1
|
Malone M, Maeyama A, Ogden N, Perry KN, Kramer A, Bates C, Marble C, Orlando R, Rausch A, Smeraldi C, Lowey C, Fees B, Dyson HJ, Dorrell M, Kast-Woelbern H, Jansma AL. The effect of phosphorylation efficiency on the oncogenic properties of the protein E7 from high-risk HPV. Virus Res 2024; 348:199446. [PMID: 39127239 PMCID: PMC11375142 DOI: 10.1016/j.virusres.2024.199446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The Human papillomavirus (HPV) causes tumors in part by hijacking the host cell cycle and forcing uncontrolled cellular division. While there are >200 genotypes of HPV, 15 are classified as high-risk and have been shown to transform infected cells and contribute to tumor formation. The remaining low-risk genotypes are not considered oncogenic and result in benign skin lesions. In high-risk HPV, the oncoprotein E7 contributes to the dysregulation of cell cycle regulatory mechanisms. High-risk E7 is phosphorylated in cells at two conserved serine residues by Casein Kinase 2 (CK2) and this phosphorylation event increases binding affinity for cellular proteins such as the tumor suppressor retinoblastoma (pRb). While low-risk E7 possesses similar serine residues, it is phosphorylated to a lesser degree in cells and has decreased binding capabilities. When E7 binding affinity is decreased, it is less able to facilitate complex interactions between proteins and therefore has less capability to dysregulate the cell cycle. By comparing E7 protein sequences from both low- and high-risk HPV variants and using site-directed mutagenesis combined with NMR spectroscopy and cell-based assays, we demonstrate that the presence of two key nonpolar valine residues within the CK2 recognition sequence, present in low-risk E7, reduces serine phosphorylation efficiency relative to high-risk E7. This results in significant loss of the ability of E7 to degrade the retinoblastoma tumor suppressor protein, thus also reducing the ability of E7 to increase cellular proliferation and reduce senescence. This provides additional insight into the differential E7-mediated outcomes when cells are infected with high-risk verses low-risk HPV. Understanding these oncogenic differences may be important to developing targeted treatment options for HPV-induced cancers.
Collapse
Affiliation(s)
- Madison Malone
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Ava Maeyama
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Naomi Ogden
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Kayla N Perry
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Andrew Kramer
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Caleb Bates
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Camryn Marble
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Ryan Orlando
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Amy Rausch
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Caleb Smeraldi
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Connor Lowey
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Bronson Fees
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037, CA, USA
| | - Michael Dorrell
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Heidi Kast-Woelbern
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA.
| | - Ariane L Jansma
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA.
| |
Collapse
|
2
|
Pintado-Grima C, Bárcenas O, Ventura S. Expanding the Landscape of Amyloid Sequences with CARs-DB: A Database of Polar Amyloidogenic Peptides from Disordered Proteins. Methods Mol Biol 2024; 2714:171-185. [PMID: 37676599 DOI: 10.1007/978-1-0716-3441-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Several databases collecting amyloidogenic regions have been released to provide information on protein sequences able to form amyloid fibrils. However, most of these resources are built with data from experiments that detect highly hydrophobic stretches located within transiently exposed protein segments. We recently demonstrated that cryptic amyloidogenic regions (CARs) of polar nature have the potential to form amyloid fibrils in vitro. Given the underrepresentation of these types of sequences in current amyloid databases, we developed CARs-DB, the first repository that collects thousands of predicted CARs from intrinsically disordered regions. This protocol chapter describes how to use CARs-DB to search for sequences of interest that might be connected to disease or functional protein-protein interactions. In addition, we provide study cases to illustrate the database's features to users. The CARs-DB is readily accessible at http://carsdb.ppmclab.com/ .
Collapse
Affiliation(s)
- Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Zemke NR, Hsu E, Barshop WD, Sha J, Wohlschlegel JA, Berk AJ. Adenovirus E1A binding to DCAF10 targets proteasomal degradation of RUVBL1/2 AAA+ ATPases required for quaternary assembly of multiprotein machines, innate immunity, and responses to metabolic stress. J Virol 2023; 97:e0099323. [PMID: 37962355 PMCID: PMC10734532 DOI: 10.1128/jvi.00993-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Inactivation of EP300/CREBB paralogous cellular lysine acetyltransferases (KATs) during the early phase of infection is a consistent feature of DNA viruses. The cell responds by stabilizing transcription factor IRF3 which activates transcription of scores of interferon-stimulated genes (ISGs), inhibiting viral replication. Human respiratory adenoviruses counter this by assembling a CUL4-based ubiquitin ligase complex that polyubiquitinylates RUVBL1 and 2 inducing their proteasomal degradation. This inhibits accumulation of active IRF3 and the expression of anti-viral ISGs, allowing replication of the respiratory HAdVs in the face of inhibition of EP300/CBEBBP KAT activity by the N-terminal region of E1A.
