1
|
Jara JS, Avci HX, Kouremenou I, Doulazmi M, Bakouche J, Dubacq C, Goyenvalle C, Mariani J, Lohof AM, Sherrard RM. Pax3 induces target-specific reinnervation through axon collateral expression of PSA-NCAM. Prog Neurobiol 2024; 232:102560. [PMID: 38097036 DOI: 10.1016/j.pneurobio.2023.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Damaged or dysfunctional neural circuits can be replaced after a lesion by axon sprouting and collateral growth from undamaged neurons. Unfortunately, these new connections are often disorganized and rarely produce clinical improvement. Here we investigate how to promote post-lesion axonal collateral growth, while retaining correct cellular targeting. In the mouse olivocerebellar path, brain-derived neurotrophic factor (BDNF) induces correctly-targeted post-lesion cerebellar reinnervation by remaining intact inferior olivary axons (climbing fibers). In this study we identified cellular processes through which BDNF induces this repair. BDNF injection into the denervated cerebellum upregulates the transcription factor Pax3 in inferior olivary neurons and induces rapid climbing fiber sprouting. Pax3 in turn increases polysialic acid-neural cell adhesion molecule (PSA-NCAM) in the sprouting climbing fiber path, facilitating collateral outgrowth and pathfinding to reinnervate the correct targets, cerebellar Purkinje cells. BDNF-induced reinnervation can be reproduced by olivary Pax3 overexpression, and abolished by olivary Pax3 knockdown, suggesting that Pax3 promotes axon growth and guidance through upregulating PSA-NCAM, probably on the axon's growth cone. These data indicate that restricting growth-promotion to potential reinnervating afferent neurons, as opposed to stimulating the whole circuit or the injury site, allows axon growth and appropriate guidance, thus accurately rebuilding a neural circuit.
Collapse
Affiliation(s)
- J Sebastian Jara
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Hasan X Avci
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Ioanna Kouremenou
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Mohamed Doulazmi
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Joelle Bakouche
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Caroline Dubacq
- Sorbonne Université, CNRS & INSERM, IBPS-NPS, Neurosciences Paris Seine, Paris France
| | - Catherine Goyenvalle
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Jean Mariani
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Ann M Lohof
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Rachel M Sherrard
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France.
| |
Collapse
|
2
|
Ribeiro S, Sherrard RM. Cerebellum and neurodevelopmental disorders: RORα is a unifying force. Front Cell Neurosci 2023; 17:1108339. [PMID: 37066074 PMCID: PMC10098020 DOI: 10.3389/fncel.2023.1108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Errors of cerebellar development are increasingly acknowledged as risk factors for neuro-developmental disorders (NDDs), such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and schizophrenia. Evidence has been assembled from cerebellar abnormalities in autistic patients, as well as a range of genetic mutations identified in human patients that affect the cerebellar circuit, particularly Purkinje cells, and are associated with deficits of motor function, learning and social behavior; traits that are commonly associated with autism and schizophrenia. However, NDDs, such as ASD and schizophrenia, also include systemic abnormalities, e.g., chronic inflammation, abnormal circadian rhythms etc., which cannot be explained by lesions that only affect the cerebellum. Here we bring together phenotypic, circuit and structural evidence supporting the contribution of cerebellar dysfunction in NDDs and propose that the transcription factor Retinoid-related Orphan Receptor alpha (RORα) provides the missing link underlying both cerebellar and systemic abnormalities observed in NDDs. We present the role of RORα in cerebellar development and how the abnormalities that occur due to RORα deficiency could explain NDD symptoms. We then focus on how RORα is linked to NDDs, particularly ASD and schizophrenia, and how its diverse extra-cerebral actions can explain the systemic components of these diseases. Finally, we discuss how RORα-deficiency is likely a driving force for NDDs through its induction of cerebellar developmental defects, which in turn affect downstream targets, and its regulation of extracerebral systems, such as inflammation, circadian rhythms, and sexual dimorphism.
