1
|
Abelin JG, Cox AL. Innovations Toward Immunopeptidomics. Mol Cell Proteomics 2024; 23:100823. [PMID: 39095021 PMCID: PMC11419911 DOI: 10.1016/j.mcpro.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Over the past 30 years, immunopeptidomics has grown alongside improvements in mass spectrometry technology, genomics, transcriptomics, T cell receptor sequencing, and immunological assays to identify and characterize the targets of activated T cells. Together, multiple research groups with expertise in immunology, biochemistry, chemistry, and peptide mass spectrometry have come together to enable the isolation and sequence identification of endogenous major histocompatibility complex (MHC)-bound peptides. The idea to apply highly sensitive mass spectrometry techniques to study the landscape of peptide antigens presented by cell surface MHCs was innovative and continues to be successfully used and improved upon to deepen our understanding of how peptide antigens are processed and presented to T cells. Multiple research groups were involved in this bringing immunopeptidomics to the forefront of translational research, and we will highlight the contributions of one of the earliest developers, Professor Donald F. Hunt, and his research group at the University of Virginia. The Hunt laboratory applied cutting edge mass spectroscopy-based immunopeptidomics to study cancer, autoimmunity, transplant rejection, and infectious diseases. Across these diverse research areas, the Hunt laboratory and collaborators would characterize previously unknown MHC peptide-binding motifs and identify immunologically active antigens using ultra sensitive mass spectrometry techniques. Amazingly, many of the MHC-bound peptide antigens discovered in collaborations with the Hunt laboratory were sequenced by mass spectrometry before the completion of the human genome using manual de novo sequencing. In this perspective article, we will chronicle the work of the Hunt laboratory and their many collaborators that would be a major part of the foundation for mass spectrometry-based immunopeptidomics and its application to immunology research.
Collapse
Affiliation(s)
| | - Andrea L Cox
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA; Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
3
|
Molvi Z, Klatt MG, Dao T, Urraca J, Scheinberg DA, O'Reilly RJ. The landscape of MHC-presented phosphopeptides yields actionable shared tumor antigens for cancer immunotherapy across multiple HLA alleles. J Immunother Cancer 2023; 11:e006889. [PMID: 37775115 PMCID: PMC10546156 DOI: 10.1136/jitc-2023-006889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Certain phosphorylated peptides are differentially presented by major histocompatibility complex (MHC) molecules on cancer cells characterized by aberrant phosphorylation. Phosphopeptides presented in complex with the human leukocyte antigen HLA-A*02:01 provide a stability advantage over their non-phosphorylated counterparts. This stability is thought to contribute to enhanced immunogenicity. Whether tumor-associated phosphopeptides presented by other common alleles exhibit immunogenicity and structural characteristics similar to those presented by A*02:01 is unclear. Therefore, we determined the identity, structural features, and immunogenicity of phosphopeptides presented by the prevalent alleles HLA-A*03:01, HLA-A*11:01, HLA-C*07:01, and HLA-C*07:02. METHODS We isolated peptide-MHC complexes by immunoprecipitation from 11 healthy and neoplastic tissue samples using mass spectrometry, and then combined the resulting data with public immunopeptidomics data sets to assemble a curated set of phosphopeptides presented by 96 samples spanning 20 distinct healthy and neoplastic tissue types. We determined the biochemical features of selected phosphopeptides by in vitro binding assays and in silico docking, and their immunogenicity by analyzing healthy donor T cells for phosphopeptide-specific multimer binding and cytokine production. RESULTS We identified a subset of phosphopeptides presented by HLA-A*03:01, A*11:01, C*07:01 and C*07:02 on multiple tumor types, particularly lymphomas and leukemias, but not healthy tissues. These phosphopeptides are products of genes essential to lymphoma and leukemia survival. The presented phosphopeptides generally exhibited similar or worse binding to A*03:01 than their non-phosphorylated counterparts. HLA-C*07:01 generally presented phosphopeptides but not their unmodified counterparts. Phosphopeptide binding to HLA-C*07:01 was dependent on B-pocket interactions that were absent in HLA-C*07:02. While HLA-A*02:01 and HLA-A*11:01 phosphopeptide-specific T cells could be readily detected in an autologous setting even when the non-phosphorylated peptide was co-presented, HLA-A*03:01 or HLA-C*07:01 phosphopeptides were repeatedly non-immunogenic, requiring use of allogeneic T cells to induce phosphopeptide-specific T cells. CONCLUSIONS Phosphopeptides presented by multiple alleles that are differentially expressed on tumors constitute tumor-specific antigens that could be targeted for cancer immunotherapy, but the immunogenicity of such phosphopeptides is not a general feature. In particular, phosphopeptides presented by HLA-A*02:01 and A*11:01 exhibit consistent immunogenicity, while phosphopeptides presented by HLA-A*03:01 and C*07:01, although appropriately presented, are not immunogenic. Thus, to address an expanded patient population, phosphopeptide-targeted immunotherapies should be wary of allele-specific differences.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Martin G Klatt
- Department of Hematology, Oncology and Tumor Immunology, Charite Universitatsmedizin Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
- Berlin Institute of Health at Charité -Universitätsmedizin Berlin, BIH Biomedical 13 Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Tao Dao
- Department of Pediatrics, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jessica Urraca
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David A Scheinberg
- Department of Pediatrics, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medicine, New York, New York, USA
| | - Richard J O'Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
4
|
Mani N, Andrews D, Obeng RC. Modulation of T cell function and survival by the tumor microenvironment. Front Cell Dev Biol 2023; 11:1191774. [PMID: 37274739 PMCID: PMC10232912 DOI: 10.3389/fcell.2023.1191774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Cancer immunotherapy is shifting paradigms in cancer care. T cells are an indispensable component of an effective antitumor immunity and durable clinical responses. However, the complexity of the tumor microenvironment (TME), which consists of a wide range of cells that exert positive and negative effects on T cell function and survival, makes achieving robust and durable T cell responses difficult. Additionally, tumor biology, structural and architectural features, intratumoral nutrients and soluble factors, and metabolism impact the quality of the T cell response. We discuss the factors and interactions that modulate T cell function and survive in the TME that affect the overall quality of the antitumor immune response.
Collapse
Affiliation(s)
- Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dathan Andrews
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rebecca C. Obeng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
5
|
Molvi Z, Klatt MG, Dao T, Urraca J, Scheinberg DA, O’Reilly RJ. The landscape of MHC-presented phosphopeptides yields actionable shared tumor antigens for cancer immunotherapy across multiple HLA alleles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527552. [PMID: 36798179 PMCID: PMC9934604 DOI: 10.1101/2023.02.08.527552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Background Certain phosphorylated peptides are differentially presented by MHC molecules on cancer cells characterized by aberrant phosphorylation. Phosphopeptides presented in complex with the human leukocyte antigen HLA-A*02:01 provide a stability advantage over their nonphosphorylated counterparts. This stability is thought to contribute to enhanced immunogenicity. Whether tumor-associated phosphopeptides presented by other common alleles exhibit immunogenicity and structural characteristics similar to those presented by A*02:01 is unclear. Therefore, we determined the identity, structural features, and immunogenicity of phosphopeptides presented by the prevalent alleles HLA-A*03:01, -A*11:01, -C*07:01, and - C*07:02. Methods We isolated peptide-MHC complexes by immunoprecipitation from 10 healthy and neoplastic tissue samples using mass spectrometry, and then combined the resulting data with public immunopeptidomics datasets to assemble a curated set of phosphopeptides presented by 20 distinct healthy and neoplastic tissue types. We determined the biochemical features of selected phosphopeptides by in vitro binding assays and in silico docking, and their immunogenicity by analyzing healthy donor T cells for phosphopeptide-specific multimer binding and cytokine production. Results We identified a subset of phosphopeptides presented by HLA-A*03:01, A*11:01, C*07:01 and C*07:02 on multiple tumor types, particularly lymphomas and leukemias, but not healthy tissues. These phosphopeptides are products of genes essential to lymphoma and leukemia survival. The presented phosphopeptides generally exhibited similar or worse binding to A*03:01 than their nonphosphorylated counterparts. HLA-C*07:01 generally presented phosphopeptides but not their unmodified counterparts. Phosphopeptide binding to HLA-C*07:01 was dependent on B- pocket interactions that were absent in HLA-C*07:02. While HLA-A*02:01 and -A*11:01 phosphopeptide-specific T cells could be readily detected in an autologous setting even when the nonphosphorylated peptide was co-presented, HLA-A*03:01 or -C*07:01 phosphopeptides were repeatedly nonimmunogenic, requiring use of allogeneic T cells to induce phosphopeptide- specific T cells. Conclusions Phosphopeptides presented by multiple alleles that are differentially expressed on tumors constitute tumor-specific antigens that could be targeted for cancer immunotherapy, but the immunogenicity of such phosphopeptides is not a general feature. In particular, phosphopeptides presented by HLA-A*02:01 and A*11:01 exhibit consistent immunogenicity, while phosphopeptides presented by HLA-A*03:01 and C*07:01, although appropriately presented, are not immunogenic. Thus, to address an expanded patient population, phosphopeptide-targeted immunotherapies should be wary of allele-specific differences. What is already known on this topic - Phosphorylated peptides presented by the common HLA alleles A*02:01 and B*07:02 are differentially expressed by multiple tumor types, exhibit structural fitness due to phosphorylation, and are targets of healthy donor T cell surveillance, but it is not clear, however, whether such features apply to phosphopeptides presented by other common HLA alleles. What this study adds - We investigated the tumor presentation, binding, structural features, and immunogenicity of phosphopeptides to the prevalent alleles A*03:01, A*11:01, C*07:01, and C*07:02, selected on the basis of their presentation by malignant cells but not normal cells. We found tumor antigens derived from genetic dependencies in lymphomas and leukemias that bind HLA-A3, -A11, -C7 molecules. While we could detect circulating T cell responses in healthy individuals to A*02:01 and A*11:01 phosphopeptides, we did not find such responses to A*03:01 or C*07:01 phosphopeptides, except when utilizing allogeneic donor T cells, indicating that these phosphopeptides may not be immunogenic in an autologous setting but can still be targeted by other means. How this study might affect research, practice or policy - An expanded patient population expressing alleles other than A*02:01 can be addressed through the development of immunotherapies specific for phosphopeptides profiled in the present work, provided the nuances we describe between alleles are taken into consideration.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité- University Medicine Berlin, Berlin, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Berlin Institute of Health at Charité –Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jessica Urraca
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, NY, NY, USA
| | - Richard J. O’Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, NY, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
6
|
Brochier W, Bricard O, Coulie PG. Facts and Hopes in Cancer Antigens Recognized by T Cells. Clin Cancer Res 2023; 29:309-315. [PMID: 36044396 DOI: 10.1158/1078-0432.ccr-21-3798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023]
Abstract
T cells are key effectors of our immune response against tumors and exert their antitumor effects upon recognizing a variety of tumor-specific peptides presented by HLA molecules on the surface of tumor cells. The identification of the tumor-specific antigens of a given tumor is not required for immune checkpoint therapy (ICT), which mainly reactivates existing tumor-specific T cells together with T cells of unknown specificities. To decrease the activation of non-tumor-specific T cells, active or passive immunizations against tumor-specific antigens are considered. These immunizations require the identification of at least some of the tumor-specific antigens displayed on the tumor cells of a patient. While this has become an easy task for tumors with a large number of mutations generating neoantigens, it remains difficult for the remainder. Here, we review some facts about human tumor-specific or tumor-associated antigens, as well as some hopes for their future use in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Orian Bricard
- de Duve Institute, UCLouvain, Brussels, Belgium.,Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Pierre G Coulie
- de Duve Institute, UCLouvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
7
|
Post-Translational Modifications in Tumor-Associated Antigens as a Platform for Novel Immuno-Oncology Therapies. Cancers (Basel) 2022; 15:cancers15010138. [PMID: 36612133 PMCID: PMC9817968 DOI: 10.3390/cancers15010138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Post-translational modifications (PTMs) are generated by adding small chemical groups to amino acid residues after the translation of proteins. Many PTMs have been reported to correlate with tumor progression, growth, and survival by modifying the normal functions of the protein in tumor cells. PTMs can also elicit humoral and cellular immune responses, making them attractive targets for cancer immunotherapy. This review will discuss how the acetylation, citrullination, and phosphorylation of proteins expressed by tumor cells render the corresponding tumor-associated antigen more antigenic and affect the immune response in multiple cancers. In addition, the role of glycosylated protein mucins in anti-cancer immunotherapy will be considered. Mucin peptides in combination with stimulating adjuvants have, in fact, been utilized to produce anti-tumor antibodies and vaccines. Finally, we will also outline the results of the clinical trial exploiting glycosylated-MUC1 as a vaccine in different cancers. Overall, PTMs in TAAs could be considered in future therapies to result in lasting anti-tumor responses.
