1
|
Saraceno C, Timoshevskiy VA, Smith JJ. Functional analyses of the polycomb-group genes in sea lamprey embryos undergoing programmed DNA loss. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:260-270. [PMID: 37902302 DOI: 10.1002/jez.b.23225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
During early development, sea lamprey embryos undergo programmatic elimination of DNA from somatic progenitor cells in a process termed programmed genome rearrangement (PGR). Eliminated DNA eventually becomes condensed into micronuclei, which are then physically degraded and permanently lost from the cell. Previous studies indicated that many of the genes eliminated during PGR have mammalian homologs that are bound by polycomb repressive complex (PRC) in embryonic stem cells. To test whether PRC components play a role in the faithful elimination of germline-specific sequences, we used a combination of CRISPR/Cas9 and lightsheet microscopy to investigate the impact of gene knockouts on early development and the progression through stages of DNA elimination. Analysis of knockout embryos for the core PRC2 subunits EZH, SUZ12, and EED show that disruption of all three genes results in an increase in micronucleus number, altered distribution of micronuclei within embryos, and an increase in micronucleus volume in mutant embryos. While the upstream events of DNA elimination are not strongly impacted by loss of PRC2 components, this study suggests that PRC2 plays a role in the later stages of elimination related to micronucleus condensation and degradation. These findings also suggest that other genes/epigenetic pathways may work in parallel during DNA elimination to mediate chromatin structure, accessibility, and the ultimate loss of germline-specific DNA.
Collapse
Affiliation(s)
- Cody Saraceno
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Angeloni A, Fissette S, Kaya D, Hammond JM, Gamaarachchi H, Deveson IW, Klose RJ, Li W, Zhang X, Bogdanovic O. Extensive DNA methylome rearrangement during early lamprey embryogenesis. Nat Commun 2024; 15:1977. [PMID: 38438347 PMCID: PMC10912607 DOI: 10.1038/s41467-024-46085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
DNA methylation (5mC) is a repressive gene regulatory mark widespread in vertebrate genomes, yet the developmental dynamics in which 5mC patterns are established vary across species. While mammals undergo two rounds of global 5mC erasure, teleosts, for example, exhibit localized maternal-to-paternal 5mC remodeling. Here, we studied 5mC dynamics during the embryonic development of sea lamprey, a jawless vertebrate which occupies a critical phylogenetic position as the sister group of the jawed vertebrates. We employed 5mC quantification in lamprey embryos and tissues, and discovered large-scale maternal-to-paternal epigenome remodeling that affects ~30% of the embryonic genome and is predominantly associated with partially methylated domains. We further demonstrate that sequences eliminated during programmed genome rearrangement (PGR), are hypermethylated in sperm prior to the onset of PGR. Our study thus unveils important insights into the evolutionary origins of vertebrate 5mC reprogramming, and how this process might participate in diverse developmental strategies.
Collapse
Affiliation(s)
- Allegra Angeloni
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Skye Fissette
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Deniz Kaya
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jillian M Hammond
- Genomics Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, NSW, Australia
| | - Hasindu Gamaarachchi
- Genomics Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, NSW, Australia
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ira W Deveson
- Genomics Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Xiaotian Zhang
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, USA
- University of Texas Health Science Center, Houston, TX, USA
| | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
| |
Collapse
|
3
|
Yu D, Ren Y, Uesaka M, Beavan AJS, Muffato M, Shen J, Li Y, Sato I, Wan W, Clark JW, Keating JN, Carlisle EM, Dearden RP, Giles S, Randle E, Sansom RS, Feuda R, Fleming JF, Sugahara F, Cummins C, Patricio M, Akanni W, D'Aniello S, Bertolucci C, Irie N, Alev C, Sheng G, de Mendoza A, Maeso I, Irimia M, Fromm B, Peterson KJ, Das S, Hirano M, Rast JP, Cooper MD, Paps J, Pisani D, Kuratani S, Martin FJ, Wang W, Donoghue PCJ, Zhang YE, Pascual-Anaya J. Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nat Ecol Evol 2024; 8:519-535. [PMID: 38216617 DOI: 10.1038/s41559-023-02299-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.
Collapse
Affiliation(s)
- Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Masahiro Uesaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Alan J S Beavan
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Jieyu Shen
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Iori Sato
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - James W Clark
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Joseph N Keating
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Emily M Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Richard P Dearden
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Sam Giles
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Emma Randle
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Robert S Sansom
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - James F Fleming
- Keio University Institute for Advanced Biosciences, Tsuruoka, Japan
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Fumiaki Sugahara
- Division of Biology, Hyogo Medical University, Nishinomiya, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Carla Cummins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Wasiu Akanni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
| | - Cristiano Bertolucci
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Naoki Irie
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jonathan P Rast
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jordi Paps
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.
- Department of Animal Biology, Faculty of Science, University of Málaga (UMA), Málaga, Spain.
- Edificio de Bioinnovación, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
4
|
Marlétaz F, Timoshevskaya N, Timoshevskiy VA, Parey E, Simakov O, Gavriouchkina D, Suzuki M, Kubokawa K, Brenner S, Smith JJ, Rokhsar DS. The hagfish genome and the evolution of vertebrates. Nature 2024; 627:811-820. [PMID: 38262590 PMCID: PMC10972751 DOI: 10.1038/s41586-024-07070-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | | | | | - Elise Parey
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- UK Dementia Research Institute, University College London, London, UK
| | - Masakazu Suzuki
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kaoru Kubokawa
- Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Sydney Brenner
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA.
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
5
|
Nagao K, Tanaka Y, Kajitani R, Toyoda A, Itoh T, Kubota S, Goto Y. Bioinformatic and fine-scale chromosomal mapping reveal the nature and evolution of eliminated chromosomes in the Japanese hagfish, Eptatretus burgeri, through analysis of repetitive DNA families. PLoS One 2023; 18:e0286941. [PMID: 37639389 PMCID: PMC10461843 DOI: 10.1371/journal.pone.0286941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
In the Japanese hagfish, Eptatretus burgeri, approximately 21% of the genomic DNA in germ cells (2n = 52) consists of 16 chromosomes (eliminated [E]-chromosomes) that are eliminated from presumptive somatic cells (2n = 36). To uncover the eliminated genome (E-genome), we have identified 16 eliminated repetitive DNA families from eight hagfish species, with 11 of these repeats being selectively amplified in the germline genome of E. burgeri. Furthermore, we have demonstrated that six of these sequences, namely EEEb1-6, are exclusively localized on all 16 E-chromosomes. This has led to the hypothesis that the eight pairs of E-chromosomes are derived from one pair of ancestral chromosomes via multiple duplication events over a prolonged evolutionary period. NGS analysis has recently facilitated the re-assembly of two distinct draft genomes of E. burgeri, derived from the testis and liver. This advancement allows for the prediction of not only nonrepetitive eliminated sequences but also over 100 repetitive and eliminated sequences, accomplished through K-mer-based analysis. In this study, we report four novel eliminated repetitive DNA sequences (designated as EEEb7-10) and confirm the relative chromosomal localization of all eliminated repeats (EEEb1-10) by fluorescence in situ hybridization (FISH). With the exception of EEEb10, all sequences were exclusively detected on EEEb1-positive chromosomes. Surprisingly, EEEb10 was detected as an intense signal on EEEb1-positive chromosomes and as a scattered signal on other chromosomes in germ cells. The study further divided the eight pairs of E-chromosomes into six groups based on the signal distribution of each DNA family, and fiber-FISH experiments showed that the EEEb2-10 family was dispersed in the EEEb1-positive extended chromatin fiber. These findings provide new insights into the mechanisms underlying chromosome elimination and the evolution of E-chromosomes, supporting our previous hypothesis.
Collapse
Affiliation(s)
- Kohei Nagao
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Yoshiki Tanaka
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Rei Kajitani
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takehiko Itoh
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Souichirou Kubota
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Yuji Goto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
6
|
Katsu Y, Zhang J, Baker ME. Reduced steroid activation of elephant shark GR and MR after inserting four amino acids from the DNA-binding domain of lamprey corticoid receptor-1. PLoS One 2023; 18:e0290159. [PMID: 37611044 PMCID: PMC10446182 DOI: 10.1371/journal.pone.0290159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Atlantic sea lamprey contains two corticoid receptors (CRs), CR1 and CR2, that have identical amino acid sequences, except for a four amino acid insert (Thr-Arg-Gln-Gly) in the CR1 DNA-binding domain (DBD). Steroids are stronger transcriptional activators of CR2 than of CR1 suggesting that the insert reduces the transcriptional response of lamprey CR1 to steroids. The DBD in elephant shark mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), which are descended from a CR, lack these four amino acids, suggesting that a CR2 is their common ancestor. To determine if, similar to lamprey CR1, the presence of this insert in elephant shark MR and GR decreases transcriptional activation by corticosteroids, we inserted these four CR1-specific residues into the DBD of elephant shark MR and GR. Compared to steroid activation of wild-type elephant shark MR and GR, cortisol, corticosterone, aldosterone, 11-deoxycorticosterone and 11-deoxycortisol had lower transcriptional activation of these mutant MR and GR receptors, indicating that the absence of this four-residue segment in the DBD in wild-type elephant shark MR and GR increases transcriptional activation by corticosteroids.