Collapse
|
3
|
Lohof AM, Dufor T, Sherrard RM. Neural Circuit Repair by Low-Intensity rTMS. CEREBELLUM (LONDON, ENGLAND) 2022; 21:750-754. [PMID: 35023064 DOI: 10.1007/s12311-021-01354-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Electromagnetic brain stimulation is a promising treatment in neurology and psychiatry. However, clinical outcomes are variable and underlying mechanisms remain ill-defined, impeding the development of new effective stimulation protocols. There is increasing application of repetitive transcranial magnetic stimulation (rTMS) to the cerebellum to induce forebrain plasticity through its long-distance cerebello-cerebral circuits. To better understand what magnetic stimulation does within the cerebellum, we have developed tools to generate defined low-intensity (LI) magnetic fields and deliver them in vivo, in 3D organotypic culture and in primary cultures, over a range of stimulation parameters. Here we show that low-intensity rTMS (LI-rTMS) to the cerebellum induces axon growth and synapse formation providing olivocerebellar reinnervation. This repair depends on stimulation pattern, with complex biomimetic patterns being most effective, and this requires the presence of a cellular magnetoreceptor, cryptochrome. To explain these reparative changes, we found that repair-promoting LI-rTMS patterns, but not ineffective ones, increased c-fos expression in Purkinje neurons, consistent with the production of reactive oxygen species by activated cryptochrome. Rather than activating neurons via induced electric currents, we propose that weak magnetic fields act through cryptochrome, activating intracellular signals that induce climbing fibre-Purkinje cell reinnervation. This information opens new routes to optimize cerebellar magnetic stimulation and its potential role as an effective treatment for neurological diseases.
Collapse
Affiliation(s)
- A M Lohof
- Sorbonne Université and CNRS, IBPS-B2A UMR8256 Biological Adaptation and Ageing, Boite 256, 9 Quai St Bernard, 75005, Paris, France
| | - T Dufor
- Sorbonne Université and CNRS, IBPS-B2A UMR8256 Biological Adaptation and Ageing, Boite 256, 9 Quai St Bernard, 75005, Paris, France
| | - R M Sherrard
- Sorbonne Université and CNRS, IBPS-B2A UMR8256 Biological Adaptation and Ageing, Boite 256, 9 Quai St Bernard, 75005, Paris, France.
| |
Collapse
|
4
|
Dufor T, Grehl S, Tang AD, Doulazmi M, Traoré M, Debray N, Dubacq C, Deng ZD, Mariani J, Lohof AM, Sherrard RM. Neural circuit repair by low-intensity magnetic stimulation requires cellular magnetoreceptors and specific stimulation patterns. SCIENCE ADVANCES 2019; 5:eaav9847. [PMID: 31692960 PMCID: PMC6821463 DOI: 10.1126/sciadv.aav9847] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/16/2019] [Indexed: 05/10/2023]
Abstract
Although electromagnetic brain stimulation is a promising treatment in neurology and psychiatry, clinical outcomes are variable, and underlying mechanisms are ill-defined, which impedes the development of new effective stimulation protocols. Here, we show, in vivo and ex vivo, that repetitive transcranial magnetic stimulation at low-intensity (LI-rTMS) induces axon outgrowth and synaptogenesis to repair a neural circuit. This repair depends on stimulation pattern, with complex biomimetic patterns being particularly effective, and the presence of cryptochrome, a putative magnetoreceptor. Only repair-promoting LI-rTMS patterns up-regulated genes involved in neuronal repair; almost 40% of were cryptochrome targets. Our data open a new framework to understand the mechanisms underlying structural neuroplasticity induced by electromagnetic stimulation. Rather than neuronal activation by induced electric currents, we propose that weak magnetic fields act through cryptochrome to activate cellular signaling cascades. This information opens new routes to optimize electromagnetic stimulation and develop effective treatments for different neurological diseases.
Collapse
Affiliation(s)
- T. Dufor
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - S. Grehl
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia, Perth, Australia
| | - A. D. Tang
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia, Perth, Australia
| | - M. Doulazmi
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | | | - N. Debray
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - C. Dubacq
- Sorbonne Université, IBPS, CNRS UMR 8246 and INSERM U1130 Neuroscience Paris Seine, Paris, France
| | - Z.-D. Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - J. Mariani
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
- Sorbonne Université and Assistance Publique Hôpitaux de Paris, Institut de la Longévité, Charles Foix Hospital, Ivry-sur-Seine, France
| | - A. M. Lohof
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - R. M. Sherrard
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
- Sorbonne Université and Assistance Publique Hôpitaux de Paris, Institut de la Longévité, Charles Foix Hospital, Ivry-sur-Seine, France
- Corresponding author.