Collapse
|
8
|
Shah S, Al-Omari A, Cook KW, Paston SJ, Durrant LG, Brentville VA. What do cancer-specific T cells 'see'? DISCOVERY IMMUNOLOGY 2022; 2:kyac011. [PMID: 38567060 PMCID: PMC10917189 DOI: 10.1093/discim/kyac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 04/04/2024]
Abstract
Complex cellular interactions between the immune system and cancer can impact tumour development, growth, and progression. T cells play a key role in these interactions; however, the challenge for T cells is to recognize tumour antigens whilst minimizing cross-reactivity with antigens associated with healthy tissue. Some tumour cells, including those associated with viral infections, have clear, tumour-specific antigens that can be targeted by T cells. A high mutational burden can lead to increased numbers of mutational neoantigens that allow very specific immune responses to be generated but also allow escape variants to develop. Other cancer indications and those with low mutational burden are less easily distinguished from normal tissue. Recent studies have suggested that cancer-associated alterations in tumour cell biology including changes in post-translational modification (PTM) patterns may also lead to novel antigens that can be directly recognized by T cells. The PTM-derived antigens provide tumour-specific T-cell responses that both escape central tolerance and avoid the necessity for individualized therapies. PTM-specific CD4 T-cell responses have shown tumour therapy in murine models and highlight the importance of CD4 T cells as well as CD8 T cells in reversing the immunosuppressive tumour microenvironment. Understanding which cancer-specific antigens can be recognized by T cells and the way that immune tolerance and the tumour microenvironment shape immune responses to cancer is vital for the future development of cancer therapies.
Collapse
Affiliation(s)
- Sabaria Shah
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Abdullah Al-Omari
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Katherine W Cook
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Samantha J Paston
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Victoria A Brentville
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| |
Collapse
|
9
|
León-Letelier RA, Katayama H, Hanash S. Mining the Immunopeptidome for Antigenic Peptides in Cancer. Cancers (Basel) 2022; 14:4968. [PMID: 36291752 PMCID: PMC9599891 DOI: 10.3390/cancers14204968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Although harnessing the immune system for cancer therapy has shown success, response to immunotherapy has been limited. The immunopeptidome of cancer cells presents an opportunity to discover novel antigens for immunotherapy applications. These neoantigens bind to MHC class I and class II molecules. Remarkably, the immunopeptidome encompasses protein post-translation modifications (PTMs) that may not be evident from genome or transcriptome profiling. A case in point is citrullination, which has been demonstrated to induce a strong immune response. In this review, we cover how the immunopeptidome, with a special focus on PTMs, can be utilized to identify cancer-specific antigens for immunotherapeutic applications.
Collapse
Affiliation(s)
| | | | - Sam Hanash
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
10
|
Sources of Cancer Neoantigens beyond Single-Nucleotide Variants. Int J Mol Sci 2022; 23:ijms231710131. [PMID: 36077528 PMCID: PMC9455963 DOI: 10.3390/ijms231710131] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The success of checkpoint blockade therapy against cancer has unequivocally shown that cancer cells can be effectively recognized by the immune system and eliminated. However, the identity of the cancer antigens that elicit protective immunity remains to be fully explored. Over the last decade, most of the focus has been on somatic mutations derived from non-synonymous single-nucleotide variants (SNVs) and small insertion/deletion mutations (indels) that accumulate during cancer progression. Mutated peptides can be presented on MHC molecules and give rise to novel antigens or neoantigens, which have been shown to induce potent anti-tumor immune responses. A limitation with SNV-neoantigens is that they are patient-specific and their accurate prediction is critical for the development of effective immunotherapies. In addition, cancer types with low mutation burden may not display sufficient high-quality [SNV/small indels] neoantigens to alone stimulate effective T cell responses. Accumulating evidence suggests the existence of alternative sources of cancer neoantigens, such as gene fusions, alternative splicing variants, post-translational modifications, and transposable elements, which may be attractive novel targets for immunotherapy. In this review, we describe the recent technological advances in the identification of these novel sources of neoantigens, the experimental evidence for their presentation on MHC molecules and their immunogenicity, as well as the current clinical development stage of immunotherapy targeting these neoantigens.
Collapse
|
11
|
Sandalova T, Sala BM, Achour A. Structural aspects of chemical modifications in the MHC-restricted immunopeptidome; Implications for immune recognition. Front Chem 2022; 10:861609. [PMID: 36017166 PMCID: PMC9395651 DOI: 10.3389/fchem.2022.861609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022] Open
Abstract
Significant advances in mass-spectroscopy (MS) have made it possible to investigate the cellular immunopeptidome, a large collection of MHC-associated epitopes presented on the surface of healthy, stressed and infected cells. These approaches have hitherto allowed the unambiguous identification of large cohorts of epitope sequences that are restricted to specific MHC class I and II molecules, enhancing our understanding of the quantities, qualities and origins of these peptide populations. Most importantly these analyses provide essential information about the immunopeptidome in responses to pathogens, autoimmunity and cancer, and will hopefully allow for future tailored individual therapies. Protein post-translational modifications (PTM) play a key role in cellular functions, and are essential for both maintaining cellular homeostasis and increasing the diversity of the proteome. A significant proportion of proteins is post-translationally modified, and thus a deeper understanding of the importance of PTM epitopes in immunopeptidomes is essential for a thorough and stringent understanding of these peptide populations. The aim of the present review is to provide a structural insight into the impact of PTM peptides on stability of MHC/peptide complexes, and how these may alter/modulate immune responses.
Collapse
Affiliation(s)
- Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Section for Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Benedetta Maria Sala
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Section for Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Section for Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Adnane Achour,
| |
Collapse
|
12
|
Zeneyedpour L, Stingl C, Kros JM, Sillevis Smitt PAE, Luider TM. Novel Antibody-Peptide Binding Assay Indicates Presence of Immunoglobulins against EGFR Phospho-Site S1166 in High-Grade Glioma. Int J Mol Sci 2022; 23:5061. [PMID: 35563452 PMCID: PMC9100080 DOI: 10.3390/ijms23095061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
We investigated the feasibility of detecting the presence of specific autoantibodies against potential tumor-associated peptide antigens by enriching these antibody-peptide complexes using Melon Gel resin and mass spectrometry. Our goal was to find tumor-associated phospho-sites that trigger immunoreactions and raise autoantibodies that are detectable in plasma of glioma patients. Such immunoglobulins can potentially be used as targets in immunotherapy. To that aim, we describe a method to detect the presence of antibodies in biological samples that are specific to selected clinically relevant peptides. The method is based on the formation of antibody-peptide complexes by mixing patient plasma with a glioblastoma multiforme (GBM) derived peptide library, enrichment of antibodies and antibody-peptide complexes, the separation of peptides after they are released from immunoglobulins by molecular weight filtration and finally mass spectrometric quantification of these peptides. As proof of concept, we successfully applied the method to dinitrophenyl (DNP)-labeled α-casein peptides mixed with anti-DNP. Further, we incubated human plasma with a phospho-peptide library and conducted targeted analysis on EGFR and GFAP phospho-peptides. As a result, immunoaffinity against phospho-peptide GSHQIS[+80]LDNPDYQQDFFPK (EGFR phospho-site S1166) was detected in high-grade glioma (HGG) patient plasma but not in healthy donor plasma. For the GFAP phospho-sites selected, such immunoaffinity was not observed.
