1
|
Wang Y, Wu J, Zsolnay V, Pollard TD, Voth GA. Mechanism of phosphate release from actin filaments. Proc Natl Acad Sci U S A 2024; 121:e2408156121. [PMID: 38980907 PMCID: PMC11260136 DOI: 10.1073/pnas.2408156121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
After ATP-actin monomers assemble filaments, the ATP's [Formula: see text]-phosphate is hydrolyzedwithin seconds and dissociates over minutes. We used all-atom molecular dynamics simulations to sample the release of phosphate from filaments and study residues that gate release. Dissociation of phosphate from Mg2+ is rate limiting and associated with an energy barrier of 20 kcal/mol, consistent with experimental rates of phosphate release. Phosphate then diffuses within an internal cavity toward a gate formed by R177, as suggested in prior computational studies and cryo-EM structures. The gate is closed when R177 hydrogen bonds with N111 and is open when R177 forms a salt bridge with D179. Most of the time, interactions of R177 with other residues occlude the phosphate release pathway. Machine learning analysis reveals that the occluding interactions fluctuate rapidly, underscoring the secondary role of backdoor gate opening in Pi release, in contrast with the previous hypothesis that gate opening is the primary event.
Collapse
Affiliation(s)
- Yihang Wang
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL60637
| | - Jiangbo Wu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL60637
| | - Vilmos Zsolnay
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL60637
| | - Thomas D. Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT06511
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
- Department of Cell Biology, Yale University, New Haven, CT06510
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL60637
| |
Collapse
|
2
|
Sasmal S, Pal T, Hocky GM, McCullagh M. Quantifying Unbiased Conformational Ensembles from Biased Simulations Using ShapeGMM. J Chem Theory Comput 2024; 20:3492-3502. [PMID: 38662196 PMCID: PMC11104435 DOI: 10.1021/acs.jctc.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Quantifying the conformational ensembles of biomolecules is fundamental to describing mechanisms of processes such as protein folding, interconversion between folded states, ligand binding, and allosteric regulation. Accurate quantification of these ensembles remains a challenge for conventional molecular simulations of all but the simplest molecules due to insufficient sampling. Enhanced sampling approaches, such as metadynamics, were designed to overcome this challenge; however, the nonuniform frame weights that result from many of these approaches present an additional challenge to ensemble quantification techniques such as Markov State Modeling or structural clustering. Here, we present rigorous inclusion of nonuniform frame weights into a structural clustering method entitled shapeGMM. The result of frame-weighted shapeGMM is a high dimensional probability density and generative model for the unbiased system from which we can compute important thermodynamic properties such as relative free energies and configurational entropy. The accuracy of this approach is demonstrated by the quantitative agreement between GMMs computed by Hamiltonian reweighting and direct simulation of a coarse-grained helix model system. Furthermore, the relative free energy computed from a shapeGMM probability density of alanine dipeptide reweighted from a metadynamics simulation quantitatively reproduces the underlying free energy in the basins. Finally, the method identifies hidden structures along the actin globular to filamentous-like structural transition from a metadynamics simulation on a linear discriminant analysis coordinate trained on GMM states, illustrating how structural clustering of biased data can lead to biophysical insight. Combined, these results demonstrate that frame-weighted shapeGMM is a powerful approach to quantifying biomolecular ensembles from biased simulations.
Collapse
Affiliation(s)
- Subarna Sasmal
- Department of Chemistry, New York
University, New York, New York 10003, United
States
| | - Triasha Pal
- Department of Chemistry, New York
University, New York, New York 10003, United
States
| | - Glen M. Hocky
- Department of Chemistry, New York
University, New York, New York 10003, United
States
- Simons Center for Computational Physical Chemistry,
New York University, New York, New York 10003,
United States
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State
University, Stillwater, Oklahoma 74078, United
States
| |
Collapse
|
3
|
Wang Y, Wu J, Zsolnay V, Pollard TD, Voth GA. Mechanism of Phosphate Release from Actin Filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.03.551904. [PMID: 37577500 PMCID: PMC10418243 DOI: 10.1101/2023.08.03.551904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
After ATP-actin monomers assemble filaments, the ATP's γ-phosphate is hydrolyzed within seconds and dissociates over minutes. We used all-atom molecular dynamics simulations to sample the release of phosphate from filaments and study residues that gate release. Dissociation of phosphate from Mg2+ is rate limiting and associated with an energy barrier of 20 kcal/mol, consistent with experimental rates of phosphate release. Phosphate then diffuses in an internal cavity toward a gate formed by R177 suggested in prior computational studies and cryo-EM structures. The gate is closed when R177 hydrogen bonds with N111 and is open when R177 forms a salt bridge with D179. Most of the time interactions of R177 with other residues occludes the phosphate release pathway. Machine learning analysis reveals that the occluding interactions fluctuate rapidly, underscoring the secondary role of backdoor gate opening in Pi release, in contrast with the previous hypothesis that gate opening is the primary event.
Collapse
Affiliation(s)
- Yihang Wang
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL
| | - Jiangbo Wu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL
| | - Vilmos Zsolnay
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL
| | - Thomas D. Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Department of Cell Biology, Yale University, New Haven, CT
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, IL
| |
Collapse
|
4
|
Molecular Dynamics Assessment of Mechanical Properties of the Thin Filaments in Cardiac Muscle. Int J Mol Sci 2023; 24:ijms24054792. [PMID: 36902223 PMCID: PMC10003134 DOI: 10.3390/ijms24054792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Contraction of cardiac muscle is regulated by Ca2+ ions via regulatory proteins, troponin (Tn), and tropomyosin (Tpm) associated with the thin (actin) filaments in myocardial sarcomeres. The binding of Ca2+ to a Tn subunit causes mechanical and structural changes in the multiprotein regulatory complex. Recent cryo-electron microscopy (cryo-EM) models of the complex allow one to study the dynamic and mechanical properties of the complex using molecular dynamics (MD). Here we describe two refined models of the thin filament in the calcium-free state that include protein fragments unresolved by cryo-EM and reconstructed using structure prediction software. The parameters of the actin helix and the bending, longitudinal, and torsional stiffness of the filaments estimated from the MD simulations performed with these models were close to those found experimentally. However, problems revealed from the MD simulation suggest that the models require further refinement by improving the protein-protein interaction in some regions of the complex. The use of relatively long refined models of the regulatory complex of the thin filament allows one to perform MD simulation of the molecular mechanism of Ca2+ regulation of contraction without additional constraints and study the effects of cardiomyopathy-associated mutation of the thin filament proteins of cardiac muscle.
Collapse
|
5
|
Lyapina E, Marin E, Gusach A, Orekhov P, Gerasimov A, Luginina A, Vakhrameev D, Ergasheva M, Kovaleva M, Khusainov G, Khorn P, Shevtsov M, Kovalev K, Bukhdruker S, Okhrimenko I, Popov P, Hu H, Weierstall U, Liu W, Cho Y, Gushchin I, Rogachev A, Bourenkov G, Park S, Park G, Hyun HJ, Park J, Gordeliy V, Borshchevskiy V, Mishin A, Cherezov V. Structural basis for receptor selectivity and inverse agonism in S1P 5 receptors. Nat Commun 2022; 13:4736. [PMID: 35961984 PMCID: PMC9374744 DOI: 10.1038/s41467-022-32447-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
The bioactive lysophospholipid sphingosine-1-phosphate (S1P) acts via five different subtypes of S1P receptors (S1PRs) - S1P1-5. S1P5 is predominantly expressed in nervous and immune systems, regulating the egress of natural killer cells from lymph nodes and playing a role in immune and neurodegenerative disorders, as well as carcinogenesis. Several S1PR therapeutic drugs have been developed to treat these diseases; however, they lack receptor subtype selectivity, which leads to side effects. In this article, we describe a 2.2 Å resolution room temperature crystal structure of the human S1P5 receptor in complex with a selective inverse agonist determined by serial femtosecond crystallography (SFX) at the Pohang Accelerator Laboratory X-Ray Free Electron Laser (PAL-XFEL) and analyze its structure-activity relationship data. The structure demonstrates a unique ligand-binding mode, involving an allosteric sub-pocket, which clarifies the receptor subtype selectivity and provides a template for structure-based drug design. Together with previously published S1PR structures in complex with antagonists and agonists, our structure with S1P5-inverse agonist sheds light on the activation mechanism and reveals structural determinants of the inverse agonism in the S1PR family.