Collapse
Affiliation(s)
- Yoshinao Katsu
- Faculty of Science, Hokkaido University, Sapporo, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Jiawen Zhang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Michael E. Baker
- Division of Nephrology-Hypertension, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
- Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
7
|
Marlétaz F, Timoshevskaya N, Timoshevskiy V, Simakov O, Parey E, Gavriouchkina D, Suzuki M, Kubokawa K, Brenner S, Smith J, Rokhsar DS. The hagfish genome and the evolution of vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537254. [PMID: 37131617 PMCID: PMC10153176 DOI: 10.1101/2023.04.17.537254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a critical window into early vertebrate evolution. Here, we investigate the complex history, timing, and functional role of genome-wide duplications in vertebrates in the light of a chromosome-scale genome of the brown hagfish Eptatretus atami. Using robust chromosome-scale (paralogon-based) phylogenetic methods, we confirm the monophyly of cyclostomes, document an auto-tetraploidization (1RV) that predated the origin of crown group vertebrates ~517 Mya, and establish the timing of subsequent independent duplications in the gnathostome and cyclostome lineages. Some 1RV gene duplications can be linked to key vertebrate innovations, suggesting that this early genomewide event contributed to the emergence of pan-vertebrate features such as neural crest. The hagfish karyotype is derived by numerous fusions relative to the ancestral cyclostome arrangement preserved by lampreys. These genomic changes were accompanied by the loss of genes essential for organ systems (eyes, osteoclast) that are absent in hagfish, accounting in part for the simplification of the hagfish body plan; other gene family expansions account for hagfishes' capacity to produce slime. Finally, we characterise programmed DNA elimination in somatic cells of hagfish, identifying protein-coding and repetitive elements that are deleted during development. As in lampreys, the elimination of these genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline/pluripotency functions. Reconstruction of the early genomic history of vertebrates provides a framework for further exploration of vertebrate novelties.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | | | - Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Elise Parey
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Present address: UK Dementia Research Institute, University College London, London, UK
| | - Masakazu Suzuki
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kaoru Kubokawa
- Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Sydney Brenner
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
- Deceased
| | - Jeramiah Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
8
|
Katsu Y, Lin X, Ji R, Chen Z, Kamisaka Y, Bamba K, Baker ME. N-terminal domain influences steroid activation of the Atlantic sea lamprey corticoid receptor. J Steroid Biochem Mol Biol 2023; 228:106249. [PMID: 36646152 DOI: 10.1016/j.jsbmb.2023.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Lampreys are jawless fish that evolved about 550 million years ago at the base of the vertebrate line. Modern lampreys contain a corticoid receptor (CR), the common ancestor of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), which first appear in cartilaginous fish, such as sharks. Until recently, 344 amino acids at the amino terminus of adult lamprey CR were not present in the lamprey CR sequence in GenBank. A search of the recently sequenced lamprey germline genome identified two CR sequences, CR1 and CR2, containing the 344 previously un-identified amino acids. CR1 also contains a novel four amino acid insertion in the DNA-binding domain (DBD). We studied corticosteroid and progesterone activation of CR1 and CR2 and found their strongest response was to 11-deoxycorticosterone and 11-deoxycortisol, the two circulating corticosteroids in lamprey. Based on steroid specificity, both CRs are close to elephant shark MR and distant from elephant shark GR. HEK293 cells that were transfected with full-length CR1 or CR2 and the MMTV promoter have about 3-fold higher steroid-mediated activation compared to HEK293 cells transfected with these CRs and the TAT3 promoter. Deletion of the amino-terminal domain (NTD) of lamprey CR1 and CR2 to form truncated CRs decreased transcriptional activation by about 70% in HEK293 cells that were transfected with MMTV, but increased transcription by about 6-fold in cells transfected with TAT3. This indicated that the promoter has an important effect on NTD regulation of transcriptional activation of the CR by steroids. Our results also indicate that the entire lamprey CR sequence is needed for an accurate determination of steroid-mediated transcription.
Collapse
Affiliation(s)
| | - Xiaozhi Lin
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Ruigeng Ji
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Ze Chen
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Yui Kamisaka
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Koto Bamba
- Faculty of Science Hokkaido University Sapporo, Japan
| | - Michael E Baker
- Division of Nephrology-Hypertension Department of Medicine, 0693 University of California, San Diego 9500 Gilman Drive La Jolla, CA 92093-0693, USA; Center for Academic Research and Training in Anthropogeny (CARTA) University of California, San Diego La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Timoshevskaya N, Eşkut KI, Timoshevskiy VA, Robb SMC, Holt C, Hess JE, Parker HJ, Baker CF, Miller AK, Saraceno C, Yandell M, Krumlauf R, Narum SR, Lampman RT, Gemmell NJ, Mountcastle J, Haase B, Balacco JR, Formenti G, Pelan S, Sims Y, Howe K, Fedrigo O, Jarvis ED, Smith JJ. An improved germline genome assembly for the sea lamprey Petromyzon marinus illuminates the evolution of germline-specific chromosomes. Cell Rep 2023; 42:112263. [PMID: 36930644 PMCID: PMC10166183 DOI: 10.1016/j.celrep.2023.112263] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/17/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Programmed DNA loss is a gene silencing mechanism that is employed by several vertebrate and nonvertebrate lineages, including all living jawless vertebrates and songbirds. Reconstructing the evolution of somatically eliminated (germline-specific) sequences in these species has proven challenging due to a high content of repeats and gene duplications in eliminated sequences and a corresponding lack of highly accurate and contiguous assemblies for these regions. Here, we present an improved assembly of the sea lamprey (Petromyzon marinus) genome that was generated using recently standardized methods that increase the contiguity and accuracy of vertebrate genome assemblies. This assembly resolves highly contiguous, somatically retained chromosomes and at least one germline-specific chromosome, permitting new analyses that reconstruct the timing, mode, and repercussions of recruitment of genes to the germline-specific fraction. These analyses reveal major roles of interchromosomal segmental duplication, intrachromosomal duplication, and positive selection for germline functions in the long-term evolution of germline-specific chromosomes.
Collapse
Affiliation(s)
| | - Kaan I Eşkut
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | | | - Sofia M C Robb
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Carson Holt
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jon E Hess
- Columbia River Inter-Tribal Fish Commission, Portland, OR 97232, USA
| | - Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Cindy F Baker
- National Institute of Water and Atmospheric Research Limited (NIWA), Hamilton, Waikato 3261, New Zealand
| | - Allison K Miller
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Cody Saraceno
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy & Cell Biology, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Shawn R Narum
- Columbia River Inter-Tribal Fish Commission, Hagerman, ID 83332, USA
| | - Ralph T Lampman
- Yakama Nation Fisheries Resource Management Program, Pacific Lamprey Project, Toppenish, WA 98948, USA
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Otago 9054, New Zealand
| | | | - Bettina Haase
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - Jennifer R Balacco
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - Giulio Formenti
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA; Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065, USA
| | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Ying Sims
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA; Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
10
|
Novel selectively amplified DNA sequences in the germline genome of the Japanese hagfish, Eptatretus burgeri. Sci Rep 2022; 12:21373. [PMID: 36494570 PMCID: PMC9734144 DOI: 10.1038/s41598-022-26007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
In the Japanese hagfish Eptatretus burgeri, 16 chromosomes (eliminated [E]-chromosomes) have been lost in somatic cells (2n = 36), which is equivalent to approx. 21% of the genomic DNA in germ cells (2n = 52). At least seven of the 12 eliminated repetitive DNA families isolated in eight hagfish species were selectively amplified in the germline genome of this species. One of them, EEEb1 (eliminated element of E. burgeri 1) is exclusively localized on all E-chromosomes. Herein, we identified four novel eliminated repetitive DNA families (named EEEb3-6) through PCR amplification and suppressive subtractive hybridization (SSH) combined with Southern-blot hybridization. EEEb3 was mosaic for 5S rDNA and SINE elements. EEEb4 was GC-rich repeats and has one pair of direct and inverted repeats, whereas EEEb5 and EEEb6 were AT-rich repeats with one pair and two pairs of sub-repeats, respectively. Interestingly, all repeat classes except EEEb3 were transcribed in the testes, although no open reading frames (ORF) were identified. We conducted fluorescence in situ hybridization (FISH) to examine the chromosomal localizations of EEEb3-6 and EEEb2, which was previously isolated from the germline genome of E. burgeri. All sequences were only found on all EEEb1-positive E-chromosomes. Copy number estimation of the repeated elements by slot-blot hybridization revealed that (i) the EEEb1-6 family members occupied 39.9% of the total eliminated DNA, and (ii) a small number of repeats were retained in somatic cells, suggesting that there is incomplete elimination of the repeated elements. These results provide new insights into the mechanisms involved in the chromosome elimination and the evolution of E-chromosomes.
Collapse
|
11
|
Pervasive male-biased expression throughout the germline-specific regions of the sea lamprey genome supports key roles in sex differentiation and spermatogenesis. Commun Biol 2022; 5:434. [PMID: 35538209 PMCID: PMC9090840 DOI: 10.1038/s42003-022-03375-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Sea lamprey undergo programmed genome rearrangement (PGR) in which ∼20% of the genome is jettisoned from somatic cells during embryogenesis. Although the role of PGR in embryonic development has been studied, the role of the germline-specific region (GSR) in gonad development is unknown. We analysed RNA-sequence data from 28 sea lamprey gonads sampled across life-history stages, generated a genome-guided de novo superTranscriptome with annotations, and identified germline-specific genes (GSGs). Overall, we identified 638 GSGs that are enriched for reproductive processes and exhibit 36x greater odds of being expressed in testes than ovaries. Next, while 55% of the GSGs have putative somatic paralogs, the somatic paralogs are not differentially expressed between sexes. Further, putative orthologs of some the male-biased GSGs have known functions in sex determination or differentiation in other vertebrates. We conclude that the GSR of sea lamprey plays an important role in testicular differentiation and potentially sex determination. RNA-sequencing of sea lamprey gonads at different life-history stage identifies germline-specific genes which are highly expressed in males during spermatogenesis. This suggests a link between male-biased germline expression and sex differentiation in the sea lamprey.