Collapse
Affiliation(s)
- Lona Zeneyedpour
- Department of Neurology, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (L.Z.); (C.S.); (P.A.E.S.S.)
| | - Christoph Stingl
- Department of Neurology, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (L.Z.); (C.S.); (P.A.E.S.S.)
| | - Johan M. Kros
- Department of Pathology, Erasmus MC, 3015 GD Rotterdam, The Netherlands;
| | | | - Theo M. Luider
- Department of Neurology, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (L.Z.); (C.S.); (P.A.E.S.S.)
| |
Collapse
|
13
|
Cook K, Xue W, Atabani S, Symonds P, Al Omari A, Daniels I, Shah S, Choudhury RH, Weston D, Metheringham R, Brentville V, Durrant L. Vaccine Can Induce CD4-Mediated Responses to Homocitrullinated Peptides via Multiple HLA-Types and Confer Anti-Tumor Immunity. Front Immunol 2022; 13:873947. [PMID: 35464453 PMCID: PMC9028767 DOI: 10.3389/fimmu.2022.873947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Homocitrullination is the post translation modification (PTM) of the amino acid lysine to homocitrulline also referred to as carbamylation. This PTM has mainly been studied in relation to autoimmune diseases including rheumatoid arthritis. Homocitrullination of lysines alters their charge which can lead to generation of neoepitopes that are differentially presented by MHC-II and induce modification-specific immune responses. Homocitrullination is often considered a process which triggers autoimmune disease by bypassing self-tolerance however, we suggest that homocitrullination may also have an alternative role in immune responses including protection against cancer. Here we demonstrate that immune responses to homocitrullinated peptides from three different proteins can be induced via multiple HLA-types. Immunization of Balb/c or HLA-transgenic DR4 and DR1 mice can induce modification-specific CD4 mediated IFNγ responses. Healthy human donors show a clear repertoire for the homocitrullinated Vimentin peptide (Vim116-135Hcit), with modification-specific and oligoclonal responses. Importantly, in vivo homocitrulline specific Vim116-135Hcit,Cyk8 371-388Hcit and Aldo 140-157Hcit responses are able to confer an anti-tumor effect in the murine B16 melanoma model. The Vim116-135Hcit anti-tumor response was dependent upon tumor expression of MHC-II suggesting the direct recognition of PTMs on tumor is an important anti-tumor mechanism. Cancer patients also have a CD4 repertoire for Vim116-135Hcit. Together these results suggest that homocitrulline-specific immune responses can be generated in healthy mice and detected in human donors through a variety of HLA-restrictions. Immunization can induce responses to Vim116-135Hcit,Aldolase 140-157Hcit and Cyk8 371-388Hcit which provide anti-tumor therapy across several HLA-types. Our results advance our understanding of homocitrulline-specific immune responses, with implications for a number of fields beyond autoimmunity, including tumor immune surveillance.
Collapse
Affiliation(s)
- Katherine Cook
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Wei Xue
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Suha Atabani
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- The Cancer Vaccine Group, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Peter Symonds
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Abdullah Al Omari
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ian Daniels
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Sabaria Shah
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ruhul Hasan Choudhury
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Daisy Weston
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Rachael Metheringham
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Victoria Brentville
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Lindy Durrant
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- The Cancer Vaccine Group, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Lindy Durrant,
| |
Collapse
|
14
|
Solleder M, Racle J, Guillaume P, Coukos G, Bassani-Sternberg M, Gfeller D. Deciphering the landscape of phosphorylated HLA-II ligands. iScience 2022; 25:104215. [PMID: 35494241 PMCID: PMC9051626 DOI: 10.1016/j.isci.2022.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
CD4+ T cell activation in infectious diseases and cancer is governed by the recognition of peptides presented on class II human leukocyte antigen (HLA-II) molecules. Therefore, HLA-II ligands represent promising targets for vaccine design and personalized cancer immunotherapy. Much work has been done to identify and predict unmodified peptides presented on HLA-II molecules. However, little is known about the presentation of phosphorylated HLA-II ligands. Here, we analyzed Mass Spectrometry HLA-II peptidomics data and identified 1,943 unique phosphorylated HLA-II ligands. This enabled us to precisely define phosphorylated binding motifs for more than 30 common HLA-II alleles and to explore various molecular properties of phosphorylated peptides. Our data were further used to develop the first predictor of phosphorylated peptide presentation on HLA-II molecules. 1,943 unique phosphorylated HLA-II ligands from MS HLA-II peptidomics data Binding motifs of phosphorylated HLA-II ligands identified for more than 30 alleles Predictor trained on phosphorylated peptides achieves higher accuracy
Collapse
Affiliation(s)
- Marthe Solleder
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Julien Racle
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Philippe Guillaume
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
- Corresponding author
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
- Corresponding author
| |
Collapse
|
15
|
Dao T, Mun SS, Molvi Z, Korontsvit T, Klatt MG, Khan AG, Nyakatura EK, Pohl MA, White TE, Balderes PJ, Lorenz IC, O'Reilly RJ, Scheinberg DA. A TCR mimic monoclonal antibody reactive with the "public" phospho-neoantigen pIRS2/HLA-A*02:01 complex. JCI Insight 2022; 7:151624. [PMID: 35260532 PMCID: PMC8983142 DOI: 10.1172/jci.insight.151624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Phosphopeptides derived from dysregulated protein phosphorylation in cancer cells can be processed and presented by MHC class I and class II molecules and, therefore, represent an untapped class of tumor-specific antigens that could be used as widely expressed “public” cancer neoantigens (NeoAgs). We generated a TCR mimic (TCRm) mAb, 6B1, specific for a phosphopeptide derived from insulin receptor substrate 2 (pIRS2) presented by HLA-A*02:01. The pIRS2 epitope’s presentation by HLA-A*02:01 was confirmed by mass spectrometry. The TCRm 6B1 specifically bound to pIRS2/HLA-A2 complex on tumor cell lines that expressed pIRS2 in the context of HLA-A*02:01. Bispecific mAbs engaging CD3 of T cells were able to kill tumor cell lines in a pIRS2- and HLA-A*02:01–restricted manner. Structure modeling shows a prerequisite for an arginine or lysine at the first position to bind mAb. Therefore, 6B1 could recognize phosphopeptides derived from various phosphorylated proteins with similar amino acid compositions. This raised the possibility that a TCRm specific for the pIRS2/HLA-A2 complex could target a range of phosphopeptides presented by HLA-A*02:01 in various tumor cells. This is the first TCRm mAb to our knowledge targeting a phosphopeptide/MHC class I complex; the potential of this class of agents for clinical applications warrants further investigation.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Sung Soo Mun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Zaki Molvi
- Immunology Program, Weill Cornell Medicine, New York, New York, USA
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Martin G Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Abdul G Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | | | - Mary Ann Pohl
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Thomas E White
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Paul J Balderes
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Richard J O'Reilly
- Immunology Program, Weill Cornell Medicine, New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
16
|
Mitochondrial Proteins as Source of Cancer Neoantigens. Int J Mol Sci 2022; 23:ijms23052627. [PMID: 35269772 PMCID: PMC8909979 DOI: 10.3390/ijms23052627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
In the past decade, anti-tumour immune responses have been successfully exploited to improve the outcome of patients with different cancers. Significant progress has been made in taking advantage of different types of T cell functions for therapeutic purposes. Despite these achievements, only a subset of patients respond favorably to immunotherapy. Therefore, there is a need of novel approaches to improve the effector functions of immune cells and to recognize the major targets of anti-tumour immunity. A major hallmark of cancer is metabolic rewiring associated with switch of mitochondrial functions. These changes are a consequence of high energy demand and increased macromolecular synthesis in cancer cells. Such adaptations in tumour cells might generate novel targets of tumour therapy, including the generation of neoantigens. Here, we review the most recent advances in research on the immune response to mitochondrial proteins in different cellular conditions.
Collapse
|
17
|
Lulu AM, Cummings KL, Jeffery ED, Myers PT, Underwood D, Lacy RM, Chianese-Bullock KA, Slingluff CL, Modesitt SC, Engelhard VH. Characteristics of Immune Memory and Effector Activity to Cancer-Expressed MHC Class I Phosphopeptides Differ in Healthy Donors and Ovarian Cancer Patients. Cancer Immunol Res 2021; 9:1327-1341. [PMID: 34413086 PMCID: PMC8568670 DOI: 10.1158/2326-6066.cir-21-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/22/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Elevated immunity to cancer-expressed antigens can be detected in people with no history of cancer and may contribute to cancer prevention. We have previously reported that MHC-restricted phosphopeptides are cancer-expressed antigens and targets of immune recognition. However, the extent to which this immunity reflects prior or ongoing phosphopeptide exposures was not investigated. In this study, we found that preexisting immune memory to cancer-expressed phosphopeptides was evident in most healthy donors, but the breadth among donors was highly variable. Although three phosphopeptides were recognized by most donors, suggesting exposures to common microbial/infectious agents, most of the 205 tested phosphopeptides were not recognized by peripheral blood mononuclear cells (PBMC) from any donor and the remainder were recognized by only 1 to 3 donors. In longitudinal analyses of 2 donors, effector immune response profiles suggested active reexposures to a subset of phosphopeptides. These findings suggest that the immunogens generating most phosphopeptide-specific immune memory are rare infectious agents or incipient cancer cells with distinct phosphoproteome dysregulations, and that repetitive immunogenic exposures occur in individual donors. Phosphopeptide-specific immunity in PBMCs and tumor-infiltrating lymphocytes from ovarian cancer patients was limited, regardless of whether the phosphopeptide was expressed on the tumor. However, 4 of 10 patients responded to 1 to 2 immunodominant phosphopeptides, and 1 showed an elevated effector response to a tumor-expressed phosphopeptide. As the tumors from these patients displayed many phosphopeptides, these data are consistent with lack of prior exposure or impaired ability to respond to some phosphopeptides and suggest that enhancing phosphopeptide-specific T-cell responses could be a useful approach to improve tumor immunotherapy.
Collapse
Affiliation(s)
- Amanda M Lulu
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kara L Cummings
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | | | | | - Rachel M Lacy
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kimberly A Chianese-Bullock
- Division of Surgical Oncology, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Craig L Slingluff
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia
- Division of Surgical Oncology, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Susan C Modesitt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Victor H Engelhard
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia.
