1
|
Kim NY, Kim OB. Oxamic transcarbamylase of Escherichia coli is encoded by the three genes allFGH (formerly fdrA, ylbE, and ylbF). Appl Environ Microbiol 2024; 90:e0095724. [PMID: 38888336 PMCID: PMC11326118 DOI: 10.1128/aem.00957-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Escherichia coli uses allantoin as the sole nitrogen source during anaerobic growth. In the final step of allantoin degradation, oxamic transcarbamylase (OXTCase) converts oxalurate to carbamoyl phosphate (CP) and oxamate. The activity of this enzyme was first measured in Streptococcus allantoicus in the 1960s, but no OXTCase enzyme or the encoding gene(s) have been found in any strain. This study discovered that allFGH (fdrA, ylbE, and ylbF) are the genes that encode the global orphan enzyme OXTCase. The three genes form an operon together with allK (ybcF), encoding catabolic carbamate kinase. The allFGHK operon is located directly downstream of the allECD operon that encodes enzymes for the preceding steps of OXTCase. The OXTCase kinetic parameters were analyzed using the purified protein composed of AllF-AllG-AllH (FdrA-YlbE-YlbF); for the substrate CP, KM and Vmax were 1.3 mM and 15.4 U/mg OXTCase, respectively, and for the substrate oxamate, they were 36.9 mM and 27.0 U/mg OXTCase. In addition, the OXTCase encoded by the three genes is a novel transcarbamylase that shows no similarity with known enzymes of the transcarbamylase family such as aspartate transcarbamylase, ornithine transcarbamylase, and YgeW transcarbamylase. The present study elucidated the anaerobic allantoin degradation pathway of E. coli. Therefore, we suggest that the genes fdrA, ylbE, and ylbF are renamed allF, allG, and allH, respectively.IMPORTANCEThe anaerobic allantoin degradation pathway of Escherichia coli includes a global orphan enzyme, oxamic transcarbamylase (OXTCase), which converts oxalurate to carbamoyl phosphate and oxamate. This study found that the allFGH (fdrA, ylbE, and ylbF) genes encode OXTCase. The OXTCase activity and kinetics were successfully determined with purified recombinant AllF-AllG-AllH (FdrA-YlbE-YlbF). This OXTCase is a novel transcarbamylase that shows no similarity with known enzymes of the transcarbamylase family such as aspartate transcarbamylase (ATCase), ornithine transcarbamylase (OTCase), and YgeW transcarbamylase (YTCase). In addition, OXTCase activity requires three genes, whereas ATCase is encoded by two genes, and OTCase and YTCase are encoded by a single gene. The current study discovered OXTCase, the last unknown step in allantoin degradation, and this enzyme is a new member of the transcarbamylase group that was previously unknown.
Collapse
Affiliation(s)
- Nam Yeun Kim
- Division of
EcoScience, Department of Life Science, Ewha Womans
University, Seoul,
Republic of Korea
| | - Ok Bin Kim
- Division of
EcoScience, Department of Life Science, Ewha Womans
University, Seoul,
Republic of Korea
| |
Collapse
|
2
|
Morea V, Angelucci F, Tame JRH, Di Cera E, Bellelli A. Structural Basis of Sequential and Concerted Cooperativity. Biomolecules 2022; 12:biom12111651. [PMID: 36359000 PMCID: PMC9687781 DOI: 10.3390/biom12111651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Allostery is a property of biological macromolecules featuring cooperative ligand binding and regulation of ligand affinity by effectors. The definition was introduced by Monod and Jacob in 1963, and formally developed as the "concerted model" by Monod, Wyman, and Changeux in 1965. Since its inception, this model of cooperativity was seen as distinct from and not reducible to the "sequential model" originally formulated by Pauling in 1935, which was developed further by Koshland, Nemethy, and Filmer in 1966. However, it is difficult to decide which model is more appropriate from equilibrium or kinetics measurements alone. In this paper, we examine several cooperative proteins whose functional behavior, whether sequential or concerted, is established, and offer a combined approach based on functional and structural analysis. We find that isologous, mostly helical interfaces are common in cooperative proteins regardless of their mechanism. On the other hand, the relative contribution of tertiary and quaternary structural changes, as well as the asymmetry in the liganded state, may help distinguish between the two mechanisms.
Collapse
Affiliation(s)
- Veronica Morea
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR) c/o Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Francesco Angelucci
- Department of Life, Health, and Environmental Sciences, University of L’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy
| | - Jeremy R. H. Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Andrea Bellelli
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
- Correspondence:
| |
Collapse
|
3
|
Marques MA, Landim-Vieira M, Moraes AH, Sun B, Johnston JR, Dieseldorff Jones KM, Cino EA, Parvatiyar MS, Valera IC, Silva JL, Galkin VE, Chase PB, Kekenes-Huskey PM, de Oliveira GAP, Pinto JR. Anomalous structural dynamics of minimally frustrated residues in cardiac troponin C triggers hypertrophic cardiomyopathy. Chem Sci 2021; 12:7308-7323. [PMID: 34163821 PMCID: PMC8171346 DOI: 10.1039/d1sc01886h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac TnC (cTnC) is highly conserved among mammals, and genetic variants can result in disease by perturbing Ca2+-regulation of myocardial contraction. Here, we report the molecular basis of a human mutation in cTnC's αD-helix (TNNC1-p.C84Y) that impacts conformational dynamics of the D/E central-linker and sampling of discrete states in the N-domain, favoring the "primed" state associated with Ca2+ binding. We demonstrate cTnC's αD-helix normally functions as a central hub that controls minimally frustrated interactions, maintaining evolutionarily conserved rigidity of the N-domain. αD-helix perturbation remotely alters conformational dynamics of the N-domain, compromising its structural rigidity. Transgenic mice carrying this cTnC mutation exhibit altered dynamics of sarcomere function and hypertrophic cardiomyopathy. Together, our data suggest that disruption of evolutionary conserved molecular frustration networks by a myofilament protein mutation may ultimately compromise contractile performance and trigger hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro 373 Carlos Chagas Filho Av, Room: E-10 Rio de Janeiro RJ 21941-902 Brazil +55-21-3938-6756
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| | - Adolfo H Moraes
- Department of Chemistry, Federal University of Minas Gerais Belo Horizonte MG Brazil
| | - Bin Sun
- Department of Cell and Molecular Physiology, Loyola University Chicago Maywood IL USA
| | - Jamie R Johnston