Collapse
Affiliation(s)
- Elizaveta Lyapina
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Egor Marin
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Anastasiia Gusach
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Philipp Orekhov
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | | | - Aleksandra Luginina
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Daniil Vakhrameev
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Margarita Ergasheva
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Margarita Kovaleva
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Georgii Khusainov
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- Division of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, PSI, Switzerland
| | - Polina Khorn
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Mikhail Shevtsov
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Kirill Kovalev
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Sergey Bukhdruker
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Ivan Okhrimenko
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Petr Popov
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- iMolecule, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Hao Hu
- Department of Physics, Arizona State University, Tempe, AZ, 85281, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ, 85281, USA
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Ivan Gushchin
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Andrey Rogachev
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
- Joint Institute for Nuclear Research, Dubna, 141980, Russia
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Sehan Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Republic of Korea
| | - Gisu Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Republic of Korea
| | - Hyo Jung Hyun
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Republic of Korea
| | - Jaehyun Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, 38400, France
| | - Valentin Borshchevskiy
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
- Joint Institute for Nuclear Research, Dubna, 141980, Russia.
| | - Alexey Mishin
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
6
|
Kumar A, Zhong Y, Albrecht A, Sang PB, Maples A, Liu Z, Vinayachandran V, Reja R, Lee CF, Kumar A, Chen J, Xiao J, Park B, Shen J, Liu B, Person MD, Trybus KM, Zhang KYJ, Pugh BF, Kamm KE, Milewicz DM, Shen X, Kapoor P. Actin R256 Mono-methylation Is a Conserved Post-translational Modification Involved in Transcription. Cell Rep 2021; 32:108172. [PMID: 32997990 PMCID: PMC8860185 DOI: 10.1016/j.celrep.2020.108172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 07/11/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear actin has been elusive due to the lack of knowledge about molecular mechanisms. From actin-containing chromatin remodeling complexes, we discovered an arginine mono-methylation mark on an evolutionarily conserved R256 residue of actin (R256me1). Actin R256 mutations in yeast affect nuclear functions and cause diseases in human. Interestingly, we show that an antibody specific for actin R256me1 preferentially stains nuclear actin over cytoplasmic actin in yeast, mouse, and human cells. We also show that actin R256me1 is regulated by protein arginine methyl transferase-5 (PRMT5) in HEK293 cells. A genome-wide survey of actin R256me1 mark provides a landscape for nuclear actin correlated with transcription. Further, gene expression and protein interaction studies uncover extensive correlations between actin R256me1 and active transcription. The discovery of actin R256me1 mark suggests a fundamental mechanism to distinguish nuclear actin from cytoplasmic actin through post-translational modification (PTM) and potentially implicates an actin PTM mark in transcription and human diseases. Nuclear actin and actin PTMs are poorly understood. Kumar et al. discover a system of actin PTMs similar to histone PTMs, including a conserved mark on nuclear actin (R256me1) with potential implications for transcription and human diseases.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Yuan Zhong
- Department of Epigenetics and Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Amelie Albrecht
- Department of Epigenetics and Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Pau Biak Sang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Adrian Maples
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Zhenan Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vinesh Vinayachandran
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rohit Reja
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chia-Fang Lee
- ICMB Proteomics Facility, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Jiyuan Chen
- Department of Internal Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jing Xiao
- Department of Epigenetics and Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Bongsoo Park
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Maria D Person
- ICMB Proteomics Facility, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kristine E Kamm
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Xuetong Shen
- Department of Epigenetics and Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA.
| | - Prabodh Kapoor
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA.
| |
Collapse
|
7
|
Walker B, Jing Z, Ren P. Molecular dynamics free energy simulations of ATP:Mg 2+ and ADP:Mg 2+ using the polarizable force field AMOEBA. MOLECULAR SIMULATION 2021; 47:439-448. [PMID: 34421214 DOI: 10.1080/08927022.2020.1725003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ATPases and GTPases are two important classes of protein that play critical roles in energy transduction, cellular signaling, gene regulation and catalysis. These proteins use cofactors such as nucleoside di and tri-phosphates (NTP, NDP) and can detect the difference between NDP and NTP which then induce different protein conformations. Mechanisms that drive proteins into the NTP or NDP conformation may depend on factors such as ligand structure and how Mg2+ coordinates with the ligand, amino acids in the pocket and water molecules. Here, we have used the advanced electrostatic and polarizable force field AMOEBA and molecular dynamics free energy simulations (MDFE) to examine the various binding mechanisms of ATP:Mg2+ and ADP:Mg2+.We compared the ATP:Mg2+ binding with previous studies using non-polarizable force fields and experimental data on the binding affinity. It was found that the total free energy of binding for ATP:Mg2+ (-7.00 ± 2.13 kcal/mol) is in good agreement with experimental values (-8.6 ± .2 kcal/mol)1. In addition, parameters for relevant protonation states of ATP, ADP, GTP and GDP have been derived. These parameters will allow for researchers to investigate biochemical phenomena involving NTP's and NDP's with greater accuracy than previous studies involving non-polarizable force fields.
Collapse
Affiliation(s)
- Brandon Walker
- Department of Biomedical Engineering at The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhifeng Jing
- Department of Biomedical Engineering at The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering at The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
New Insights into Cellular Functions of Nuclear Actin. BIOLOGY 2021; 10:biology10040304. [PMID: 33916969 PMCID: PMC8067577 DOI: 10.3390/biology10040304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary It is well known that actin forms a cytoplasmic network of microfilaments, the part of the cytoskeleton, in the cytoplasm of eukaryotic cells. The presence of nuclear actin was elusive for a very long time. Now, there is a very strong evidence that actin plays many important roles in the nucleus. Here, we discuss the recently discovered functions of the nuclear actin pool. Actin does not have nuclear localization signal (NLS), so its import to the nucleus is facilitated by the NLS-containing proteins. Nuclear actin plays a role in the maintenance of the nuclear structure and the nuclear envelope breakdown. It is also involved in chromatin remodeling, and chromatin and nucleosome movement necessary for DNA recombination, repair, and the initiation of transcription. It also binds RNA polymerases, promoting transcription. Because of the multifaceted role of nuclear actin, the future challenge will be to further define its functions in various cellular processes and diseases. Abstract Actin is one of the most abundant proteins in eukaryotic cells. There are different pools of nuclear actin often undetectable by conventional staining and commercial antibodies used to identify cytoplasmic actin. With the development of more sophisticated imaging and analytical techniques, it became clear that nuclear actin plays a crucial role in shaping the chromatin, genomic, and epigenetic landscape, transcriptional regulation, and DNA repair. This multifaceted role of nuclear actin is not only important for the function of the individual cell but also for the establishment of cell fate, and tissue and organ differentiation during development. Moreover, the changes in the nuclear, chromatin, and genomic architecture are preamble to various diseases. Here, we discuss some of the newly described functions of nuclear actin.
Collapse
|
9
|
Mani S, Katkar HH, Voth GA. Compressive and Tensile Deformations Alter ATP Hydrolysis and Phosphate Release Rates in Actin Filaments. J Chem Theory Comput 2021; 17:1900-1913. [PMID: 33596075 DOI: 10.1021/acs.jctc.0c01186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Actin filament networks in eukaryotic cells are constantly remodeled through nucleotide state controlled interactions with actin binding proteins, leading to macroscopic structures such as bundled filaments, branched filaments, and so on. The nucleotide (ATP) hydrolysis, phosphate release, and polymerization/depolymerization reactions that lead to the formation of these structures are correlated with the conformational fluctuations of the actin subunits at the molecular scale. The resulting structures generate and experience varying levels of force and impart cells with several functionalities such as their ability to move, divide, transport cargo, etc. Models that explicitly connect the structure to reactions are essential to elucidate a fundamental level of understanding of these processes. In this regard, a bottom-up Ultra-Coarse-Grained (UCG) model of actin filaments that can simulate ATP hydrolysis, inorganic phosphate release (Pi), and depolymerization reactions is presented in this work. In this model, actin subunits are represented using coarse-grained particles that evolve in time and undergo reactions depending on the conformations sampled. The reactions are represented through state transitions, with each state represented by a unique effective coarse-grained potential. Effects of compressive and tensile strains on the rates of reactions are then analyzed. Compressive strains tend to unflatten the actin subunits, reduce the rate of ATP hydrolysis, and increase the Pi release rate. On the other hand, tensile strain flattens subunits, increases the rate of ATP hydrolysis, and decrease the Pi release rate. Incorporating these predictions into a Markov State Model highlighted that strains alter the steady-state distribution of subunits with ADPPi and ADP nucleotide, thus identifying possible additional factors underlying the cooperative binding of regulatory proteins to actin filaments.
Collapse
Affiliation(s)
- Sriramvignesh Mani
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Harshwardhan H Katkar
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Harris AR, Jreij P, Belardi B, Joffe AM, Bausch AR, Fletcher DA. Biased localization of actin binding proteins by actin filament conformation. Nat Commun 2020; 11:5973. [PMID: 33239610 PMCID: PMC7688639 DOI: 10.1038/s41467-020-19768-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022] Open
Abstract
The assembly of actin filaments into distinct cytoskeletal structures plays a critical role in cell physiology, but how proteins localize differentially to these structures within a shared cytoplasm remains unclear. Here, we show that the actin-binding domains of accessory proteins can be sensitive to filament conformational changes. Using a combination of live cell imaging and in vitro single molecule binding measurements, we show that tandem calponin homology domains (CH1-CH2) can be mutated to preferentially bind actin networks at the front or rear of motile cells. We demonstrate that the binding kinetics of CH1-CH2 domain mutants varies as actin filament conformation is altered by perturbations that include stabilizing drugs and other binding proteins. These findings suggest that conformational changes of actin filaments in cells could help to direct accessory binding proteins to different actin cytoskeletal structures through a biophysical feedback loop.