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
18
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen‐binding groove of an MHC‐encoded class I or class II molecule. Insight into the precise composition and biology of self and non‐self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large‐scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non‐self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System and the Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Juanes-Velasco P, Landeira-Viñuela A, Acebes-Fernandez V, Hernández ÁP, Garcia-Vaquero ML, Arias-Hidalgo C, Bareke H, Montalvillo E, Gongora R, Fuentes M. Deciphering Human Leukocyte Antigen Susceptibility Maps From Immunopeptidomics Characterization in Oncology and Infections. Front Cell Infect Microbiol 2021; 11:642583. [PMID: 34123866 PMCID: PMC8195621 DOI: 10.3389/fcimb.2021.642583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variability across the three major histocompatibility complex (MHC) class I genes (human leukocyte antigen [HLA] A, B, and C) may affect susceptibility to many diseases such as cancer, auto-immune or infectious diseases. Individual genetic variation may help to explain different immune responses to microorganisms across a population. HLA typing can be fast and inexpensive; however, deciphering peptides loaded on MHC-I and II which are presented to T cells, require the design and development of high-sensitivity methodological approaches and subsequently databases. Hence, these novel strategies and databases could help in the generation of vaccines using these potential immunogenic peptides and in identifying high-risk HLA types to be prioritized for vaccination programs. Herein, the recent developments and approaches, in this field, focusing on the identification of immunogenic peptides have been reviewed and the next steps to promote their translation into biomedical and clinical practice are discussed.
Collapse
Affiliation(s)
- Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Vanessa Acebes-Fernandez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Ángela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Marina L. Garcia-Vaquero
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Carlota Arias-Hidalgo
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Halin Bareke
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Enrique Montalvillo
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| |
Collapse
|
20
|
Generation of Phosphopeptide-Specific T Cell Lines as Tools for Melanoma Immunotherapy. Methods Mol Biol 2021. [PMID: 33704746 DOI: 10.1007/978-1-0716-1205-7_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The importance of tumor-associated antigen-specific T cells in the effective control of cancer has been highlighted by recent advances in cancer immunotherapies that target the programmed cell death-1 (PD-1) pathway or that utilize modified T cell receptors. Phosphopeptide-specific T cells are of interest because they recognize a new class of tumor antigens that are derived from proteins relevant for cancer development and growth. These T cell lines or their antigen receptors can be used in combination with other forms of therapy to improve the immune response and survival of cancer patients. We describe here a protocol for the generation of human and transgenic murine phosphopeptide-specific T cells lines as tools for investigating T cell reactivity against melanoma phosphoantigens displayed by HLA-A*0201.
Collapse
|
21
|
Paston SJ, Brentville VA, Symonds P, Durrant LG. Cancer Vaccines, Adjuvants, and Delivery Systems. Front Immunol 2021; 12:627932. [PMID: 33859638 PMCID: PMC8042385 DOI: 10.3389/fimmu.2021.627932] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccination was first pioneered in the 18th century by Edward Jenner and eventually led to the development of the smallpox vaccine and subsequently the eradication of smallpox. The impact of vaccination to prevent infectious diseases has been outstanding with many infections being prevented and a significant decrease in mortality worldwide. Cancer vaccines aim to clear active disease instead of aiming to prevent disease, the only exception being the recently approved vaccine that prevents cancers caused by the Human Papillomavirus. The development of therapeutic cancer vaccines has been disappointing with many early cancer vaccines that showed promise in preclinical models often failing to translate into efficacy in the clinic. In this review we provide an overview of the current vaccine platforms, adjuvants and delivery systems that are currently being investigated or have been approved. With the advent of immune checkpoint inhibitors, we also review the potential of these to be used with cancer vaccines to improve efficacy and help to overcome the immune suppressive tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Peter Symonds
- Biodiscovery Institute, Scancell Limited, Nottingham, United Kingdom
| | - Lindy G. Durrant
- Biodiscovery Institute, University of Nottingham, Faculty of Medicine and Health Sciences, Nottingham, United Kingdom
| |
Collapse
|
22
|
Zeneyedpour L, Sten-van `t Hoff J, Luider T. Using phosphoproteomics and next generation sequencing to discover novel therapeutic targets in patient antibodies. Expert Rev Proteomics 2020; 17:675-684. [DOI: 10.1080/14789450.2020.1845147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lona Zeneyedpour
- Department of Neurology, Erasmus MC, Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Rotterdam, The Netherlands
| | - Jenny Sten-van `t Hoff
- Department of Neurology, Erasmus MC, Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Rotterdam, The Netherlands
| | - Theo Luider
- Department of Neurology, Erasmus MC, Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Leko V, Rosenberg SA. Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors. Cancer Cell 2020; 38:454-472. [PMID: 32822573 PMCID: PMC7737225 DOI: 10.1016/j.ccell.2020.07.013] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Cancer elimination in humans can be achieved with immunotherapy that relies on T lymphocyte-mediated recognition of tumor antigens. Several types of these antigens have been recognized based on their cellular origins and expression patterns, while their detection has been greatly facilitated by recent achievements in next-generation sequencing and immunopeptidomics. Some of them have been targeted in clinical trials with various immunotherapy approaches, while many others remain untested. Here, we discuss molecular identification of different tumor antigen types, and the clinical safety and efficacy of targeting them with immunotherapy. Additionally, we suggest strategies to increase the efficacy and availability of antigen-directed immunotherapies for treatment of patients with metastatic cancer.
Collapse
Affiliation(s)
- Vid Leko
- Surgery Branch, National Cancer Institute, National Institutes of Health, Building 10-CRC, Room 3-3942, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Building 10-CRC, Room 3-3942, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Huang J, Li JJ. Multiple Dynamics in Tumor Microenvironment Under Radiotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:175-202. [PMID: 32588328 DOI: 10.1007/978-3-030-44518-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an evolutionally low-level and embryonically featured tissue comprising heterogenic populations of malignant and stromal cells as well as noncellular components. Under radiotherapy (RT), the major modality for the treatment of malignant diseases [1], TME shows an adaptive response in multiple aspects that affect the efficacy of RT. With the potential clinical benefits, interests in RT combined with immunotherapy (IT) are intensified with a large scale of clinical trials underway for an array of cancer types. A better understanding of the multiple molecular aspects, especially the cross talks of RT-mediated energy reprogramming and immunoregulation in the irradiated TME (ITME), will be necessary for further enhancing the benefit of RT-IT modality. Coming studies should further reveal more mechanistic insights of radiation-induced instant or permanent consequence in tumor and stromal cells. Results from these studies will help to identify critical molecular pathways including cancer stem cell repopulation, metabolic rewiring, and specific communication between radioresistant cancer cells and the infiltrated immune active lymphocytes. In this chapter, we will focus on the following aspects: radiation-repopulated cancer stem cells (CSCs), hypoxia and re-oxygenation, reprogramming metabolism, and radiation-induced immune regulation, in which we summarize the current literature to illustrate an integrated image of the ITME. We hope that the contents in this chapter will be informative for physicians and translational researchers in cancer radiotherapy or immunotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA. .,NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
25
|
In-depth mining of the immunopeptidome of an acute myeloid leukemia cell line using complementary ligand enrichment and data acquisition strategies. Mol Immunol 2020; 123:7-17. [PMID: 32387766 DOI: 10.1016/j.molimm.2020.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022]
Abstract
The identification of T cell epitopes derived from tumour specific antigens remains a significant challenge for the development of peptide-based vaccines and immunotherapies. The use of mass spectrometry-based approaches (immunopeptidomics) can provide powerful new avenues for the identification of such epitopes. In this study we report the use of complementary peptide antigen enrichment methods and a comprehensive mass spectrometric acquisition strategy to provide in-depth immunopeptidome data for the THP-1 cell line, a cell line used widely as a model of human leukaemia. To accomplish this, we combined robust experimental workflows that incorporated ultrafiltration or off-line reversed phase chromatography to enrich peptide ligand as well as a multifaceted data acquisition strategy using an Orbitrap Fusion LC-MS instrument. Using the combined datasets from the two ligand enrichment methods we gained significant depth in immunopeptidome coverage by identifying a total of 41,816 HLA class I peptides from THP-1 cells, including a significant number of peptides derived from different oncogenes or over expressed proteins associated with cancer. The physicochemical properties of the HLA-bound peptides dictated their recovery using the two ligand enrichment approaches and their distribution across the different precursor charge states considered in the data acquisition strategy. The data highlight the complementarity of the two enrichment procedures, and in cases where sample is not limiting, suggest that the combination of both approaches will yield the most comprehensive immunopeptidome information.
Collapse
|
26
|
Ohara M, Ohara K, Kumai T, Ohkuri T, Nagato T, Hirata-Nozaki Y, Kosaka A, Nagata M, Hayashi R, Harabuchi S, Yajima Y, Oikawa K, Harabuchi Y, Sumi Y, Furukawa H, Kobayashi H. Phosphorylated vimentin as an immunotherapeutic target against metastatic colorectal cancer. Cancer Immunol Immunother 2020; 69:989-999. [PMID: 32086539 DOI: 10.1007/s00262-020-02524-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 02/16/2020] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC) patients with metastatic lesions have low 5-year survival rates. During metastasis, cancer cells often obtain unique characteristics such as epithelial-mesenchymal transition (EMT). Vimentin a biomarker contributes to EMT by changing cell shape and motility. Since abnormal phosphorylation is a hallmark of malignancy, targeting phosphorylated vimentin is a feasible approach for the treatment of metastatic tumors while sparing non-tumor cells. Recent evidence has revealed that both CD8 cytotoxic T lymphocytes (CTLs) and also CD4 helper T lymphocytes (HTLs) can distinguish post-translationally modified antigens from normal antigens. Here, we showed that the expression of phosphorylated vimentin was upregulated in metastatic sites of CRC. We also showed that a chemotherapeutic reagent augmented the expression of phosphorylated vimentin. The novel phosphorylated helper peptide epitopes from vimentin could elicit a sufficient T cell response. Notably, precursor lymphocytes that specifically reacted to these phosphorylated vimentin-derived peptides were detected in CRC patients. These results suggest that immunotherapy targeting phosphorylated vimentin could be promising for metastatic CRC patients.
