate VP/VS via the aggregate VP softening because VS softening does not visibly occur within the transition. Based on thermoelastic modelling along an expected geotherm, the spin crossover in ferropericlase can contribute to 2% reduction in VP/VS in a pyrolite mineralogical model in mid lower-mantle. Our results imply that the middle to lowermost parts of the lower-mantle would exhibit enhanced seismic heterogeneities due to the occurrence of the mixed-spin and low-spin ferropericlase.
Collapse
|
20
|
Skorikov NA, Shorikov AO, Skornyakov SL, Korotin MA, Anisimov VI. Mechanism of magnetic moment collapse under pressure in ferropericlase. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:275501. [PMID: 26086296 DOI: 10.1088/0953-8984/27/27/275501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We propose a new scenario for the magnetic collapse under pressure in ferropericlase (FP) (Fe(1/4)Mg(3/4))O without the presence of intermediate spin state, which contradicts the mechanism proposed in (2013 Phys. Rev. B 87 165113). This scenario is supported by results of combined local density approximation + dynamical mean-field theory method calculations for the paramagnetic phase at ambient and high pressures. At ambient pressure, calculation gave (Fe(1/4)Mg(3/4))O as an insulator with Fe 3d-shell in high-spin state. Experimentally observed high-spin to low-spin state transition of the Fe(2+) ion in the pressure range of 35-75 GPa is successfully reproduced in our calculations. The spin crossover is characterized by coexistence of Fe(2+) ions in high and low spin state but intermediate spin state is absent in the whole pressure range. Moreover, the probability of Fe ion d(7) onfiguration with S = 1 grows with pressure due to shortening of metal-oxygen distance. Also, no metal-insulator transition was obtained up to the pressure 140 GPa in agreement with experiment.
Collapse
Affiliation(s)
- N A Skorikov
- M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620137 Yekaterinburg, Russia
| | | | | | | | | |
Collapse
|
21
|
Holmström E, Stixrude L. Spin crossover in ferropericlase from first-principles molecular dynamics. PHYSICAL REVIEW LETTERS 2015; 114:117202. [PMID: 25839305 DOI: 10.1103/physrevlett.114.117202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Ferropericlase, (Mg,Fe)O, is the second-most abundant mineral of Earth's lower mantle. With increasing pressure, the Fe ions in the material begin to collapse from a magnetic to nonmagnetic spin state. We present a finite-temperature first-principles phase diagram of this spin crossover, finding a broad pressure range with coexisting magnetic and nonmagnetic ions due to favorable enthalpy of mixing of the two. Furthermore, we find the electrical conductivity of the mineral to reach semimetallic values inside Earth.
Collapse
Affiliation(s)
- E Holmström
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - L Stixrude
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
22
|
Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc Natl Acad Sci U S A 2014; 111:10468-72. [PMID: 25002507 DOI: 10.1073/pnas.1322427111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deciphering the origin of seismic velocity heterogeneities in the mantle is crucial to understanding internal structures and processes at work in the Earth. The spin crossover in iron in ferropericlase (Fp), the second most abundant phase in the lower mantle, introduces unfamiliar effects on seismic velocities. First-principles calculations indicate that anticorrelation between shear velocity (VS) and bulk sound velocity (Vφ) in the mantle, usually interpreted as compositional heterogeneity, can also be produced in homogeneous aggregates containing Fp. The spin crossover also suppresses thermally induced heterogeneity in longitudinal velocity (VP) at certain depths but not in VS. This effect is observed in tomography models at conditions where the spin crossover in Fp is expected in the lower mantle. In addition, the one-of-a-kind signature of this spin crossover in the RS/P (∂ ln VS/∂ ln VP) heterogeneity ratio might be a useful fingerprint to detect the presence of Fp in the lower mantle.
Collapse
|
23
|
Wu Z, Justo JF, Wentzcovitch RM. Elastic anomalies in a spin-crossover system: ferropericlase at lower mantle conditions. PHYSICAL REVIEW LETTERS 2013; 110:228501. [PMID: 23767753 DOI: 10.1103/physrevlett.110.228501] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Indexed: 06/02/2023]
Abstract
The discovery of a pressure induced iron-related spin crossover in Mg((1-x))Fe(x)O ferropericlase (Fp) and Mg-silicate perovskite, the major phases of Earth's lower mantle, has raised new questions about mantle properties which are of central importance to seismology. Despite extensive experimental work on the anomalous elasticity of Fp throughout the crossover, inconsistencies reported in the literature are still unexplained. Here we introduce a formulation for thermoelasticity of spin crossover systems, apply it to Fp by combining it with predictive first principles density-functional theory with on-site repulsion parameter U calculations, and contrast results with available data on samples with various iron concentrations. We explain why the shear modulus of Fp should not soften along the crossover, as observed in some experiments, predict its velocities at lower mantle conditions, and show the importance of constraining the elastic properties of minerals without extrapolations for analyses of the thermochemical state of this region.