Collapse
|
12
|
Miller AK, Timoshevskaya N, Smith JJ, Gillum J, Sharif S, Clarke S, Baker C, Kitson J, Gemmell NJ, Alexander A. Population genomics of New Zealand pouched lamprey (kanakana; piharau; Geotria australis). J Hered 2022; 113:380-397. [PMID: 35439308 PMCID: PMC9308044 DOI: 10.1093/jhered/esac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/23/2022] [Indexed: 11/12/2022] Open
Abstract
Pouched lamprey (Geotria australis) or kanakana/piharau is a culturally and ecologically significant jawless fish that is distributed throughout Aotearoa New Zealand. Despite its importance, much remains unknown about historical relationships and gene flow between populations of this enigmatic species within New Zealand. To help inform management, we assembled a draft G. australis genome and completed the first comprehensive population genomics analysis of pouched lamprey within New Zealand using targeted gene sequencing (Cyt-b and COI) and restriction site-associated DNA sequencing (RADSeq) methods. Employing 16 000 genome-wide single nucleotide polymorphisms (SNPs) derived from RADSeq (n = 186) and sequence data from Cyt-b (766 bp, n = 94) and COI (589 bp, n = 20), we reveal low levels of structure across 10 sampling locations spanning the species range within New Zealand. F-statistics, outlier analyses, and STRUCTURE suggest a single panmictic population, and Mantel and EEMS tests reveal no significant isolation by distance. This implies either ongoing gene flow among populations or recent shared ancestry among New Zealand pouched lamprey. We can now use the information gained from these genetic tools to assist managers with monitoring effective population size, managing potential diseases, and conservation measures such as artificial propagation programs. We further demonstrate the general utility of these genetic tools for acquiring information about elusive species.
Collapse
Affiliation(s)
- Allison K Miller
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Nataliya Timoshevskaya
- Department of Biology, University of Kentucky, 101 Morgan Building, Lexington, Kentucky, 40506-0225 USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, 101 Morgan Building, Lexington, Kentucky, 40506-0225 USA
| | - Joanne Gillum
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Saeed Sharif
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Shannon Clarke
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Cindy Baker
- National Institute of Water and Atmospheric Research Limited, PO Box 11 115, Hamilton 3251 New Zealand
| | - Jane Kitson
- Ngāi Tahu, Kitson Consulting Ltd, Invercargill/Waihopai, 9879, New Zealand
| | - Neil J Gemmell
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Alana Alexander
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| |
Collapse
|
13
|
Hodson CN, Jaron KS, Gerbi S, Ross L. Gene-rich germline-restricted chromosomes in black-winged fungus gnats evolved through hybridization. PLoS Biol 2022; 20:e3001559. [PMID: 35213540 PMCID: PMC8906591 DOI: 10.1371/journal.pbio.3001559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/09/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
Germline-restricted DNA has evolved in diverse animal taxa and is found in several vertebrate clades, nematodes, and flies. In these lineages, either portions of chromosomes or entire chromosomes are eliminated from somatic cells early in development, restricting portions of the genome to the germline. Little is known about why germline-restricted DNA has evolved, especially in flies, in which 3 diverse families, Chironomidae, Cecidomyiidae, and Sciaridae, carry germline-restricted chromosomes (GRCs). We conducted a genomic analysis of GRCs in the fungus gnat Bradysia (Sciara) coprophila (Diptera: Sciaridae), which has 2 large germline-restricted "L" chromosomes. We sequenced and assembled the genome of B. coprophila and used differences in sequence coverage and k-mer frequency between somatic and germline tissues to identify GRC sequence and compare it to the other chromosomes in the genome. We found that the GRCs in B. coprophila are large, gene rich, and have many genes with divergent homologs on other chromosomes in the genome. We also found that 2 divergent GRCs exist in the population we sequenced. GRC genes are more similar in sequence to genes from another Dipteran family (Cecidomyiidae) than to homologous genes from Sciaridae. This unexpected finding suggests that these chromosomes likely arose in Sciaridae through hybridization with a related lineage. These results provide a foundation from which to answer many questions about the evolution of GRCs in Sciaridae, such as how this hybridization event resulted in GRCs and what features on these chromosomes cause them to be restricted to the germline.
Collapse
Affiliation(s)
- Christina N. Hodson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kamil S. Jaron
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan Gerbi
- Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Laura Ross
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Drotos KH, Zagoskin MV, Kess T, Gregory TR, Wyngaard GA. Throwing away DNA: programmed downsizing in somatic nuclei. Trends Genet 2022; 38:483-500. [DOI: 10.1016/j.tig.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
|
15
|
Dedukh D, Krasikova A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:195-216. [PMID: 34542224 PMCID: PMC9292451 DOI: 10.1111/brv.12796] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Genome stability is a crucial feature of eukaryotic organisms because its alteration drastically affects the normal development and survival of cells and the organism as a whole. Nevertheless, some organisms can selectively eliminate part of their genomes from certain cell types during specific stages of ontogenesis. This review aims to describe the phenomenon of programmed DNA elimination, which includes chromatin diminution (together with programmed genome rearrangement or DNA rearrangements), B and sex chromosome elimination, paternal genome elimination, parasitically induced genome elimination, and genome elimination in animal and plant hybrids. During programmed DNA elimination, individual chromosomal fragments, whole chromosomes, and even entire parental genomes can be selectively removed. Programmed DNA elimination occurs independently in different organisms, ranging from ciliate protozoa to mammals. Depending on the sequences destined for exclusion, programmed DNA elimination may serve as a radical mechanism of dosage compensation and inactivation of unnecessary or dangerous genetic entities. In hybrids, genome elimination results from competition between parental genomes. Despite the different consequences of DNA elimination, all genetic material destined for elimination must be first recognised, epigenetically marked, separated, and then removed and degraded.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| | - Alla Krasikova
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| |
Collapse
|
16
|
Hodson CN, Ross L. Evolutionary Perspectives on Germline-Restricted Chromosomes in Flies (Diptera). Genome Biol Evol 2021; 13:evab072. [PMID: 33890671 PMCID: PMC8245193 DOI: 10.1093/gbe/evab072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
In some eukaryotes, germline soma differentiation involves elimination of parts of the genome from somatic cells. The portions of the genome restricted to the germline often contain genes that play a role in development and function of the germline. Lineages with germline-restricted DNA are taxonomically diverse, and the size of the germline-restricted genome varies substantially. Unfortunately, few of these lineages have been studied in detail. As a result, we understand little about the general evolutionary forces that drive the origin and maintenance of germline-restricted DNA. One of the taxonomic groups where germline-restricted DNA has been poorly studied are the flies (Diptera). In three Dipteran families, Chironomidae, Cecidomyiidae, and Sciaridae, entire chromosomes are eliminated from somatic cells early in embryonic development. Germline-restricted chromosomes are thought to have evolved independently in the Dipteran families and their size, number, and transmission patterns vary between families. Although there is a wealth of cytological studies on these chromosomes in flies, almost no genomic studies have been undertaken. As a result, very little is known about how and why they evolved and what genes they encode. This review summarizes the literature on germline-restricted chromosomes in Diptera, discusses hypotheses for their origin and function, and compares germline-restricted DNA in Diptera to other eukaryotes. Finally, we discuss why Dipteran lineages represent a promising system for the study of germline-restricted chromosomes and propose future avenues of research on this topic.
Collapse
Affiliation(s)
- Christina N Hodson
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| | - Laura Ross
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom
| |
Collapse
|
17
|
Miller RV, Neme R, Clay DM, Pathmanathan JS, Lu MW, Yerlici VT, Khurana JS, Landweber LF. Transcribed germline-limited coding sequences in Oxytricha trifallax. G3-GENES GENOMES GENETICS 2021; 11:6192809. [PMID: 33772542 PMCID: PMC8495736 DOI: 10.1093/g3journal/jkab092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/26/2021] [Indexed: 01/13/2023]
Abstract
The germline-soma divide is a fundamental distinction in developmental biology, and different genes are expressed in germline and somatic cells throughout metazoan life cycles. Ciliates, a group of microbial eukaryotes, exhibit germline-somatic nuclear dimorphism within a single cell with two different genomes. The ciliate Oxytricha trifallax undergoes massive RNA-guided DNA elimination and genome rearrangement to produce a new somatic macronucleus (MAC) from a copy of the germline micronucleus (MIC). This process eliminates noncoding DNA sequences that interrupt genes and also deletes hundreds of germline-limited open reading frames (ORFs) that are transcribed during genome rearrangement. Here, we update the set of transcribed germline-limited ORFs (TGLOs) in O. trifallax. We show that TGLOs tend to be expressed during nuclear development and then are absent from the somatic MAC. We also demonstrate that exposure to synthetic RNA can reprogram TGLO retention in the somatic MAC and that TGLO retention leads to transcription outside the normal developmental program. These data suggest that TGLOs represent a group of developmentally regulated protein-coding sequences whose gene expression is terminated by DNA elimination.
Collapse
Affiliation(s)
- Richard V Miller
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rafik Neme
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Derek M Clay
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jananan S Pathmanathan
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Michael W Lu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - V Talya Yerlici
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jaspreet S Khurana
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Laura F Landweber
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
18
|
Chong-Morrison V, Sauka-Spengler T. The Cranial Neural Crest in a Multiomics Era. Front Physiol 2021; 12:634440. [PMID: 33732166 PMCID: PMC7956944 DOI: 10.3389/fphys.2021.634440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/08/2021] [Indexed: 01/01/2023] Open
Abstract
Neural crest ontogeny plays a prominent role in craniofacial development. In this Perspective article, we discuss recent advances to the understanding of mechanisms underlying the cranial neural crest gene regulatory network (cNC-GRN) stemming from omics-based studies. We briefly summarize how parallel considerations of transcriptome, interactome, and epigenome data significantly elaborated the roles of key players derived from pre-omics era studies. Furthermore, the growing cohort of cNC multiomics data revealed contribution of the non-coding genomic landscape. As technological improvements are constantly being developed, we reflect on key questions we are poised to address by taking advantage of the unique perspective a multiomics approach has to offer.
Collapse
|
19
|
Jin LQ, John BH, Hu J, Selzer ME. Activated Erk Is an Early Retrograde Signal After Spinal Cord Injury in the Lamprey. Front Neurosci 2020; 14:580692. [PMID: 33250705 PMCID: PMC7674770 DOI: 10.3389/fnins.2020.580692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
We previously reported that spinal cord transection (TX) in the lamprey causes mRNA to accumulate in the injured tips of large reticulospinal (RS) axons. We sought to determine whether this mRNA accumulation results from phosphorylation and transport of retrograde signals, similar to what has been reported in mammalian peripheral nerve. Extracellular signal-regulated protein kinase (Erk), mediates the neurite outgrowth-promoting effects of many neurotrophic factors. To assess the role of Erk in retrograde signaling of RS axon injury, we used immunoblot and immunohistochemistry to determine the changes in phosphorylated Erk (p-Erk) in the spinal cord after spinal cord TX. Immunostaining for p-Erk increased within axons and local cell bodies, most heavily within the 1-2 mm closest to the TX site, at between 3 and 6 h post-TX. In axons, p-Erk was concentrated in 3-5 μm granules that became less numerous with distance from the TX. The retrograde molecular motor dynein colocalized with p-Erk, but vimentin, which in peripheral nerve was reported to participate with p-Erk as part of a retrograde signal complex, did not colocalize with p-Erk, even though vimentin levels were elevated post-TX. The results suggest that p-Erk, but not vimentin, may function as a retrograde axotomy signal in lamprey central nervous system neurons, and that this signal may induce transcription of mRNA, which is then transported down the axon to its injured tip.