Collapse
Affiliation(s)
- Mizuho Ohara
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.,Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan. .,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan. .,Department of Innovative Head and Neck Cancer Research and Treatment (IHNCRT), Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan
| | - Yui Hirata-Nozaki
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan
| | - Ryusuke Hayashi
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Yajima
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuo Sumi
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroyuki Furukawa
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan
| |
Collapse
|
27
|
Afzali F, Minuchehr Z, Jahangiri S, Ranjbar MM. Immunopeptidome screening to design An immunogenic construct against PRAME positive breast cancer; An in silico study. Comput Biol Chem 2020; 85:107231. [PMID: 32065960 DOI: 10.1016/j.compbiolchem.2020.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Metastasis is the main cause of breast cancer (BC) lethality, especially in early stages, led to improvements in therapeutic procedures. Lately, by improvements in our perception of biological processes and immune system new classes of vaccines are emerged that grant us the opportunity of designing resolute constructs against desired antigens. In the current study, we used a variety of immunoinformatics tools to design a novel cancer vaccine against Preferentially Expressed Antigen of Melanoma (PRAME), which counts as a cancer testis antigen for various human cancers including BC. The PRAME up-regulation leads to strengthen BC stem cells maintenance, drug resistance, cell survival, adaptation, and apoptosis evading in cancerous cells. METHODS AND RESULTS The PRAME co-expressed genes were mined and validated through BC RNA-sequencing of TCGA data. The immunodominant T-cell predicted epitopes were fused and engineered to form the vaccine. The safety, allergenicity, and immunogenic capabilities of the vaccine were confirmed by promising immunoinformatics tools. The vaccine's structure was verified to be hydrophilic in most areas through Kyte and Doolittle hydrophobicity plotting. The interactions between the designed vaccine and immune receptors of TLR4 and IL1R were confirmed by protein-protein docking after modeling its tertiary structure. Finally, codon optimization and in silico cloning were performed to guarantee better in-vivo results. CONCLUSION In conclusion, concerning in silico assessments' results in this study, the designed vaccine can potentially boost immune responses against PRAME, therefore may decrease BC development and metastasis. According to the mined PRAME co-expressed genes and their functional annotation, cell cycle regulation is the prime mechanism opted by this construct and its adjacent regulatory genes along boosting immune reactions.
Collapse
Affiliation(s)
- Farzaneh Afzali
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Zarrin Minuchehr
- Systems Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Samira Jahangiri
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, FL, United States of America
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
28
|
Roerden M, Nelde A, Walz JS. Neoantigens in Hematological Malignancies-Ultimate Targets for Immunotherapy? Front Immunol 2019; 10:3004. [PMID: 31921218 PMCID: PMC6934135 DOI: 10.3389/fimmu.2019.03004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Neoantigens derive from non-synonymous somatic mutations in malignant cells. Recognition of neoantigens presented via human leukocyte antigen (HLA) molecules on the tumor cell surface by T cells holds promise to enable highly specific and effective anti-cancer immune responses and thus neoantigens provide an exceptionally attractive target for immunotherapy. While genome sequencing approaches already enable the reliable identification of somatic mutations in tumor samples, the identification of mutation-derived, naturally HLA-presented neoepitopes as targets for immunotherapy remains challenging, particularly in low mutational burden cancer entities, including hematological malignancies. Several approaches have been utilized to identify neoepitopes from primary tumor samples. Besides whole genome sequencing with subsequent in silico prediction of potential mutation-derived HLA ligands, mass spectrometry (MS) allows for the only unbiased identification of naturally presented mutation-derived HLA ligands. The feasibility of characterizing and targeting these novel antigens has recently been demonstrated in acute myeloid leukemia (AML). Several immunogenic, HLA-presented peptides derived from mutated Nucleophosmin 1 (NPM1) were identified, allowing for the generation of T-cell receptor-transduced NPM1mut-specific T cells with anti-leukemic activity in a xenograft mouse model. Neoantigen-specific T-cell responses have also been identified for peptides derived from mutated isocitrate dehydrogenase (IDHmut), and specific T-cell responses could be induced by IDHmut peptide vaccination. In this review, we give a comprehensive overview on known neoantigens in hematological malignancies, present possible prediction and discovery tools and discuss their role as targets for immunotherapy approaches.
Collapse
Affiliation(s)
- Malte Roerden
- Department of Hematology, Oncology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Department of Hematology, Oncology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
29
|
Ternette N, Purcell AW. Immunopeptidomics Special Issue. Proteomics 2019; 18:e1800145. [PMID: 29949244 DOI: 10.1002/pmic.201800145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/04/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Nicola Ternette
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, OX3, 7FZ, UK
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
30
|
Abstract
The incidence of melanoma continues to increase even as advances in immunotherapy have led to survival benefits in advanced stages. Vaccines are capable of inducing strong, antitumor immune responses with limited toxicity. Some vaccines have demonstrated clinical benefit in clinical trials alone; however, others have not despite inducing strong immune responses. Recent advancements have improved vaccine design, and combining vaccines with other immunotherapies offers promise. This review highlights the underlying principles of vaccine development, common components of vaccines, and the remaining challenges and future directions of vaccine therapy in melanoma.
Collapse
Affiliation(s)
- Minyoung Kwak
- Division of Surgical Oncology, Department of Surgery, University of Virginia, PO Box 800709, Charlottesville, VA 22908-0709, USA; Department of Surgery, SUNY Downstate, Brooklyn, NY, USA; Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | - Katie M Leick
- Division of Surgical Oncology, Department of Surgery, University of Virginia, PO Box 800709, Charlottesville, VA 22908-0709, USA; Carter Immunology Center, University of Virginia, Charlottesville, VA, USA; Department of Surgery, University of Iowa, Iowa City, IA, USA
| | - Marit M Melssen
- Division of Surgical Oncology, Department of Surgery, University of Virginia, PO Box 800709, Charlottesville, VA 22908-0709, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Craig L Slingluff
- Division of Surgical Oncology, Department of Surgery, University of Virginia, PO Box 800709, Charlottesville, VA 22908-0709, USA; Carter Immunology Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
31
|
Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S. Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med 2019; 11:40. [PMID: 31221199 PMCID: PMC6587285 DOI: 10.1186/s13073-019-0653-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The expression of antigens that are recognized by self-reactive T cells is essential for immune-mediated tumor rejection by immune checkpoint blockade (ICB) therapy. Growing evidence suggests that mutation-associated neoantigens drive ICB responses in tumors with high mutational burden. In most patients, only a few of the mutations in the cancer exome that are predicted to be immunogenic are recognized by T cells. One factor that limits this recognition is the level of expression of the mutated gene product in cancer cells. Substantial preclinical data show that radiation can convert the irradiated tumor into a site for priming of tumor-specific T cells, that is, an in situ vaccine, and can induce responses in otherwise ICB-resistant tumors. Critical for radiation-elicited T-cell activation is the induction of viral mimicry, which is mediated by the accumulation of cytosolic DNA in the irradiated cells, with consequent activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon (IFN) genes (STING) pathway and downstream production of type I IFN and other pro-inflammatory cytokines. Recent data suggest that radiation can also enhance cancer cell antigenicity by upregulating the expression of a large number of genes that are involved in the response to DNA damage and cellular stress, thus potentially exposing immunogenic mutations to the immune system. Here, we discuss how the principles of antigen presentation favor the presentation of peptides that are derived from newly synthesized proteins in irradiated cells. These concepts support a model that incorporates the presence of immunogenic mutations in genes that are upregulated by radiation to predict which patients might benefit from treatment with combinations of radiotherapy and ICB.
Collapse
Affiliation(s)
- Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA
| | - Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, 1305 York Avenue, New York, NY, 10021, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA. .,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA. .,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
32
|
Malaker SA, Ferracane MJ. Mass Spectrometric Identification and Molecular Modeling of Glycopeptides Presented by MHC Class I and II Processing Pathways. Methods Mol Biol 2019; 2024:269-285. [PMID: 31364056 DOI: 10.1007/978-1-4939-9597-4_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aberrant glycosylation is a hallmark of cancer that contributes to the disease's ability to evade the immune system. As the MHC processing pathways communicate cellular health to circulating CD8+ and CD4+ T-cells, MHC-associated glycopeptides are likely a source of neoantigens in cancer. In fact, recent advances in mass spectrometry have allowed for the detection and sequencing of tumor-specific glycopeptides from the MHC class I and class II processing pathways. Here, we describe methods for detecting, sequencing, and modeling these MHC-associated glycopeptides.
Collapse
Affiliation(s)
- Stacy A Malaker
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
33
|
Gowthami N, Sunitha B, Kumar M, Keshava Prasad T, Gayathri N, Padmanabhan B, Srinivas Bharath M. Mapping the protein phosphorylation sites in human mitochondrial complex I (NADH: Ubiquinone oxidoreductase): A bioinformatics study with implications for brain aging and neurodegeneration. J Chem Neuroanat 2019; 95:13-28. [DOI: 10.1016/j.jchemneu.2018.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
|
34
|
Abstract
The varied landscape of the adaptive immune response is determined by the peptides presented by immune cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or antigens is not new, and classical methods such as agglutination, enzyme-linked immunosorbent assay, or Western blotting have been used for many years to study the immune response to vaccination or disease. However, in many of these traditional techniques, protein or peptide identification has often been the bottleneck. Recent progress in genomics and mass spectrometry have led to many of the rapid advances in proteomics approaches. Immunoproteomics describes a rapidly growing collection of approaches that have the common goal of identifying and measuring antigenic peptides or proteins. This includes gel-based, array-based, mass spectrometry-based, DNA-based, or in silico approaches. Immunoproteomics is yielding an understanding of disease and disease progression, vaccine candidates, and biomarkers. This review gives an overview of immunoproteomics and closely related technologies that are used to define the full set of protein antigens targeted by the immune system during disease.