| |
Collapse
|
5
|
Miterko LN, White JJ, Lin T, Brown AM, O'Donovan KJ, Sillitoe RV. Persistent motor dysfunction despite homeostatic rescue of cerebellar morphogenesis in the Car8 waddles mutant mouse. Neural Dev 2019; 14:6. [PMID: 30867000 PMCID: PMC6417138 DOI: 10.1186/s13064-019-0130-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Background Purkinje cells play a central role in establishing the cerebellar circuit. Accordingly, disrupting Purkinje cell development impairs cerebellar morphogenesis and motor function. In the Car8wdl mouse model of hereditary ataxia, severe motor deficits arise despite the cerebellum overcoming initial defects in size and morphology. Methods To resolve how this compensation occurs, we asked how the loss of carbonic anhydrase 8 (CAR8), a regulator of IP3R1 Ca2+ signaling in Purkinje cells, alters cerebellar development in Car8wdl mice. Using a combination of histological, physiological, and behavioral analyses, we determined the extent to which the loss of CAR8 affects cerebellar anatomy, neuronal firing, and motor coordination during development. Results Our results reveal that granule cell proliferation is reduced in early postnatal mutants, although by the third postnatal week there is enhanced and prolonged proliferation, plus an upregulation of Sox2 expression in the inner EGL. Modified circuit patterning of Purkinje cells and Bergmann glia accompany these granule cell adjustments. We also find that although anatomy eventually normalizes, the abnormal activity of neurons and muscles persists. Conclusions Our data show that losing CAR8 only transiently restricts cerebellar growth, but permanently damages its function. These data support two current hypotheses about cerebellar development and disease: (1) Sox2 expression may be upregulated at sites of injury and contribute to the rescue of cerebellar structure and (2) transient delays to developmental processes may precede permanent motor dysfunction. Furthermore, we characterize waddles mutant mouse morphology and behavior during development and propose a Sox2-positive, cell-mediated role for rescue in a mouse model of human motor diseases. Electronic supplementary material The online version of this article (10.1186/s13064-019-0130-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Joshua J White
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Department of Neuroscience, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Department of Neuroscience, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Kevin J O'Donovan
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York, 10996, USA.,Burke Neurological Institute, Weill Cornell Medicine, White Plains, 10605, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Department of Neuroscience, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Bailly Y, Rabacchi S, Sherrard RM, Rodeau JL, Demais V, Lohof AM, Mariani J. Elimination of all redundant climbing fiber synapses requires granule cells in the postnatal cerebellum. Sci Rep 2018; 8:10017. [PMID: 29968809 PMCID: PMC6030189 DOI: 10.1038/s41598-018-28398-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/21/2018] [Indexed: 11/20/2022] Open
Abstract
Different afferent synapse populations interact to control the specificity of connections during neuronal circuit maturation. The elimination of all but one climbing-fiber onto each Purkinje cell during the development of the cerebellar cortex is a particularly well studied example of synaptic refinement. The suppression of granule cell precursors by X irradiation during postnatal days 4 to 7 prevents this synaptic refinement, indicating a critical role for granule cells. Several studies of cerebellar development have suggested that synapse elimination has a first phase which is granule cell-independent and a second phase which is granule cell-dependent. In this study, we show that sufficiently-strong irradiation restricted to postnatal days 5 or 6 completely abolishes climbing fiber synaptic refinement, leaving the olivo-cerebellar circuit in its immature configuration in the adult, with up to 5 climbing fibers innervating the Purkinje cell in some cases. This implies that the putative early phase of climbing fiber synapse elimination can be blocked by irradiation-induced granule cell loss if this loss is sufficiently large, and thus indicates that the entire process of climbing fiber synapse elimination requires the presence of an adequate number of granule cells. The specific critical period for this effect appears to be directly related to the timing of Purkinje cell and granule cell development in different cerebellar lobules, indicating a close, spatiotemporal synchrony between granule-cell development and olivo-cerebellar synaptic maturation.