Collapse
Affiliation(s)
- Li-Qing Jin
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Brittany H. John
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
20
|
Ravhe IS, Krishnan A, Manoj N. Evolutionary history of histamine receptors: Early vertebrate origin and expansion of the H 3-H 4 subtypes. Mol Phylogenet Evol 2020; 154:106989. [PMID: 33059072 DOI: 10.1016/j.ympev.2020.106989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022]
Abstract
Histamine receptors belonging to the superfamily of G protein-coupled receptors (GPCRs) mediate the diverse biological effects of biogenic histamine. They are classified into four phylogenetically distinct subtypes H1-H4, each with a different binding affinity for histamine and divergent downstream signaling pathways. Here we present the evolutionary history of the histamine receptors using a phylogenetic approach complemented with comparative genomics analyses of the sequences, gene structures, and synteny of gene neighborhoods. The data indicate the earliest emergence of histamine-mediated GPCR signaling by a H2 in a prebilaterian ancestor. The analyses support a revised classification of the vertebrate H3-H4 receptor subtypes. We demonstrate the presence of the H4 across vertebrates, contradicting the currently held notion that H4 is restricted to mammals. These non-mammalian vertebrate H4 orthologs have been mistaken for H3. We also identify the presence of a new H3 subtype (H3B), distinct from the canonical H3 (H3A), and propose that the H3A, H3B, and H4 likely emerged from a H3 progenitor through the 1R/2R whole genome duplications in an ancestor of the vertebrates. It is apparent that the ability of the H1, H2, and H3-4 to bind histamine was acquired convergently. We identified genomic signatures suggesting that the H1 and H3-H4 shared a last common ancestor with the muscarinic receptor in a bilaterian predecessor whereas, the H2 and the α-adrenoreceptor shared a progenitor in a prebilaterian ancestor. Furthermore, site-specific analysis of the vertebrate subtypes revealed potential residues that may account for the functional divergence between them.
Collapse
Affiliation(s)
- Infant Sagayaraj Ravhe
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arunkumar Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
21
|
Abstract
Over the last few decades, an increasing number of vertebrate taxa have been identified that undergo programmed genome rearrangement, or programmed DNA loss, during development. In these organisms, the genome of germ cells is often reproducibly different from the genome of all other cells within the body. Although we clearly have not identified all vertebrate taxa that undergo programmed genome loss, the list of species known to undergo loss now represents ∼10% of vertebrate species, including several basally diverging lineages. Recent studies have shed new light on the targets and mechanisms of DNA loss and their association with canonical modes of DNA silencing. Ultimately, expansion of these studies into a larger collection of taxa will aid in reconstructing patterns of shared/independent ancestry of programmed DNA loss in the vertebrate lineage, as well as more recent evolutionary events that have shaped the structure and content of eliminated DNA.
Collapse
Affiliation(s)
- Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA; , ,
| | | | - Cody Saraceno
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA; , ,
| |
Collapse
|
22
|
Spawning and Embryonic Development of the Least Brook Lamprey (Lampetra aepyptera). AMERICAN MIDLAND NATURALIST 2020. [DOI: 10.1674/0003-0031-184.1.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci Rep 2020; 10:8720. [PMID: 32457346 PMCID: PMC7251083 DOI: 10.1038/s41598-020-64977-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022] Open
Abstract
In most organisms, cells typically maintain genome integrity, as radical genome reorganization leads to dramatic consequences. However, certain organisms, ranging from unicellular ciliates to vertebrates, are able to selectively eliminate specific parts of their genome during certain stages of development. Moreover, partial or complete elimination of one of the parental genomes occurs in interspecies hybrids reproducing asexually. Although several examples of this phenomenon are known, the molecular and cellular processes involved in selective elimination of genetic material remain largely undescribed for the majority of such organisms. Here, we elucidate the process of selective genome elimination in water frog hybrids from the Pelophylax esculentus complex reproducing through hybridogenesis. Specifically, in the gonads of diploid and triploid hybrids, but not those of the parental species, we revealed micronuclei in the cytoplasm of germ cells. In each micronucleus, only one centromere was detected with antibodies against kinetochore proteins, suggesting that each micronucleus comprises a single chromosome. Using 3D-FISH with species-specific centromeric probe, we determined the role of micronuclei in selective genome elimination. We found that in triploid LLR hybrids, micronuclei preferentially contain P. ridibundus chromosomes, while in diploid hybrids, micronuclei preferentially contain P. lessonae chromosomes. The number of centromere signals in the nuclei suggested that germ cells were aneuploid until they eliminate the whole chromosomal set of one of the parental species. Furthermore, in diploid hybrids, misaligned P. lessonae chromosomes were observed during the metaphase stage of germ cells division, suggesting their possible elimination due to the inability to attach to the spindle and segregate properly. Additionally, we described gonocytes with an increased number of P. ridibundus centromeres, indicating duplication of the genetic material. We conclude that selective genome elimination from germ cells of diploid and triploid hybrids occurs via the gradual elimination of individual chromosomes of one of the parental genomes, which are enclosed within micronuclei.
Collapse
|
24
|
McCoy MJ, Fire AZ. Intron and gene size expansion during nervous system evolution. BMC Genomics 2020; 21:360. [PMID: 32410625 PMCID: PMC7222433 DOI: 10.1186/s12864-020-6760-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/28/2020] [Indexed: 01/07/2023] Open
Abstract
Background The evolutionary radiation of animals was accompanied by extensive expansion of gene and genome sizes, increased isoform diversity, and complexity of regulation. Results Here we show that the longest genes are enriched for expression in neuronal tissues of diverse vertebrates and of invertebrates. Additionally, we show that neuronal gene size expansion occurred predominantly through net gains in intron size, with a positional bias toward the 5′ end of each gene. Conclusions We find that intron and gene size expansion is a feature of many genes whose expression is enriched in nervous systems. We speculate that unique attributes of neurons may subject neuronal genes to evolutionary forces favoring net size expansion. This process could be associated with tissue-specific constraints on gene function and/or the evolution of increasingly complex gene regulation in nervous systems.
Collapse
Affiliation(s)
- Matthew J McCoy
- Grass Fellowship Program, Marine Biological Laboratory, Woods Hole, MA, 02543, USA. .,Departments of Pathology and Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Andrew Z Fire
- Departments of Pathology and Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
25
|
Mayasich SA, Clarke BL. Vasotocin and the origins of the vasopressin/oxytocin receptor gene family. VITAMINS AND HORMONES 2020; 113:1-27. [DOI: 10.1016/bs.vh.2019.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
26
|
Abstract
Regeneration is a remarkable phenomenon that has been the subject of awe and bafflement for hundreds of years. Although regeneration competence is found in highly divergent organisms throughout the animal kingdom, recent advances in tools used for molecular and genomic characterization have uncovered common genes, molecular mechanisms, and genomic features in regenerating animals. In this review we focus on what is known about how genome regulation modulates cellular potency during regeneration. We discuss this regulation in the context of complex tissue regeneration in animals, from Hydra to humans, with reference to ex vivo-cultured cell models of pluripotency when appropriate. We emphasize the importance of a detailed molecular understanding of both the mechanisms that regulate genomic output and the functional assays that assess the biological relevance of such molecular characterizations.
Collapse
Affiliation(s)
- Elizabeth M Duncan
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Alejandro Sánchez Alvarado
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| |
Collapse
|
27
|
Timoshevskiy VA, Timoshevskaya NY, Smith JJ. Germline-Specific Repetitive Elements in Programmatically Eliminated Chromosomes of the Sea Lamprey ( Petromyzon marinus). Genes (Basel) 2019; 10:E832. [PMID: 31652530 PMCID: PMC6826781 DOI: 10.3390/genes10100832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/26/2022] Open
Abstract
The sea lamprey (Petromyzon marinus) is one of few vertebrate species known to reproducibly eliminate large fractions of its genome during normal embryonic development. This germline-specific DNA is lost in the form of large fragments, including entire chromosomes, and available evidence suggests that DNA elimination acts as a permanent silencing mechanism that prevents the somatic expression of a specific subset of "germline" genes. However, reconstruction of eliminated regions has proven to be challenging due to the complexity of the lamprey karyotype. We applied an integrative approach aimed at further characterization of the large-scale structure of eliminated segments, including: (1) in silico identification of germline-enriched repeats; (2) mapping the chromosomal location of specific repetitive sequences in germline metaphases; and (3) 3D DNA/DNA-hybridization to embryonic lagging anaphases, which permitted us to both verify the specificity of elements to physically eliminated chromosomes and characterize the subcellular organization of these elements during elimination. This approach resulted in the discovery of several repetitive elements that are found exclusively on the eliminated chromosomes, which subsequently permitted the identification of 12 individual chromosomes that are programmatically eliminated during early embryogenesis. The fidelity and specificity of these highly abundant sequences, their distinctive patterning in eliminated chromosomes, and subcellular localization in elimination anaphases suggest that these sequences might contribute to the specific targeting of chromosomes for elimination or possibly in molecular interactions that mediate their decelerated poleward movement in chromosome elimination anaphases, isolation into micronuclei and eventual degradation.