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| | - Karissa M Dieseldorff Jones
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| | - Elio A Cino
- Department of Biochemistry and Immunology, Federal University of Minas Gerais Belo Horizonte MG Brazil
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University Tallahassee FL USA
| | - Isela C Valera
- Department of Nutrition, Food and Exercise Sciences, Florida State University Tallahassee FL USA
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro 373 Carlos Chagas Filho Av, Room: E-10 Rio de Janeiro RJ 21941-902 Brazil +55-21-3938-6756
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School Norfolk VA USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University Tallahassee FL USA
| | | | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro 373 Carlos Chagas Filho Av, Room: E-10 Rio de Janeiro RJ 21941-902 Brazil +55-21-3938-6756
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, College of Medicine 1115 West Call Street, Room: 1370 (lab) - 1350-H (office) Tallahassee FL 32306 USA +1-850-645-0016
| |
Collapse
|
4
|
Ferrero S, Barbero H, Miguel D, García-Rodríguez R, Álvarez CM. Octapodal Corannulene Porphyrin-Based Assemblies: Allosteric Behavior in Fullerene Hosting. J Org Chem 2020; 85:4918-4926. [PMID: 32153183 DOI: 10.1021/acs.joc.0c00072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An octapodal corannulene-based supramolecular system has been prepared by introducing eight corannulene moieties in a porphyrin scaffold. Despite the potential of this double picket fence porphyrin for double-tweezer behavior, NMR titrations show exclusive formation of 1:1 adducts. The system exhibits very strong affinity for C60 and C70 (K1 = (2.71 ± 0.08) × 104 and (2.13 ± 0.1) × 105 M-1, respectively), presenting selectivity for the latter. Density functional theory (DFT) calculations indicate that, in addition to the four corannulene units, the relatively flexible porphyrin tether actively participates in the recognition process, resulting in a strong synergistic effect. This leads to a very strong interaction with C60, which in turn also induces a large structural change on the other face (second potential binding site), leading to a negative allosteric effect. We also introduced Zn2+ in the porphyrin core in an attempt to modulate its flexibility. The resulting metalloporphyrin also displayed single-tweezer behavior, albeit with slightly smaller binding constants for C60 and C70, suggesting that the effect of the coordination of fullerene to one face of our supramolecular platform was still transmitted to the other face, leading to the deactivation of the second potential binding site.
Collapse
Affiliation(s)
- Sergio Ferrero
- GIR MIOMeT, IU CINQUIMA/Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
| | - Héctor Barbero
- GIR MIOMeT, IU CINQUIMA/Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
| | - Daniel Miguel
- GIR MIOMeT, IU CINQUIMA/Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
| | - Raúl García-Rodríguez
- GIR MIOMeT, IU CINQUIMA/Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
| | - Celedonio M Álvarez
- GIR MIOMeT, IU CINQUIMA/Quı́mica Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid, Spain
| |
Collapse
|
5
|
Endrizzi JA, Beernink PT. Charge neutralization in the active site of the catalytic trimer of aspartate transcarbamoylase promotes diverse structural changes. Protein Sci 2017; 26:2221-2228. [PMID: 28833948 DOI: 10.1002/pro.3277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/14/2017] [Indexed: 11/05/2022]
Abstract
A classical model for allosteric regulation of enzyme activity posits an equilibrium between inactive and active conformations. An alternative view is that allosteric activation is achieved by increasing the potential for conformational changes that are essential for catalysis. In the present study, substitution of a basic residue in the active site of the catalytic (C) trimer of aspartate transcarbamoylase with a non-polar residue results in large interdomain hinge changes in the three chains of the trimer. One conformation is more open than the chains in both the wild-type C trimer and the catalytic chains in the holoenzyme, the second is closed similar to the bisubstrate-analog bound conformation and the third hinge angle is intermediate to the other two. The active-site 240s loop conformation is very different between the most open and closed chains, and is disordered in the third chain, as in the holoenzyme. We hypothesize that binding of anionic substrates may promote similar structural changes. Further, the ability of the three catalytic chains in the trimer to access the open and closed active-site conformations simultaneously suggests a cyclic catalytic mechanism, in which at least one of the chains is in an open conformation suitable for substrate binding whereas another chain is closed for catalytic turnover. Based on the many conformations observed for the chains in the isolated catalytic trimer to date, we propose that allosteric activation of the holoenzyme occurs by release of quaternary constraint into an ensemble of active-site conformations.
Collapse
Affiliation(s)
| | - Peter T Beernink
- Children's Hospital Oakland Research Institute, UCSF Benioff Children's Hospital, Oakland, California.,Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
6
|
Ruiz-Ramos A, Velázquez-Campoy A, Grande-García A, Moreno-Morcillo M, Ramón-Maiques S. Structure and Functional Characterization of Human Aspartate Transcarbamoylase, the Target of the Anti-tumoral Drug PALA. Structure 2016; 24:1081-94. [PMID: 27265852 DOI: 10.1016/j.str.2016.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 01/30/2023]
Abstract
CAD, the multienzymatic protein that initiates and controls de novo synthesis of pyrimidines in animals, associates through its aspartate transcarbamoylase (ATCase) domain into particles of 1.5 MDa. Despite numerous structures of prokaryotic ATCases, we lack structural information on the ATCase domain of CAD. Here, we report the structure and functional characterization of human ATCase, confirming the overall similarity with bacterial homologs. Unexpectedly, human ATCase exhibits cooperativity effects that reduce the affinity for the anti-tumoral drug PALA. Combining structural, mutagenic, and biochemical analysis, we identified key elements for the necessary regulation and transmission of conformational changes leading to cooperativity between subunits. Mutation of one of these elements, R2024, was recently found to cause the first non-lethal CAD deficit. We reproduced this mutation in human ATCase and measured its effect, demonstrating that this arginine is part of a molecular switch that regulates the equilibrium between low- and high-affinity states for the ligands.