Collapse
Affiliation(s)
- Nathan R. Zemke
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Emily Hsu
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - William D. Barshop
- Thermo Fisher Scientific, San Jose, California, USA
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Jihui Sha
- Thermo Fisher Scientific, San Jose, California, USA
| | - James A. Wohlschlegel
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Thermo Fisher Scientific, San Jose, California, USA
| | - Arnold J. Berk
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
4
|
Brown AD, Vergunst KL, Branch M, Blair CM, Dupré DJ, Baillie GS, Langelaan DN. Structural basis of CBP/p300 recruitment by the microphthalmia-associated transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119520. [PMID: 37353163 DOI: 10.1016/j.bbamcr.2023.119520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
The microphthalmia-associated transcription factor (MITF) is a master regulator of the melanocyte cell lineage. Aberrant MITF activity can lead to multiple malignancies including skin cancer, where it modulates the progression and invasiveness of melanoma. MITF-regulated gene expression requires recruitment of the transcriptional co-regulator CBP/p300, but details of this process are not fully defined. In this study, we investigate the structural and functional interaction between the MITF N-terminal transactivation domain (MITFTAD) and CBP/p300. Using pulldown assays and nuclear magnetic resonance spectroscopy we determined that MITFTAD is intrinsically disordered and binds to the TAZ1 and TAZ2 domains of CBP/p300 with moderate affinity. The solution-state structure of the MITFTAD:TAZ2 complex reveals that MITF interacts with a hydrophobic surface of TAZ2, while remaining somewhat dynamic. Peptide array and mutagenesis experiments determined that an acidic motif is integral to the MITFTAD:TAZ2 interaction and is necessary for transcriptional activity of MITF. Peptides that bind to the same surface of TAZ2 as MITFTAD, such as the adenoviral protein E1A, are capable of displacing MITF from TAZ2 and inhibiting transactivation. These findings provide insight into co-activator recruitment by MITF that are fundamental to our understanding of MITF targeted gene regulation and melanoma biology.
Collapse
Affiliation(s)
- Alexandra D Brown
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kathleen L Vergunst
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Makenzie Branch
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Connor M Blair
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Denis J Dupré
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - George S Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
5
|
Xu L, Xuan H, He W, Zhang L, Huang M, Li K, Wen H, Xu H, Shi X. TAZ2 truncation confers overactivation of p300 and cellular vulnerability to HDAC inhibition. Nat Commun 2023; 14:5362. [PMID: 37660055 PMCID: PMC10475075 DOI: 10.1038/s41467-023-41245-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
The histone acetyltransferase p300/CBP is composed of several conserved domains, among which, the TAZ2 domain is known as a protein-protein interaction domain that binds to E1A and various transcription factors. Here we show that TAZ2 has a HAT autoinhibitory function. Truncating p300/CBP at TAZ2 leads to hyperactive HAT and elevated histone H3K27 and H3K18 acetylation in cells. Mechanistically, TAZ2 cooperates with other HAT neighboring domains to maintain the HAT active site in a 'closed' state. Truncating TAZ2 or binding of transcription factors to TAZ2 induces a conformational change that 'opens' the active site for substrate acetylation. Importantly, genetic mutations that lead to p300/CBP TAZ2 truncations are found in human cancers, and cells with TAZ2 truncations are vulnerable to histone deacetylase inhibitors. Our study reveals a function of the TAZ2 domain in HAT autoinhibitory regulation and provides a potential therapeutic strategy for the treatment of cancers harboring p300/CBP TAZ2 truncations.