Collapse
Affiliation(s)
| | | | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
28
|
Characterization and Evolution of Germ1, an Element that Undergoes Diminution in Lampreys (Cyclostomata: Petromyzontidae). J Mol Evol 2019; 87:298-308. [PMID: 31486871 DOI: 10.1007/s00239-019-09909-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022]
Abstract
The sea lamprey (Petromyzon marinus) undergoes substantial genomic alterations during embryogenesis in which specific sequences are deleted from the genome of somatic cells yet retained in cells of the germ line. One element that undergoes diminution in P. marinus is Germ1, which consists of a somatically rare (SR) region and a fragment of 28S rDNA. Although the SR-region has been used as a marker for genomic alterations in lampreys, the evolutionary significance of its diminution is unknown. We examined the Germ1 element in five additional species of lamprey to better understand its evolutionary significance. Each representative species contained sequences similar enough to the Germ1 element of P. marinus to be detected via PCR and Southern hybridizations, although the SR-regions of Lampetra aepyptera and Lethenteron appendix are quite divergent from the homologous sequences of Petromyzon and three species of Ichthyomyzon. Lamprey Germ1 sequences have a number of features characteristic of the R2 retrotransposon, a mobile element that specifically targets 28S rDNA. Phylogenetic analyses of the SR-regions revealed patterns generally consistent with relationships among the species included in our study, although the 28S-fragments of each species/genus were most closely related to its own functional rDNA, suggesting that the two components of Germ1 were assembled independently in each lineage. Southern hybridizations showed evidence of genomic alterations involving Germ1 in each species. Our results suggest that Germ1 is a R2 retroelement that occurs in the genome of P. marinus and other petromyzontid lampreys, and that its diminution is incidental to the reduction in rDNA copies during embryogenesis.
Collapse
|
29
|
Sousa RPCD, Furo IDO, O'Brien PCM, Oliveira-Filho AB, Vallinoto M, de Oliveira EH, Silva-Oliveira GC. Genomic Organization of the Repetitive Sequences in Centropomus undecimalis (Perciformes, Centropomidae): Implications for Hybridization and Aquaculture Programs. Zebrafish 2019; 16:415-420. [PMID: 31188085 DOI: 10.1089/zeb.2018.1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The family Centropomidae includes a number of fish species of high commercial value. One of these species, Centropomus undecimalis, is a target of artisanal, industrial, and sports fisheries and has also considerable potential for captive breeding, which has led to its inclusion in several aquaculture programs. While the biology and ecology of C. undecimalis are relatively well documented, few karyological data are available on this species, and they are still scarce for other centropomids. The few chromosomal data available on this family indicate a conserved karyotype 2n = 48, but it is unclear whether the chromosome microstructure is also conserved. In this study, new cytogenetic data are presented on C. undecimalis from the Amazon coastal zone, including C-banding, Ag-NOR, in situ hybridization with repetitive DNA probes (5S and 18S ribosomal genes), and telomeric (TTAGGG)n sequences. The diploid number of the species was 2n = 48, with heterochromatic blocks in the centromeric and pericentromeric regions, as well as distal signals; the nucleolus organizer regions (NORs) were associated with the heterochromatic region. The 18S and 5S recombinant DNA (rDNA) clusters were located in the distal region of chromosome pairs 1 and 11, respectively. The similarities of the karyotype macrostructure found among the centropomid species reinforce their exceptional chromosomal stability. However, the presence of heterochromatic blocks and location of NORs suggest the occurrence of structural rearrangements, which indicates that evolutionary dynamics at the microstructural level in this group may be relatively complex and should be evaluated carefully in any study that targets the production of hybrids for aquaculture.
Collapse
Affiliation(s)
- Rodrigo P C de Sousa
- 1Faculty of Natural Sciences, Institute of Coastal Studies, Federal University of Pará. Bragança PA, Brazil
| | - Ivanete de O Furo
- 2Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará. Belém PA, Brazil.,3Tissue Culture Laboratory, Environment Section, Evandro Chagas Institute, Ananindeua PA, Brazil
| | | | - Aldemir B Oliveira-Filho
- 1Faculty of Natural Sciences, Institute of Coastal Studies, Federal University of Pará. Bragança PA, Brazil
| | - Marcelo Vallinoto
- 1Faculty of Natural Sciences, Institute of Coastal Studies, Federal University of Pará. Bragança PA, Brazil.,5Associated Laboratory, Center for Research in Biodiversity and Genetic Resources, Agrarian Campus of Vairão, University of Porto, Vairão, Portugal
| | - Edivaldo H de Oliveira
- 2Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará. Belém PA, Brazil.,3Tissue Culture Laboratory, Environment Section, Evandro Chagas Institute, Ananindeua PA, Brazil
| | - Gláucia C Silva-Oliveira
- 1Faculty of Natural Sciences, Institute of Coastal Studies, Federal University of Pará. Bragança PA, Brazil
| |
Collapse
|
30
|
Qiu GH, Huang C, Zheng X, Yang X. The protective function of noncoding DNA in genome defense of eukaryotic male germ cells. Epigenomics 2018; 10:499-517. [PMID: 29616594 DOI: 10.2217/epi-2017-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Peripheral and abundant noncoding DNA has been hypothesized to protect the genome and the central protein-coding sequences against DNA damage in somatic genome. In the cytosol, invading exogenous nucleic acids may first be deactivated by small RNAs encoded by noncoding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. In the nucleus, the radicals generated by radiation in the cytosol, radiation energy and invading exogenous nucleic acids are absorbed, blocked and/or reduced by peripheral heterochromatin, and damaged DNA in heterochromatin is removed and excluded from the nucleus to the cytoplasm through nuclear pore complexes. To further strengthen the hypothesis, this review summarizes the experimental evidence supporting the protective function of noncoding DNA in the genome of male germ cells. Based on these data, this review provides evidence supporting the protective role of noncoding DNA in the genome defense of sperm genome through similar mechanisms to those of the somatic genome.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| |
Collapse
|
31
|
Strange RM, Delaney KJ. First Report of a Mitochondrial Pseudogene in Agnathan Vertebrates (Cyclostomata: Petromyzontidae). J Mol Evol 2018; 86:187-189. [PMID: 29564489 DOI: 10.1007/s00239-018-9835-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/15/2018] [Indexed: 11/28/2022]
Abstract
We report herein the characterization of a nuclear paralog of a fragment of the mitochondrial genome (a numt) in two closely related species of lampreys (Ichthyomyzon spp.). Although numts have been characterized in several vertebrate taxa, numts have yet to be reported for fishes in general. Given the phylogenetic position of lampreys relative to other vertebrates, the presence of numts within the lamprey genome is either evidence of an ancestral trait lost in other fishes but uniquely retained in agnathans and amniotes, or (more intriguingly) a product of the genome rearrangements these animals undergo during development.
Collapse
Affiliation(s)
- Rex Meade Strange
- Department of Biology, University of Southern Indiana, 8600 University Blvd., Evansville, IN, 47712, USA.
| | - Kimberly J Delaney
- Department of Biology, University of Southern Indiana, 8600 University Blvd., Evansville, IN, 47712, USA
| |
Collapse
|
32
|
Expansions, diversification, and interindividual copy number variations of AID/APOBEC family cytidine deaminase genes in lampreys. Proc Natl Acad Sci U S A 2018; 115:E3211-E3220. [PMID: 29555777 PMCID: PMC5889659 DOI: 10.1073/pnas.1720871115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytidine deaminases of the AID/APOBEC family mutate the genetic material of pathogens or contribute to the generation and diversification of antibody repertoires in jawed vertebrates. In the extant jawless vertebrate, the lamprey, two members of the AID/APOBEC family are implicated in the somatic diversification of variable lymphocyte receptor (VLR) repertoires. We discovered an unexpected diversity of cytidine deaminase genes within and among lamprey species. The cytidine deaminases with features comparable to jawed vertebrate AID are always present, suggesting that they are involved in essential processes, such as VLR assembly. In contrast, other genes show a remarkable copy number variation, like the APOBEC3 genes in mammals. This suggests an unexpected similarity in functional deployment of AID/APOBEC cytidine deaminases across all vertebrates. Cytidine deaminases of the AID/APOBEC family catalyze C-to-U nucleotide transitions in mRNA or DNA. Members of the APOBEC3 branch are involved in antiviral defense, whereas AID contributes to diversification of antibody repertoires in jawed vertebrates via somatic hypermutation, gene conversion, and class switch recombination. In the extant jawless vertebrate, the lamprey, two members of the AID/APOBEC family are implicated in the generation of somatic diversity of the variable lymphocyte receptors (VLRs). Expression studies linked CDA1 and CDA2 genes to the assembly of VLRA/C genes in T-like cells and the VLRB genes in B-like cells, respectively. Here, we identify and characterize several CDA1-like genes in the larvae of different lamprey species and demonstrate that these encode active cytidine deaminases. Structural comparisons of the CDA1 variants highlighted substantial differences in surface charge; this observation is supported by our finding that the enzymes require different conditions and substrates for optimal activity in vitro. Strikingly, we also found that the number of CDA-like genes present in individuals of the same species is variable. Nevertheless, irrespective of the number of different CDA1-like genes present, all lamprey larvae have at least one functional CDA1-related gene encoding an enzyme with predicted structural and chemical features generally comparable to jawed vertebrate AID. Our findings suggest that, similar to APOBEC3 branch expansion in jawed vertebrates, the AID/APOBEC family has undergone substantial diversification in lamprey, possibly indicative of multiple distinct biological roles.
Collapse
|
33
|
Thompson DB, Aboulhouda S, Hysolli E, Smith CJ, Wang S, Castanon O, Church GM. The Future of Multiplexed Eukaryotic Genome Engineering. ACS Chem Biol 2018; 13:313-325. [PMID: 29241002 PMCID: PMC5880278 DOI: 10.1021/acschembio.7b00842] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiplex genome editing is the simultaneous introduction of multiple distinct modifications to a given genome. Though in its infancy, maturation of this field will facilitate powerful new biomedical research approaches and will enable a host of far-reaching biological engineering applications, including new therapeutic modalities and industrial applications, as well as "genome writing" and de-extinction efforts. In this Perspective, we focus on multiplex editing of large eukaryotic genomes. We describe the current state of multiplexed genome editing, the current limits of our ability to multiplex edits, and provide perspective on the many applications that fully realized multiplex editing technologies would enable in higher eukaryotic genomes. We offer a broad look at future directions, covering emergent CRISPR-based technologies, advances in intracellular delivery, and new DNA assembly approaches that may enable future genome editing on a massively multiplexed scale.