Collapse
Affiliation(s)
- Yannick Bailly
- Intracellular Membrane Trafficking in the Nervous and Neuroendocrine System, INCI, CNRS UPR3212, Universite de Strasbourg, Strasbourg, France.
| | - Sylvia Rabacchi
- Sorbonne Université, CNRS UMR 8256, Biological Adaptation and Ageing, B2A, 75005, Paris, France
- BiogenIdec, Inc., Cambridge, Massachusetts, 02140, USA
| | - Rachel M Sherrard
- Sorbonne Université, CNRS UMR 8256, Biological Adaptation and Ageing, B2A, 75005, Paris, France
- APHP, DHU FAST, Institut de la longévité, 94205, Ivry-Sur-Seine, France
| | - Jean-Luc Rodeau
- Nociceptive Signalling in the Spinal Cord, CNRS UPR3212, Universite de Strasbourg, Strasbourg, France
| | - Valérie Demais
- Intracellular Membrane Trafficking in the Nervous and Neuroendocrine System, INCI, CNRS UPR3212, Universite de Strasbourg, Strasbourg, France
- Plateforme d'Imagerie In vitro, CNRS UPS 3156 Universite de Strasbourg, Strasbourg, France
| | - Ann M Lohof
- Sorbonne Université, CNRS UMR 8256, Biological Adaptation and Ageing, B2A, 75005, Paris, France
| | - Jean Mariani
- Sorbonne Université, CNRS UMR 8256, Biological Adaptation and Ageing, B2A, 75005, Paris, France.
- APHP, DHU FAST, Institut de la longévité, 94205, Ivry-Sur-Seine, France.
| |
Collapse
|
7
|
Grehl S, Martina D, Goyenvalle C, Deng ZD, Rodger J, Sherrard RM. In vitro Magnetic Stimulation: A Simple Stimulation Device to Deliver Defined Low Intensity Electromagnetic Fields. Front Neural Circuits 2016; 10:85. [PMID: 27857683 PMCID: PMC5093126 DOI: 10.3389/fncir.2016.00085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/10/2016] [Indexed: 01/10/2023] Open
Abstract
Non-invasive brain stimulation (NIBS) by electromagnetic fields appears to benefit human neurological and psychiatric conditions, although the optimal stimulation parameters and underlying mechanisms remain unclear. Although, in vitro studies have begun to elucidate cellular mechanisms, stimulation is delivered by a range of coils (from commercially available human stimulation coils to laboratory-built circuits) so that the electromagnetic fields induced within the tissue to produce the reported effects are ill-defined. Here, we develop a simple in vitro stimulation device with plug-and-play features that allow delivery of a range of stimulation parameters. We chose to test low intensity repetitive magnetic stimulation (LI-rMS) delivered at three frequencies to hindbrain explant cultures containing the olivocerebellar pathway. We used computational modeling to define the parameters of a stimulation circuit and coil that deliver a unidirectional homogeneous magnetic field of known intensity and direction, and therefore a predictable electric field, to the target. We built the coil to be compatible with culture requirements: stimulation within an incubator; a flat surface allowing consistent position and magnetic field direction; location outside the culture plate to maintain sterility and no heating or vibration. Measurements at the explant confirmed the induced magnetic field was homogenous and matched the simulation results. To validate our system we investigated biological effects following LI-rMS at 1 Hz, 10 Hz and biomimetic high frequency, which we have previously shown induces neural circuit reorganization. We found that gene expression was modified by LI-rMS in a frequency-related manner. Four hours after a single 10-min stimulation session, the number of c-fos positive cells increased, indicating that our stimulation activated the tissue. Also, after 14 days of LI-rMS, the expression of genes normally present in the tissue was differentially modified according to the stimulation delivered. Thus we describe a simple magnetic stimulation device that delivers defined stimulation parameters to different neural systems in vitro. Such devices are essential to further understanding of the fundamental effects of magnetic stimulation on biological tissue and optimize therapeutic application of human NIBS.
