1
|
Völler JS, Dulic M, Gerling-Driessen UIM, Biava H, Baumann T, Budisa N, Gruic-Sovulj I, Koksch B. Discovery and Investigation of Natural Editing Function against Artificial Amino Acids in Protein Translation. ACS CENTRAL SCIENCE 2017; 3:73-80. [PMID: 28149956 PMCID: PMC5269655 DOI: 10.1021/acscentsci.6b00339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Indexed: 05/24/2023]
Abstract
Fluorine being not substantially present in the chemistry of living beings is an attractive element in tailoring novel chemical, biophysical, and pharmacokinetic properties of peptides and proteins. The hallmark of ribosome-mediated artificial amino acid incorporation into peptides and proteins is a broad substrate tolerance, which is assumed to rely on the absence of evolutionary pressure for efficient editing of artificial amino acids. We used the well-characterized editing proficient isoleucyl-tRNA synthetase (IleRS) from Escherichia coli to investigate the crosstalk of aminoacylation and editing activities against fluorinated amino acids. We show that translation of trifluoroethylglycine (TfeGly) into proteins is prevented by hydrolysis of TfeGly-tRNAIle in the IleRS post-transfer editing domain. The remarkable observation is that dissociation of TfeGly-tRNAIle from IleRS is significantly slowed down. This finding is in sharp contrast to natural editing reactions by tRNA synthetases wherein fast editing rates for the noncognate substrates are essential to outcompete fast aa-tRNA dissociation rates. Using a post-transfer editing deficient mutant of IleRS (IleRSAla10), we were able to achieve ribosomal incorporation of TfeGly in vivo. Our work expands the knowledge of ribosome-mediated artificial amino acid translation with detailed analysis of natural editing function against an artificial amino acid providing an impulse for further systematic investigations and engineering of the translation and editing of unusual amino acids.
Collapse
Affiliation(s)
- Jan-Stefan Völler
- Institute
of Chemistry and Biochemistry − Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Department
of Chemistry, Technische Universität
Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany
| | - Morana Dulic
- Department
of Chemistry, Faculty of Science, University
of Zagreb, Horvatovac
102a, 10000 Zagreb, Croatia
| | - Ulla I. M. Gerling-Driessen
- Institute
of Chemistry and Biochemistry − Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Hernan Biava
- Department
of Chemistry, Technische Universität
Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany
| | - Tobias Baumann
- Department
of Chemistry, Technische Universität
Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany
| | - Nediljko Budisa
- Department
of Chemistry, Technische Universität
Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany
| | - Ita Gruic-Sovulj
- Department
of Chemistry, Faculty of Science, University
of Zagreb, Horvatovac
102a, 10000 Zagreb, Croatia
| | - Beate Koksch
- Institute
of Chemistry and Biochemistry − Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
2
|
Santra M, Bagchi B. Kinetic proofreading at single molecular level: aminoacylation of tRNA(Ile) and the role of water as an editor. PLoS One 2013; 8:e66112. [PMID: 23840412 PMCID: PMC3688713 DOI: 10.1371/journal.pone.0066112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/02/2013] [Indexed: 11/25/2022] Open
Abstract
Proofreading/editing in protein synthesis is essential for accurate translation of information from the genetic code. In this article we present a theoretical investigation of efficiency of a kinetic proofreading mechanism that employs hydrolysis of the wrong substrate as the discriminatory step in enzyme catalytic reactions. We consider aminoacylation of tRNAIle which is a crucial step in protein synthesis and for which experimental results are now available. We present an augmented kinetic scheme and then employ methods of stochastic simulation algorithm to obtain time dependent concentrations of different substances involved in the reaction and their rates of formation. We obtain the rates of product formation and ATP hydrolysis for both correct and wrong substrates (isoleucine and valine in our case, respectively), in single molecular enzyme as well as ensemble enzyme kinetics. The present theoretical scheme correctly reproduces (i) the amplitude of the discrimination factor in the overall rates between isoleucine and valine which is obtained as (1.8×102).(4.33×102) = 7.8×104, (ii) the rates of ATP hydrolysis for both Ile and Val at different substrate concentrations in the aminoacylation of tRNAIle. The present study shows a non-michaelis type dependence of rate of reaction on tRNAIle concentration in case of valine. The overall editing in steady state is found to be independent of amino acid concentration. Interestingly, the computed ATP hydrolysis rate for valine at high substrate concentration is same as the rate of formation of Ile-tRNAIle whereas at intermediate substrate concentration the ATP hydrolysis rate is relatively low. We find that the presence of additional editing domain in class I editing enzyme makes the kinetic proofreading more efficient through enhanced hydrolysis of wrong product at the editing CP1 domain.