Collapse
Affiliation(s)
- David B. Thompson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
| | - Soufiane Aboulhouda
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
| | - Eriona Hysolli
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
| | - Cory J. Smith
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
| | - Stan Wang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
| | - Oscar Castanon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau, France
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA
| |
Collapse
|
34
|
The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat Genet 2018; 50:270-277. [PMID: 29358652 PMCID: PMC5805609 DOI: 10.1038/s41588-017-0036-1] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022]
Abstract
The sea lamprey (Petromyzon marinus) serves as a comparative model for reconstructing vertebrate evolution. To enable more informed analyses, we developed a new assembly of the lamprey germline genome that integrates several complementary datasets. Analysis of this highly contiguous (chromosome-scale) assembly reveals that both chromosomal and whole-genome duplications have played significant roles in the evolution of ancestral vertebrate and lamprey genomes, including chromosomes that carry the six lamprey HOX clusters. The assembly also contains several hundred genes that are reproducibly eliminated from somatic cells during early development in lamprey. Comparative analyses show that gnathostome (mouse) homologs of these genes are frequently marked by Polycomb Repressive Complexes (PRCs) in embryonic stem cells, suggesting overlaps in the regulatory logic of somatic DNA elimination and repressive/bivalent states that are regulated by early embryonic PRCs. This new assembly will enhance diverse studies that are informed by lampreys’ unique biology and evolutionary/comparative perspective.
Collapse
|
35
|
Exploration of the Germline Genome of the Ciliate Chilodonella uncinata through Single-Cell Omics (Transcriptomics and Genomics). mBio 2018; 9:mBio.01836-17. [PMID: 29317511 PMCID: PMC5760741 DOI: 10.1128/mbio.01836-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Separate germline and somatic genomes are found in numerous lineages across the eukaryotic tree of life, often separated into distinct tissues (e.g., in plants, animals, and fungi) or distinct nuclei sharing a common cytoplasm (e.g., in ciliates and some foraminifera). In ciliates, germline-limited (i.e., micronuclear-specific) DNA is eliminated during the development of a new somatic (i.e., macronuclear) genome in a process that is tightly linked to large-scale genome rearrangements, such as deletions and reordering of protein-coding sequences. Most studies of germline genome architecture in ciliates have focused on the model ciliates Oxytricha trifallax, Paramecium tetraurelia, and Tetrahymena thermophila, for which the complete germline genome sequences are known. Outside of these model taxa, only a few dozen germline loci have been characterized from a limited number of cultivable species, which is likely due to difficulties in obtaining sufficient quantities of “purified” germline DNA in these taxa. Combining single-cell transcriptomics and genomics, we have overcome these limitations and provide the first insights into the structure of the germline genome of the ciliate Chilodonella uncinata, a member of the understudied class Phyllopharyngea. Our analyses reveal the following: (i) large gene families contain a disproportionate number of genes from scrambled germline loci; (ii) germline-soma boundaries in the germline genome are demarcated by substantial shifts in GC content; (iii) single-cell omics techniques provide large-scale quality germline genome data with limited effort, at least for ciliates with extensively fragmented somatic genomes. Our approach provides an efficient means to understand better the evolution of genome rearrangements between germline and soma in ciliates. Our understanding of the distinctions between germline and somatic genomes in ciliates has largely relied on studies of a few model genera (e.g., Oxytricha, Paramecium, Tetrahymena). We have used single-cell omics to explore germline-soma distinctions in the ciliate Chilodonella uncinata, which likely diverged from the better-studied ciliates ~700 million years ago. The analyses presented here indicate that developmentally regulated genome rearrangements between germline and soma are demarcated by rapid transitions in local GC composition and lead to diversification of protein families. The approaches used here provide the basis for future work aimed at discerning the evolutionary impacts of germline-soma distinctions among diverse ciliates.
Collapse
|
36
|
Wang J, Gao S, Mostovoy Y, Kang Y, Zagoskin M, Sun Y, Zhang B, White LK, Easton A, Nutman TB, Kwok PY, Hu S, Nielsen MK, Davis RE. Comparative genome analysis of programmed DNA elimination in nematodes. Genome Res 2017; 27:2001-2014. [PMID: 29118011 PMCID: PMC5741062 DOI: 10.1101/gr.225730.117] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
Abstract
Programmed DNA elimination is a developmentally regulated process leading to the reproducible loss of specific genomic sequences. DNA elimination occurs in unicellular ciliates and a variety of metazoans, including invertebrates and vertebrates. In metazoa, DNA elimination typically occurs in somatic cells during early development, leaving the germline genome intact. Reference genomes for metazoa that undergo DNA elimination are not available. Here, we generated germline and somatic reference genome sequences of the DNA eliminating pig parasitic nematode Ascaris suum and the horse parasite Parascaris univalens. In addition, we carried out in-depth analyses of DNA elimination in the parasitic nematode of humans, Ascaris lumbricoides, and the parasitic nematode of dogs, Toxocara canis. Our analysis of nematode DNA elimination reveals that in all species, repetitive sequences (that differ among the genera) and germline-expressed genes (approximately 1000–2000 or 5%–10% of the genes) are eliminated. Thirty-five percent of these eliminated genes are conserved among these nematodes, defining a core set of eliminated genes that are preferentially expressed during spermatogenesis. Our analysis supports the view that DNA elimination in nematodes silences germline-expressed genes. Over half of the chromosome break sites are conserved between Ascaris and Parascaris, whereas only 10% are conserved in the more divergent T. canis. Analysis of the chromosomal breakage regions suggests a sequence-independent mechanism for DNA breakage followed by telomere healing, with the formation of more accessible chromatin in the break regions prior to DNA elimination. Our genome assemblies and annotations also provide comprehensive resources for analysis of DNA elimination, parasitology research, and comparative nematode genome and epigenome studies.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Shenghan Gao
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.,Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulia Mostovoy
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, California 94158, USA
| | - Yuanyuan Kang
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Maxim Zagoskin
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Yongqiao Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Laura K White
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Alice Easton
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, California 94158, USA
| | - Songnian Hu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Martin K Nielsen
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
37
|
Feng L, Wang G, Hamilton EP, Xiong J, Yan G, Chen K, Chen X, Dui W, Plemens A, Khadr L, Dhanekula A, Juma M, Dang HQ, Kapler GM, Orias E, Miao W, Liu Y. A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res 2017; 45:9481-9502. [PMID: 28934495 PMCID: PMC5766162 DOI: 10.1093/nar/gkx652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022] Open
Abstract
Developmentally programmed genome rearrangement accompanies differentiation of the silent germline micronucleus into the transcriptionally active somatic macronucleus in the ciliated protozoan Tetrahymena thermophila. Internal eliminated sequences (IES) are excised, followed by rejoining of MAC-destined sequences, while fragmentation occurs at conserved chromosome breakage sequences, generating macronuclear chromosomes. Some macronuclear chromosomes, referred to as non-maintained chromosomes (NMC), are lost soon after differentiation. Large NMC contain genes implicated in development-specific roles. One such gene encodes the domesticated piggyBac transposase TPB6, required for heterochromatin-dependent precise excision of IES residing within exons of functionally important genes. These conserved exonic IES determine alternative transcription products in the developing macronucleus; some even contain free-standing genes. Examples of precise loss of some exonic IES in the micronucleus and retention of others in the macronucleus of related species suggest an evolutionary analogy to introns. Our results reveal that germline-limited sequences can encode genes with specific expression patterns and development-related functions, which may be a recurring theme in eukaryotic organisms experiencing programmed genome rearrangement during germline to soma differentiation.
Collapse
Affiliation(s)
- Lifang Feng
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guanxiong Yan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao Chen
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wen Dui
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amber Plemens
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lara Khadr
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arjune Dhanekula
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mina Juma
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hung Quang Dang
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Geoffrey M Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Timoshevskiy VA, Lampman RT, Hess JE, Porter LL, Smith JJ. Deep ancestry of programmed genome rearrangement in lampreys. Dev Biol 2017; 429:31-34. [PMID: 28669817 PMCID: PMC5554715 DOI: 10.1016/j.ydbio.2017.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 11/27/2022]
Abstract
In most multicellular organisms, the structure and content of the genome is rigorously maintained over the course of development. However some species have evolved genome biologies that permit, or require, developmentally regulated changes in the physical structure and content of the genome (programmed genome rearrangement: PGR). Relatively few vertebrates are known to undergo PGR, although all agnathans surveyed to date (several hagfish and one lamprey: Petromyzon marinus) show evidence of large scale PGR. To further resolve the ancestry of PGR within vertebrates, we developed probes that allow simultaneous tracking of nearly all sequences eliminated by PGR in P. marinus and a second lamprey species (Entosphenus tridentatus). These comparative analyses reveal conserved subcellular structures (lagging chromatin and micronuclei) associated with PGR and provide the first comparative embryological evidence in support of the idea that PGR represents an ancient and evolutionarily stable strategy for regulating inherent developmental/genetic conflicts between germline and soma.
Collapse
Affiliation(s)
| | - Ralph T Lampman
- Yakama Nation Fisheries Resource Management Program, Toppenish, WA 98948, USA
| | - Jon E Hess
- Columbia River Inter-Tribal Fish Commission, Portland, OR 97232, USA
| | - Laurie L Porter
- Columbia River Inter-Tribal Fish Commission, Portland, OR 97232, USA
| | - Jeramiah J Smith
- University of Kentucky, Department of Biology, Lexington, KY 40506, USA.
| |
Collapse
|
39
|
Al-Salam A, Irwin DM. Evolution of the vertebrate insulin receptor substrate (Irs) gene family. BMC Evol Biol 2017; 17:148. [PMID: 28645244 PMCID: PMC5482937 DOI: 10.1186/s12862-017-0994-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. RESULTS Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. CONCLUSIONS The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.