Collapse
Affiliation(s)
- Stephanie Grehl
- Sorbonne Universités, UPMC Univ Paris 06 & CNRS, IBPS-B2A, UMR 8256 Biological Adaptation and AgeingParis, France; Experimental and Regenerative Neuroscience, School of Animal Biology, the University of Western Australia, PerthWA, Australia
| | - David Martina
- Institut Langevin, ESPCI ParisTech & CNRS, UMR7587 INSERM ERL U979 Paris, France
| | - Catherine Goyenvalle
- Sorbonne Universités, UPMC Univ Paris 06 & CNRS, IBPS-B2A, UMR 8256 Biological Adaptation and Ageing Paris, France
| | - Zhi-De Deng
- Non-invasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, BethesdaMD, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, DurhamNC, USA
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Animal Biology, the University of Western Australia, Perth WA, Australia
| | - Rachel M Sherrard
- Sorbonne Universités, UPMC Univ Paris 06 & CNRS, IBPS-B2A, UMR 8256 Biological Adaptation and Ageing Paris, France
| |
Collapse
|
8
|
Morellini N, Grehl S, Tang A, Rodger J, Mariani J, Lohof AM, Sherrard RM. What does low-intensity rTMS do to the cerebellum? THE CEREBELLUM 2015; 14:23-6. [PMID: 25346177 DOI: 10.1007/s12311-014-0617-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Non-invasive stimulation of the human cerebellum, such as by transcranial magnetic stimulation (TMS), is increasingly used to investigate cerebellar function and identify potential treatment for cerebellar dysfunction. However, the effects of TMS on cerebellar neurons remain poorly defined. We applied low-intensity repetitive TMS (LI-rTMS) to the mouse cerebellum in vivo and in vitro and examined the cellular and molecular sequelae. In normal C57/Bl6 mice, 4 weeks of LI-rTMS using a complex biomimetic high-frequency stimulation (BHFS) alters Purkinje cell (PC) dendritic and spine morphology; the effects persist 4 weeks after the end of stimulation. We then evaluated whether LI-rTMS could induce climbing fibre (CF) reinnervation to denervated PCs. After unilateral pedunculotomy in adult mice and 2 weeks sham or BHFS stimulation, VGLUT2 immunohistochemistry was used to quantify CF reinnervation. In contrast to sham, LI-rTMS induced CF reinnervation to the denervated hemicerebellum. To examine potential mechanisms underlying the LI-rTMS effect, we verified that BHFS could induce CF reinnervation using our in vitro olivocerebellar explants in which denervated cerebellar tissue is co-cultured adjacent to intact cerebella and treated with brain-derived neurotrophic factor (BDNF) (as a positive control), sham or LI-rTMS for 2 weeks. Compared with sham, BDNF and BHFS LI-rTMS significantly increased CF reinnervation, without additive effect. To identify potential underlying mechanisms, we examined intracellular calcium flux during the 10-min stimulation. Complex high-frequency stimulation increased intracellular calcium by release from intracellular stores. Thus, even at low intensity, rTMS modifies PC structure and induces CF reinnervation.
Collapse
Affiliation(s)
- N Morellini
- UMR8256 Biological Adaptation and Ageing, IBPS-B2A, Sorbonne Universités UPMC-Univ Paris 6 and CNRS, 75005, Paris, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Arancillo M, White JJ, Lin T, Stay TL, Sillitoe RV. In vivo analysis of Purkinje cell firing properties during postnatal mouse development. J Neurophysiol 2014; 113:578-91. [PMID: 25355961 DOI: 10.1152/jn.00586.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purkinje cell activity is essential for controlling motor behavior. During motor behavior Purkinje cells fire two types of action potentials: simple spikes that are generated intrinsically and complex spikes that are induced by climbing fiber inputs. Although the functions of these spikes are becoming clear, how they are established is still poorly understood. Here, we used in vivo electrophysiology approaches conducted in anesthetized and awake mice to record Purkinje cell activity starting from the second postnatal week of development through to adulthood. We found that the rate of complex spike firing increases sharply at 3 wk of age whereas the rate of simple spike firing gradually increases until 4 wk of age. We also found that compared with adult, the pattern of simple spike firing during development is more irregular as the cells tend to fire in bursts that are interrupted by long pauses. The regularity in simple spike firing only reached maturity at 4 wk of age. In contrast, the adult complex spike pattern was already evident by the second week of life, remaining consistent across all ages. Analyses of Purkinje cells in alert behaving mice suggested that the adult patterns are attained more than a week after the completion of key morphogenetic processes such as migration, lamination, and foliation. Purkinje cell activity is therefore dynamically sculpted throughout postnatal development, traversing several critical events that are required for circuit formation. Overall, we show that simple spike and complex spike firing develop with unique developmental trajectories.