Collapse
Affiliation(s)
- Andrew R Harris
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Pamela Jreij
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Brian Belardi
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Aaron M Joffe
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Andreas R Bausch
- Lehrstuhl für Biophysik (E27), Technische Universität München, Garching, 85748, Germany
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
11
|
Khan MI, Hasan F, Mahmud KAHA, Adnan A. Recent Computational Approaches on Mechanical Behavior of Axonal Cytoskeletal Components of Neuron: A Brief Review. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42493-020-00043-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Horan BG, Hall AR, Vavylonis D. Insights into Actin Polymerization and Nucleation Using a Coarse-Grained Model. Biophys J 2020; 119:553-566. [PMID: 32668234 DOI: 10.1016/j.bpj.2020.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
We studied actin filament polymerization and nucleation with molecular dynamics simulations and a previously established coarse-grained model having each residue represented by a single interaction site located at the Cα atom. We approximate each actin protein as a fully or partially rigid unit to identify the equilibrium structural ensemble of interprotein complexes. Monomers in the F-actin configuration bound to both barbed and pointed ends of a short F-actin filament at the anticipated locations for polymerization. Binding at both ends occurred with similar affinity. Contacts between residues of the incoming subunit and the short filament were consistent with expectation from models based on crystallography, x-ray diffraction, and cryo-electron microscopy. Binding at the barbed and pointed end also occurred at an angle with respect to the polymerizable bound structure, and the angle range depended on the flexibility of the D-loop. Additional barbed end bound states were seen when the incoming subunit was in the G-actin form. Consistent with an activation barrier for pointed end polymerization, G-actin did not bind at an F-actin pointed end. In all cases, binding at the barbed end also occurred in a configuration similar to the antiparallel (lower) dimer. Individual monomers bound each other in a short-pitch helix complex in addition to other configurations, with several of them apparently nonproductive for polymerization. Simulations with multiple monomers in the F-actin form show assembly into filaments as well as transient aggregates at the barbed end. We discuss the implications of these observations on the kinetic pathway of actin filament nucleation and polymerization and possibilities for future improvements of the coarse-grained model.
Collapse
Affiliation(s)
- Brandon G Horan
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Aaron R Hall
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
13
|
Das S, Ge P, Oztug Durer ZA, Grintsevich EE, Zhou ZH, Reisler E. D-loop Dynamics and Near-Atomic-Resolution Cryo-EM Structure of Phalloidin-Bound F-Actin. Structure 2020; 28:586-593.e3. [PMID: 32348747 DOI: 10.1016/j.str.2020.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/28/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Detailed molecular information on G-actin assembly into filaments (F-actin), and their structure, dynamics, and interactions, is essential for understanding their cellular functions. Previous studies indicate that a flexible DNase I binding loop (D-loop, residues 40-50) plays a major role in actin's conformational dynamics. Phalloidin, a "gold standard" for actin filament staining, stabilizes them and affects the D-loop. Using disulfide crosslinking in yeast actin D-loop mutant Q41C/V45C, light-scattering measurements, and cryoelectron microscopy reconstructions, we probed the constraints of D-loop dynamics and its contribution to F-actin formation/stability. Our data support a model of residues 41-45 distances that facilitate G- to F-actin transition. We report also a 3.3-Å resolution structure of phalloidin-bound F-actin in the ADP-Pi-like (ADP-BeFx) state. This shows the phalloidin-binding site on F-actin and how the relative movement between its two protofilaments is restricted by it. Together, our results provide molecular details of F-actin structure and D-loop dynamics.
Collapse
Affiliation(s)
- Sanchaita Das
- Department of Chemistry and Biochemistry, University of California, UCLA, Los Angeles, CA 90095, USA
| | - Peng Ge
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA
| | - Zeynep A Oztug Durer
- Department of Chemistry and Biochemistry, University of California, UCLA, Los Angeles, CA 90095, USA
| | - Elena E Grintsevich
- Department of Chemistry and Biochemistry, University of California, UCLA, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Schroer CFE, Baldauf L, van Buren L, Wassenaar TA, Melo MN, Koenderink GH, Marrink SJ. Charge-dependent interactions of monomeric and filamentous actin with lipid bilayers. Proc Natl Acad Sci U S A 2020; 117:5861-5872. [PMID: 32123101 PMCID: PMC7084070 DOI: 10.1073/pnas.1914884117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cytoskeletal protein actin polymerizes into filaments that are essential for the mechanical stability of mammalian cells. In vitro experiments showed that direct interactions between actin filaments and lipid bilayers are possible and that the net charge of the bilayer as well as the presence of divalent ions in the buffer play an important role. In vivo, colocalization of actin filaments and divalent ions are suppressed, and cells rely on linker proteins to connect the plasma membrane to the actin network. Little is known, however, about why this is the case and what microscopic interactions are important. A deeper understanding is highly beneficial, first, to obtain understanding in the biological design of cells and, second, as a possible basis for the building of artificial cortices for the stabilization of synthetic cells. Here, we report the results of coarse-grained molecular dynamics simulations of monomeric and filamentous actin in the vicinity of differently charged lipid bilayers. We observe that charges on the lipid head groups strongly determine the ability of actin to adsorb to the bilayer. The inclusion of divalent ions leads to a reversal of the binding affinity. Our in silico results are validated experimentally by reconstitution assays with actin on lipid bilayer membranes and provide a molecular-level understanding of the actin-membrane interaction.
Collapse
Affiliation(s)
- Carsten F E Schroer
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Lucia Baldauf
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Living Matter Department, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Lennard van Buren
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Living Matter Department, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica, New University of Lisbon, 2780-157, Oeiras, Portugal
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands;
- Living Matter Department, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands;
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
15
|
Orellana L. Large-Scale Conformational Changes and Protein Function: Breaking the in silico Barrier. Front Mol Biosci 2019; 6:117. [PMID: 31750315 PMCID: PMC6848229 DOI: 10.3389/fmolb.2019.00117] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Large-scale conformational changes are essential to link protein structures with their function at the cell and organism scale, but have been elusive both experimentally and computationally. Over the past few years developments in cryo-electron microscopy and crystallography techniques have started to reveal multiple snapshots of increasingly large and flexible systems, deemed impossible only short time ago. As structural information accumulates, theoretical methods become central to understand how different conformers interconvert to mediate biological function. Here we briefly survey current in silico methods to tackle large conformational changes, reviewing recent examples of cross-validation of experiments and computational predictions, which show how the integration of different scale simulations with biological information is already starting to break the barriers between the in silico, in vitro, and in vivo worlds, shedding new light onto complex biological problems inaccessible so far.
Collapse
Affiliation(s)
- Laura Orellana
- Institutionen för Biokemi och Biofysik, Stockholms Universitet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
16
|
Zhu L, Sheong FK, Cao S, Liu S, Unarta IC, Huang X. TAPS: A traveling-salesman based automated path searching method for functional conformational changes of biological macromolecules. J Chem Phys 2019; 150:124105. [DOI: 10.1063/1.5082633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Lizhe Zhu
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, China
| | - Fu Kit Sheong
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Siqin Cao
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Song Liu
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ilona C. Unarta
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuhui Huang
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Bioengineering Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
17
|
Direct Interaction between the Two Z Ring Membrane Anchors FtsA and ZipA. J Bacteriol 2019; 201:JB.00579-18. [PMID: 30478085 DOI: 10.1128/jb.00579-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
The initiation of Escherichia coli cell division requires three proteins, FtsZ, FtsA, and ZipA, which assemble in a dynamic ring-like structure at midcell. Along with the transmembrane protein ZipA, the actin-like FtsA helps to tether treadmilling polymers of tubulin-like FtsZ to the membrane. In addition to forming homo-oligomers, FtsA and ZipA interact directly with the C-terminal conserved domain of FtsZ. Gain-of-function mutants of FtsA are deficient in forming oligomers and can bypass the need for ZipA, suggesting that ZipA may normally function to disrupt FtsA oligomers, although no direct interaction between FtsA and ZipA has been reported. Here, we use in vivo cross-linking to show that FtsA and ZipA indeed interact directly. We identify the exposed surface of FtsA helix 7, which also participates in binding to ATP through its internal surface, as a key interface needed for the interaction with ZipA. This interaction suggests that FtsZ's membrane tethers may regulate each other's activities.IMPORTANCE To divide, most bacteria first construct a protein machine at the plane of division and then recruit the machinery that will synthesize the division septum. In Escherichia coli, this first stage involves the assembly of FtsZ polymers at midcell, which directly bind to membrane-associated proteins FtsA and ZipA to form a discontinuous ring structure. Although FtsZ directly binds both FtsA and ZipA, it is unclear why FtsZ requires two separate membrane tethers. Here, we uncover a new direct interaction between the tethers, which involves a helix within FtsA that is adjacent to its ATP binding pocket. Our findings imply that in addition to their known roles as FtsZ membrane anchors, FtsA and ZipA may regulate each other's structure and function.
Collapse
|
18
|
Aydin F, Katkar HH, Voth GA. Multiscale simulation of actin filaments and actin-associated proteins. Biophys Rev 2018; 10:1521-1535. [PMID: 30382557 PMCID: PMC6297090 DOI: 10.1007/s12551-018-0474-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/21/2018] [Indexed: 02/04/2023] Open
Abstract
Actin is an important cytoskeletal protein that serves as a building block to form filament networks that span across the cell. These networks are orchestrated by a myriad of other cytoskeletal entities including the unbranched filament-forming protein formin and branched network-forming protein complex Arp2/3. Computational models have been able to provide insights into many important structural transitions that are involved in forming these networks, and into the nature of interactions essential for actin filament formation and for regulating the behavior of actin-associated proteins. In this review, we summarize a subset of such models that focus on the atomistic features and those that can integrate atomistic features into a larger picture in a multiscale fashion.