Collapse
Affiliation(s)
- Ahmad Al-Salam
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Pirkmajer S, Kirchner H, Lundell LS, Zelenin PV, Zierath JR, Makarova KS, Wolf YI, Chibalin AV. Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport. J Physiol 2017; 595:4611-4630. [PMID: 28436536 DOI: 10.1113/jp274254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Small transmembrane proteins such as FXYDs, which interact with Na+ ,K+ -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca2+ -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. ABSTRACT Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na+ ,K+ -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and bony vertebrates (Euteleostomi). Diversification of SERCA regulators was much less extensive, indicating they operate under different evolutionary constraints. Finally, we found that FXYDs in extant vertebrates can be classified into 13 gene subfamilies, which do not always correspond to the established FXYD classification. We therefore propose a revised classification that is based on evolutionary history of FXYDs and that is consistent across vertebrate species. Collectively, our findings provide an improved framework for investigating the function of ion transport in health and disease.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Henriette Kirchner
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Leonidas S Lundell
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Pavel V Zelenin
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Kira S Makarova
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
41
|
Holzer G, Laudet V. New Insights into Vertebrate Thyroid Hormone Receptor Evolution. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guillaume Holzer
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Vincent Laudet
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232, Université Pierre et Marie Curie Paris, 1 avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| |
Collapse
|
42
|
Ishijima J, Uno Y, Nunome M, Nishida C, Kuraku S, Matsuda Y. Molecular cytogenetic characterization of chromosome site-specific repetitive sequences in the Arctic lamprey (Lethenteron camtschaticum, Petromyzontidae). DNA Res 2017; 24:93-101. [PMID: 28025319 PMCID: PMC5381345 DOI: 10.1093/dnares/dsw053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022] Open
Abstract
All extant lamprey karyotypes are characterized by almost all dot-shaped microchromosomes. To understand the molecular basis of chromosome structure in lampreys, we performed chromosome C-banding and silver staining and chromosome mapping of the 18S–28S and 5S ribosomal RNA (rRNA) genes and telomeric TTAGGG repeats in the Arctic lamprey (Lethenteron camtschaticum). In addition, we cloned chromosome site-specific repetitive DNA sequences and characterized them by nucleotide sequencing, chromosome in situ hybridization, and filter hybridization. Three types of repetitive sequences were detected; a 200-bp AT-rich repetitive sequence, LCA-EcoRIa that co-localized with the 18S–28S rRNA gene clusters of 3 chromosomal pairs; a 364-bp AT-rich LCA-EcoRIb sequence that showed homology to the EcoRI sequence family from the sea lamprey (Petromyzon marinus), which contains short repeats as centromeric motifs; and a GC-rich 702-bp LCA-ApaI sequence that was distributed on nearly all chromosomes and showed significant homology with the integrase-coding region of a Ty3/Gypsy family long terminal repeat (LTR) retrotransposon. All three repetitive sequences are highly conserved within the Petromyzontidae or within Petromyzontidae and Mordaciidae. Molecular cytogenetic characterization of these site-specific repeats showed that they may be correlated with programed genome rearrangement (LCA-EcoRIa), centromere structure and function (LCA-EcoRIb), and site-specific amplification of LTR retroelements through homogenization between non-homologous chromosomes (LCA-ApaI).
Collapse
Affiliation(s)
- Junko Ishijima
- Laboratory of Animal Cytogenetics, Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yoshinobu Uno
- Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mitsuo Nunome
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Chizuko Nishida
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Yoichi Matsuda
- Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- To whom correspondence should be addressed. Tel. +81 52 789 4100. Fax. +81 52 789 4099.
| |
Collapse
|
43
|
Brown SC, Bourge M, Maunoury N, Wong M, Wolfe Bianchi M, Lepers-Andrzejewski S, Besse P, Siljak-Yakovlev S, Dron M, Satiat-Jeunemaître B. DNA Remodeling by Strict Partial Endoreplication in Orchids, an Original Process in the Plant Kingdom. Genome Biol Evol 2017; 9:1051-1071. [PMID: 28419219 PMCID: PMC5546068 DOI: 10.1093/gbe/evx063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
DNA remodeling during endoreplication appears to be a strong developmental characteristic in orchids. In this study, we analyzed DNA content and nuclei in 41 species of orchids to further map the genome evolution in this plant family. We demonstrate that the DNA remodeling observed in 36 out of 41 orchids studied corresponds to strict partial endoreplication. Such process is developmentally regulated in each wild species studied. Cytometry data analyses allowed us to propose a model where nuclear states 2C, 4E, 8E, etc. form a series comprising a fixed proportion, the euploid genome 2C, plus 2-32 additional copies of a complementary part of the genome. The fixed proportion ranged from 89% of the genome in Vanilla mexicana down to 19% in V. pompona, the lowest value for all 148 orchids reported. Insterspecific hybridization did not suppress this phenomenon. Interestingly, this process was not observed in mass-produced epiphytes. Nucleolar volumes grow with the number of endocopies present, coherent with high transcription activity in endoreplicated nuclei. Our analyses suggest species-specific chromatin rearrangement. Towards understanding endoreplication, V. planifolia constitutes a tractable system for isolating the genomic sequences that confer an advantage via endoreplication from those that apparently suffice at diploid level.
Collapse
Affiliation(s)
- Spencer C. Brown
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université
Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette Cedex, France
| | - Mickaël Bourge
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université
Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette Cedex, France
| | - Nicolas Maunoury
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université
Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette Cedex, France
| | - Maurice Wong
- Service du Développement Rural, Papeete Tahiti, French Polynesia,
France
| | - Michele Wolfe Bianchi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université
Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette Cedex, France
| | | | - Pascale Besse
- UMR 53, PVBMT Université de la Réunion – Cirad, Pôle de Protection des
Plantes, St Pierre, France
| | - Sonja Siljak-Yakovlev
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech,
Université Paris-Saclay, Orsay Cedex, France
| | - Michel Dron
- Institute of Plant Sciences Paris Saclay IPS2, Université Paris-Sud, CNRS,
INRA, Université Evry, Université Paris Diderot, Sorbonne Paris-Cité, Université
Paris-Saclay, Orsay, France
| | - Béatrice Satiat-Jeunemaître
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université
Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette Cedex, France
| |
Collapse
|
44
|
Sotero-Caio CG, Platt RN, Suh A, Ray DA. Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol Evol 2017; 9:161-177. [PMID: 28158585 PMCID: PMC5381603 DOI: 10.1093/gbe/evw264] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes.
Collapse
Affiliation(s)
| | - Roy N. Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Alexander Suh
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
45
|
Tostivint H, Dettaï A, Quan FB, Ravi V, Tay BH, Rodicio MC, Mazan S, Venkatesh B, Kenigfest NB. Identification of three somatostatin genes in lampreys. Gen Comp Endocrinol 2016; 237:89-97. [PMID: 27524287 DOI: 10.1016/j.ygcen.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/29/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022]
Abstract
Somatostatins (SSs) are a structurally diverse family of neuropeptides that play important roles in the regulation of growth, development and metabolism in vertebrates. It has been recently proposed that the common ancestor of gnathostomes possessed three SS genes, namely SS1, SS2 and SS5. SS1 and SS2 are still present in most extant gnathostome species investigated so far while SS5 primarily occurs in chondrichthyes, actinopterygians and actinistia but not in tetrapods. Very little is known about the repertoire of SSs in cyclostomes, which are extant jawless vertebrates. In the present study, we report the cloning of the cDNAs encoding three distinct lamprey SS variants that we call SSa, SSb and SSc. SSa and SSb correspond to the two SS variants previously characterized in lamprey, while SSc appears to be a totally novel one. SSa exhibits the same sequence as gnathostome SS1. SSb differs from SSa by only one substitution (Thr12→Ser). SSc exhibits a totally unique structure (ANCRMFYWKTMAAC) that shares only 50% identity with SSa and SSb. SSa, SSb and SSc precursors do not exhibit any appreciable sequence similarity outside the C-terminal region containing the SS sequence. Phylogenetic analyses failed to clearly assign orthology relationships between lamprey and gnathostome SS genes. Synteny analysis suggests that the SSc gene arose before the split of the three gnathostome genes SS1, SS2 and SS5.
Collapse
Affiliation(s)
- Hervé Tostivint
- Evolution des Régulations Endocriniennes, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France.
| | - Agnès Dettaï
- Institut de systématique et Evolution, UMR 7205 CNRS, UMPC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Feng B Quan
- Evolution des Régulations Endocriniennes, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore
| | - Maria Celina Rodicio
- Department of Cell Biology and Ecology, CIBUS, Faculty of Biology, University of Santiago de Compostela, Spain
| | - Sylvie Mazan
- Biologie Intégrative des Organismes Marins, UMR 7232 CNRS, Observatoire Océanologique, Université Pierre et Marie Curie, Sorbonne Université, Banyuls-sur-Mer, France
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore
| | - Natalia B Kenigfest
- Evolution des Régulations Endocriniennes, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France; Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Insitute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
46
|
Yan X, Meng W, Wu F, Xu A, Chen S, Huang S. The Nuclear DNA Content and Genetic Diversity of Lampetra morii. PLoS One 2016; 11:e0157494. [PMID: 27388621 PMCID: PMC4936738 DOI: 10.1371/journal.pone.0157494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/30/2016] [Indexed: 12/14/2022] Open
Abstract
We investigated the nuclear DNA content and genetic diversity of a river lamprey, the Korean lamprey Lampetra morii, which is distributed in the northeast of China. L. morii spends its whole life cycle in fresh water, and its adult size is relatively small (~160 mm long) compared with that of other lampreys. The haploid nuclear DNA content of L. morii is 1.618 pg (approximately 1.582 Gb) in germline cells, and there is ~15% germline DNA loss in somatic cells. These values are significantly smaller than those of Petromyzon marinus, a lamprey with a published draft genome. The chromosomes of L. morii are small and acrocentric, with a diploid modal number of 2n = 132, lower than some other lampreys. Sequence and AFLP analyses suggest that the allelic polymorphism rate (~0.14% based on examined nuclear and mitochondrial DNA sequences) of L. morii is much lower than that (~2%) of P. marinus. Phylogenetic analysis based on a mitochondrial DNA fragment confirms that L. morii belongs to the genus Lampetra, which, together with the genus Lethenteron, forms a sister group to P. marinus. These genetic background data are valuable for subsequent genetic and genomic research on L. morii.