Collapse
Affiliation(s)
- Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Isabel Baltat
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
| |
Collapse
|
35
|
Application of the immunoregulatory receptor LILRB1 as a crystallisation chaperone for human class I MHC complexes. J Immunol Methods 2018; 464:47-56. [PMID: 30365927 DOI: 10.1016/j.jim.2018.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
Abstract
X-ray crystallographic studies of class I peptide-MHC molecules (pMHC) continue to provide important insights into immune recognition, however their success depends on generation of diffraction-quality crystals, which remains a significant challenge. While protein engineering techniques such as surface-entropy reduction and lysine methylation have proven utility in facilitating and/or improving protein crystallisation, they risk affecting the conformation and biochemistry of the class I MHC antigen binding groove. An attractive alternative is the use of noncovalent crystallisation chaperones, however these have not been developed for pMHC. Here we describe a method for promoting class I pMHC crystallisation, by exploiting its natural ligand interaction with the immunoregulatory receptor LILRB1 as a novel crystallisation chaperone. First, focussing on a model HIV-1-derived HLA-A2-restricted peptide, we determined a 2.4 Å HLA-A2/LILRB1 structure, which validated that co-crystallisation with LILRB1 does not alter conformation of the antigenic peptide. We then demonstrated that addition of LILRB1 enhanced the crystallisation of multiple peptide-HLA-A2 complexes, and identified a generic condition for initial co-crystallisation. LILRB1 chaperone-based crystallisation enabled structure determination for HLA-A2 complexes previously intransigent to crystallisation, including both conventional and post-translationally-modified peptides, of diverse lengths. Since both the LILRB1 recognition interface on the HLA-A2 α3 domain molecule and HLA-A2-mediated crystal contacts are predominantly conserved across class I MHC molecules, the approach we outline could prove applicable to a diverse range of class I pMHC. LILRB1 chaperone-mediated crystallisation should expedite molecular insights into the immunobiology of diverse immune-related diseases and immunotherapeutic strategies, particularly involving class I pMHC complexes that are challenging to crystallise.
Collapse
|
36
|
Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes. Nat Med 2018; 24:1762-1772. [PMID: 30349087 DOI: 10.1038/s41591-018-0203-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023]
Abstract
Identifying immunodominant T cell epitopes remains a significant challenge in the context of infectious disease, autoimmunity, and immuno-oncology. To address the challenge of antigen discovery, we developed a quantitative proteomic approach that enabled unbiased identification of major histocompatibility complex class II (MHCII)-associated peptide epitopes and biochemical features of antigenicity. On the basis of these data, we trained a deep neural network model for genome-scale predictions of immunodominant MHCII-restricted epitopes. We named this model bacteria originated T cell antigen (BOTA) predictor. In validation studies, BOTA accurately predicted novel CD4 T cell epitopes derived from the model pathogen Listeria monocytogenes and the commensal microorganism Muribaculum intestinale. To conclusively define immunodominant T cell epitopes predicted by BOTA, we developed a high-throughput approach to screen DNA-encoded peptide-MHCII libraries for functional recognition by T cell receptors identified from single-cell RNA sequencing. Collectively, these studies provide a framework for defining the immunodominance landscape across a broad range of immune pathologies.
Collapse
|
37
|
Ramarathinam SH, Croft NP, Illing PT, Faridi P, Purcell AW. Employing proteomics in the study of antigen presentation: an update. Expert Rev Proteomics 2018; 15:637-645. [PMID: 30080115 DOI: 10.1080/14789450.2018.1509000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Our immune system discriminates self from non-self by examining the peptide cargo of human leukocyte antigen (HLA) molecules displayed on the cell surface. Successful recognition of HLA-bound non-self peptides can induce T cell responses leading to, for example, the destruction of infected cells. Today, largely due to advances in technology, we have an unprecedented capability to identify the nature of these presented peptides and unravel the true complexity of antigen presentation. Areas covered: In addition to conventional linear peptides, HLA molecules also present post-translationally modified sequences comprising a wealth of chemical and structural modifications, including a novel class of noncontiguous spliced peptides. This review focuses on these emerging themes in antigen presentation and how mass spectrometry in particular has contributed to a new view of the antigenic landscape that is presented to the immune system. Expert Commentary: Advances in the sensitivity of mass spectrometers and use of hybrid fragmentation technologies will provide more information-rich spectra of HLA bound peptides leading to more definitive identification of T cell epitopes. Coupled with improvements in sample preparation and new informatics workflows, studies will access novel classes of peptide antigen and allow interrogation of rare and clinically relevant samples.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Nathan P Croft
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Patricia T Illing
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Pouya Faridi
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Anthony W Purcell
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| |
Collapse
|
38
|
Ohara K, Ohkuri T, Kumai T, Nagato T, Nozaki Y, Ishibashi K, Kosaka A, Nagata M, Harabuchi S, Ohara M, Oikawa K, Aoki N, Harabuchi Y, Celis E, Kobayashi H. Targeting phosphorylated p53 to elicit tumor-reactive T helper responses against head and neck squamous cell carcinoma. Oncoimmunology 2018; 7:e1466771. [PMID: 30510853 DOI: 10.1080/2162402x.2018.1466771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022] Open
Abstract
The human T cell receptor is capable of distinguishing between normal and post-translationally modified peptides. Because aberrant phosphorylation of cellular proteins is a hallmark of malignant transformation, the expression of the phosphorylated epitope could be an ideal antigen to combat cancer without damaging normal tissues. p53 activates transcription factors to suppress tumors by upregulating growth arrest and apoptosis-related genes. In response to DNA damage, p53 is phosphorylated at multiple sites including Ser33 and Ser37. Here, we identified phosphorylated peptide epitopes from p53 that could elicit effective T helper responses. These epitope peptides, p5322-41/Phospho-S33 and p5322-41/Phospho-S37, induced T helper responses against tumor cells expressing the phosphorylated p53 protein. Moreover, chemotherapeutic agents augmented the responses of such CD4 T cells via upregulation of phosphorylated p53. The upregulation of phosphorylated p53 expression by chemotherapy was confirmed in in vitro and xenograft models. We evaluated phosphorylated p53 expression in the clinical samples of oropharyngeal squamous cell carcinoma and revealed that 13/24 cases (54%) were positive for phosphorylated p53. Importantly, the lymphocytes specific for the phosphorylated p53 peptide epitopes were observed in the head and neck squamous cell cancer (HNSCC) patients. These results reveal that a combination of phosphorylated p53 peptides and chemotherapy could be a novel immunologic approach to treat HNSCC patients.
Collapse
Affiliation(s)
- Kenzo Ohara
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Head & Neck Cancer Research and Treatment (IHNCRT), Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Nozaki
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kei Ishibashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Mizuho Ohara
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Naoko Aoki
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, GA
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
39
|
Creech AL, Ting YS, Goulding SP, Sauld JF, Barthelme D, Rooney MS, Addona TA, Abelin JG. The Role of Mass Spectrometry and Proteogenomics in the Advancement of HLA Epitope Prediction. Proteomics 2018; 18:e1700259. [PMID: 29314742 PMCID: PMC6033110 DOI: 10.1002/pmic.201700259] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/12/2017] [Indexed: 12/30/2022]
Abstract
A challenge in developing personalized cancer immunotherapies is the prediction of putative cancer-specific antigens. Currently, predictive algorithms are used to infer binding of peptides to human leukocyte antigen (HLA) heterodimers to aid in the selection of putative epitope targets. One drawback of current epitope prediction algorithms is that they are trained on datasets containing biochemical HLA-peptide binding data that may not completely capture the rules associated with endogenous processing and presentation. The field of MS has made great improvements in instrumentation speed and sensitivity, chromatographic resolution, and proteogenomic database search strategies to facilitate the identification of HLA-ligands from a variety of cell types and tumor tissues. As such, these advances have enabled MS profiling of HLA-binding peptides to be a tractable, orthogonal approach to lower throughput biochemical assays for generating comprehensive datasets to train epitope prediction algorithms. In this review, we will highlight the progress made in the field of HLA-ligand profiling enabled by MS and its impact on current and future epitope prediction strategies.
Collapse
|
40
|
Ramarathinam SH, Gras S, Alcantara S, Yeung AWS, Mifsud NA, Sonza S, Illing PT, Glaros EN, Center RJ, Thomas SR, Kent SJ, Ternette N, Purcell DFJ, Rossjohn J, Purcell AW. Identification of Native and Posttranslationally Modified HLA-B*57:01-Restricted HIV Envelope Derived Epitopes Using Immunoproteomics. Proteomics 2018; 18:e1700253. [PMID: 29437277 DOI: 10.1002/pmic.201700253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/29/2018] [Indexed: 12/20/2022]
Abstract
The recognition of pathogen-derived peptides by T lymphocytes is the cornerstone of adaptive immunity, whereby intracellular antigens are degraded in the cytosol and short peptides assemble with class I human leukocyte antigen (HLA) molecules in the ER. These peptide-HLA complexes egress to the cell surface and are scrutinized by cytotoxic CD8+ T-cells leading to the eradication of the infected cell. Here, naturally presented HLA-B*57:01 bound peptides derived from the envelope protein of the human immunodeficiency virus (HIVenv) are identified. HIVenv peptides are present at a very small percentage of the overall HLA-B*57:01 peptidome (<0.1%) and both native and posttranslationally modified forms of two distinct HIV peptides are identified. Notably, a peptide bearing a natively encoded C-terminal tryptophan residue is also present in a modified form containing a kynurenine residue. Kynurenine is a major product of tryptophan catabolism and is abundant during inflammation and infection. Binding of these peptides at a molecular level and their immunogenicity in preliminary functional studies are examined. Modest immune responses are observed to the modified HIVenv peptide, highlighting a potential role for kynurenine-modified peptides in the immune response to HIV and other viral infections.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Stephanie Gras
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Amanda W S Yeung
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Patricia T Illing
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Elias N Glaros
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Robert J Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.,Burnet Institute, Melbourne, Australia
| | - Shane R Thomas
- Mechanisms of Disease and Translational Medicine, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.,Melbourne Sexual Health Centre, Central Clinical School, Monash University, Melbourne, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia
| | - Nicola Ternette
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, Oxford, UK
| | - Damian F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
41
|
Brentville VA, Atabani S, Cook K, Durrant LG. Novel tumour antigens and the development of optimal vaccine design. Ther Adv Vaccines Immunother 2018; 6:31-47. [PMID: 29998219 DOI: 10.1177/2515135518768769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
The interplay between tumours and the immune system has long been known to involve complex interactions between tumour cells, immune cells and the tumour microenvironment. The progress of checkpoint inhibitors in the clinic in the last decade has highlighted again the role of the immune system in the fight against cancer. Numerous efforts have been undertaken to develop ways of stimulating the cellular immune response to eradicate tumours. These interventions include the identification of appropriate tumour antigens as targets for therapy. In this review, we summarize progress in selection of target tumour antigen. Targeting self antigens has the problem of thymic deletion of high-affinity T-cell responses leaving a diminished repertoire of low-affinity T cells that fail to kill tumour cells. Thymic regulation appears to be less stringent for differentiation of cancer-testis antigens, as many tumour rejection antigens fall into this category. More recently, targeting neo-epitopes or post-translational modifications such as a phosphorylation or stress-induced citrullination has shown great promise in preclinical studies. Of particular interest is that the responses can be mediated by both CD4 and CD8 T cells. Previous vaccines have targeted CD8 T-cell responses but more recently, the central role of CD4 T cells in orchestrating inflammation within tumours and also differentiating into potent killer cells has been recognized. The design of vaccines to induce such immune responses is discussed herein. Liposomally encoded ribonucleic acid (RNA), targeted deoxyribonucleic acid (DNA) or long peptides linked to toll-like receptor (TLR) adjuvants are the most promising new vaccine approaches. These exciting new approaches suggest that the 'Holy Grail' of a simple nontoxic cancer vaccine may be on the horizon. A major hurdle in tumour therapy is also to overcome the suppressive tumour environment. We address current progress in combination therapies and suggest that these are likely to show the most promise for the future.