Collapse
Affiliation(s)
- Mantu Santra
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
3
|
Minajigi A, Francklyn CS. Aminoacyl transfer rate dictates choice of editing pathway in threonyl-tRNA synthetase. J Biol Chem 2010; 285:23810-7. [PMID: 20504770 DOI: 10.1074/jbc.m110.105320] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases hydrolyze aminoacyl adenylates and aminoacyl-tRNAs formed from near-cognate amino acids, thereby increasing translational fidelity. The contributions of pre- and post-transfer editing pathways to the fidelity of Escherichia coli threonyl-tRNA synthetase (ThrRS) were investigated by rapid kinetics. In the pre-steady state, asymmetric activation of cognate threonine and noncognate serine was observed in the active sites of dimeric ThrRS, with similar rates of activation. In the absence of tRNA, seryl-adenylate was hydrolyzed 29-fold faster by the ThrRS catalytic domain than threonyl-adenylate. The rate of seryl transfer to cognate tRNA was only 2-fold slower than threonine. Experiments comparing the rate of ATP consumption to the rate of aminoacyl-tRNA(AA) formation demonstrated that pre-transfer hydrolysis contributes to proofreading only when the rate of transfer is slowed significantly. Thus, the relative contributions of pre- and post-transfer editing in ThrRS are subject to modulation by the rate of aminoacyl transfer.
Collapse
Affiliation(s)
- Anand Minajigi
- Cell and Molecular Biology Program, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
4
|
Tan M, Zhu B, Zhou XL, He R, Chen X, Eriani G, Wang ED. tRNA-dependent pre-transfer editing by prokaryotic leucyl-tRNA synthetase. J Biol Chem 2010; 285:3235-44. [PMID: 19940155 PMCID: PMC2823433 DOI: 10.1074/jbc.m109.060616] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/20/2009] [Indexed: 11/06/2022] Open
Abstract
To prevent genetic code ambiguity due to misincorporation of amino acids into proteins, aminoacyl-tRNA synthetases have evolved editing activities to eliminate intermediate or final non-cognate products. In this work we studied the different editing pathways of class Ia leucyl-tRNA synthetase (LeuRS). Different mutations and experimental conditions were used to decipher the editing mechanism, including the recently developed compound AN2690 that targets the post-transfer editing site of LeuRS. The study emphasizes the crucial importance of tRNA for the pre- and post-transfer editing catalysis. Both reactions have comparable efficiencies in prokaryotic Aquifex aeolicus and Escherichia coli LeuRSs, although the E. coli enzyme favors post-transfer editing, whereas the A. aeolicus enzyme favors pre-transfer editing. Our results also indicate that the entry of the CCA-acceptor end of tRNA in the editing domain is strictly required for tRNA-dependent pre-transfer editing. Surprisingly, this editing reaction was resistant to AN2690, which inactivates the enzyme by forming a covalent adduct with tRNA(Leu) in the post-transfer editing site. Taken together, these data suggest that the binding of tRNA in the post-transfer editing conformation confers to the enzyme the capacity for pre-transfer editing catalysis, regardless of its capacity to catalyze post-transfer editing.