Collapse
Affiliation(s)
- Xinyu Yan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenbin Meng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Fenfang Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
47
|
Hřibová E, Holušová K, Trávníček P, Petrovská B, Ponert J, Šimková H, Kubátová B, Jersáková J, Čurn V, Suda J, Doležel J, Vrána J. The Enigma of Progressively Partial Endoreplication: New Insights Provided by Flow Cytometry and Next-Generation Sequencing. Genome Biol Evol 2016; 8:1996-2005. [PMID: 27324917 PMCID: PMC4943206 DOI: 10.1093/gbe/evw141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In many plant species, somatic cell differentiation is accompanied by endoreduplication, a process during which cells undergo one or more rounds of DNA replication cycles in the absence of mitosis, resulting in nuclei with multiples of 2C DNA amounts (4C, 8C, 16C, etc.). In some orchids, a disproportionate increase in nuclear DNA contents has been observed, where successive endoreduplication cycles result in DNA amounts 2C + P, 2C + 3P, 2C + 7P, etc., where P is the DNA content of the replicated part of the 2C nuclear genome. This unique phenomenon was termed "progressively partial endoreplication" (PPE). We investigated processes behind the PPE in Ludisia discolor using flow cytometry (FCM) and Illumina sequencing. In particular, we wanted to determine whether chromatin elimination or incomplete genome duplication was involved, and to identify types of DNA sequences that were affected. Cell cycle analysis of root tip cell nuclei pulse-labeled with EdU revealed two cell cycles, one ending above the population of nuclei with 2C + P content, and the other with a typical "horseshoe" pattern of S-phase nuclei ranging from 2C to 4C DNA contents. The process leading to nuclei with 2C + P amounts therefore involves incomplete genome replication. Subsequent Illumina sequencing of flow-sorted 2C and 2C + P nuclei showed that all types of repetitive DNA sequences were affected during PPE; a complete elimination of any specific type of repetitive DNA was not observed. We hypothesize that PPE is part of a highly controlled transition mechanism from proliferation phase to differentiation phase of plant tissue development.
Collapse
Affiliation(s)
- Eva Hřibová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Kateřina Holušová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Pavel Trávníček
- Institute of Botany, the Czech Academy of Sciences, Průhonice, Czech Republic Department of Botany, Faculty of Science, Charles University in Prague, Czech Republic Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic
| | - Beáta Petrovská
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jan Ponert
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Czech Republic Prague Botanical Garden, Prague, Czech Republic
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Barbora Kubátová
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic
| | - Jana Jersáková
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
| | - Vladislav Čurn
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic
| | - Jan Suda
- Institute of Botany, the Czech Academy of Sciences, Průhonice, Czech Republic Department of Botany, Faculty of Science, Charles University in Prague, Czech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jan Vrána
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| |
Collapse
|
48
|
Timoshevskiy VA, Herdy JR, Keinath MC, Smith JJ. Cellular and Molecular Features of Developmentally Programmed Genome Rearrangement in a Vertebrate (Sea Lamprey: Petromyzon marinus). PLoS Genet 2016; 12:e1006103. [PMID: 27341395 PMCID: PMC4920378 DOI: 10.1371/journal.pgen.1006103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/13/2016] [Indexed: 11/21/2022] Open
Abstract
The sea lamprey (Petromyzon marinus) represents one of the few vertebrate species known to undergo large-scale programmatic elimination of genomic DNA over the course of its normal development. Programmed genome rearrangements (PGRs) result in the reproducible loss of ~20% of the genome from somatic cell lineages during early embryogenesis. Studies of PGR hold the potential to provide novel insights related to the maintenance of genome stability during the cell cycle and coordination between mechanisms responsible for the accurate distribution of chromosomes into daughter cells, yet little is known regarding the mechanistic basis or cellular context of PGR in this or any other vertebrate lineage. Here we identify epigenetic silencing events that are associated with the programmed elimination of DNA and describe the spatiotemporal dynamics of PGR during lamprey embryogenesis. In situ analyses reveal that the earliest DNA methylation (and to some extent H3K9 trimethylation) events are limited to specific extranuclear structures (micronuclei) containing eliminated DNA. During early embryogenesis a majority of micronuclei (~60%) show strong enrichment for repressive chromatin modifications (H3K9me3 and 5meC). These analyses also led to the discovery that eliminated DNA is packaged into chromatin that does not migrate with somatically retained chromosomes during anaphase, a condition that is superficially similar to lagging chromosomes observed in some cancer subtypes. Closer examination of “lagging” chromatin revealed distributions of repetitive elements, cytoskeletal contacts and chromatin contacts that provide new insights into the cellular mechanisms underlying the programmed loss of these segments. Our analyses provide additional perspective on the cellular and molecular context of PGR, identify new structures associated with elimination of DNA and reveal that PGR is completed over the course of several successive cell divisions. Lampreys possess a fascinating genome biology wherein large portions of the genome, including large numbers of genes, are programmatically deleted during development. The lamprey therefore represents a uniquely informative system with respect to several broad areas of biology, including genome stability/rearrangement, epigenetic silencing, and the establishment and maintenance of pluripotency. However, little is known regarding the cellular context or mechanism of deletion, partly due to the challenges of observing rearrangements in situ. Here we present analyses and new techniques that significantly advance our understanding of the subcellular context of programmed rearrangements and interactions between programmed deletion and canonical DNA silencing mechanisms. These analyses demonstrate that DNA elimination occurs earlier in embryogenesis than was previously recognized and reveal several new cellular and molecular aspects of programmed DNA loss. Specifically we show that eliminated DNA exhibits a unique migration pattern during cell division, is packaged into discreet subcellular structures later in the cell cycle, and undergoes epigenetic silencing through DNA and histone methylation. These observations provide new insight into the mechanisms underlying programmed DNA loss and suggest a functional link between programmed DNA loss and other, more conserved gene silencing pathways.
Collapse
Affiliation(s)
| | - Joseph R. Herdy
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Laboratory of Genetics, The Salk Institute, La Jolla, California, United States of America
| | - Melissa C. Keinath
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jeramiah J. Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
49
|
Lagman D, Franzén IE, Eggert J, Larhammar D, Abalo XM. Evolution and expression of the phosphodiesterase 6 genes unveils vertebrate novelty to control photosensitivity. BMC Evol Biol 2016; 16:124. [PMID: 27296292 PMCID: PMC4906994 DOI: 10.1186/s12862-016-0695-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/01/2016] [Indexed: 02/25/2023] Open
Abstract
Background Phosphodiesterase 6 (PDE6) is a protein complex that hydrolyses cGMP and acts as the effector of the vertebrate phototransduction cascade. The PDE6 holoenzyme consists of catalytic and inhibitory subunits belonging to two unrelated gene families. Rods and cones express distinct genes from both families: PDE6A and PDE6B code for the catalytic and PDE6G the inhibitory subunits in rods while PDE6C codes for the catalytic and PDE6H the inhibitory subunits in cones. We performed phylogenetic and comparative synteny analyses for both gene families in genomes from a broad range of animals. Furthermore, gene expression was investigated in zebrafish. Results We found that both gene families expanded from one to three members in the two rounds of genome doubling (2R) that occurred at the base of vertebrate evolution. The PDE6 inhibitory subunit gene family appears to be unique to vertebrates and expanded further after the teleost-specific genome doubling (3R). We also describe a new family member that originated in 2R and has been lost in amniotes, which we have named pde6i. Zebrafish has retained two additional copies of the PDE6 inhibitory subunit genes after 3R that are highly conserved, have high amino acid sequence identity, are coexpressed in the same photoreceptor type as their amniote orthologs and, interestingly, show strikingly different daily oscillation in gene expression levels. Conclusions Together, these data suggest specialisation related to the adaptation to different light intensities during the day-night cycle, most likely maintaining the regulatory function of the PDE inhibitory subunits in the phototransduction cascade. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0695-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Lagman
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Ilkin E Franzén
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Joel Eggert
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | - Xesús M Abalo
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124, Uppsala, Sweden.
| |
Collapse
|
50
|
Bryant SA, Herdy JR, Amemiya CT, Smith JJ. Characterization of Somatically-Eliminated Genes During Development of the Sea Lamprey (Petromyzon marinus). Mol Biol Evol 2016; 33:2337-44. [PMID: 27288344 DOI: 10.1093/molbev/msw104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The sea lamprey (Petromyzon marinus) is a basal vertebrate that undergoes developmentally programmed genome rearrangements (PGRs) during early development. These events facilitate the elimination of ∼20% of the genome from the somatic cell lineage, resulting in distinct somatic and germline genomes. Thus far only a handful of germline-specific genes have been definitively identified within the estimated 500 Mb of DNA that is deleted during PGR, although a few thousand germline-specific genes are thought to exist. To improve our understanding of the evolutionary/developmental logic of PGR, we generated computational predictions to identify candidate germline-specific genes within a new transcriptomic dataset derived from adult germline and the early embryonic stages during which PGR occurs. Follow-up validation studies identified 44 germline-specific genes and further characterized patterns of transcription and DNA loss during early embryogenesis. Expression analyses reveal that many of these genes are differentially expressed during early embryogenesis and presumably function in the early development of the germline. Ontology analyses indicate that many of these germline-specific genes play known roles in germline development, pluripotency, and oncogenesis (when misexpressed). These studies provide support for the theory that PGR serves to segregate molecular functions related to germline development/pluripotency in order to prevent their potential misexpression in somatic cells. This larger set of eliminated genes also allows us to extend the evolutionary/developmental breadth of this theory, as some deleted genes (or their gnathostome homologs) appear to be associated with the early development of somatic lineages, perhaps through the evolution of novel functions within gnathostome lineages.
Collapse
Affiliation(s)
| | | | - Chris T Amemiya
- Benaroya Research Institute at Virginia Mason, Seattle Department of Biology, University of Washington, Seattle
| | | |
Collapse
|