Collapse
Affiliation(s)
- Longxia Xu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liang Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mengying Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kuai Li
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
6
|
Kikuchi M, Morita S, Wakamori M, Sato S, Uchikubo-Kamo T, Suzuki T, Dohmae N, Shirouzu M, Umehara T. Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nat Commun 2023; 14:4103. [PMID: 37460559 DOI: 10.1038/s41467-023-39735-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket. This directed the catalytic center of p300/CBP to one of the non-H4 histone NTs. The primary target that p300 writes by reading H4NTac was H2BNT, and H2BNTac promoted H2A-H2B dissociation from the nucleosome. We propose a model in which p300/CBP replicates histone N-terminal tail acetylation within the H3-H4 tetramer to inherit epigenetic storage, and transcribes it from the H3-H4 tetramer to the H2B-H2A dimers to activate context-dependent gene transcription through local nucleosome destabilization.
Collapse
Affiliation(s)
- Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Satoshi Morita
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Shin Sato
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Tomomi Uchikubo-Kamo
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
7
|
Dyson HJ. Vital for Viruses: Intrinsically Disordered Proteins. J Mol Biol 2023; 435:167860. [PMID: 37330280 PMCID: PMC10656058 DOI: 10.1016/j.jmb.2022.167860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/19/2023]
Abstract
Viruses infect all kingdoms of life; their genomes vary from DNA to RNA and in size from 2kB to 1 MB or more. Viruses frequently employ disordered proteins, that is, protein products of virus genes that do not themselves fold into independent three-dimensional structures, but rather, constitute a versatile molecular toolkit to accomplish a range of functions necessary for viral infection, assembly, and proliferation. Interestingly, disordered proteins have been discovered in almost all viruses so far studied, whether the viral genome consists of DNA or RNA, and whatever the configuration of the viral capsid or other outer covering. In this review, I present a wide-ranging set of stories illustrating the range of functions of IDPs in viruses. The field is rapidly expanding, and I have not tried to include everything. What is included is meant to be a survey of the variety of tasks that viruses accomplish using disordered proteins.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Monneau Y, Arrault C, Duroux C, Martin M, Chirot F, Mac Aleese L, Girod M, Comby-Zerbino C, Hagège A, Walker O, Hologne M. Structural and dynamical insights into SilE silver binding from combined analytical probes. Phys Chem Chem Phys 2023; 25:3061-3071. [PMID: 36617868 DOI: 10.1039/d2cp04206a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Silver has been used for its antimicrobial properties to fight infection for thousands of years. Unfortunately, some Gram-negative bacteria have developed silver resistance causing the death of patients in a burn unit. The genes responsible for silver resistance have been designated as the sil operon. Among the proteins of the sil operon, SilE has been shown to play a key role in bacterial silver resistance. Based on the limited information available, it has been depicted as an intrinsically disordered protein that folds into helices upon silver ion binding. Herein, this work demonstrates that SilE is composed of 4 clearly identified helical segments in the presence of several silver ions. The combination of analytical and biophysical techniques (NMR spectroscopy, CD, SAXS, HRMS, CE-ICP-MS, and IM-MS) reveals that SilE harbors four strong silver binding sites among the eight sites available. We have also further evidenced that SilE does not adopt a globular structure but rather samples a large conformational space from elongated to more compact structures. This particular structural organization facilitates silver binding through much higher accessibility of the involved His and Met residues. These valuable results will advance our current understanding of the role of SilE in the silver efflux pump complex mechanism and will help in the future rational design of inhibitors to fight bacterial silver resistance.
Collapse
Affiliation(s)
- Yoan Monneau
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Cyrielle Arrault
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Coraline Duroux
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Marie Martin
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Fabien Chirot
- Univ Lyon 1, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Cité Lyonnaise de l'Environnement et de l'Analyse, 5 rue de la Doua, Villeurbanne 69100, France
| | - Luke Mac Aleese
- Univ Lyon 1, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Cité Lyonnaise de l'Environnement et de l'Analyse, 5 rue de la Doua, Villeurbanne 69100, France
| | - Marion Girod
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Clothilde Comby-Zerbino
- Univ Lyon 1, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Cité Lyonnaise de l'Environnement et de l'Analyse, 5 rue de la Doua, Villeurbanne 69100, France
| | - Agnès Hagège
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Olivier Walker
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| | - Maggy Hologne
- Université de Lyon, CNRS, UCB Lyon1, Institut des Sciences Analytiques, UMR5280, 5 rue de la Doua, Villeurbanne 69100, France.