Collapse
Affiliation(s)
- Alba Ruiz-Ramos
- Structural Bases of Genome Integrity Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fdez. Almagro, 3, Madrid 28029, Spain
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, 50009 Zaragoza, Spain; Aragon Institute for Health Research (IIS Aragon), 50009 Zaragoza, Spain; Fundacion ARAID, Government of Aragon, 50018 Zaragoza, Spain
| | - Araceli Grande-García
- Structural Bases of Genome Integrity Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fdez. Almagro, 3, Madrid 28029, Spain
| | - María Moreno-Morcillo
- Structural Bases of Genome Integrity Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fdez. Almagro, 3, Madrid 28029, Spain
| | - Santiago Ramón-Maiques
- Structural Bases of Genome Integrity Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fdez. Almagro, 3, Madrid 28029, Spain.
| |
Collapse
|
7
|
Shi D, Allewell NM, Tuchman M. From Genome to Structure and Back Again: A Family Portrait of the Transcarbamylases. Int J Mol Sci 2015; 16:18836-64. [PMID: 26274952 PMCID: PMC4581275 DOI: 10.3390/ijms160818836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
Enzymes in the transcarbamylase family catalyze the transfer of a carbamyl group from carbamyl phosphate (CP) to an amino group of a second substrate. The two best-characterized members, aspartate transcarbamylase (ATCase) and ornithine transcarbamylase (OTCase), are present in most organisms from bacteria to humans. Recently, structures of four new transcarbamylase members, N-acetyl-l-ornithine transcarbamylase (AOTCase), N-succinyl-l-ornithine transcarbamylase (SOTCase), ygeW encoded transcarbamylase (YTCase) and putrescine transcarbamylase (PTCase) have also been determined. Crystal structures of these enzymes have shown that they have a common overall fold with a trimer as their basic biological unit. The monomer structures share a common CP binding site in their N-terminal domain, but have different second substrate binding sites in their C-terminal domain. The discovery of three new transcarbamylases, l-2,3-diaminopropionate transcarbamylase (DPTCase), l-2,4-diaminobutyrate transcarbamylase (DBTCase) and ureidoglycine transcarbamylase (UGTCase), demonstrates that our knowledge and understanding of the spectrum of the transcarbamylase family is still incomplete. In this review, we summarize studies on the structures and function of transcarbamylases demonstrating how structural information helps to define biological function and how small structural differences govern enzyme specificity. Such information is important for correctly annotating transcarbamylase sequences in the genome databases and for identifying new members of the transcarbamylase family.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
- Department of Integrative Systems Biology, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
| | - Norma M Allewell
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA.
- Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
- Department of Integrative Systems Biology, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
8
|
Cornish-Bowden A. Understanding allosteric and cooperative interactions in enzymes. FEBS J 2013; 281:621-32. [DOI: 10.1111/febs.12469] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 01/25/2023]
Affiliation(s)
- Athel Cornish-Bowden
- Unité de Bioénergétique et Ingénierie des Protéines; Institut de Microbiologie de la Méditerranée; Centre National de la Recherche Scientifique and Aix-Marseille Université; France
| |
Collapse
|
9
|
|
10
|
Vitali J, Singh AK, Soares AS, Colaneri MJ. Structure of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase in a hexagonal crystal form: insights into the path of carbamoyl phosphate to the active site of the enzyme. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:527-34. [PMID: 22691781 PMCID: PMC3374506 DOI: 10.1107/s1744309112011037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/13/2012] [Indexed: 11/10/2022]
Abstract
Crystals of the catalytic chain of Methanococcus jannaschii aspartate transcarbamoylase (ATCase) grew in the presence of the regulatory chain in the hexagonal space group P6(3)22, with one monomer per asymmetric unit. This is the first time that crystals with only one monomer in the asymmetric unit have been obtained; all known structures of the catalytic subunit contain several crystallographically independent monomers. The symmetry-related chains form the staggered dimer of trimers observed in the other known structures of the catalytic subunit. The central channel of the catalytic subunit contains a sulfate ion and a K(+) ion as well as a glycerol molecule at its entrance. It is possible that it is involved in channeling carbamoyl phosphate (CP) to the active site of the enzyme. A second sulfate ion near Arg164 is near the second CP position in the wild-type Escherichia coli ATCase structure complexed with CP. It is suggested that this position may also be in the path that CP takes when binding to the active site in a partial diffusion process at 310 K. Additional biochemical studies of carbamoylation and the molecular organization of this enzyme in M. jannaschii will provide further insight into these points.
Collapse
Affiliation(s)
- Jacqueline Vitali
- Department of Physics, Cleveland State University, Euclid Avenue at East 24th Street, Cleveland, OH 44115, USA.
| | | | | | | |
Collapse
|
11
|
Allostery and cooperativity in Escherichia coli aspartate transcarbamoylase. Arch Biochem Biophys 2011; 519:81-90. [PMID: 22198283 DOI: 10.1016/j.abb.2011.10.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 11/20/2022]
Abstract
The allosteric enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli has been the subject of investigations for approximately 50 years. This enzyme controls the rate of pyrimidine nucleotide biosynthesis by feedback inhibition, and helps to balance the pyrimidine and purine pools by competitive allosteric activation by ATP. The catalytic and regulatory components of the dodecameric enzyme can be separated and studied independently. Many of the properties of the enzyme follow the Monod, Wyman Changeux model of allosteric control thus E. coli ATCase has become the textbook example. This review will highlight kinetic, biophysical, and structural studies which have provided a molecular level understanding of how the allosteric nature of this enzyme regulates pyrimidine nucleotide biosynthesis.
Collapse
|
12
|
Harris KM, Cockrell GM, Puleo DE, Kantrowitz ER. Crystallographic snapshots of the complete catalytic cycle of the unregulated aspartate transcarbamoylase from Bacillus subtilis. J Mol Biol 2011; 411:190-200. [PMID: 21663747 PMCID: PMC3211067 DOI: 10.1016/j.jmb.2011.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 01/07/2023]
Abstract
Here, we report high-resolution X-ray structures of Bacillus subtilis aspartate transcarbamoylase (ATCase), an enzyme that catalyzes one of the first reactions in pyrimidine nucleotide biosynthesis. Structures of the enzyme have been determined in the absence of ligands, in the presence of the substrate carbamoyl phosphate, and in the presence of the bisubstrate/transition state analog N-phosphonacetyl-L-aspartate. Combining the structural data with in silico docking and electrostatic calculations, we have been able to visualize each step in the catalytic cycle of ATCase, from the ordered binding of the substrates, to the formation and decomposition of the tetrahedral intermediate, to the ordered release of the products from the active site. Analysis of the conformational changes associated with these steps provides a rationale for the lack of cooperativity in trimeric ATCases that do not possess regulatory subunits.