Collapse
Affiliation(s)
| | - Suha Atabani
- Academic Department of Clinical Oncology, University of Nottingham, Nottingham, UK
| | - Katherine Cook
- Academic Department of Clinical Oncology, University of Nottingham, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| |
Collapse
|
42
|
Inderberg EM, Mensali N, Oksvold MP, Fallang LE, Fåne A, Skorstad G, Stenvik GE, Progida C, Bakke O, Kvalheim G, Myklebust JH, Wälchli S. Human c-SRC kinase (CSK) overexpression makes T cells dummy. Cancer Immunol Immunother 2018; 67:525-536. [PMID: 29248956 PMCID: PMC11028372 DOI: 10.1007/s00262-017-2105-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/09/2017] [Indexed: 12/26/2022]
Abstract
Adoptive cell therapy with T-cell receptor (TCR)-engineered T cells represents a powerful method to redirect the immune system against tumours. However, although TCR recognition is restricted to a specific peptide-MHC (pMHC) complex, increasing numbers of reports have shown cross-reactivity and off-target effects with severe consequences for the patients. This demands further development of strategies to validate TCR safety prior to clinical use. We reasoned that the desired TCR signalling depends on correct pMHC recognition on the outside and a restricted clustering on the inside of the cell. Since the majority of the adverse events are due to TCR recognition of the wrong target, we tested if blocking the signalling would affect the binding. By over-expressing the c-SRC kinase (CSK), a negative regulator of LCK, in redirected T cells, we showed that peripheral blood T cells inhibited anti-CD3/anti-CD28-induced phosphorylation of ERK, whereas TCR proximal signalling was not affected. Similarly, overexpression of CSK together with a therapeutic TCR prevented pMHC-induced ERK phosphorylation. Downstream effector functions were also almost completely blocked, including pMHC-induced IL-2 release, degranulation and, most importantly, target cell killing. The lack of effector functions contrasted with the unaffected TCR expression, pMHC recognition, and membrane exchange activity (trogocytosis). Therefore, co-expression of CSK with a therapeutic TCR did not compromise target recognition and binding, but rendered T cells incapable of executing their effector functions. Consequently, we named these redirected T cells "dummy T cells" and propose to use them for safety validation of new TCRs prior to therapy.
Collapse
Affiliation(s)
- Else Marit Inderberg
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
| | - Nadia Mensali
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Morten P Oksvold
- Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | | | - Anne Fåne
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
| | - Gjertrud Skorstad
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
| | | | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Gunnar Kvalheim
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
| | - June H Myklebust
- Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Sébastien Wälchli
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway.
- Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
43
|
Cook KW, Durrant LG, Brentville VA. Current Strategies to Enhance Anti-Tumour Immunity. Biomedicines 2018; 6:E37. [PMID: 29570634 PMCID: PMC6027499 DOI: 10.3390/biomedicines6020037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
The interaction of the immune system with cancer is complex, but new approaches are resulting in exciting therapeutic benefits. In order to enhance the immune response to cancer, immune therapies seek to either induce high avidity immune responses to tumour specific antigens or to convert the tumour to a more pro-inflammatory microenvironment. Strategies, including vaccination, oncolytic viruses, and adoptive cell transfer all seek to induce anti-tumour immunity. To overcome the suppressive tumour microenvironment checkpoint inhibitors and modulators of regulatory cell populations have been investigated. This review summarizes the recent advances in immune therapies and discusses the importance of combination therapies in the treatment of cancers.
Collapse
Affiliation(s)
- Katherine W Cook
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottinghamshire NG5 1PB, UK.
| | - Lindy G Durrant
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottinghamshire NG5 1PB, UK.
- Academic Department of Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, City Hospital Campus, Nottinghamshire NG5 1PB, UK.
| | - Victoria A Brentville
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottinghamshire NG5 1PB, UK.
| |
Collapse
|
44
|
Zeiner PS, Zinke J, Kowalewski DJ, Bernatz S, Tichy J, Ronellenfitsch MW, Thorsen F, Berger A, Forster MT, Muller A, Steinbach JP, Beschorner R, Wischhusen J, Kvasnicka HM, Plate KH, Stefanović S, Weide B, Mittelbronn M, Harter PN. CD74 regulates complexity of tumor cell HLA class II peptidome in brain metastasis and is a positive prognostic marker for patient survival. Acta Neuropathol Commun 2018; 6:18. [PMID: 29490700 PMCID: PMC5831742 DOI: 10.1186/s40478-018-0521-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 12/30/2022] Open
Abstract
Despite multidisciplinary local and systemic therapeutic approaches, the prognosis for most patients with brain metastases is still dismal. The role of adaptive and innate anti-tumor response including the Human Leukocyte Antigen (HLA) machinery of antigen presentation is still unclear. We present data on the HLA class II-chaperone molecule CD74 in brain metastases and its impact on the HLA peptidome complexity.We analyzed CD74 and HLA class II expression on tumor cells in a subset of 236 human brain metastases, primary tumors and peripheral metastases of different entities in association with clinical data including overall survival. Additionally, we assessed whole DNA methylome profiles including CD74 promoter methylation and differential methylation in 21 brain metastases. We analyzed the effects of a siRNA mediated CD74 knockdown on HLA-expression and HLA peptidome composition in a brain metastatic melanoma cell line.We observed that CD74 expression on tumor cells is a strong positive prognostic marker in brain metastasis patients and positively associated with tumor-infiltrating T-lymphocytes (TILs). Whole DNA methylome analysis suggested that CD74 tumor cell expression might be regulated epigenetically via CD74 promoter methylation. CD74high and TILhigh tumors displayed a differential DNA methylation pattern with highest enrichment scores for antigen processing and presentation. Furthermore, CD74 knockdown in vitro lead to a reduction of HLA class II peptidome complexity, while HLA class I peptidome remained unaffected.In summary, our results demonstrate that a functional HLA class II processing machinery in brain metastatic tumor cells, reflected by a high expression of CD74 and a complex tumor cell HLA peptidome, seems to be crucial for better patient prognosis.
Collapse
Affiliation(s)
- P S Zeiner
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
| | - J Zinke
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
| | - D J Kowalewski
- Department of Immunology, Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | - S Bernatz
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
| | - J Tichy
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
| | - M W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
| | - F Thorsen
- Department of Biomedicine, The Kristian Gerhard Jebsen Brain Tumour Research Center and The Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - A Berger
- Institute for Virology, Goethe-University, Frankfurt am Main, Germany
| | - M T Forster
- Department of Neurosurgery, Goethe-University, Frankfurt am Main, Germany
| | - A Muller
- Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - J P Steinbach
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany
| | - R Beschorner
- Department of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - J Wischhusen
- Department of Gynecology, University of Wuerzburg, Wuerzburg, Germany
| | - H M Kvasnicka
- Goethe-University, Dr. Senckenberg Institute for Pathology, Frankfurt am Main, Germany
| | - K H Plate
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany
| | - S Stefanović
- Department of Immunology, Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - B Weide
- Department of Dermatology, University of Tuebingen, Tuebingen, Germany
| | - M Mittelbronn
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany
- Luxembourg Centre of Neuropathology (LCNP), 3555, Dudelange, Luxembourg
- Laboratoire National de Santé, Department of Pathology, 3555, Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4361, Esch-sur-Alzette, Luxembourg
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), 1526, Luxembourg, Luxembourg
| | - P N Harter
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany.
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany.
| |
Collapse
|
45
|
Abstract
The question of whether human tumors express antigens that can be recognized by the immune system has been answered with a resounding YES. Most were identified through spontaneous antitumor humoral and cellular immune responses found in cancer patients and include peptides, glycopeptides, phosphopeptides, viral peptides, and peptides resulting from common mutations in oncogenes and tumor-suppressor genes, or common gene fusion events. Many have been extensively tested as candidates for anticancer vaccines. More recently, attention has been focused on the potentially large number of unique tumor antigens, mutated neoantigens, that are the predicted products of the numerous mutations revealed by exome sequencing of primary tumors. Only a few have been confirmed as targets of spontaneous immunity and immunosurveillance, and even fewer have been tested in preclinical and clinical settings. The field has been divided for a long time on the relative importance of shared versus mutated antigens in tumor surveillance and as candidates for vaccines. This question will eventually need to be answered in a head to head comparison in well-designed clinical trials. One advantage that shared antigens have over mutated antigens is their potential to be used in vaccines for primary cancer prevention. Cancer Immunol Res; 5(5); 347-54. ©2017 AACR.