| |
Collapse
|
9
|
Ibrahim Z, Wang T, Destaing O, Salvi N, Hoghoughi N, Chabert C, Rusu A, Gao J, Feletto L, Reynoird N, Schalch T, Zhao Y, Blackledge M, Khochbin S, Panne D. Structural insights into p300 regulation and acetylation-dependent genome organisation. Nat Commun 2022; 13:7759. [PMID: 36522330 PMCID: PMC9755262 DOI: 10.1038/s41467-022-35375-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Histone modifications are deposited by chromatin modifying enzymes and read out by proteins that recognize the modified state. BRD4-NUT is an oncogenic fusion protein of the acetyl lysine reader BRD4 that binds to the acetylase p300 and enables formation of long-range intra- and interchromosomal interactions. We here examine how acetylation reading and writing enable formation of such interactions. We show that NUT contains an acidic transcriptional activation domain that binds to the TAZ2 domain of p300. We use NMR to investigate the structure of the complex and found that the TAZ2 domain has an autoinhibitory role for p300. NUT-TAZ2 interaction or mutations found in cancer that interfere with autoinhibition by TAZ2 allosterically activate p300. p300 activation results in a self-organizing, acetylation-dependent feed-forward reaction that enables long-range interactions by bromodomain multivalent acetyl-lysine binding. We discuss the implications for chromatin organisation, gene regulation and dysregulation in disease.
Collapse
Affiliation(s)
- Ziad Ibrahim
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Tao Wang
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Olivier Destaing
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Nicola Salvi
- Institut de Biologie Structurale, CNRS, CEA, UGA, Grenoble, France
| | - Naghmeh Hoghoughi
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Clovis Chabert
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Alexandra Rusu
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Jinjun Gao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Leonardo Feletto
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Nicolas Reynoird
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Thomas Schalch
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Saadi Khochbin
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Daniel Panne
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
10
|
Evolution of SLiM-mediated hijack functions in intrinsically disordered viral proteins. Essays Biochem 2022; 66:945-958. [DOI: 10.1042/ebc20220059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022]
Abstract
Abstract
Viruses and their hosts are involved in an ‘arms race’ where they continually evolve mechanisms to overcome each other. It has long been proposed that intrinsic disorder provides a substrate for the evolution of viral hijack functions and that short linear motifs (SLiMs) are important players in this process. Here, we review evidence in support of this tenet from two model systems: the papillomavirus E7 protein and the adenovirus E1A protein. Phylogenetic reconstructions reveal that SLiMs appear and disappear multiple times across evolution, providing evidence of convergent evolution within individual viral phylogenies. Multiple functionally related SLiMs show strong coevolution signals that persist across long distances in the primary sequence and occur in unrelated viral proteins. Moreover, changes in SLiMs are associated with changes in phenotypic traits such as host range and tropism. Tracking viral evolutionary events reveals that host switch events are associated with the loss of several SLiMs, suggesting that SLiMs are under functional selection and that changes in SLiMs support viral adaptation. Fine-tuning of viral SLiM sequences can improve affinity, allowing them to outcompete host counterparts. However, viral SLiMs are not always competitive by themselves, and tethering of two suboptimal SLiMs by a disordered linker may instead enable viral hijack. Coevolution between the SLiMs and the linker indicates that the evolution of disordered regions may be more constrained than previously thought. In summary, experimental and computational studies support a role for SLiMs and intrinsic disorder in viral hijack functions and in viral adaptive evolution.
Collapse
|
11
|
Li T, Motta S, Stevens AO, Song S, Hendrix E, Pandini A, He Y. Recognizing the Binding Pattern and Dissociation Pathways of the p300 Taz2-p53 TAD2 Complex. JACS AU 2022; 2:1935-1945. [PMID: 36032526 PMCID: PMC9400049 DOI: 10.1021/jacsau.2c00358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/21/2023]
Abstract
The dynamic association and dissociation between proteins are the basis of cellular signal transduction. This process becomes much more complicated if one or both interaction partners are intrinsically disordered because intrinsically disordered proteins can undergo disorder-to-order transitions upon binding to their partners. p53, a transcription factor with disordered regions, plays significant roles in many cellular signaling pathways. It is critical to understand the binding/unbinding mechanism involving these disordered regions of p53 at the residue level to reveal how p53 performs its biological functions. Here, we studied the dissociation process of the intrinsically disordered N-terminal transactivation domain 2 (TAD2) of p53 and the transcriptional adaptor zinc-binding 2 (Taz2) domain of transcriptional coactivator p300 using a combination of classical molecular dynamics, steered molecular dynamics, self-organizing maps, and time-resolved force distribution analysis (TRFDA). We observed two different dissociation pathways with different probabilities. One dissociation pathway starts from the TAD2 N-terminus and propagates to the α-helix and finally the C-terminus. The other dissociation pathway is in the opposite order. Subsequent TRFDA results reveal that key residues in TAD2 play critical roles. Besides the residues in agreement with previous experimental results, we also highlighted some other residues that play important roles in the disassociation process. In the dissociation process, non-native interactions were formed to partially compensate for the energy loss due to the breaking of surrounding native interactions. Moreover, our statistical analysis results of other experimentally determined complex structures involving either Taz2 or TAD2 suggest that the binding of the Taz2-TAD2 complex is mainly governed by the binding site of Taz2, which includes three main binding regions. Therefore, the complexes involving Taz2 may follow similar binding/unbinding behaviors, which could be studied together to generate common principles.