Collapse
Affiliation(s)
- Fikret Aydin
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA
| | - Harshwardhan H Katkar
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA
| | - Gregory A Voth
- Department of Chemistry, Institute of Biophysical Dynamics, and James Frank Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Katkar HH, Davtyan A, Durumeric AEP, Hocky GM, Schramm AC, De La Cruz EM, Voth GA. Insights into the Cooperative Nature of ATP Hydrolysis in Actin Filaments. Biophys J 2018; 115:1589-1602. [PMID: 30249402 PMCID: PMC6260209 DOI: 10.1016/j.bpj.2018.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
Actin filaments continually assemble and disassemble within a cell. Assembled filaments "age" as a bound nucleotide ATP within each actin subunit quickly hydrolyzes followed by a slower release of the phosphate Pi, leaving behind a bound ADP. This subtle change in nucleotide state of actin subunits affects filament rigidity as well as its interactions with binding partners. We present here a systematic multiscale ultra-coarse-graining approach that provides a computationally efficient way to simulate a long actin filament undergoing ATP hydrolysis and phosphate-release reactions while systematically taking into account available atomistic details. The slower conformational changes and their dependence on the chemical reactions are simulated with the ultra-coarse-graining model by assigning internal states to the coarse-grained sites. Each state is represented by a unique potential surface of a local heterogeneous elastic network. Internal states undergo stochastic transitions that are coupled to conformations of the underlying molecular system. The model reproduces mechanical properties of the filament and allows us to study whether conformational fluctuations in actin subunits produce cooperative filament aging. We find that the nucleotide states of neighboring subunits modulate the reaction kinetics, implying cooperativity in ATP hydrolysis and Pi release. We further systematically coarse grain the system into a Markov state model that incorporates assembly and disassembly, facilitating a direct comparison with previously published models. We find that cooperativity in ATP hydrolysis and Pi release significantly affects the filament growth dynamics only near the critical G-actin concentration, whereas far from it, both cooperative and random mechanisms show similar growth dynamics. In contrast, filament composition in terms of the bound nucleotide distribution varies significantly at all monomer concentrations studied. These results provide new insights, to our knowledge, into the cooperative nature of ATP hydrolysis and Pi release and the implications it has for actin filament properties, providing novel predictions for future experimental studies.
Collapse
Affiliation(s)
- Harshwardhan H Katkar
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois
| | - Aram Davtyan
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois
| | - Aleksander E P Durumeric
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois
| | - Glen M Hocky
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois
| | - Anthony C Schramm
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois.
| |
Collapse
|
20
|
Hocky GM, Dannenhoffer-Lafage T, Voth GA. Coarse-Grained Directed Simulation. J Chem Theory Comput 2017; 13:4593-4603. [PMID: 28800392 DOI: 10.1021/acs.jctc.7b00690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many free-energy sampling and quantum mechanics/molecular mechanics (QM/MM) computations on protein complexes have been performed where, by necessity, a single component is studied isolated in solution while its overall configuration is kept in the complex-like state by either rigid restraints or harmonic constraints. A drawback in these studies is that the system's native fluctuations are lost, both due to the change of environment and the imposition of the extra potential. Yet, we know that having both accurate structure and fluctuations is likely crucial to achieving correct simulation estimates for the subsystem within its native larger protein complex context. In this work, we provide a new approach to this problem by drawing on ideas developed to incorporate experimental information into a molecular simulation by relative entropy minimization to a target system. We show that by using linear biases on coarse-grained (CG) observables (such as distances or angles between large subdomains within a protein), we can maintain the protein in a particular target conformation while also preserving the correct equilibrium fluctuations of the subsystem within its larger biomolecular complex. As an application, we demonstrate this algorithm by training a bias that causes an actin monomer (and trimer) in solution to sample the same average structure and fluctuations as if it were embedded within a much larger actin filament. Additionally, we have developed a number of algorithmic improvements that accelerate convergence of the on-the-fly relative entropy minimization algorithms for this type of application. Finally, we have contributed these methods to the PLUMED open source free energy sampling software library.
Collapse
Affiliation(s)
- Glen M Hocky
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Thomas Dannenhoffer-Lafage
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago , 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
21
|
Abstract
Computational and structural studies have been indispensable in investigating the molecular origins of actin filament mechanical properties and modulation by the regulatory severing protein cofilin. All-atom molecular dynamics simulations of cofilactin filament structures determined by electron cryomicroscopy reveal how cofilin enhances the bending and twisting compliance of actin filaments. Continuum mechanics models suggest that buckled cofilactin filaments localize elastic energy at boundaries between bare and cofilin-decorated segments because of their nonuniform elasticity, thereby accelerating filament severing. Here, we develop mesoscopic length-scale (cofil)actin filament models and evaluate the effects of compressive and twisting loads on strain energy distribution at specific interprotein interfaces. The models reliably capture the filament bending and torsional rigidities and intersubunit torsional flexibility measured experimentally with purified protein components. Buckling is predicted to enhance cofilactin filament severing with minimal effects on cofilin occupancy, whereas filament twisting enhances cofilin dissociation without compromising filament integrity. Preferential severing at actin-cofilactin boundaries of buckled filaments is more prominent than predicted by continuum models because of the enhanced spatial resolution. The models developed here will be valuable for evaluating the effects of filament shape deformations on filament stability and interactions with regulatory proteins, and analysis of single filament manipulation assays.
Collapse
|
22
|
Jaeger VW, Pfaendtner J. Destabilization of Human Serum Albumin by Ionic Liquids Studied Using Enhanced Molecular Dynamics Simulations. J Phys Chem B 2016; 120:12079-12087. [DOI: 10.1021/acs.jpcb.6b09410] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Vance W. Jaeger
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Box 351750, Seattle, Washington 98195, United States
| |
Collapse
|
23
|
Zheng L, Lin VC, Mu Y. Exploring Flexibility of Progesterone Receptor Ligand Binding Domain Using Molecular Dynamics. PLoS One 2016; 11:e0165824. [PMID: 27824891 PMCID: PMC5100906 DOI: 10.1371/journal.pone.0165824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/18/2016] [Indexed: 12/23/2022] Open
Abstract
Progesterone receptor (PR), a member of nuclear receptor (NR) superfamily, plays a vital role for female reproductive tissue development, differentiation and maintenance. PR ligand, such as progesterone, induces conformation changes in PR ligand binding domain (LBD), thus mediates subsequent gene regulation cascades. PR LBD may adopt different conformations upon an agonist or an antagonist binding. These different conformations would trigger distinct transcription events. Therefore, the dynamics of PR LBD would be of general interest to biologists for a deep understanding of its structure-function relationship. However, no apo-form (non-ligand bound) of PR LBD model has been proposed either by experiments or computational methods so far. In this study, we explored the structural dynamics of PR LBD using molecular dynamics simulations and advanced sampling tools in both ligand-bound and the apo-forms. Resolved by the simulation study, helix 11, helix 12 and loop 895–908 (the loop between these two helices) are quite flexible in antagonistic conformation. Several residues, such as Arg899 and Glu723, could form salt-bridging interaction between helix 11 and helix 3, and are important for the PR LBD dynamics. And we also propose that helix 12 in apo-form PR LBD, not like other NR LBDs, such as human estrogen receptor α (ERα) LBD, may not adopt a totally extended conformation. With the aid of umbrella sampling and metadynamics simulations, several stable conformations of apo-form PR LBD have been sampled, which may work as critical structural models for further large scale virtual screening study to discover novel PR ligands for therapeutic application.
Collapse
Affiliation(s)
- Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Valerie Chunling Lin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- * E-mail:
| |
Collapse
|
24
|
Colizzi F, Masetti M, Recanatini M, Cavalli A. Atomic-Level Characterization of the Chain-Flipping Mechanism in Fatty-Acids Biosynthesis. J Phys Chem Lett 2016; 7:2899-2904. [PMID: 27409360 DOI: 10.1021/acs.jpclett.6b01230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During fatty acids biosynthesis the elongating acyl chain is sequestered within the core of the highly conserved acyl carrier protein (ACP). At each catalytic step, the acyl intermediates are transiently delivered from ACP to the active site of the enzymatic counterparts and, at the same time, are protected from the solvent to prevent nonselective reactivity. Yet, the molecular determinants of such a universal transition-termed chain flipping-remain poorly understood. Here we capture the atomic-level details of the chain-flipping mechanism by using metadynamics simulations. We observe the fatty-acid chain gliding through the protein-protein interface with barely 30% of its surface exposed to water molecules. The small ACP's helix III acts as gatekeeper of the process, and we find its conformational plasticity critical for a successful substrate transfer. The results are in agreement with a wide range of experimental observations and provide unprecedented insight on the molecular determinants and driving forces of the chain-flipping process.
Collapse
Affiliation(s)
- Francesco Colizzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna , via Belmeloro 6, 40126 Bologna, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna , via Belmeloro 6, 40126 Bologna, Italy
| | - Maurizio Recanatini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna , via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna , via Belmeloro 6, 40126 Bologna, Italy
- CompuNet, Istituto Italiano di Tecnologia , via Morego 30, 16163 Genova, Italy
| |
Collapse
|
25
|
Perkett MR, Mirijanian DT, Hagan MF. The allosteric switching mechanism in bacteriophage MS2. J Chem Phys 2016; 145:035101. [PMID: 27448905 PMCID: PMC4947040 DOI: 10.1063/1.4955187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/07/2016] [Indexed: 01/16/2023] Open
Abstract
We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.