Collapse
Affiliation(s)
- Katharine M. Harris
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, MA 02467 USA
| | - Gregory M. Cockrell
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, MA 02467 USA
| | - David E. Puleo
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, MA 02467 USA
| | - Evan R. Kantrowitz
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, MA 02467 USA
- Corresponding author. E. R. Kantrowitz, Department of Chemistry, Boston College, Merkert Chemistry Center 239, Chestnut Hill, MA 02467 USA.,
| |
Collapse
|
13
|
Wacker SA, Bradley MJ, Marion J, Bell E. Ligand-induced changes in the conformational stability and flexibility of glutamate dehydrogenase and their role in catalysis and regulation. Protein Sci 2011; 19:1820-9. [PMID: 20665690 DOI: 10.1002/pro.459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bovine glutamate dehydrogenase (GDH) is allosterically regulated and requires substrate-induced subunit interactions for maximum catalytic activity. Steady-state and presteady-state kinetics indicate that the rate-limiting step depends on the nature of the substrate and are likely associated with conformational fluctuations necessary for optimal hydride transfer. Deuterated glutamate shows a steady-state isotope effect but no effect on the presteady-state burst rate, demonstrating that conformational effects are rate limiting for hydride transfer while product release is overall rate limiting for glutamate. Guanidine hydrochloride unfolding, heat inactivation, and differential scanning calorimetry demonstrate the effects of alternative substrates, glutamate and norvaline, on conformational stability. Glutamate has little effect on overall stability, whereas norvaline markedly stabilizes the protein. Limited proteolysis demonstrates that glutamate had a variety of effects on local flexibility, whereas norvaline significantly decreased conformational fluctuations that allow protease cleavage. Dynamic light scattering suggests that norvaline stabilizes all interfaces in the hexamer, whereas glutamate had little effect on trimer-trimer interactions. The substrate glutamate exhibits negative cooperativity and complex allosteric regulation but has only minor effects on global GDH stability, while promoting certain local conformational fluctuations. In contrast, the substrate norvaline does not show negative cooperativity or allow allosteric regulation. Instead, norvaline significantly stabilizes the enzyme and markedly slows or prevents local conformational fluctuations that are likely to be important for cooperative effects and to determine the overall rate of hydride transfer. This suggests that homotropic allosteric regulation by the enzymatic substrate involves changes in both global stability and local flexibility of the protein.
Collapse
Affiliation(s)
- Sarah A Wacker
- Biochemistry and Molecular Biology Program, Department of Chemistry, University of Richmond, Richmond, Virginia 23173, USA
| | | | | | | |
Collapse
|
14
|
Mendes KR, Kantrowitz ER. A cooperative Escherichia coli aspartate transcarbamoylase without regulatory subunits . Biochemistry 2010; 49:7694-703. [PMID: 20681545 DOI: 10.1021/bi1010333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report the isolation, kinetic characterization, and X-ray structure determination of a cooperative Escherichia coli aspartate transcarbamoylase (ATCase) without regulatory subunits. The native ATCase holoenzyme consists of six catalytic chains organized as two trimers bridged noncovalently by six regulatory chains organized as three dimers, c(6)r(6). Dissociation of the native holoenzyme produces catalytically active trimers, c(3), and nucleotide-binding regulatory dimers, r(2). By introducing specific disulfide bonds linking the catalytic chains from the upper trimer site specifically to their corresponding chains in the lower trimer prior to dissociation, a new catalytic unit, c(6), was isolated consisting of two catalytic trimers linked by disulfide bonds. Not only does the c(6) species display enhanced enzymatic activity compared to the wild-type enzyme, but the disulfide bonds also impart homotropic cooperativity, never observed in the wild-type c(3). The c(6) ATCase was crystallized in the presence of phosphate and its X-ray structure determined to 2.10 A resolution. The structure of c(6) ATCase liganded with phosphate exists in a nearly identical conformation as other R-state structures with similar values calculated for the vertical separation and planar angles. The disulfide bonds linking upper and lower catalytic trimers predispose the active site into a more active conformation by locking the 240s loop into the position characteristic of the high-affinity R state. Furthermore, the elimination of the structural constraints imposed by the regulatory subunits within the holoenzyme provides increased flexibility to the c(6) enzyme, enhancing its activity over the wild-type holoenzyme (c(6)r(6)) and c(3). The covalent linkage between upper and lower catalytic trimers restores homotropic cooperativity so that a binding event at one or so active sites stimulates binding at the other sites. Reduction of the disulfide bonds in the c(6) ATCase results in c(3) catalytic subunits that display kinetic parameters similar to those of wild-type c(3). This is the first report of an active c(6) catalytic unit that displays enhanced activity and homotropic cooperativity.
Collapse
Affiliation(s)
- Kimberly R Mendes
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, USA
| | | |
Collapse
|
15
|
Le Calvez PB, Scott CJ, Migaud ME. Multisubstrate adduct inhibitors: drug design and biological tools. J Enzyme Inhib Med Chem 2010; 24:1291-318. [PMID: 19912064 DOI: 10.3109/14756360902843809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In drug discovery, different methods exist to create new inhibitors possessing satisfactory biological activity. The multisubstrate adduct inhibitor (MAI) approach is one of these methods, which consists of a covalent combination between analogs of the substrate and the cofactor or of the multiple substrates used by the target enzyme. Adopted as the first line of investigation for many enzymes, this method has brought insights into the enzymatic mechanism, structure, and inhibitory requirements. In this review, the MAI approach, applied to different classes of enzyme, is reported from the point of view of biological activity.
Collapse
|
16
|
Vitali J, Colaneri MJ. Structure of the catalytic trimer of Methanococcus jannaschii aspartate transcarbamoylase in an orthorhombic crystal form. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:776-80. [PMID: 18765902 PMCID: PMC2531265 DOI: 10.1107/s1744309108025359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 08/06/2008] [Indexed: 05/26/2023]
Abstract
Crystals of the catalytic subunit of Methanococcus jannaschii aspartate transcarbamoylase in an orthorhombic crystal form contain four crystallographically independent trimers which associate in pairs to form stable staggered complexes that are similar to each other and to a previously determined monoclinic C2 form. Each subunit has a sulfate in the central channel. The catalytic subunits in these complexes show flexibility, with the elbow angles of the monomers differing by up to 7.4 degrees between crystal forms. Moreover, there is also flexibility in the relative orientation of the trimers around their threefold axis in the complexes, with a difference of 4 degrees between crystal forms.