Collapse
Affiliation(s)
- Min Tan
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China and
| | - Bin Zhu
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China and
| | - Xiao-Long Zhou
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China and
| | - Ran He
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China and
| | - Xin Chen
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China and
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, UPR9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - En-Duo Wang
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China and
| |
Collapse
|
5
|
Ling J, So BR, Yadavalli SS, Roy H, Shoji S, Fredrick K, Musier-Forsyth K, Ibba M. Resampling and editing of mischarged tRNA prior to translation elongation. Mol Cell 2009; 33:654-60. [PMID: 19285947 DOI: 10.1016/j.molcel.2009.01.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 12/10/2008] [Accepted: 01/23/2009] [Indexed: 11/17/2022]
Abstract
Faithful translation of the genetic code depends on the GTPase EF-Tu delivering correctly charged aminoacyl-tRNAs to the ribosome for pairing with cognate codons. The accurate coupling of cognate amino acids and tRNAs by the aminoacyl-tRNA synthetases is achieved through a combination of substrate specificity and product editing. Once released by aminoacyl-tRNA synthetases, both cognate and near-cognate aminoacyl-tRNAs were considered to be committed to ribosomal protein synthesis through their association with EF-Tu. Here we show instead that aminoacyl-tRNAs in ternary complex with EF-Tu*GTP can readily dissociate and rebind to aminoacyl-tRNA synthetases. For mischarged species, this allows resampling by the product editing pathway, leading to a reduction in the overall error rate of aminoacyl-tRNA synthesis. Resampling of mischarged tRNAs was shown to increase the accuracy of translation over ten fold during in vitro protein synthesis, supporting the presence of an additional quality control step prior to translation elongation.
Collapse
Affiliation(s)
- Jiqiang Ling
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Mascarenhas AP, An S, Rosen AE, Martinis SA, Musier-Forsyth K. Fidelity Mechanisms of the Aminoacyl-tRNA Synthetases. PROTEIN ENGINEERING 2009. [DOI: 10.1007/978-3-540-70941-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Splan KE, Musier-Forsyth K, Boniecki MT, Martinis SA. In vitro assays for the determination of aminoacyl-tRNA synthetase editing activity. Methods 2008; 44:119-28. [PMID: 18241793 PMCID: PMC2270698 DOI: 10.1016/j.ymeth.2007.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 10/29/2007] [Indexed: 11/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes that help to ensure the fidelity of protein translation by accurately aminoacylating (or "charging") specific tRNA substrates with cognate amino acids. Many synthetases have an additional catalytic activity to confer amino acid editing or proofreading. This activity relieves ambiguities during translation of the genetic code that result from one synthetase activating multiple amino acid substrates. In this review, we describe methods that have been developed for assaying both pre- and post-transfer editing activities. Pre-transfer editing is defined as hydrolysis of a misactivated aminoacyl-adenylate prior to transfer to the tRNA. This reaction has been reported to occur either in the aminoacylation active site or in a separate editing domain. Post-transfer editing refers to the hydrolysis reaction that cleaves the aminoacyl-ester linkage formed between the carbonyl carbon of the amino acid and the 2' or 3' hydroxyl group of the ribose on the terminal adenosine. Post-transfer editing takes place in a hydrolytic active site that is distinct from the site of amino acid activation. Here, we focus on methods for determination of steady-state reaction rates using editing assays developed for both classes of synthetases.
Collapse
Affiliation(s)
- Kathryn E Splan
- Department of Chemistry, Macalester College, St. Paul, MN 55105, USA
| | | | | | | |
Collapse
|
8
|
Hussain T, Kruparani SP, Pal B, Dock-Bregeon AC, Dwivedi S, Shekar MR, Sureshbabu K, Sankaranarayanan R. Post-transfer editing mechanism of a D-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea. EMBO J 2006; 25:4152-62. [PMID: 16902403 PMCID: PMC1560354 DOI: 10.1038/sj.emboj.7601278] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 07/20/2006] [Indexed: 11/08/2022] Open
Abstract
To ensure a high fidelity during translation, threonyl-tRNA synthetases (ThrRSs) harbor an editing domain that removes noncognate L-serine attached to tRNAThr. Most archaeal ThrRSs possess a unique editing domain structurally similar to D-aminoacyl-tRNA deacylases (DTDs) found in eubacteria and eukaryotes that specifically removes D-amino acids attached to tRNA. Here, we provide mechanistic insights into the removal of noncognate L-serine from tRNAThr by a DTD-like editing module from Pyrococcus abyssi ThrRS (Pab-NTD). High-resolution crystal structures of Pab-NTD with pre- and post-transfer substrate analogs and with L-serine show mutually nonoverlapping binding sites for the seryl moiety. Although the pre-transfer editing is excluded, the analysis reveals the importance of main chain atoms in proper positioning of the post-transfer substrate for its hydrolysis. A single residue has been shown to play a pivotal role in the inversion of enantioselectivity both in Pab-NTD and DTD. The study identifies an enantioselectivity checkpoint that filters opposite chiral molecules and thus provides a fascinating example of how nature has subtly engineered this domain for the selection of chiral molecules during translation.