Collapse
Affiliation(s)
- Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| | - Dina T Mirijanian
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| |
Collapse
|
26
|
Umetskaya VN. The mechanism of ATP–G-actin hydrolysis in Mg2+-containing solutions. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916040242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Barkó S, Szatmári D, Bódis E, Türmer K, Ujfalusi Z, Popp D, Robinson RC, Nyitrai M. Large-scale purification and in vitro characterization of the assembly of MreB from Leptospira interrogans. Biochim Biophys Acta Gen Subj 2016; 1860:1942-52. [PMID: 27297907 DOI: 10.1016/j.bbagen.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Weil's syndrome is caused by Leptospira interrogans infections, a Gram negative bacterium with a distinct thin corkscrew cell shape. The molecular basis for this unusual morphology is unknown. In many bacteria, cell wall synthesis is orchestrated by the actin homolog, MreB. METHODS Here we have identified the MreB within the L. interrogans genome and expressed the His-tagged protein product of the synthesized gene (Li-MreB) in Escherichia coli. Li-MreB did not purify under standard nucleotide-free conditions used for MreBs from other species, requiring the continual presence of ATP to remain soluble. Covalent modification of Li-MreB free thiols with Alexa488 produced a fluorescent version of Li-MreB. RESULTS We developed native and denaturing/refolding purification schemes for Li-MreB. The purified product was shown to assemble and disassemble in MgCl2 and KCl dependent manners, as monitored by light scattering and sedimentation studies. The fluorescence spectrum of labeled Li-MreB-Alexa488 showed cation-induced changes in line with an activation process followed by a polymerization phase. The resulting filaments appeared as bundles and sheets under the fluorescence microscope. Finally, since the Li-MreB polymerization was cation dependent, we developed a simple method to measure monovalent cation concentrations within a test case prokaryote, E. coli. CONCLUSIONS We have identified and initially characterized the cation-dependent polymerization properties of a novel MreB from a non-rod shaped bacterium and developed a method to measure cation concentrations within prokaryotes. GENERAL SIGNIFICANCE This initial characterization of Li-MreB will enable future structural determination of the MreB filament from this corkscrew-shaped bacterium.
Collapse
Affiliation(s)
- Szilvia Barkó
- Department of Biophysics, Medical School, University of Pécs, Szigeti str. 12, Pécs H-7624, Hungary
| | - Dávid Szatmári
- Department of Biophysics, Medical School, University of Pécs, Szigeti str. 12, Pécs H-7624, Hungary
| | - Emőke Bódis
- Department of Biophysics, Medical School, University of Pécs, Szigeti str. 12, Pécs H-7624, Hungary
| | - Katalin Türmer
- Department of Biophysics, Medical School, University of Pécs, Szigeti str. 12, Pécs H-7624, Hungary
| | - Zoltán Ujfalusi
- Department of Biophysics, Medical School, University of Pécs, Szigeti str. 12, Pécs H-7624, Hungary
| | - David Popp
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis 138673, Singapore
| | - Robert C Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Miklós Nyitrai
- Department of Biophysics, Medical School, University of Pécs, Szigeti str. 12, Pécs H-7624, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Szigeti str. 12, Pécs H-7624, Hungary
| |
Collapse
|
28
|
Molecular dynamics and high throughput binding free energy calculation of anti-actin anticancer drugs-New insights for better design. Comput Biol Chem 2016; 64:47-55. [PMID: 27244087 DOI: 10.1016/j.compbiolchem.2016.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/11/2016] [Accepted: 05/22/2016] [Indexed: 11/21/2022]
Abstract
Actin cytoskeleton plays an important role in cancerous cell progression. Till date many anticancer toxins are discovered that binds to different sites of actin. Mechanism of action of these toxins varies with respect to the site where they bind to actin. Latrunculin A (LAT) binds closely to nucleotide binding site and Reidispongiolide binds to the barbed end of actin. LAT is reported to reduce the displacement of domain 2 with respect to domain 1 and allosterically modulate nucleotide exchange. On the other hand Reidispongiolide binds with the higher affinity to actin and competes with the DNaseI binding loop once the inter-monomer interaction has been formed. Evolving better actin binders being the aim of this study we conducted a comparative molecular dynamics of these two actin-drug complexes and actin complexed with ATP alone, 50ns each. High throughput binding free energy calculations in conjugation with the high-throughput MD simulations was used to predict modifications in these two renowned anti-actin anticancer drugs for better design. Per residue energy profiling that contribute to free energy of binding shows that there is an unfavourable energy at the site where Asp157 interacts with 2-thiazolidinone moiety of LAT. Similarly, unfavourable energies are reported near macrocyclic region of Reidispongiolide specifically near carbons 7, 11 & 25 and tail region carbons 27 & 30. These predicted sites can be used for modifications and few of these are discussed in this work based on the interactions with the binding site residues. The study reveals specific interactions that are involved in the allosteric modulation of ATP by these two compounds. Glu207 closely interacting with LAT A initiates the allosteric effect on ATP binding site specifically affecting residues Asp184, Lys215 and Lys336. RGA bound actin shows high anti-correlated motions between sub domain 3 and 4. Unlike LAT A, Reidispongiolide induces a flat structure of actin which definitely should affect actin polymerisation and lead to disassembly of actin filaments.
Collapse
|
29
|
Hocky GM, Baker JL, Bradley MJ, Sinitskiy AV, De La Cruz EM, Voth GA. Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits. J Phys Chem B 2016; 120:4558-67. [PMID: 27146246 PMCID: PMC4959277 DOI: 10.1021/acs.jpcb.6b02741] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Ions
regulate the assembly and mechanical properties of actin filaments.
Recent work using structural bioinformatics and site-specific mutagenesis
favors the existence of two discrete and specific divalent cation
binding sites on actin filaments, positioned in the long axis between
actin subunits. Cation binding at one site drives polymerization,
while the other modulates filament stiffness and plays a role in filament
severing by the regulatory protein, cofilin. Existing structural methods
have not been able to resolve filament-associated cations, and so
in this work we turn to molecular dynamics simulations to suggest
a candidate binding pocket geometry for each site and to elucidate
the mechanism by which occupancy of the “stiffness site”
affects filament mechanical properties. Incorporating a magnesium
ion in the “polymerization site” does not seem to require
any large-scale change to an actin subunit’s conformation.
Binding of a magnesium ion in the “stiffness site” adheres
the actin DNase-binding loop (D-loop) to its long-axis neighbor, which
increases the filament torsional stiffness and bending persistence
length. Our analysis shows that bound D-loops occupy a smaller region
of accessible conformational space. Cation occupancy buries key conserved
residues of the D-loop, restricting accessibility to regulatory proteins
and enzymes that target these amino acids.
Collapse
Affiliation(s)
- Glen M Hocky
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago , Chicago, Illinois 60637, United States
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey , Ewing Township, New Jersey 08628, United States
| | - Michael J Bradley
- Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Anton V Sinitskiy
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago , Chicago, Illinois 60637, United States
| | - Enrique M De La Cruz
- Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
30
|
Kudryashov DS, Reisler E. ATP and ADP actin states. Biopolymers 2016; 99:245-56. [PMID: 23348672 DOI: 10.1002/bip.22155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/07/2012] [Indexed: 11/06/2022]
Abstract
This minireview is dedicated to the memory of Henryk Eisenberg and honors his major contributions to many areas of biophysics and to the analysis of macromolecular states and interactions in particular. This work reviews the ATP and ADP states of a ubiquitous protein, actins, and considers the present evidence for and against unique, nucleotide-dependent conformations of this protein. The effects of ATP and ADP on specific structural elements of actins, its loops and clefts, as revealed by mutational, crosslinking, spectroscopic, and EPR methods are discussed. It is concluded that the existing evidence points to dynamic equilibria of these structural elements among various conformational states in both ATP- and ADP-actins, with the nucleotides impacting the equilibria distributions.
Collapse
Affiliation(s)
- Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, the Ohio State University, Columbus, OH 43210.
| | | |
Collapse
|
31
|
Cui D, Ren W, Li W, Wang W. Molecular simulations of substrate release and coupled conformational motions in adenylate kinase. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633616500048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Conformational opening coupled substrate release is believed to be related to the rate limiting step in the catalysis cycle of the adenylate kinase. However, it is still unclear how the substrate dissociates from its active site and how the substrate release is coupled to conformational changes of the kinase. In this work, by using metadynamics simulations, we investigated the ADP release process and the coupled protein dynamics. We found that the ADP release involves overcoming a high free energy barrier, and protonation of the [Formula: see text]-phosphate of the ADP molecules can drastically reduce the barrier height, therefore, promote the ADP release. We identified several key residues contributing to the high free energy barrier. We also showed that the ADP attached to LID domain leaves the binding pocket earlier than the one attached to the NMP domain. We further observed that the ADP release is accompanied by almost fully opening of the LID domain and partially opening of the NMP domain. Our results provide insight into the molecular mechanism of the substrate release of adenylate kinase and the coupled conformational motions.