Collapse
Affiliation(s)
- Tongtong Li
- Department
of Chemistry & Chemical Biology, The
University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Stefano Motta
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Milan 20126, Italy
| | - Amy O. Stevens
- Department
of Chemistry & Chemical Biology, The
University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Shenghan Song
- Department
of Chemistry & Chemical Biology, The
University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Emily Hendrix
- Department
of Chemistry & Chemical Biology, The
University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Alessandro Pandini
- Department
of Computer Science, Brunel University London, Uxbridge UB8 3PH, U.K.
- The
Thomas Young Centre for Theory and Simulation of Materials, London SW7 2AZ, U.K.
| | - Yi He
- Department
of Chemistry & Chemical Biology, The
University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
12
|
Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat Struct Mol Biol 2022; 29:781-790. [PMID: 35948766 DOI: 10.1038/s41594-022-00811-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/23/2022] [Indexed: 02/02/2023]
Abstract
Many disordered proteins conserve essential functions in the face of extensive sequence variation, making it challenging to identify the mechanisms responsible for functional selection. Here we identify the molecular mechanism of functional selection for the disordered adenovirus early gene 1A (E1A) protein. E1A competes with host factors to bind the retinoblastoma (Rb) protein, subverting cell cycle regulation. We show that two binding motifs tethered by a hypervariable disordered linker drive picomolar affinity Rb binding and host factor displacement. Compensatory changes in amino acid sequence composition and sequence length lead to conservation of optimal tethering across a large family of E1A linkers. We refer to this compensatory mechanism as conformational buffering. We also detect coevolution of the motifs and linker, which can preserve or eliminate the tethering mechanism. Conformational buffering and motif-linker coevolution explain robust functional encoding within hypervariable disordered linkers and could underlie functional selection of many disordered protein regions.
Collapse
|
13
|
Chopra A, Willmore WG, Biggar KK. Insights into a Cancer-Target Demethylase: Substrate Prediction through Systematic Specificity Analysis for KDM3A. Biomolecules 2022; 12:biom12050641. [PMID: 35625569 PMCID: PMC9139010 DOI: 10.3390/biom12050641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Jumonji C (JmjC) lysine demethylases (KDMs) catalyze the removal of methyl (-CH3) groups from modified lysyl residues. Several JmjC KDMs promote cancerous properties and these findings have primarily been in relation to histone demethylation. However, the biological roles of these enzymes are increasingly being shown to also be attributed to non-histone demethylation. Notably, KDM3A has become relevant to tumour progression due to recent findings of this enzyme's role in promoting cancerous phenotypes, such as enhanced glucose consumption and upregulated mechanisms of chemoresistance. To aid in uncovering the mechanism(s) by which KDM3A imparts its oncogenic function(s), this study aimed to unravel KDM3A substrate specificity to predict high-confidence substrates. Firstly, substrate specificity was assessed by monitoring activity towards a peptide permutation library of histone H3 di-methylated at lysine-9 (i.e., H3K9me2). From this, the KDM3A recognition motif was established and used to define a set of high-confidence predictions of demethylation sites from within the KDM3A interactome. Notably, this led to the identification of three in vitro substrates (MLL1, p300, and KDM6B), which are relevant to the field of cancer progression. This preliminary data may be exploited in further tissue culture experiments to decipher the avenues by which KDM3A imparts cancerous phenotypes.