Collapse
Affiliation(s)
- Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
46
|
Goswami M, Hourigan CS. Novel Antigen Targets for Immunotherapy of Acute Myeloid Leukemia. Curr Drug Targets 2017; 18:296-303. [PMID: 25706110 DOI: 10.2174/1389450116666150223120005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) was the first malignancy for which immunotherapy, in the form of allogeneic hematopoietic stem cell transplantation (allo-HSCT), was integrated into the standard of care. Allo-HSCT however is an imperfect therapy associated with significant morbidity and mortality while offering only incomplete prevention of AML clinical relapse. These limitations have motivated the search for AML-related antigens that might be used as more specific and effective targets of immunotherapy. While historically such investigations have focused on protein targets expressed uniquely in AML or at significantly higher levels than in normal tissues, this article will review recent discoveries which have identified a novel selection of potential antigen targets for AML immunotherapy, such as non-protein targets including lipids and carbohydrates, neo-antigens created from genetic somatic mutations or altered splicing and post-translational modification of protein targets, together with innovative ways to target overexpressed protein targets presented by cell surface peptide-MHC complexes. These novel antigens represent promising candidates for further development as targets of AML immunotherapy.
Collapse
Affiliation(s)
- Meghali Goswami
- Myeloid Malignancies Section, National Heart, Lung and Blood Institute, Room 6C-104, 10 Center Drive, Bethesda, Maryland 20892-1583, United States
| | | |
Collapse
|
47
|
Fishman D, Kisand K, Hertel C, Rothe M, Remm A, Pihlap M, Adler P, Vilo J, Peet A, Meloni A, Podkrajsek KT, Battelino T, Bruserud Ø, Wolff ASB, Husebye ES, Kluger N, Krohn K, Ranki A, Peterson H, Hayday A, Peterson P. Autoantibody Repertoire in APECED Patients Targets Two Distinct Subgroups of Proteins. Front Immunol 2017; 8:976. [PMID: 28861084 PMCID: PMC5561390 DOI: 10.3389/fimmu.2017.00976] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
High titer autoantibodies produced by B lymphocytes are clinically important features of many common autoimmune diseases. APECED patients with deficient autoimmune regulator (AIRE) gene collectively display a broad repertoire of high titer autoantibodies, including some which are pathognomonic for major autoimmune diseases. AIRE deficiency severely reduces thymic expression of gene-products ordinarily restricted to discrete peripheral tissues, and developing T cells reactive to those gene-products are not inactivated during their development. However, the extent of the autoantibody repertoire in APECED and its relation to thymic expression of self-antigens are unclear. We here undertook a broad protein array approach to assess autoantibody repertoire in APECED patients. Our results show that in addition to shared autoantigen reactivities, APECED patients display high inter-individual variation in their autoantigen profiles, which collectively are enriched in evolutionarily conserved, cytosolic and nuclear phosphoproteins. The APECED autoantigens have two major origins; proteins expressed in thymic medullary epithelial cells and proteins expressed in lymphoid cells. These findings support the hypothesis that specific protein properties strongly contribute to the etiology of B cell autoimmunity.
Collapse
Affiliation(s)
- Dmytro Fishman
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Anu Remm
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maire Pihlap
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Priit Adler
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Aleksandr Peet
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
| | - Antonella Meloni
- Pediatric Clinic II, Ospedale Microcitemico, Cagliari, Italy.,Department of Biomedical and Biotechnological Science, University of Cagliari, Cagliari, Italy
| | - Katarina Trebusak Podkrajsek
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Øyvind Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Kai Krohn
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, Institute of Clinical Medicine, University of Helsinki, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Hedi Peterson
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Quretec Ltd., Tartu, Estonia
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King's College, Guy's Hospital, London, United Kingdom
| | - Pärt Peterson
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
48
|
Mohammed F, Stones DH, Zarling AL, Willcox CR, Shabanowitz J, Cummings KL, Hunt DF, Cobbold M, Engelhard VH, Willcox BE. The antigenic identity of human class I MHC phosphopeptides is critically dependent upon phosphorylation status. Oncotarget 2017; 8:54160-54172. [PMID: 28903331 PMCID: PMC5589570 DOI: 10.18632/oncotarget.16952] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/30/2017] [Indexed: 11/25/2022] Open
Abstract
Dysregulated post-translational modification provides a source of altered self-antigens that can stimulate immune responses in autoimmunity, inflammation, and cancer. In recent years, phosphorylated peptides have emerged as a group of tumour-associated antigens presented by MHC molecules and recognised by T cells, and represent promising candidates for cancer immunotherapy. However, the impact of phosphorylation on the antigenic identity of phosphopeptide epitopes is unclear. Here we examined this by determining structures of MHC-bound phosphopeptides bearing canonical position 4-phosphorylations in the presence and absence of their phosphate moiety, and examining phosphopeptide recognition by the T cell receptor (TCR). Strikingly, two peptides exhibited major conformational changes upon phosphorylation, involving a similar molecular mechanism, which focussed changes on the central peptide region most critical for T cell recognition. In contrast, a third epitope displayed little conformational alteration upon phosphorylation. In addition, binding studies demonstrated TCR interaction with an MHC-bound phosphopeptide was both epitope-specific and absolutely dependent upon phosphorylation status. These results highlight the critical influence of phosphorylation on the antigenic identity of naturally processed class I MHC epitopes. In doing so they provide a molecular framework for understanding phosphopeptide-specific immune responses, and have implications for the development of phosphopeptide antigen-specific cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Daniel H Stones
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Angela L Zarling
- Carter Immunology Center and Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Kara L Cummings
- Carter Immunology Center and Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Mark Cobbold
- School of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.,Current address: Cancer Centre, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Current address: Department of Medicine, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Victor H Engelhard
- Carter Immunology Center and Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
49
|
Malaker SA, Ferracane MJ, Depontieu FR, Zarling AL, Shabanowitz J, Bai DL, Topalian SL, Engelhard VH, Hunt DF. Identification and Characterization of Complex Glycosylated Peptides Presented by the MHC Class II Processing Pathway in Melanoma. J Proteome Res 2016; 16:228-237. [PMID: 27550523 DOI: 10.1021/acs.jproteome.6b00496] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The MHC class II (MHCII) processing pathway presents peptides derived from exogenous or membrane-bound proteins to CD4+ T cells. Several studies have shown that glycopeptides are necessary to modulate CD4+ T cell recognition, though glycopeptide structures in these cases are generally unknown. Here, we present a total of 93 glycopeptides from three melanoma cell lines and one matched EBV-transformed line with most found only in the melanoma cell lines. The glycosylation we detected was diverse and comprised 17 different glycoforms. We then used molecular modeling to demonstrate that complex glycopeptides are capable of binding the MHC and may interact with complementarity determining regions. Finally, we present the first evidence of disulfide-bonded peptides presented by MHCII. This is the first large scale study to sequence glyco- and disulfide bonded MHCII peptides from the surface of cancer cells and could represent a novel avenue of tumor activation and/or immunoevasion.
Collapse
Affiliation(s)
| | - Michael J Ferracane
- Department of Medicinal Chemistry, University of Florida , Gainesville, Florida 32610, United States
| | - Florence R Depontieu
- Department of Surgery, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | | | | | | | - Suzanne L Topalian
- Department of Surgery, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | | | | |
Collapse
|
50
|
Mou Z, Li J, Boussoffara T, Kishi H, Hamana H, Ezzati P, Hu C, Yi W, Liu D, Khadem F, Okwor I, Jia P, Shitaoka K, Wang S, Ndao M, Petersen C, Chen J, Rafati S, Louzir H, Muraguchi A, Wilkins JA, Uzonna JE. Identification of broadly conserved cross-species protective Leishmania antigen and its responding CD4+ T cells. Sci Transl Med 2016; 7:310ra167. [PMID: 26491077 DOI: 10.1126/scitranslmed.aac5477] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is currently no clinically effective vaccine against leishmaniasis because of poor understanding of the antigens that elicit dominant T cell immunity. Using proteomics and cellular immunology, we identified a dominant naturally processed peptide (PEPCK335-351) derived from Leishmania glycosomal phosphoenolpyruvate carboxykinase (PEPCK). PEPCK was conserved in all pathogenic Leishmania, expressed in glycosomes of promastigotes and amastigotes, and elicited strong CD4(+) T cell responses in infected mice and humans. I-A(b)-PEPCK335-351 tetramer identified protective Leishmania-specific CD4(+) T cells at a clonal level, which comprised ~20% of all Leishmania-reactive CD4(+) T cells at the peak of infection. PEPCK335-351-specific CD4(+) T cells were oligoclonal in their T cell receptor usage, produced polyfunctional cytokines (interleukin-2, interferon-γ, and tumor necrosis factor), and underwent expansion, effector activities, contraction, and stable maintenance after lesion resolution. Vaccination with PEPCK peptide, DNA expressing full-length PEPCK, or rPEPCK induced strong durable cross-species protection in both resistant and susceptible mice. The effectiveness and durability of protection in vaccinated mice support the development of a broadly cross-species protective vaccine against different forms of leishmaniasis by targeting PEPCK.
Collapse
Affiliation(s)
- Zhirong Mou
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Jintao Li
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada. Institute of Tropical Medicine, Third Military Medical University, Chongqing 400038, China
| | - Thouraya Boussoffara
- Laboratory of Transmission, Control and Immunobiology of Infections, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Hiroyuki Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hiroshi Hamana
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Peyman Ezzati
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Health Sciences Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Chuanmin Hu
- Department of Clinical Biochemistry, Laboratory Sciences, Third Military Medical University, Chongqing 400038, China
| | - Weijing Yi
- Department of Clinical Biochemistry, Laboratory Sciences, Third Military Medical University, Chongqing 400038, China
| | - Dong Liu
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Forough Khadem
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Ifeoma Okwor
- Department of Medical Microbiology, College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ping Jia
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada
| | - Kiyomi Shitaoka
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Shufeng Wang
- Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Momar Ndao
- National Reference Centre for Parasitology, Department of Medicine, Division of Infectious Diseases, McGill University, Montreal, Quebec H3G 1A4, Canada
| | | | - Jianping Chen
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610065, China
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran 13164, Iran
| | - Hechmi Louzir
- Laboratory of Transmission, Control and Immunobiology of Infections, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Atsushi Muraguchi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - John A Wilkins
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Health Sciences Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Jude E Uzonna
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, Manitoba R3T 0T5, Canada. Department of Medical Microbiology, College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|