Collapse
Affiliation(s)
- Jacqueline Vitali
- Department of Physics, Cleveland State University, Euclid Avenue at East 24th Street, Cleveland, OH 44115, USA.
| | | |
Collapse
|
17
|
Vitali J, Colaneri MJ, Kantrowitz E. Crystal structure of the catalytic trimer ofMethanococcus jannaschiiaspartate transcarbamoylase. Proteins 2007; 71:1324-34. [PMID: 18058907 DOI: 10.1002/prot.21667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jacqueline Vitali
- Department of Physics, Cleveland State University, Euclid Avenue at East 24th Street, Cleveland, Ohio 44115, USA.
| | | | | |
Collapse
|
18
|
Sankaranarayanan R, Cherney MM, Cherney LT, Garen CR, Moradian F, James MNG. The crystal structures of ornithine carbamoyltransferase from Mycobacterium tuberculosis and its ternary complex with carbamoyl phosphate and L-norvaline reveal the enzyme's catalytic mechanism. J Mol Biol 2007; 375:1052-63. [PMID: 18062991 DOI: 10.1016/j.jmb.2007.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/06/2007] [Accepted: 11/09/2007] [Indexed: 11/27/2022]
Abstract
Mycobacterium tuberculosis ornithine carbamoyltransferase (Mtb OTC) catalyzes the sixth step in arginine biosynthesis; it produces citrulline from carbamoyl phosphate (CP) and ornithine (ORN). Here, we report the crystal structures of Mtb OTC in orthorhombic (form I) and hexagonal (form II) space groups. The molecules in form II are complexed with CP and l-norvaline (NVA); the latter is a competitive inhibitor of OTC. The asymmetric unit in form I contains a pseudo hexamer with 32 point group symmetry. The CP and NVA in form II induce a remarkable conformational change in the 80s and the 240s loops with the displacement of these loops towards the active site. The displacement of these loops is strikingly different from that seen in other OTC structures. In addition, the ligands induce a domain closure of 4.4 degrees in form II. Sequence comparison of active-site residues of Mtb OTC with several other OTCs of known structure reveals that they are virtually identical. The interactions involving the active-site residues of Mtb OTC with CP and NVA and a modeling study of ORN in the form II structure strongly rule out an earlier proposed mechanistic role of Cys264 in catalysis and suggest a possible mechanism for OTC. Our results strongly support the view that ORN with an already deprotonated N(epsilon) atom is the species that binds to the enzyme and that one of the phosphate oxygen atoms of CP is likely to be involved in accepting a proton from the doubly protonated N(epsilon) atom of ORN. We have interpreted this deprotonation as part of the collapse of the transition state of the reaction.
Collapse
Affiliation(s)
- Ramasamy Sankaranarayanan
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
19
|
De Vos D, Xu Y, Hulpiau P, Vergauwen B, Van Beeumen JJ. Structural Investigation of Cold Activity and Regulation of Aspartate Carbamoyltransferase from the Extreme Psychrophilic Bacterium Moritella profunda. J Mol Biol 2007; 365:379-95. [PMID: 17070547 DOI: 10.1016/j.jmb.2006.09.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/21/2006] [Accepted: 09/25/2006] [Indexed: 11/28/2022]
Abstract
Aspartate carbamoyltransferase (EC 2.1.3.2) is extensively studied as a model for cooperativity and allosteric regulation. The structure of the Escherichia coli enzyme has been thoroughly analyzed by X-ray crystallography, and recently the crystal structures of two hyperthermophilic ATCases of the same structural class have been characterized. We here report the detailed functional and structural investigation of the ATCase from the psychrophilic deep sea bacterium Moritella profunda. Our analysis indicates that the enzyme conforms to the E. coli model in that two allosteric states exist that are influenced by similar homotropic interactions. The heterotropic properties differ in that CTP and UTP inhibit the holoenzyme, but ATP seems to exhibit a dual regulatory pattern, activating the enzyme at low concentrations and inhibiting it in the mM range. The crystal structure of the unliganded M. profunda ATCase shows resemblance to a more extreme T state reported previously for an E. coli ATCase mutant. A detailed molecular analysis reveals potential features of adaptation to cold activity and cold regulation. Moreover, M. profunda ATCase presents similarities with certain mutants of E. coli ATCase altered in their kinetic properties or temperature relationships. Finally, structural and functional comparison of ATCases across the full physiological temperature range agrees with an important, but fundamentally different role for electrostatics in protein adaptation at both extremes, i.e. an increased stability through the formation of ion pairs and ion pair networks at high physiological temperatures, and an increased flexibility through enhanced protein solvation at low temperatures.
Collapse
Affiliation(s)
- Dirk De Vos
- Laboratory of Protein Biochemistry and Protein Engineering, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
20
|
Shi D, Morizono H, Cabrera-Luque J, Yu X, Roth L, Malamy MH, Allewell NM, Tuchman M. Structure and catalytic mechanism of a novel N-succinyl-L-ornithine transcarbamylase in arginine biosynthesis of Bacteroides fragilis. J Biol Chem 2006; 281:20623-31. [PMID: 16704984 DOI: 10.1074/jbc.m601229200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Bacteroides fragilis gene (argF'(bf)), the disruption of which renders the bacterium auxotrophic for arginine, was expressed and its recombinant protein purified and studied. The novel protein catalyzes the carbamylation of N-succinyl-L-ornithine but not L-ornithine or N-acetyl-L-ornithine, forming N-succinyl-L-citrulline. Crystal structures of this novel transcarbamylase complexed with carbamyl phosphate and N-succinyl-L-norvaline, as well as sulfate and N-succinyl-L-norvaline have been determined and refined to 2.9 and 2.8 A resolution, respectively. They provide structural evidence that this protein is a novel N-succinyl-L-ornithine transcarbamylase. The data provided herein suggest that B. fragilis uses N-succinyl-L-ornithine rather than N-acetyl-L-ornithine for de novo arginine biosynthesis and therefore that this pathway in Bacteroides is different from the canonical arginine biosynthetic pathway of most organisms. Comparison of the structures of the new protein with those recently reported for N-acetyl-L-ornithine transcarbamylase indicates that amino acid residue 90 (B. fragilis numbering) plays an important role in conferring substrate specificity for N-succinyl-L-ornithine versus N-acetyl-L-ornithine. Movement of the 120 loop upon substrate binding occurs in N-succinyl-L-ornithine transcarbamylase, while movement of the 80 loop and significant domain closure take place as in other transcarbamylases. These findings provide new information on the putative role of succinylated intermediates in arginine biosynthesis and on the evolution of transcarbamylases.