Collapse
Affiliation(s)
- Tanweer Hussain
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | - Biswajit Pal
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | - Shweta Dwivedi
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Megala R Shekar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Kotini Sureshbabu
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Rajan Sankaranarayanan
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India. Tel.: +91 40 2719 2832; Fax: +91 40 2716 0591, 2716 0252; E-mail:
| |
Collapse
|
9
|
Hati S, Ziervogel B, Sternjohn J, Wong FC, Nagan MC, Rosen AE, Siliciano PG, Chihade JW, Musier-Forsyth K. Pre-transfer editing by class II prolyl-tRNA synthetase: role of aminoacylation active site in "selective release" of noncognate amino acids. J Biol Chem 2006; 281:27862-72. [PMID: 16864571 DOI: 10.1074/jbc.m605856200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids to specific tRNA molecules. To prevent potential errors in protein synthesis caused by misactivation of noncognate amino acids, some synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). In the case of post-transfer editing, synthetases employ a separate editing domain that is distinct from the site of amino acid activation, and the mechanism is believed to involve shuttling of the flexible CCA-3' end of the tRNA from the synthetic active site to the site of hydrolysis. The mechanism of pre-transfer editing is less well understood, and in most cases, the exact site of pre-transfer editing has not been conclusively identified. Here, we probe the pre-transfer editing activity of class II prolyl-tRNA synthetases from five species representing all three kingdoms of life. To locate the site of pre-transfer editing, truncation mutants were constructed by deleting the insertion domain characteristic of bacterial prolyl-tRNA synthetase species, which is the site of post-transfer editing, or the N- or C-terminal extension domains of eukaryotic and archaeal enzymes. In addition, the pre-transfer editing mechanism of Escherichia coli prolyl-tRNA synthetase was probed in detail. These studies show that a separate editing domain is not required for pre-transfer editing by prolyl-tRNA synthetase. The aminoacylation active site plays a significant role in preserving the fidelity of translation by acting as a filter that selectively releases non-cognate adenylates into solution, while protecting the cognate adenylate from hydrolysis.
Collapse
Affiliation(s)
- Sanchita Hati
- Department of Chemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The aminoacyl-tRNA synthetases (aaRSs) are responsible for selecting specific amino acids for protein synthesis, and this essential role in translation has garnered them much attention as targets for novel antimicrobials. Understanding how the aaRSs evolved efficient substrate selection offers a potential route to develop useful inhibitors of microbial protein synthesis. Here, we discuss discrimination of small molecules by aaRSs, and how the evolutionary divergence of these mechanisms offers a means to target inhibitors against these essential microbial enzymes.