Collapse
Affiliation(s)
- Dachao Cui
- Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Weitong Ren
- Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Wenfei Li
- Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Wang
- Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
32
|
Grazioso G, Sgrignani J, Capelli R, Matera C, Dallanoce C, De Amici M, Cavalli A. Allosteric Modulation of Alpha7 Nicotinic Receptors: Mechanistic Insight through Metadynamics and Essential Dynamics. J Chem Inf Model 2015; 55:2528-39. [PMID: 26569022 DOI: 10.1021/acs.jcim.5b00459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing attention has recently been devoted to allosteric modulators, as they can provide inherent advantages over classic receptor agonists. In the field of nicotinic receptors (nAChRs), the main advantage is that allosteric modulators can trigger pharmacological responses, limiting receptor desensitization. Most of the known allosteric ligands are "positive allosteric modulators" (PAMs), which increase both sensitivity to receptor agonists and current amplitude. Intriguingly, some allosteric modulators are also able to activate the α7 receptor (α7-nAChR) even in the absence of orthosteric agonists. These compounds have been named "ago-allosteric modulators" and GAT107 has been studied in depth because of its unique mechanism of action. We here investigate by molecular dynamics simulations, metadynamics, and essential dynamics the activation mechanism of α7-nAChR, in the presence of different nicotinic modulators. We determine the free energy profiles associated with the closed-to-open motion of the loop C, and we highlight mechanistic differences observed in the presence of different modulators. In particular, we demonstrate that GAT107 triggers conformational motions and cross-talk similar to those observed when the α7-nACh receptor is in complex with both an agonist and an allosteric modulator.
Collapse
Affiliation(s)
- Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Jacopo Sgrignani
- Institute of Research in Biomedicine (IRB) , Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Romina Capelli
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Carlo Matera
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Clelia Dallanoce
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Marco De Amici
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Andrea Cavalli
- Drug Discovery and Development-Computation, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy.,Department of Pharmacy and Biotecnology, University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
33
|
Dama JF, Hocky GM, Sun R, Voth GA. Exploring Valleys without Climbing Every Peak: More Efficient and Forgiving Metabasin Metadynamics via Robust On-the-Fly Bias Domain Restriction. J Chem Theory Comput 2015; 11:5638-50. [PMID: 26587809 PMCID: PMC4675329 DOI: 10.1021/acs.jctc.5b00907] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Metadynamics is an enhanced sampling method designed to flatten free energy surfaces uniformly. However, the highest-energy regions are often irrelevant to study and dangerous to explore because systems often change irreversibly in unforeseen ways in response to driving forces in these regions, spoiling the sampling. Introducing an on-the-fly domain restriction allows metadynamics to flatten only up to a specified energy level and no further, improving efficiency and safety while decreasing the pressure on practitioners to design collective variables that are robust to otherwise irrelevant high energy driving. This paper describes a new method that achieves this using sequential on-the-fly estimation of energy wells and redefinition of the metadynamics hill shape, termed metabasin metadynamics. The energy level may be defined a priori or relative to unknown barrier energies estimated on-the-fly. Altering only the hill ensures that the method is compatible with many other advances in metadynamics methodology. The hill shape has a natural interpretation in terms of multiscale dynamics, and the computational overhead in simulation is minimal when studying systems of any reasonable size, for instance proteins or other macromolecules. Three example applications show that the formula is accurate and robust to complex dynamics, making metadynamics significantly more forgiving with respect to CV quality and thus more feasible to apply to the most challenging biomolecular systems.
Collapse
Affiliation(s)
- James F Dama
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago , Chicago, Illinois 60637, United States.,Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Glen M Hocky
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago , Chicago, Illinois 60637, United States
| | - Rui Sun
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago , Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago , Chicago, Illinois 60637, United States.,Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
34
|
Bidone TC, Kim T, Deriu MA, Morbiducci U, Kamm RD. Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks. Biomech Model Mechanobiol 2015; 14:1143-55. [PMID: 25708806 DOI: 10.1007/s10237-015-0660-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/01/2023]
Abstract
Cells are able to respond to mechanical forces and deformations. The actin cytoskeleton, a highly dynamic scaffolding structure, plays an important role in cell mechano-sensing. Thus, understanding rheological behaviors of the actin cytoskeleton is critical for delineating mechanical behaviors of cells. The actin cytoskeleton consists of interconnected actin filaments (F-actin) that form via self-assembly of actin monomers. It has been shown that molecular changes of the monomer subunits impact the rigidity of F-actin. However, it remains inconclusive whether or not the molecular changes can propagate to the network level and thus alter the rheological properties of actin networks. Here, we focus on how cation binding and nucleotide state tune the molecular conformation and rigidity of F-actin and a representative rheological behavior of actin networks, strain-stiffening. We employ a multiscale approach by combining established computational techniques: molecular dynamics, normal mode analysis and Brownian dynamics. Our findings indicate that different combinations of nucleotide (ATP, ADP or ADP-Pi) and cation [Formula: see text] or [Formula: see text] at one or multiple sites) binding change the molecular conformation of F-actin by varying inter- and intra-strand interactions which bridge adjacent subunits between and within F-actin helical strands. This is reflected in the rigidity of actin filaments against bending and stretching. We found that differences in extension and bending rigidity of F-actin induced by cation binding to the low-, intermediate- and high-affinity sites vary the strain-stiffening response of actin networks crosslinked by rigid crosslinkers, such as scruin, whereas they minimally impact the strain-stiffening response when compliant crosslinkers, such as filamin A or [Formula: see text]-actinin, are used.
Collapse
Affiliation(s)
- Tamara Carla Bidone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | | | | | | | | |
Collapse
|
35
|
Nucleotide regulation of the structure and dynamics of G-actin. Biophys J 2014; 106:1710-20. [PMID: 24739170 DOI: 10.1016/j.bpj.2014.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 11/24/2022] Open
Abstract
Actin, a highly conserved cytoskeletal protein found in all eukaryotic cells, facilitates cell motility and membrane remodeling via a directional polymerization cycle referred to as treadmilling. The nucleotide bound at the core of each actin subunit regulates this process. Although the biochemical kinetics of treadmilling has been well characterized, the atomistic details of how the nucleotide affects polymerization remain to be definitively determined. There is increasing evidence that the nucleotide regulation (and other characteristics) of actin cannot be fully described from the minimum energy structure, but rather depends on a dynamic equilibrium between conformations. In this work we explore the conformational mobility of the actin monomer (G-actin) in a coarse-grained subspace using umbrella sampling to bias all-atom molecular-dynamics simulations along the variables of interest. The results reveal that ADP-bound actin subunits are more conformationally mobile than ATP-bound subunits. We used a multiscale analysis method involving coarse-grained and atomistic representations of these simulations to characterize how the nucleotide affects the low-energy states of these systems. The interface between subdomains SD2-SD4, which is important for polymerization, is stabilized in an actin filament-like (F-actin) conformation in ATP-bound G-actin. Additionally, the nucleotide modulates the conformation of the SD1-SD3 interface, a region involved in the binding of several actin-binding proteins.
Collapse
|
36
|
Gouron A, Milet A, Jamet H. Conformational flexibility of human casein kinase catalytic subunit explored by metadynamics. Biophys J 2014; 106:1134-41. [PMID: 24606937 DOI: 10.1016/j.bpj.2014.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 01/13/2014] [Accepted: 01/23/2014] [Indexed: 02/06/2023] Open
Abstract
Casein kinase CK2 is an essential enzyme in higher organisms, catalyzing the transfer of the γ phosphate from ATP to serine and threonine residues on protein substrates. In a number of animal tumors, CK2 activity has been shown to escape normal cellular control, making it a potential target for cancer therapy. Several crystal structures of human CK2 have been published with different conformations for the CK2α catalytic subunit. This variability reflects a high flexibility for two regions of CK2α: the interdomain hinge region, and the glycine-rich loop (p-loop). Here, we present a computational study simulating the equilibrium between three conformations involving these regions. Simulations were performed using well-tempered metadynamics combined with a path collective variables approach. This provides a reference pathway describing the conformational changes being studied, based on analysis of free energy surfaces. The free energies of the three conformations were found to be close and the paths proposed had low activation barriers. Our results indicate that these conformations can exist in water. This information should be useful when designing inhibitors specific to one conformation.
Collapse
Affiliation(s)
- Aurélie Gouron
- DCM, Equipe Chimie Théorique, Université Joseph Fourier Grenoble-I, UMR-CNRS 5250, ICMG, FR 2607, BP 53, 38041 Grenoble Cedex 9, France
| | - Anne Milet
- DCM, Equipe Chimie Théorique, Université Joseph Fourier Grenoble-I, UMR-CNRS 5250, ICMG, FR 2607, BP 53, 38041 Grenoble Cedex 9, France
| | - Helene Jamet
- DCM, Equipe Chimie Théorique, Université Joseph Fourier Grenoble-I, UMR-CNRS 5250, ICMG, FR 2607, BP 53, 38041 Grenoble Cedex 9, France.
| |
Collapse
|
37
|
Dama JF, Parrinello M, Voth GA. Well-tempered metadynamics converges asymptotically. PHYSICAL REVIEW LETTERS 2014; 112:240602. [PMID: 24996077 DOI: 10.1103/physrevlett.112.240602] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 05/21/2023]
Abstract
Metadynamics is a versatile and capable enhanced sampling method for the computational study of soft matter materials and biomolecular systems. However, over a decade of application and several attempts to give this adaptive umbrella sampling method a firm theoretical grounding prove that a rigorous convergence analysis is elusive. This Letter describes such an analysis, demonstrating that well-tempered metadynamics converges to the final state it was designed to reach and, therefore, that the simple formulas currently used to interpret the final converged state of tempered metadynamics are correct and exact. The results do not rely on any assumption that the collective variable dynamics are effectively Brownian or any idealizations of the hill deposition function; instead, they suggest new, more permissive criteria for the method to be well behaved. The results apply to tempered metadynamics with or without adaptive Gaussians or boundary corrections and whether the bias is stored approximately on a grid or exactly.