Collapse
Affiliation(s)
- Dashuang Shi
- Children's Research Institute, Children's National Medical Center, George Washington University, Washington, D. C. 20010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Allostery involves coupling of conformational changes between two widely separated binding sites. The common view holds that allosteric proteins are symmetric oligomers, with each subunit existing in "at least" two conformational states with a different affinity for ligands. Recent observations such as the allosteric behavior of myoglobin, a classical example of a nonallosteric protein, call into question the existing allosteric dogma. Here we argue that all (nonfibrous) proteins are potentially allosteric. Allostery is a consequence of re-distributions of protein conformational ensembles. In a nonallosteric protein, the binding site shape may not show a concerted second-site change and enzyme kinetics may not reflect an allosteric transition. Nevertheless, appropriate ligands, point mutations, or external conditions may facilitate a population shift, leading a presumably nonallosteric protein to behave allosterically. In principle, practically any potential drug binding to the protein surface can alter the conformational redistribution. The question is its effectiveness in the redistribution of the ensemble, affecting the protein binding sites and its function. Here, we review experimental observations validating this view of protein allostery.
Collapse
Affiliation(s)
- K Gunasekaran
- Basic Research Program, SAIC-Frederick, Inc., Laboratory of Experimental and Computational Biology, National Cancer Institute-Frederick, Bldg 469, Rm 151, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
22
|
Grison C, Coutrot P, Comoy C, Balas L, Joliez S, Lavecchia G, Oliger P, Penverne B, Serre V, Hervé G. Design, synthesis and activity of bisubstrate, transition-state analogues and competitive inhibitors of aspartate transcarbamylase. Eur J Med Chem 2004; 39:333-44. [PMID: 15072842 DOI: 10.1016/j.ejmech.2004.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Revised: 01/13/2004] [Accepted: 01/15/2004] [Indexed: 10/26/2022]
Abstract
Aspartate transcarbamylase initiates the de novo biosynthetic pathway for the production of the pyrimidine nucleotides, precursors of nucleic acids. This pathway is particularly active in rapidly growing cells and tissues. Thus, this enzyme has been tested as a potential target for antiproliferative drugs. In the present work, on the basis of its structural and mechanistic properties, a series of substrate analogues, including potential suicide-pseudosubstrates was synthesized and their putative inhibitory effects were tested using E. coli aspartate transcarbamylase as a model. Two of these compounds appear to be very efficient inhibitors of this enzyme.
Collapse
Affiliation(s)
- Claude Grison
- INCM FR CNRS 1742, UMR CNRS-UHP Nancy I 7565, Université Henri Poincaré, institut nanceien de chimie moléculaire, laboratoire de chimie organique biomoléculaire, Vandoeuvre-lès-Nancy, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yakovlev GI, Mitkevich VA, Shaw KL, Trevino S, Newsom S, Pace CN, Makarov AA. Contribution of active site residues to the activity and thermal stability of ribonuclease Sa. Protein Sci 2004; 12:2367-73. [PMID: 14500895 PMCID: PMC2366910 DOI: 10.1110/ps.03176803] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have used site-specific mutagenesis to study the contribution of Glu 74 and the active site residues Gln 38, Glu 41, Glu 54, Arg 65, and His 85 to the catalytic activity and thermal stability of ribonuclease Sa. The activity of Gln38Ala is lowered by one order of magnitude, which confirms the involvement of this residue in substrate binding. In contrast, Glu41Lys had no effect on the ribonuclease Sa activity. This is surprising, because the hydrogen bond between the guanosine N1 atom and the side chain of Glu 41 is thought to be important for the guanine specificity in related ribonucleases. The activities of Glu54Gln and Arg65Ala are both lowered about 1000-fold, and His85Gln is totally inactive, confirming the importance of these residues to the catalytic function of ribonuclease Sa. In Glu74Lys, k(cat) is reduced sixfold despite the fact that Glu 74 is over 15 A from the active site. The pH dependence of k(cat)/K(M) is very similar for Glu74Lys and wild-type RNase Sa, suggesting that this is not due to a change in the pK values of the groups involved in catalysis. Compared to wild-type RNase Sa, the stabilities of Gln38Ala and Glu74Lys are increased, the stabilities of Glu41Lys, Glu54Gln, and Arg65Ala are decreased and the stability of His85Gln is unchanged. Thus, the active site residues in the ribonuclease Sa make different contributions to the stability.
Collapse
Affiliation(s)
- Gennady I Yakovlev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
24
|
Holton J, Alber T. Automated protein crystal structure determination using ELVES. Proc Natl Acad Sci U S A 2004; 101:1537-42. [PMID: 14752198 PMCID: PMC341770 DOI: 10.1073/pnas.0306241101] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2003] [Accepted: 11/24/2003] [Indexed: 11/18/2022] Open
Abstract
Efficient determination of protein crystal structures requires automated x-ray data analysis. Here, we describe the expert system ELVES and its use to determine automatically the structure of a 12-kDa protein. Multiwavelength anomalous diffraction analysis of a selenomethionyl derivative was used to image the Asn-16-Ala variant of the GCN4 leucine zipper. In contrast to the parallel, dimeric coiled coil formed by the WT sequence, the mutant unexpectedly formed an antiparallel trimer. This structural switch reveals how avoidance of core cavities at a single site can select the native fold of a protein. All structure calculations, including indexing, data processing, locating heavy atoms, phasing by multiwavelength anomalous diffraction, model building, and refinement, were completed without human intervention. The results demonstrate the feasibility of automated methods for determining high-resolution, x-ray crystal structures of proteins.