Collapse
Affiliation(s)
- Marife Arancillo
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas
| | - Joshua J White
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas
| | - Tao Lin
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas
| | - Trace L Stay
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas
| |
Collapse
|
10
|
Sherrard RM, Letellier M, Lohof AM, Mariani J. Formation and reformation of climbing fibre synapses in the cerebellum: a similar story? THE CEREBELLUM 2013; 12:319-21. [PMID: 23325508 DOI: 10.1007/s12311-012-0443-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The assembly of neural circuits involves multiple sequential steps, in particular the formation and maturation of synaptic connections. This often prolonged process involves several stages including the appropriate morphological and physiological maturation of each synaptic partner as well as their mutual interaction in order to ensure correct cellular and subcellular targeting. Understanding the processes involved becomes critical if neural circuits are to be appropriately reassembled following lesion, atrophy or neurodegeneration. We study the climbing fibre to Purkinje cell synapse as an example of a neural circuit which undergoes initial synaptic formation, selective stabilisation and elimination of redundant connections, in order to better understand the relative roles of each synaptic partner in the process of synaptogenesis and post-lesion synapse reformation. In particular, we are interested in the molecules which may underlie these processes. Here, we present data showing that the maturational state of both the target Purkinje cell and the climbing fibre axon influence their capacity for synapse formation. The climbing fibre retains some ability to recapitulate developmental processes irrespective of its maturational state. In contrast, the experience of synaptic formation and selective stabilisation/elimination permanently changes the Purkinje cell so that it cannot be repeated. Thus, if the climbing fibre-Purkinje cell synapse is recreated after the period of normal maturation, the process of synaptic competition, involving the gradual weakening of one climbing fibre synapse and stabilisation of another, no longer takes place. Moreover, we show that these processes of synaptic competition can only proceed during a specific developmental phase. To understand why these changes occur, we have investigated the role of molecules involved in the development of the olivocerebellar path and show that brain-derived neurotrophic factor, through activation of its receptor TrkB, as well as polysialated neural cell adhesion molecule and the transcription factor RORα regulate these processes.
Collapse
Affiliation(s)
- Rachel M Sherrard
- UPMC Univ Paris 6 and CNRS, UMR 7102 Neurobiologie des Processus Adaptatifs, Paris, France.
| | | | | | | |
Collapse
|
11
|
Dendritic translocation establishes the winner in cerebellar climbing fiber synapse elimination. J Neurosci 2013; 33:7641-53. [PMID: 23637158 DOI: 10.1523/jneurosci.4561-12.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In many regions of the developing mammalian nervous system, functional synaptic circuitry is formed by competitive elimination of early formed redundant synapses. However, how winning synapses emerge through competition remains unclear in the brain largely because of the technical difficulty of directly observing this dynamic cellular process in vivo. Here, we developed a method of two-photon multicolor vital imaging to observe competitive elimination of supernumerary climbing fibers (CFs) in the cerebellum of live mouse pups. At birth, each Purkinje cell (PC) in the cerebellar cortex is innervated by multiple CFs; an activity-dependent regression of supernumerary CFs ultimately yields a single innervation for most PCs by postnatal day 21. As supernumerary CFs are pruned, the terminal field of CFs translocates from the soma to the dendrites of PCs. In vivo time-lapse imaging of CF elimination revealed that (1) CF terminals were highly motile on the soma, but their motility was significantly reduced on dendrites; (2) only one CF could translocate to the dendrites whereas their competitors were restricted to perisomatic regions; and (3) the CF that began dendritic translocation became the winner. Moreover, selective photo-ablation of the winning CF (that undergoes dendritic translocation) reversed the fate of its losing competitor. These results indicate that dendritic translocation is a key cellular event that determines the winner during CF elimination. We propose that CF terminals are selectively stabilized on dendrites, providing irreversible competitive vigor to the first CF to form dendritic synapses.
Collapse
|
12
|
Synapse elimination in the developing cerebellum. Cell Mol Life Sci 2013; 70:4667-80. [PMID: 23811844 PMCID: PMC3830199 DOI: 10.1007/s00018-013-1405-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/01/2013] [Accepted: 06/10/2013] [Indexed: 02/08/2023]
Abstract
Neural circuits in neonatal animals contain numerous redundant synapses that are functionally immature. During the postnatal period, unnecessary synapses are eliminated while functionally important synapses become stronger and mature. The climbing fiber (CF) to the Purkinje cell (PC) synapse is a representative model for the analysis of postnatal refinement of neuronal circuits in the central nervous system. PCs are initially innervated by multiple CFs with similar strengths around postnatal day 3 (P3). Only a single CF is selectively strengthened during P3–P7 (functional differentiation), and the strengthened CF undergoes translocation from soma to dendrites of PCs from P9 on (dendritic translocation). Following the functional differentiation, supernumerary CF synapses on the soma are eliminated, which proceeds in two distinct phases: the early phase from P7 to around P11 and the late phase from around P12 to P17. Here, we review our current understanding of cellular and molecular mechanisms of CF synapse elimination in the developing cerebellum.