Collapse
Affiliation(s)
- Zhongqing Wu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
24
|
Quantum critical point and spin fluctuations in lower-mantle ferropericlase. Proc Natl Acad Sci U S A 2013; 110:7142-7. [PMID: 23589892 DOI: 10.1073/pnas.1304827110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ferropericlase [(Mg,Fe)O] is one of the most abundant minerals of the earth's lower mantle. The high-spin (HS) to low-spin (LS) transition in the Fe(2+) ions may dramatically alter the physical and chemical properties of (Mg,Fe)O in the deep mantle. To understand the effects of compression on the ground electronic state of iron, electronic and magnetic states of Fe(2+) in (Mg0.75Fe0.25)O have been investigated using transmission and synchrotron Mössbauer spectroscopy at high pressures and low temperatures (down to 5 K). Our results show that the ground electronic state of Fe(2+) at the critical pressure Pc of the spin transition close to T = 0 is governed by a quantum critical point (T = 0, P = P(c)) at which the energy required for the fluctuation between HS and LS states is zero. Analysis of the data gives P(c) = 55 GPa. Thermal excitation within the HS or LS states (T > 0 K) is expected to strongly influence the magnetic as well as physical properties of ferropericlase. Multielectron theoretical calculations show that the existence of the quantum critical point at temperatures approaching zero affects not only physical properties of ferropericlase at low temperatures but also its properties at P-T of the earth's lower mantle.
Collapse
|
25
|
Fukui H, Tsuchiya T, Baron AQR. Lattice dynamics calculations for ferropericlase with internally consistent LDA+Umethod. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jb009591] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Chen B, Jackson JM, Sturhahn W, Zhang D, Zhao J, Wicks JK, Murphy CA. Spin crossover equation of state and sound velocities of (Mg0.65Fe0.35)O ferropericlase to 140 GPa. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jb009162] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Ju S, Cai TY, Lu HS, Gong CD. Pressure-Induced Crystal Structure and Spin-State Transitions in Magnetite (Fe3O4). J Am Chem Soc 2012; 134:13780-6. [DOI: 10.1021/ja305167h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sheng Ju
- Department
of Physics and Jiangsu
Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China
| | - Tian-Yi Cai
- Department
of Physics and Jiangsu
Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China
| | - Hai-Shuang Lu
- Department
of Physics and Jiangsu
Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China
| | - Chang-De Gong
- Center for Statistical and Theoretical
Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
- National Laboratory of Solid State
Microstructure and Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
28
|
Metsue A, Tsuchiya T. Lattice dynamics and thermodynamic properties of (Mg,Fe2+)SiO3postperovskite. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jb008018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Shahnas MH, Peltier WR, Wu Z, Wentzcovitch R. The high-pressure electronic spin transition in iron: Potential impacts upon mantle mixing. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jb007965] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Hsu H, Blaha P, Cococcioni M, Wentzcovitch RM. Spin-state crossover and hyperfine interactions of ferric iron in MgSiO(3) perovskite. PHYSICAL REVIEW LETTERS 2011; 106:118501. [PMID: 21469904 DOI: 10.1103/physrevlett.106.118501] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Indexed: 05/30/2023]
Abstract
Using density functional theory plus Hubbard U calculations, we show that the ground state of (Mg,Fe)(Si,Fe)O(3) perovskite, the major mineral phase in Earth's lower mantle, has high-spin ferric iron (S=5/2) at both dodecahedral (A) and octahedral (B) sites. With increasing pressure, the B-site iron undergoes a spin-state crossover to the low-spin state (S=1/2) between 40 and 70 GPa, while the A-site iron remains in the high-spin state. This B-site spin-state crossover is accompanied by a noticeable volume reduction and an increase in quadrupole splitting, consistent with recent x-ray diffraction and Mössbauer spectroscopy measurements. The anomalous volume reduction leads to a significant softening in bulk modulus during the crossover, suggesting a possible source of seismic-velocity anomalies in the lower mantle.
Collapse
Affiliation(s)
- Han Hsu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
31
|
Antonangeli D, Siebert J, Aracne CM, Farber DL, Bosak A, Hoesch M, Krisch M, Ryerson FJ, Fiquet G, Badro J. Spin Crossover in Ferropericlase at High Pressure: A Seismologically Transparent Transition? Science 2011; 331:64-7. [DOI: 10.1126/science.1198429] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Daniele Antonangeli
- Institut de Minéralogie et de Physique des Milieux Condensés, UMR CNRS 7590, Institut de Physique du Globe de Paris, Université Pierre et Marie Curie, Université Paris Diderot, 75005 Paris, France
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Julien Siebert
- Institut de Minéralogie et de Physique des Milieux Condensés, UMR CNRS 7590, Institut de Physique du Globe de Paris, Université Pierre et Marie Curie, Université Paris Diderot, 75005 Paris, France
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | - Daniel L. Farber
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - A. Bosak
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
| | - M. Hoesch
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
| | - M. Krisch
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
| | | | - Guillaume Fiquet
- Institut de Minéralogie et de Physique des Milieux Condensés, UMR CNRS 7590, Institut de Physique du Globe de Paris, Université Pierre et Marie Curie, Université Paris Diderot, 75005 Paris, France
| | - James Badro
- Institut de Minéralogie et de Physique des Milieux Condensés, UMR CNRS 7590, Institut de Physique du Globe de Paris, Université Pierre et Marie Curie, Université Paris Diderot, 75005 Paris, France
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
32
|
Simmons NA, Forte AM, Boschi L, Grand SP. GyPSuM: A joint tomographic model of mantle density and seismic wave speeds. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jb007631] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Affiliation(s)
- Kei Hirose
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| |
Collapse
|