Collapse
Affiliation(s)
- James Holton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3206
| | | |
Collapse
|
25
|
West JM, Tsuruta H, Kantrowitz ER. A fluorescent probe-labeled Escherichia coli aspartate transcarbamoylase that monitors the allosteric conformational state. J Biol Chem 2003; 279:945-51. [PMID: 14581486 DOI: 10.1074/jbc.m304018200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new system has been developed capable of monitoring conformational changes of the 240s loop of aspartate transcarbamoylase, which are tightly correlated with the quaternary structural transition, with high sensitivity in solution. Pyrene, a fluorescent probe, was conjugated to residue 241 in the 240s loop of aspartate transcarbamoylase to monitor changes in conformation by fluorescence spectroscopy. Pyrene maleimide was conjugated to a cysteine residue on the 240s loop of a previously constructed double catalytic chain mutant version of the enzyme, C47A/A241C. The pyrene-labeled enzyme undergoes the normal T to R structural transition, as demonstrated by small-angle x-ray scattering. Like the wild-type enzyme, the pyrene-labeled enzyme exhibits cooperativity toward aspartate, and is activated by ATP and inhibited by CTP at subsaturating concentrations of aspartate. The binding of the bisubstrate analogue N-(phosphonoacetyl)-l-aspartate (PALA), or the aspartate analogue succinate, in the presence of saturating carbamoyl phosphate, to the pyrenelabeled enzyme caused a sigmoidal change in the fluorescence emission. Saturation with ATP and CTP (in the presence of either subsaturating amounts of PALA or succinate and carbamoyl phosphate) caused a hyperbolic increase and decrease, respectively, in the fluorescence emission. The half-saturation values from the fluorescence saturation curves and kinetic saturation curves were, within error, identical. Fluorescence and small-angle x-ray scattering stopped-flow experiments, using aspartate and carbamoyl phosphate, confirm that the change in excimer fluorescence and the quaternary structure change correlate. These results in conjunction with previous studies suggest that the allosteric transition involves both global and local conformational changes and that the heterotropic effect of the nucleotides may be exerted through local conformational changes in the active site by directly influencing the conformation of the 240s loop.
Collapse
Affiliation(s)
- Jay M West
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, USA
| | | | | |
Collapse
|
26
|
Van Boxstael S, Cunin R, Khan S, Maes D. Aspartate transcarbamylase from the hyperthermophilic archaeon Pyrococcus abyssi: thermostability and 1.8A resolution crystal structure of the catalytic subunit complexed with the bisubstrate analogue N-phosphonacetyl-L-aspartate. J Mol Biol 2003; 326:203-16. [PMID: 12547202 DOI: 10.1016/s0022-2836(02)01228-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Pyrococcus abyssi aspartate transcarbamylase (ATCase) shows a high degree of structural conservation with respect to the well-studied mesophilic Escherichia coli ATCase, including the association of catalytic and regulatory subunits. The adaptation of its catalytic function to high temperature was investigated, using enzyme purified from recombinant E.coli cells. At 90 degrees C, the activity of the trimeric catalytic subunit was shown to be intrinsically thermostable. Significant extrinsic stabilization by phosphate, a product of the reaction, was observed when the temperature was raised to 98 degrees C. Comparison with the holoenzyme showed that association with regulatory subunits further increases thermostability. To provide further insight into the mechanisms of its adaptation to high temperature, the crystal structure of the catalytic subunit liganded with the analogue N-phosphonacetyl-L-aspartate (PALA) was solved to 1.8A resolution and compared to that of the PALA-liganded catalytic subunit from E.coli. Interactions with PALA are strictly conserved. This, together with the similar activation energies calculated for the two proteins, suggests that the reaction mechanism of the P.abyssi catalytic subunit is similar to that of the E.coli subunit. Several structural elements potentially contributing to thermostability were identified: (i) a marked decrease in the number of thermolabile residues; (ii) an increased number of charged residues and a concomitant increase of salt links at the interface between the monomers, as well as the formation of an ion-pair network at the protein surface; (iii) the shortening of three loops and the shortening of the N and C termini. Other known thermostabilizing devices such as increased packing density or reduction of cavity volumes do not appear to contribute to the high thermostability of the P.abyssi enzyme.
Collapse
Affiliation(s)
- Sigrid Van Boxstael
- Laboratorium voor Erfelijkheidsleer en Microbiologie, Faculteit der Wetenschappen, Vrije Universiteit Brussel (VUB), 1 E. Gryson ave, B-1070, Brussels, Belgium
| | | | | | | |
Collapse
|
27
|
Lukin JA, Kontaxis G, Simplaceanu V, Yuan Y, Bax A, Ho C. Quaternary structure of hemoglobin in solution. Proc Natl Acad Sci U S A 2003; 100:517-20. [PMID: 12525687 PMCID: PMC141027 DOI: 10.1073/pnas.232715799] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2002] [Indexed: 11/18/2022] Open
Abstract
Many important proteins perform their physiological functions under allosteric control, whereby the binding of a ligand at a specific site influences the binding affinity at a different site. Allosteric regulation usually involves a switch in protein conformation upon ligand binding. The energies of the corresponding structures are comparable, and, therefore, the possibility that a structure determined by x-ray diffraction in the crystalline state is influenced by its intermolecular contacts, and thus differs from the solution structure, cannot be excluded. Here, we demonstrate that the quaternary structure of tetrameric human normal adult carbonmonoxy-hemoglobin can readily be determined in solution at near-physiological conditions of pH, ionic strength, and temperature by NMR measurement of (15)N-(1)H residual dipolar couplings in weakly oriented samples. The structure is found to be a dynamic intermediate between two previously solved crystal structures, known as the R and R2 states. Exchange broadening at the subunit interface points to a rapid equilibrium between different structures that presumably include the crystallographically observed states.