Collapse
Affiliation(s)
- Anand Chopra
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - William G. Willmore
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence: (W.G.W.); (K.K.B.)
| | - Kyle K. Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence: (W.G.W.); (K.K.B.)
| |
Collapse
|
14
|
Host diversification is concurrent with linear motif evolution in a Mastadenovirus hub protein. J Mol Biol 2022; 434:167563. [PMID: 35351519 DOI: 10.1016/j.jmb.2022.167563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022]
Abstract
Over one hundred Mastadenovirus types infect seven orders of mammals. Virus-host coevolution may involve cospeciation, duplication, host switch and partial extinction events. We reconstruct Mastadenovirus diversification, finding that while cospeciation is dominant, the other three events are also common in Mastadenovirus evolution. Linear motifs are fast-evolving protein functional elements and key mediators of virus-host interactions, thus likely to partake in adaptive viral evolution. We study the evolution of eleven linear motifs in the Mastadenovirus E1A protein, a hub of virus-host protein-protein interactions, in the context of host diversification. The reconstruction of linear motif gain and loss events shows fast linear motif turnover, corresponding a virus-host protein-protein interaction turnover orders of magnitude faster than in model host proteomes. Evolution of E1A linear motifs is coupled, indicating functional coordination at the protein scale, yet presents motif-specific patterns suggestive of convergent evolution. We report a pervasive association between Mastadenovirus host diversification events and the evolution of E1A linear motifs. Eight of 17 host switches associate with the gain of one linear motif and the loss of four different linear motifs, while five of nine partial extinctions associate with the loss of one linear motif. The specific changes in E1A linear motifs during a host switch or a partial extinction suggest that changes in the host molecular environment lead to modulation of the interactions with the retinoblastoma protein and host transcriptional regulators. Altogether, changes in the linear motif repertoire of a viral hub protein are associated with adaptive evolution events during Mastadenovirus evolution.
Collapse
|
15
|
Almuzaini N, Moore M, Robert-Guroff M, Thomas MA. Disruption of NBS1/MRN Complex Formation by E4orf3 Supports NF-κB That Licenses E1B55K-Deleted Adenovirus-Infected Cells to Accumulate DNA>4n. Microbiol Spectr 2022; 10:e0188121. [PMID: 35019694 PMCID: PMC8754114 DOI: 10.1128/spectrum.01881-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 01/16/2023] Open
Abstract
Cells increase their DNA content greater than the G2/M (DNA > 4n) phases along the path to cancer. The signals that support this increase in DNA content remain poorly understood. Cells infected with adenovirus (Ad) similarly develop DNA > 4n and share a need to bypass the DNA damage response (DDR) signals that trigger cell cycle arrest, and/or cell death. Ads with deletion in early region 1B55K (ΔE1B Ad) are oncolytic agents that are currently being explored for use in vaccine delivery. Interestingly, they promote higher levels of DNA > 4n than Ads that contain E1B55K. Existing in these and almost all Ads that are being explored for clinical use, is early region 4 (E4). The Ad E4 open reading frame 3 (E4orf3) is a viral oncogene that interferes with the ability of cells to respond to DNA damage by disrupting MRN complex formation. Our study reveals that E4orf3 is required for the enhanced fraction of ΔE1B Ad-infected cells with DNA > 4n. For that reason, we explored signaling events mediated by E4orf3. We found that in ΔE1B Ad-infected cells, E4orf3, as reported by others, isolates NBS1 in nuclear dots and tracks. This allows for elevated levels of phosphorylated ATM that is linked to transcriptionally active NF-κB. Pharmacological inhibition of NF-κB reduced the fraction of ΔE1B Ad-infected cells with DNA > 4n while pharmacological inhibition of ATM reduced the levels of nuclear NF-κB and the fraction of ΔE1B Ad-infected cells with DNA > 4n and increased the fraction of dead or dying cells with fragmented DNA. This ability of E4orf3 to disrupt MRN complex formation that allows cells to bypass the cell cycle, evade death, and accumulate DNA > 4n, may be linked to its oncogenic potential. IMPORTANCE Genome instability, a hallmark of cancer, exists as part of a cycle that leads to DNA damage and DNA > 4n that further enhances genome instability. Ad E4orf3 is a viral oncogene. Here, we describe E4orf3 mediated signaling events that support DNA > 4n in ΔE1B Ad-infected cells. These signaling events may be linked to the oncogenic potential of E4orf3 and may provide a basis for how some cells survive with DNA > 4n.