Collapse
Affiliation(s)
- Sandro F Ataide
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
11
|
Dock-Bregeon AC, Rees B, Torres-Larios A, Bey G, Caillet J, Moras D. Achieving error-free translation; the mechanism of proofreading of threonyl-tRNA synthetase at atomic resolution. Mol Cell 2004; 16:375-86. [PMID: 15525511 DOI: 10.1016/j.molcel.2004.10.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 08/06/2004] [Accepted: 08/17/2004] [Indexed: 10/26/2022]
Abstract
The fidelity of aminoacylation of tRNA(Thr) by the threonyl-tRNA synthetase (ThrRS) requires the discrimination of the cognate substrate threonine from the noncognate serine. Misacylation by serine is corrected in a proofreading or editing step. An editing site has been located 39 A away from the aminoacylation site. We report the crystal structures of this editing domain in its apo form and in complex with the serine product, and with two nonhydrolyzable analogs of potential substrates: the terminal tRNA adenosine charged with serine, and seryl adenylate. The structures show how serine is recognized, and threonine rejected, and provide the structural basis for the editing mechanism, a water-mediated hydrolysis of the mischarged tRNA. When the adenylate analog binds in the editing site, a phosphate oxygen takes the place of one of the catalytic water molecules, thereby blocking the reaction. This rules out a correction mechanism that would occur before the binding of the amino acid on the tRNA.
Collapse
MESH Headings
- Amino Acid Sequence
- Aminoacylation
- Binding Sites
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Hydrolysis
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Oxygen/chemistry
- Phosphates/chemistry
- Protein Biosynthesis
- RNA Editing
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/metabolism
- RNA, Transfer, Thr/chemistry
- RNA, Transfer, Thr/metabolism
- Sequence Homology, Amino Acid
- Threonine-tRNA Ligase/chemistry
- Threonine-tRNA Ligase/genetics
- Threonine-tRNA Ligase/metabolism
Collapse
Affiliation(s)
- Anne-Catherine Dock-Bregeon
- IGBMC (CNRS/INSERM/Université Louis Pasteur), Laboratoire de Biologie et Génomique Structurales, 1, rue Laurent Fries, BP 10142, 67400 Illkirch, France
| | | | | | | | | | | |
Collapse
|
12
|
Gruic-Sovulj I, Landeka I, Söll D, Weygand-Durasevic I. tRNA-dependent amino acid discrimination by yeast seryl-tRNA synthetase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5271-9. [PMID: 12392560 DOI: 10.1046/j.1432-1033.2002.03241.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of aminoacyl-tRNA synthetases to distinguish between similar amino acids is crucial for accurate translation of the genetic code. Saccharomyces cerevisiae seryl-tRNA synthetase (SerRS) employs tRNA-dependent recognition of its cognate amino acid serine [Lenhard, B., Filipic, S., Landeka, I., Skrtic, I., Söll, D. & Weygand-Durasevic, I. (1997) J. Biol. Chem.272, 1136-1141]. Here we show that dimeric SerRS enzyme complexed with one molecule of tRNASer is more specific and more efficient in catalyzing seryl-adenylate formation than the apoenzyme alone. Sequence-specific tRNA-protein interactions enhance discrimination of the amino acid substrate by yeast SerRS and diminish the misactivation of the structurally similar noncognate threonine. This may proceed via a tRNA-induced conformational change in the enzyme's active site. The 3'-terminal adenosine of tRNASer is not important in effecting the rearrangement of the serine binding site. Our results do not provide an indication for a readjustment of ATP binding in a tRNA-assisted manner. The stoichiometric analyses of the complexes between the enzyme and tRNASer revealed that two cognate tRNA molecules can be bound to dimeric SerRS, however, with very different affinities.
Collapse
Affiliation(s)
- Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| | | | | | | |
Collapse
|
13
|
Nordin BE, Schimmel P. Plasticity of recognition of the 3'-end of mischarged tRNA by class I aminoacyl-tRNA synthetases. J Biol Chem 2002; 277:20510-7. [PMID: 11923317 DOI: 10.1074/jbc.m202023200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Certain aminoacyl-tRNA synthetases prevent potential errors in protein synthesis through deacylation of mischarged tRNAs. For example, the close homologs isoleucyl-tRNA synthetase (IleRS) and valyl-tRNA synthetase (ValRS) deacylate Val-tRNA(Ile) and Thr-tRNA(Val), respectively. Here we examined the chemical requirements at the 3'-end of the tRNA for these hydrolysis reactions. Single atom substitutions at the 2'- and 3'-hydroxyls of a variety of mischarged RNAs revealed that, while acylation is at the 2'-OH for both enzymes, IleRS catalyzes deacylation specifically from the 3'-OH and not from the 2'-OH. In contrast, ValRS can deacylate non-cognate amino acids from the 2'-OH. Moreover, for IleRS the specificity for a 3'-O location of the scissile ester bond could be forced to the 2'-position by introduction of a 3'-O-methyl moiety. Cumulatively, these and other results suggest that the editing sites of these class I aminoacyl-tRNA synthetases have a degree of inherent plasticity for substrate recognition. The ability to adapt to subtle differences in mischarged RNAs may be important for the high accuracy of aminoacylation.