Collapse
Affiliation(s)
- James F Dama
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, and Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, Via G. Buffi 13, 6900 Lugano, Switzerland
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
38
|
Zheng S, Pfaendtner J. Enhanced sampling of chemical and biochemical reactions with metadynamics. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.923574] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Dien H, Deane CM, Knapp B. Gro2mat: A package to efficiently read gromacs output in MATLAB. J Comput Chem 2014; 35:1528-31. [DOI: 10.1002/jcc.23650] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Hung Dien
- Department of Analysis and Scientific Computing; Vienna University of Technology; Vienna 1040 Austria
| | - Charlotte M. Deane
- Department of Statistics; Protein Informatics Group; University of Oxford; Oxford OX1 United Kingdom
| | - Bernhard Knapp
- Department of Statistics; Protein Informatics Group; University of Oxford; Oxford OX1 United Kingdom
| |
Collapse
|
40
|
Perkett MR, Hagan MF. Using Markov state models to study self-assembly. J Chem Phys 2014; 140:214101. [PMID: 24907984 PMCID: PMC4048447 DOI: 10.1063/1.4878494] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/30/2014] [Indexed: 11/14/2022] Open
Abstract
Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude.
Collapse
Affiliation(s)
- Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474, USA
| |
Collapse
|
41
|
Venter G, Oerlemans FTJJ, Wijers M, Willemse M, Fransen JAM, Wieringa B. Glucose controls morphodynamics of LPS-stimulated macrophages. PLoS One 2014; 9:e96786. [PMID: 24796786 PMCID: PMC4010488 DOI: 10.1371/journal.pone.0096786] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/11/2014] [Indexed: 12/12/2022] Open
Abstract
Macrophages constantly undergo morphological changes when quiescently surveying the tissue milieu for signs of microbial infection or damage, or after activation when they are phagocytosing cellular debris or foreign material. These morphofunctional alterations require active actin cytoskeleton remodeling and metabolic adaptation. Here we analyzed RAW 264.7 and Maf-DKO macrophages as models to study whether there is a specific association between aspects of carbohydrate metabolism and actin-based processes in LPS-stimulated macrophages. We demonstrate that the capacity to undergo LPS-induced cell shape changes and to phagocytose complement-opsonized zymosan (COZ) particles does not depend on oxidative phosphorylation activity but is fueled by glycolysis. Different macrophage activities like spreading, formation of cell protrusions, as well as phagocytosis of COZ, were thereby strongly reliant on the presence of low levels of extracellular glucose. Since global ATP production was not affected by rewiring of glucose catabolism and inhibition of glycolysis by 2-deoxy-D-glucose and glucose deprivation had differential effects, our observations suggest a non-metabolic role for glucose in actin cytoskeletal remodeling in macrophages, e.g. via posttranslational modification of receptors or signaling molecules, or other effects on the machinery that drives actin cytoskeletal changes. Our findings impute a decisive role for the nutrient state of the tissue microenvironment in macrophage morphodynamics.
Collapse
Affiliation(s)
- Gerda Venter
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frank T. J. J. Oerlemans
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mietske Wijers
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marieke Willemse
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jack A. M. Fransen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Vahokoski J, Bhargav SP, Desfosses A, Andreadaki M, Kumpula EP, Martinez SM, Ignatev A, Lepper S, Frischknecht F, Sidén-Kiamos I, Sachse C, Kursula I. Structural differences explain diverse functions of Plasmodium actins. PLoS Pathog 2014; 10:e1004091. [PMID: 24743229 PMCID: PMC3990709 DOI: 10.1371/journal.ppat.1004091] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/11/2014] [Indexed: 11/18/2022] Open
Abstract
Actins are highly conserved proteins and key players in central processes in all eukaryotic cells. The two actins of the malaria parasite are among the most divergent eukaryotic actins and also differ from each other more than isoforms in any other species. Microfilaments have not been directly observed in Plasmodium and are presumed to be short and highly dynamic. We show that actin I cannot complement actin II in male gametogenesis, suggesting critical structural differences. Cryo-EM reveals that Plasmodium actin I has a unique filament structure, whereas actin II filaments resemble canonical F-actin. Both Plasmodium actins hydrolyze ATP more efficiently than α-actin, and unlike any other actin, both parasite actins rapidly form short oligomers induced by ADP. Crystal structures of both isoforms pinpoint several structural changes in the monomers causing the unique polymerization properties. Inserting the canonical D-loop to Plasmodium actin I leads to the formation of long filaments in vitro. In vivo, this chimera restores gametogenesis in parasites lacking actin II, suggesting that stable filaments are required for exflagellation. Together, these data underline the divergence of eukaryotic actins and demonstrate how structural differences in the monomers translate into filaments with different properties, implying that even eukaryotic actins have faced different evolutionary pressures and followed different paths for developing their polymerization properties. Malaria parasites have two actin isoforms, which are among the most divergent within the actin family that comprises highly conserved proteins, essential in all eukaryotic cells. In Plasmodium, actin is indispensable for motility and, thus, the infectivity of the deadly parasite. Yet, actin filaments have not been observed in vivo in these pathogens. Here, we show that the two Plasmodium actins differ from each other in both monomeric and filamentous form and that actin I cannot replace actin II during male gametogenesis. Whereas the major isoform actin I cannot form stable filaments alone, the mosquito-stage-specific actin II readily forms long filaments that have dimensions similar to canonical actins. A chimeric actin I mutant that forms long filaments in vitro also rescues gametogenesis in parasites lacking actin II. Both Plasmodium actins rapidly hydrolyze ATP and form short oligomers in the presence of ADP, which is a fundamental difference to all other actins characterized to date. Structural and functional differences in the two Plasmodium actin isoforms compared both to each other and to canonical actins reveal how the polymerization properties of eukaryotic actins have evolved along different avenues.
Collapse
Affiliation(s)
- Juha Vahokoski
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Ambroise Desfosses
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Maria Andreadaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Crete, Greece
| | - Esa-Pekka Kumpula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology; Helmholtz Centre for Infection Research and German Electron Synchrotron, Hamburg, Germany
| | | | - Alexander Ignatev
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Simone Lepper
- Parasitology – Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Parasitology – Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Inga Sidén-Kiamos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology – Hellas, Heraklion, Crete, Greece
| | - Carsten Sachse
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology; Helmholtz Centre for Infection Research and German Electron Synchrotron, Hamburg, Germany
- * E-mail:
| |
Collapse
|
43
|
Mamonov PA, Krasil’nikov PM, Rubin AB. Simulating Nuclear subsystem rearrangement in the redox reaction between Fe2+ and Fe3+ ions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2014. [DOI: 10.1134/s0036024414030157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70. PLoS Comput Biol 2013; 9:e1003379. [PMID: 24348227 PMCID: PMC3861046 DOI: 10.1371/journal.pcbi.1003379] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/15/2013] [Indexed: 11/30/2022] Open
Abstract
ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD) simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL) of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD) of Hsp70 propagates a signal to its substrate-binding domain (SBD). Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in other proteins. The precise biophysical characterization of the mechanisms of the protein conformational changes controlled by a nucleotide remains a challenge in biology. Molecular dynamics simulations of proteins in different nucleotide-binding states contain information on the nucleotide-dependent conformational dynamics. However, it is difficult to extract relevant information about the conformation-induced mechanism from the raw molecular dynamics data. Herein, we addressed this issue for the major ATP-dependent molecular chaperones Hsp70 s, which contribute to crucial cellular processes and are involved in several neurodegenerative diseases and in cancer. To function, Hsp70 undergoes several conformational changes controlled by the state of its nucleotide-binding domain. We demonstrated that the analysis of the effective free-energy landscape of the protein projected along the amino-acid sequence and computed from the molecular dynamics simulations of Hsp70 in different nucleotide-binding states, holds the key to identify the key residues of the conformational induced pathway. Identification of the key residues involved in the propagation of the structural changes induced by ATP binding offer alternative druggable specific sites other than the ligand binding clefts. The methodology developed for Hsp70 is general and can be adapted to any ligand induced conformational change in proteins.
Collapse
|
45
|
Kapoor P, Shen X. Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol 2013; 24:238-46. [PMID: 24246764 DOI: 10.1016/j.tcb.2013.10.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 10/04/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
The mystery of nuclear actin has puzzled biologists for decades largely due to the lack of defined experimental systems. However, the development of actin-containing chromatin-modifying complexes as a defined genetic and biochemical system in the past decade has provided an unprecedented opportunity to dissect the mechanism of actin in the nucleus. Although the established functions of actin mostly rely on its dynamic polymerization, the novel finding of the mechanism of action of actin in the INO80 chromatin-remodeling complex suggests a conceptually distinct mode of actin that functions as a monomer. In this review we highlight the new paradigm and discuss how actin interaction with chromatin suggests a fundamental divergence between conventional cytoplasmic actin and nuclear actin. Furthermore, we provide how this framework could be applied to investigations of nuclear actin in other actin-containing chromatin-modifying complexes.