Collapse
Affiliation(s)
- Nujud Almuzaini
- Department of Biology, College of Arts and Sciences, Howard University, Washington, D.C., USA
| | - Madison Moore
- Department of Biology, College of Arts and Sciences, Howard University, Washington, D.C., USA
| | - Marjorie Robert-Guroff
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael A. Thomas
- Department of Biology, College of Arts and Sciences, Howard University, Washington, D.C., USA
| |
Collapse
|
16
|
Sharma N, Gadhave K, Kumar P, Giri R. Transactivation domain of Adenovirus Early Region 1A (E1A): Investigating folding dynamics and aggregation. Curr Res Struct Biol 2022; 4:29-40. [PMID: 35146445 PMCID: PMC8801969 DOI: 10.1016/j.crstbi.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Transactivation domain of Adenovirus Early region 1A (E1A) oncoprotein is an intrinsically disordered molecular hub protein. It is involved in binding to different domains of human cell transcriptional co-activators such as retinoblastoma (pRb), CREB-binding protein (CBP), and its paralogue p300. The conserved region 1 (TAD) of E1A is known to undergo structural transitions and folds upon interaction with transcriptional adaptor zinc finger 2 (TAZ2). Previous reports on Taz2-E1A studies have suggested the formation of helical conformations of E1A-TAD. However, the folding behavior of the TAD region in isolation has not been studied in detail. Here, we have elucidated the folding behavior of E1A peptide at varied temperatures and solution conditions. Further, we have studied the effects of macromolecular crowding on E1A-TAD peptide. Additionally, we have also predicted the molecular recognition features of E1A using MoRF predictors. The predicted MoRFs are consistent with its structural transitions observed during TAZ2 interactions for transcriptional regulation in literature. Also, as a general rule of MoRFs, E1A undergoes helical transitions in alcohol and osmolyte solution. Finally, we studied the aggregation behavior of E1A, where we observed that the E1A could form amyloid-like aggregates that are cytotoxic to mammalian cells.
Collapse
Affiliation(s)
- Nitin Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
- BioX Center, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
17
|
Risør MW, Jansma AL, Medici N, Thomas B, Dyson HJ, Wright PE. Characterization of the High-Affinity Fuzzy Complex between the Disordered Domain of the E7 Oncoprotein from High-Risk HPV and the TAZ2 Domain of CBP. Biochemistry 2021; 60:3887-3898. [PMID: 34905914 PMCID: PMC8865373 DOI: 10.1021/acs.biochem.1c00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intrinsically disordered N-terminal region of the E7 protein from high-risk human papillomavirus (HPV) strains is responsible for oncogenic transformation of host cells through its interaction with a number of cellular factors, including the TAZ2 domain of the transcriptional coactivator CREB-binding protein. Using a variety of spectroscopic and biochemical tools, we find that despite its nanomolar affinity, the HPV16 E7 complex with TAZ2 is disordered and highly dynamic. The disordered domain of HPV16 E7 protein does not adopt a single conformation on the surface of TAZ2 but engages promiscuously with its target through multiple interactions involving two conserved motifs, termed CR1 and CR2, that occupy an extensive binding surface on TAZ2. The fuzzy nature of the complex is a reflection of the promiscuous binding repertoire of viral proteins, which must efficiently dysregulate host cell processes by binding to a variety of host factors in the cellular environment.
Collapse
Affiliation(s)
- Michael W. Risør
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, U.S.A.,Joint first author
| | - Ariane L. Jansma
- Department of Chemistry, Point Loma Nazarene University, San Diego, California, 92106, U.S.A.,Joint first author
| | - Natasha Medici
- Department of Chemistry, Point Loma Nazarene University, San Diego, California, 92106, U.S.A
| | - Brittany Thomas
- Department of Chemistry, Point Loma Nazarene University, San Diego, California, 92106, U.S.A
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, U.S.A.,Author for correspondence: H. Jane Dyson, Phone: 1-858-784-2223, , Peter E. Wright, Phone: 1-858-784-9721,
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, U.S.A.,Author for correspondence: H. Jane Dyson, Phone: 1-858-784-2223, , Peter E. Wright, Phone: 1-858-784-9721,
| |
Collapse
|
18
|
Naudi-Fabra S, Blackledge M, Milles S. Synergies of Single Molecule Fluorescence and NMR for the Study of Intrinsically Disordered Proteins. Biomolecules 2021; 12:biom12010027. [PMID: 35053175 PMCID: PMC8773649 DOI: 10.3390/biom12010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Single molecule fluorescence and nuclear magnetic resonance spectroscopy (NMR) are two very powerful techniques for the analysis of intrinsically disordered proteins (IDPs). Both techniques have individually made major contributions to deciphering the complex properties of IDPs and their interactions, and it has become evident that they can provide very complementary views on the distance-dynamics relationships of IDP systems. We now review the first approaches using both NMR and single molecule fluorescence to decipher the molecular properties of IDPs and their interactions. We shed light on how these two techniques were employed synergistically for multidomain proteins harboring intrinsically disordered linkers, for veritable IDPs, but also for liquid–liquid phase separated systems. Additionally, we provide insights into the first approaches to use single molecule Förster resonance energy transfer (FRET) and NMR for the description of multiconformational models of IDPs.