Collapse
Affiliation(s)
- Brian E Nordin
- Skaggs Institute for Chemical Biology and the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
14
|
Abstract
The role of tRNA as the adaptor in protein synthesis has held an enduring fascination for molecular biologists. Over four decades of study, taking in numerous milestones in molecular biology, led to what was widely held to be a fairly complete picture of how tRNAs and amino acids are paired prior to protein synthesis. However, recent developments in genomics and structural biology have revealed an unexpected array of new enzymes, pathways and mechanisms involved in aminoacyl-tRNA synthesis. As a more complete picture of aminoacyl-tRNA synthesis now begins to emerge, the high degree of evolutionary diversity in this universal and essential process is becoming clearer.
Collapse
Affiliation(s)
- M Ibba
- Center for Biomolecular Recognition, Department of Medical Biochemistry and Genetics, Laboratory B, The Panum Institute, Blegdamsvej 3c, DK-2200, Copenhagen N,
| | | |
Collapse
|
15
|
Nomanbhoy TK, Schimmel P. Active site of an aminoacyl-tRNA synthetase dissected by energy-transfer-dependent fluorescence. Bioorg Med Chem Lett 2001; 11:1485-91. [PMID: 11412966 DOI: 10.1016/s0960-894x(01)00127-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Aminoacyl-tRNA synthetases establish the rules of the genetic code by catalyzing attachment of amino acids to specific transfer RNAs (tRNAs) that bear the anticodon triplets of the code. Each of the 20 amino acids has its own distinct aminoacyl-tRNA synthetase. Here we use energy-transfer-dependent fluorescence from the nucleotide probe N-methylanthraniloyl dATP (mdATP) to investigate the active site of a specific aminoacyl-tRNA synthetase. Interaction of the enzyme with the cognate amino acid and formation of the aminoacyl adenylate intermediate were detected. In addition to providing a convenient tool to characterize enzymatic parameters, the probe allowed investigation of the role of conserved residues within the active site. Specifically, a residue that is critical for binding could be distinguished from one that is important for the transition state of adenylate formation. Amino acid binding and adenylate synthesis by two other aminoacyl-tRNA synthetases was also investigated with mdATP. Thus, a key step in the synthesis of aminoacyl-tRNA can in general be dissected with this probe.
Collapse
Affiliation(s)
- T K Nomanbhoy
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, Beckman Center, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
16
|
Fukai S, Nureki O, Sekine S, Shimada A, Tao J, Vassylyev DG, Yokoyama S. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell 2000; 103:793-803. [PMID: 11114335 DOI: 10.1016/s0092-8674(00)00182-3] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Valyl-tRNA synthetase (ValRS) strictly discriminates the cognate L-valine from the larger L-isoleucine and the isosteric L-threonine by the tRNA-dependent "double sieve" mechanism. In this study, we determined the 2.9 A crystal structure of a complex of Thermus thermophilus ValRS, tRNA(Val), and an analog of the Val-adenylate intermediate. The analog is bound in a pocket, where Pro(41) allows accommodation of the Val and Thr moieties but precludes the Ile moiety (the first sieve), on the aminoacylation domain. The editing domain, which hydrolyzes incorrectly synthesized Thr-tRNA(Val), is bound to the 3' adenosine of tRNA(Val). A contiguous pocket was found to accommodate the Thr moiety, but not the Val moiety (the second sieve). Furthermore, another Thr binding pocket for Thr-adenylate hydrolysis was suggested on the editing domain.
Collapse
Affiliation(s)
- S Fukai
- Department of Biophysics and Biochemistry Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|