Collapse
Affiliation(s)
- Jonathan A Lukin
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
28
|
Shi D, Gallegos R, DePonte J, Morizono H, Yu X, Allewell NM, Malamy M, Tuchman M. Crystal structure of a transcarbamylase-like protein from the anaerobic bacterium Bacteroides fragilis at 2.0 A resolution. J Mol Biol 2002; 320:899-908. [PMID: 12095263 DOI: 10.1016/s0022-2836(02)00539-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A transcarbamylase-like protein essential for arginine biosynthesis in the anaerobic bacterium Bacteroides fragilis has been purified and crystallized in space group P4(3)2(1)2 (a=b=153.4 A, c=94.8 A). The structure was solved using a single isomorphous replacement with anomalous scattering (SIRAS) and was refined at 2.0 A resolution to an R-factor of 20.6% (R-free=25.2%). The molecular model is trimeric and comprises 960 amino acid residues, two phosphate groups and 422 water molecules. The monomer has the consensus transcarbamylase fold with two structural domains linked by two long interdomain helices: the putative carbamoyl phosphate-binding domain and a binding domain for the second substrate. Each domain has a central parallel beta-sheet surrounded by alpha-helices and loops with alpha/beta topology. The putative carbamoyl phosphate-binding site is similar to those in ornithine transcarbamylases (OTCases) and aspartate transcarbamylases (ATCases); however, the second substrate-binding site is strikingly different. This site has several insertions and deletions, and residues critical to substrate binding and catalysis in other known transcarbamylases are not conserved. The three-dimensional structure and the fact that this protein is essential for arginine biosynthesis suggest strongly that it is a new member of the transcarbamylase family. A similar protein has been found in Xylella fastidiosa, a bacterium that infects grapes, citrus and other plants.
Collapse
Affiliation(s)
- Dashuang Shi
- Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue N.W., Washington, DC 20010-2970, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Helmstaedt K, Krappmann S, Braus GH. Allosteric regulation of catalytic activity: Escherichia coli aspartate transcarbamoylase versus yeast chorismate mutase. Microbiol Mol Biol Rev 2001; 65:404-21, table of contents. [PMID: 11528003 PMCID: PMC99034 DOI: 10.1128/mmbr.65.3.404-421.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Allosteric regulation of key metabolic enzymes is a fascinating field to study the structure-function relationship of induced conformational changes of proteins. In this review we compare the principles of allosteric transitions of the complex classical model aspartate transcarbamoylase (ATCase) from Escherichia coli, consisting of 12 polypeptides, and the less complicated chorismate mutase derived from baker's yeast, which functions as a homodimer. Chorismate mutase presumably represents the minimal oligomerization state of a cooperative enzyme which still can be either activated or inhibited by different heterotropic effectors. Detailed knowledge of the number of possible quaternary states and a description of molecular triggers for conformational changes of model enzymes such as ATCase and chorismate mutase shed more and more light on allostery as an important regulatory mechanism of any living cell. The comparison of wild-type and engineered mutant enzymes reveals that current textbook models for regulation do not cover the entire picture needed to describe the function of these enzymes in detail.
Collapse
Affiliation(s)
- K Helmstaedt
- Abteilung Molekulare Mikrobiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
30
|
Fetler L, Vachette P. The allosteric activator Mg-ATP modifies the quaternary structure of the R-state of Escherichia coli aspartate transcarbamylase without altering the T<-->R equilibrium. J Mol Biol 2001; 309:817-32. [PMID: 11397099 DOI: 10.1006/jmbi.2001.4681] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The allosteric enzyme aspartate transcarbamylase from Escherichia coli (ATCase) displays regulatory properties that involve various conformational changes, including a large quaternary structure rearrangement. This entails a major change in its solution X-ray scattering curve upon binding substrate analogues. We show here that, in the presence of the nucleotide effector ATP, known to stimulate the enzyme activity, the scattering profiles show a marked dependence on the metal bound to ATP. Whereas ATP has no major effect on the scattering pattern of ATCase, a saturating concentration of Mg-ATP notably modifies the scattering profile of the enzyme, either in the absence or in the presence of the bisubstrate analogue N-(phosphonacetyl)-l-aspartate (PALA). The transition with PALA in the presence of this metal-nucleotide complex remains concerted. Furthermore, Mg-ATP, as already observed with ATP, has no detectable direct effect on the T to R transition. The experimental scattering curves in the presence of Mg-ATP were fitted by a modeling approach using rigid body movements of the regulatory subunits and the catalytic trimers in the crystal structures. While the differences observed in the T-state in the presence of Mg-ATP are essentially attributed to the binding per se of the nucleotide, the solution structure of the R-state complexed to Mg-ATP is even more extended along the 3-fold axis than the previously described R solution structure, which is already more stretched out along the same axis than the crystal R structure. Based on the crystal structure of the enzyme in the R-state complexed with free ATP, a proposal is made to account for the effect of magnesium.
Collapse
Affiliation(s)
- L Fetler
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, Université Pierre et Marie Curie, CNRS UMR 7631, 96, bd. Raspail, Paris, 75006, France
| | | |
Collapse
|
31
|
Sakash JB, Kantrowitz ER. The contribution of individual interchain interactions to the stabilization of the T and R states of Escherichia coli aspartate transcarbamoylase. J Biol Chem 2000; 275:28701-7. [PMID: 10875936 DOI: 10.1074/jbc.m005079200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stabilization of the T and R allosteric states of Escherichia coli aspartate transcarbamoylase is governed by specific intra- and interchain interactions. The six interchain interactions between Glu-239 in one catalytic chain of one catalytic trimer with both Lys-164 and Tyr-165 of a different catalytic chain in the other catalytic trimer have been shown to be involved in the stabilization of the T state. In this study a series of hybrid versions of aspartate transcarbamoylase was studied to determine the minimum number of these Glu-239 interactions necessary to maintain homotropic cooperativity and the T allosteric state. Hybrids with zero, one, and two Glu-239 stabilizing interactions do not exhibit cooperativity, whereas the hybrids with three or more Glu-239 stabilizing interactions exhibit cooperativity. The hybrid enzymes with one or more of the Glu-239 stabilizing interactions also exhibit heterotropic interactions. Two hybrids with three Glu-239 stabilizing interactions, in different geometric relationships, had identical properties. From this and previous studies, it is concluded that the 239 stabilizing interactions play a critical role in the manifestation of homotropic cooperativity in aspartate transcarbamoylase by the stabilization of the T state of the enzyme. As substrate binding energy is utilized, more and more of the T state stabilizing interactions are relaxed, and finally the enzyme shifts to the R state. In the case of the Glu-239 stabilizing interactions more than three of the interactions must be broken before the enzyme shifts to the R state. The interactions between the catalytic and regulatory chains and between the two catalytic trimers of aspartate transcarbamoylase provide a global set of interlocking interactions that stabilize the T and R states of the enzyme. The substrate-induced local conformational changes observed in the structure of the isolated catalytic subunit drive the quaternary T to R transition of aspartate transcarbamoylase and functionally induced homotropic cooperativity.
Collapse
Affiliation(s)
- J B Sakash
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, USA
| | | |
Collapse
|