Collapse
Affiliation(s)
- Prabodh Kapoor
- Department of Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Xuetong Shen
- Department of Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA.
| |
Collapse
|
46
|
Deighan M, Pfaendtner J. Exhaustively sampling peptide adsorption with metadynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7999-8009. [PMID: 23706011 DOI: 10.1021/la4010664] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Simulating the adsorption of a peptide or protein and obtaining quantitative estimates of thermodynamic observables remains challenging for many reasons. One reason is the dearth of molecular scale experimental data available for validating such computational models. We also lack simulation methodologies that effectively address the dual challenges of simulating protein adsorption: overcoming strong surface binding and sampling conformational changes. Unbiased classical simulations do not address either of these challenges. Previous attempts that apply enhanced sampling generally focus on only one of the two issues, leaving the other to chance or brute force computing. To improve our ability to accurately resolve adsorbed protein orientation and conformational states, we have applied the Parallel Tempering Metadynamics in the Well-Tempered Ensemble (PTMetaD-WTE) method to several explicitly solvated protein/surface systems. We simulated the adsorption behavior of two peptides, LKα14 and LKβ15, onto two self-assembled monolayer (SAM) surfaces with carboxyl and methyl terminal functionalities. PTMetaD-WTE proved effective at achieving rapid convergence of the simulations, whose results elucidated different aspects of peptide adsorption including: binding free energies, side chain orientations, and preferred conformations. We investigated how specific molecular features of the surface/protein interface change the shape of the multidimensional peptide binding free energy landscape. Additionally, we compared our enhanced sampling technique with umbrella sampling and also evaluated three commonly used molecular dynamics force fields.
Collapse
Affiliation(s)
- Michael Deighan
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
47
|
Dama JF, Sinitskiy AV, McCullagh M, Weare J, Roux B, Dinner AR, Voth GA. The Theory of Ultra-Coarse-Graining. 1. General Principles. J Chem Theory Comput 2013; 9:2466-80. [PMID: 26583735 DOI: 10.1021/ct4000444] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Coarse-grained (CG) models provide a computationally efficient means to study biomolecular and other soft matter processes involving large numbers of atoms correlated over distance scales of many covalent bond lengths and long time scales. Variational methods based on information from simulations of finer-grained (e.g., all-atom) models, for example the multiscale coarse-graining (MS-CG) and relative entropy minimization methods, provide attractive tools for the systematic development of CG models. However, these methods have important drawbacks when used in the "ultra-coarse-grained" (UCG) regime, e.g., at a resolution level coarser or much coarser than one amino acid residue per effective CG particle in proteins. This is due to the possible existence of multiple metastable states "within" the CG sites for a given UCG model configuration. In this work, systematic variational UCG methods are presented that are specifically designed to CG entire protein domains and subdomains into single effective CG particles. This is accomplished by augmenting existing effective particle CG schemes to allow for discrete state transitions and configuration-dependent resolution. Additionally, certain conclusions of this work connect back to single-state force matching and open up new avenues for method development in that area. These results provide a formal statistical mechanical basis for UCG methods related to force matching and relative entropy CG methods and suggest practical algorithms for constructing optimal approximate UCG models from fine-grained simulation data.
Collapse
Affiliation(s)
- James F Dama
- Department of Chemistry and Institute for Biophysical Dynamics, ‡Computation Institute, §James Franck Institute, ∥Department of Mathematics, ⊥Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, Illinois 60637, United States
| | - Anton V Sinitskiy
- Department of Chemistry and Institute for Biophysical Dynamics, ‡Computation Institute, §James Franck Institute, ∥Department of Mathematics, ⊥Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, Illinois 60637, United States
| | - Martin McCullagh
- Department of Chemistry and Institute for Biophysical Dynamics, ‡Computation Institute, §James Franck Institute, ∥Department of Mathematics, ⊥Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, Illinois 60637, United States
| | - Jonathan Weare
- Department of Chemistry and Institute for Biophysical Dynamics, ‡Computation Institute, §James Franck Institute, ∥Department of Mathematics, ⊥Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Chemistry and Institute for Biophysical Dynamics, ‡Computation Institute, §James Franck Institute, ∥Department of Mathematics, ⊥Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, Illinois 60637, United States
| | - Aaron R Dinner
- Department of Chemistry and Institute for Biophysical Dynamics, ‡Computation Institute, §James Franck Institute, ∥Department of Mathematics, ⊥Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry and Institute for Biophysical Dynamics, ‡Computation Institute, §James Franck Institute, ∥Department of Mathematics, ⊥Department of Biochemistry and Molecular Biology, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
48
|
Li L, Martinis SA, Luthey-Schulten Z. Capture and quality control mechanisms for adenosine-5'-triphosphate binding. J Am Chem Soc 2013; 135:6047-55. [PMID: 23276298 DOI: 10.1021/ja308044w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The catalytic events in members of the nucleotidylyl transferase superfamily are initiated by a millisecond binding of ATP in the active site. Through metadynamics simulations on a class I aminoacyl-tRNA synthetase (aaRSs), the largest group in the superfamily, we calculate the free energy landscape of ATP selection and binding. Mutagenesis studies and fluorescence spectroscopy validated the identification of the most populated intermediate states. The rapid first binding step involves formation of encounter complexes captured through a fly casting mechanism that acts upon the triphosphate moiety of ATP. In the slower nucleoside binding step, a conserved histidine in the HxxH motif orients the incoming ATP through base-stacking interactions resulting in a deep minimum in the free energy surface. Mutation of this histidine significantly decreases the binding affinity measured experimentally and computationally. The metadynamics simulations further reveal an intermediate quality control state that the synthetases and most likely other members of the superfamily use to select ATP over other nucleoside triphosphates.
Collapse
Affiliation(s)
- Li Li
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
49
|
Fan J, Saunders MG, Voth GA. Coarse-graining provides insights on the essential nature of heterogeneity in actin filaments. Biophys J 2013; 103:1334-42. [PMID: 22995506 DOI: 10.1016/j.bpj.2012.08.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/21/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022] Open
Abstract
Experiments have shown that actin is structurally polymorphic, but knowledge of the details of molecular level heterogeneity in both the dynamics of a single subunit and the interactions between subunits is still lacking. Here, using atomistic molecular dynamics simulations of the actin filament, we identify domains of atoms that move in a correlated fashion, quantify interactions between these domains using coarse-grained (CG) analysis methods, and perform CG simulations to explore the importance of filament heterogeneity. The persistence length and torsional stiffness calculated from molecular dynamics simulation data agree with experimental values. We additionally observe that distinct actin conformations coexist in actin filaments. The filaments also exhibit random twist angles that are broadly distributed. CG analysis reveals that interactions between equivalent CG pairs vary from one subunit to another. To explore the importance of heterogeneity on filament dynamics, we perform CG simulations using different methods of parameterization to show that only by including heterogeneous interactions can we reproduce the twist angles and related properties. Free energy calculations further suggest that in general the actin filament is best represented as a set of subunits with differing CG sites and interactions, and the incorporating heterogeneity into the CG interactions is more important than including that in the CG sites. Our work therefore presents a systematic method to explore molecular level detail in this large and complex biopolymer.
Collapse
Affiliation(s)
- Jun Fan
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
50
|
Simonson T, Satpati P. Simulating GTP:Mg and GDP:Mg with a simple force field: a structural and thermodynamic analysis. J Comput Chem 2012; 34:836-46. [PMID: 23280996 DOI: 10.1002/jcc.23207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/12/2012] [Accepted: 11/28/2012] [Indexed: 11/06/2022]
Abstract
Di- and tri-phosphate nucleotides are essential cofactors for many proteins, usually in an Mg(2+) -bound form. Proteins like GTPases often detect the difference between NDP and NTP and respond by changing conformations. To study such complexes, simple, fixed charge force fields have been used, which allow long simulations and precise free energy calculations. The preference for NTP or NDP binding depends on many factors, including ligand structure and Mg(2+) coordination and the changes they undergo upon binding. Here, we use a simple force field to examine two Mg(2+) coordination modes for the unbound GDP and GTP: direct, or "Inner Sphere" (IS) coordination by one or more phosphate oxygens and indirect, "Outer Sphere" (OS) coordination involving one or more bridging waters. We compare GTP: and GDP:Mg binding with OS and IS coordination; combining the results with experimental data then indicates that GTP prefers the latter. We also examine different kinds of IS coordination and their sensitivity to a key force field parameter: the optimal Mg:oxygen van der Waals distance Rmin . Increasing Rmin improves the Mg:oxygen distances, the GTP: and GDP:Mg binding affinities, and the fraction of GTP:Mg with β + γ phosphate coordination, but does not improve or change the GTP/GDP affinity difference, which remains much larger than experiment. It has no effect on the free energy of GDP binding to a GTPase.
Collapse
Affiliation(s)
- Thomas Simonson
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France.
| | | |
Collapse
|