Collapse
|
13
|
Organotypic coculture preparation for the study of developmental synapse elimination in mammalian brain. J Neurosci 2012; 32:11657-70. [PMID: 22915109 DOI: 10.1523/jneurosci.1097-12.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We developed an organotypic coculture preparation allowing fast and efficient identification of molecules that regulate developmental synapse elimination in the mammalian brain. This coculture consists of a cerebellar slice obtained from rat or mouse at postnatal day 9 (P9) or P10 and a medullary explant containing the inferior olive dissected from rat at embryonic day 15. We verified that climbing fibers (CFs), the axons of inferior olivary neurons, formed functional synapses onto Purkinje cells (PCs) in the cerebellum of cocultures. PCs were initially reinnervated by multiple CFs with similar strengths. Surplus CFs were eliminated subsequently, and the remaining CFs became stronger. These changes are similar to those occurring in developing cerebellum in vivo. Importantly, the changes in CF innervations in cocultures involved the same molecules required for CF synapse elimination in vivo, including NMDA receptor, type 1 metabotropic glutamate receptor and glutamate receptor δ2 (GluRδ2). We demonstrate that gain- and loss-of-function analyses can be efficiently performed by lentiviral-mediated overexpression and RNAi-induced knockdown of GluRδ2. Using this approach, we identified neuroligin-2 as a novel molecule that promotes CF synapse elimination in postsynaptic PCs. Thus, our coculture preparation will greatly facilitate the elucidation of molecular mechanisms of synapse elimination.
Collapse
|
14
|
Dusart I, Flamant F. Profound morphological and functional changes of rodent Purkinje cells between the first and the second postnatal weeks: a metamorphosis? Front Neuroanat 2012; 6:11. [PMID: 22514522 PMCID: PMC3324107 DOI: 10.3389/fnana.2012.00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/23/2012] [Indexed: 01/19/2023] Open
Abstract
Between the first and the second postnatal week, the development of rodent Purkinje cells is characterized by several profound transitions. Purkinje cells acquire their typical dendritic "espalier" tree morphology and form distal spines. During the first postnatal week, they are multi-innervated by climbing fibers and numerous collateral branches sprout from their axons, whereas from the second postnatal week, the regression of climbing fiber multi-innervation begins, and Purkinje cells become innervated by parallel fibers and inhibitory molecular layer interneurons. Furthermore, their periods of developmental cell death and ability to regenerate their axon stop and their axons become myelinated. Thus a Purkinje cell during the first postnatal week looks and functions differently from a Purkinje cell during the second postnatal week. These fundamental changes occur in parallel with a peak of circulating thyroid hormone in the mouse. All these features suggest to some extent an interesting analogy with amphibian metamorphosis.
Collapse
Affiliation(s)
- Isabelle Dusart
- Equipe Différenciation Neuronale et Gliale, Université Pierre et Marie CurieParis, France
- Centre National de la Recherche Scientifique, Neurobiologie des Processus AdaptatifsParis, France
| | - Frederic Flamant
- École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Institut de Génomique Fonctionnelle de LyonLyon, France
| |
Collapse
|
15
|
Letellier M, Sherrard RM, Lohof AM, Mariani J. [Marked for life: synaptic stabilisation leaves an indelible trace on neuronal partners: a question of etiquette for neurons?]. Med Sci (Paris) 2010; 26:724-8. [PMID: 20819709 DOI: 10.1051/medsci/2010268-9724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent in vivo and in vitro studies have used the rodent olivocerebellar path to examine developmental synaptogenesis, in particular the mechanisms which permit the simultaneous stabilisation of some synapses and elimination of others. They reveal that while the formation of synapses can take place throughout life, elimination of supernumerary connections is limited to a critical period during development. Synapse elimination involves the strengthening of appropriate synapses and weakening of others, which are subsequently removed. This process is partly dependent on activity and post-synaptic signalling cascades and irreversibly changes each synaptic partner, leaving a trace of previous connectivity. Here we discuss the nature of this << trace >>, which may be a molecule that labels and protects those synapses to be retained, and its functional significance in maintaining the specificity of neuronal circuits needed for coordinate behaviour. double dagger.
Collapse
Affiliation(s)
- Mathieu Letellier
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, WC1E 6BT Londres, UK.
| | | | | | | |
Collapse
|