Collapse
|
19
|
Dyson HJ, Wright PE. NMR illuminates intrinsic disorder. Curr Opin Struct Biol 2021; 70:44-52. [PMID: 33951592 DOI: 10.1016/j.sbi.2021.03.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Nuclear magnetic resonance (NMR) has long been instrumental in the characterization of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). This method continues to offer rich insights into the nature of IDPs in solution, especially in combination with other biophysical methods such as small-angle scattering, single-molecule fluorescence, electron paramagnetic resonance (EPR), and mass spectrometry. Substantial advances have been made in recent years in studies of proteins containing both ordered and disordered domains and in the characterization of problematic sequences containing repeated tracts of a single or a few amino acids. These sequences are relevant to disease states such as Alzheimer's, Parkinson's, and Huntington's diseases, where disordered proteins misfold into harmful amyloid. Innovative applications of NMR are providing novel insights into mechanisms of protein aggregation and the complexity of IDP interactions with their targets. As a basis for understanding the solution structural ensembles, dynamic behavior, and functional mechanisms of IDPs and IDRs, NMR continues to prove invaluable.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037, California, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037, California, USA.
| |
Collapse
|
20
|
Sakane T, Murase T, Okuda K, Masaki A, Nakanishi R, Inagaki H. Expression of cancer testis antigens in thymic epithelial tumors. Pathol Int 2021; 71:471-479. [PMID: 33902161 DOI: 10.1111/pin.13103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Cancer testis antigens (CTAs) are detected in cancer cells but not in healthy normal tissues, with the exception of gametogenic tissues. However, to our knowledge, expression of the antigens in thymic epithelial tumors has not been examined yet. We examined the immunohistochemical expression of five CTAs (MAGE-A, NY-ESO-1, MAGE-C1, SAGE and GAGE7) in 192 cases of thymic epithelial tumor. The CTAs were variably expressed in the thymic epithelial tumors. Type B component of type AB thymomas, type B1/B2/B3 thymomas, and thymic carcinomas showed a generally positive correlation between the malignancy grades and positive expression rates in four CTAs other than MAGE-C1. In thymic squamous cell carcinomas (SqCCs), four antigens except for MAGE-C1 showed high expression rates ranging from 23.1% to 43.6%. In the prognostic analysis, a positive expression of SAGE (P = 0.0485) and GAGE7 (P = 0.0289) were associated with a shorter overall survival in type B2/B3 thymomas, respectively. In thymic SqCC, a positive MAGE-A expression was significantly associated with an increased level of programmed death ligand in tumor-infiltrating lymphocytes (P = 0.0181). We showed (i) a frequent CTA expression, (ii) a general correlation of CTA expression with tumor malignancy grades and (iii) a prognostic impact in some of the CTAs.
Collapse
Affiliation(s)
- Tadashi Sakane
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan.,Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Takayuki Murase
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Ayako Masaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Ryoichi Nakanishi
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| |
Collapse
|
21
|
Chang M, Wilson CJ, Karunatilleke NC, Moselhy MH, Karttunen M, Choy WY. Exploring the Conformational Landscape of the Neh4 and Neh5 Domains of Nrf2 Using Two Different Force Fields and Circular Dichroism. J Chem Theory Comput 2021; 17:3145-3156. [PMID: 33861593 DOI: 10.1021/acs.jctc.0c01243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)-ARE transcriptional response pathway plays a critical role in protecting the cell from oxidative stresses via the upregulation of cytoprotective genes. Aberrant activation of Nrf2 in cancer cells can confer this cytoprotectivity, thereby reducing the efficacy of both chemotherapeutics and radiotherapies. Key to this antioxidant pathway is the interaction between Nrf2 and CREB binding protein (CBP), mediated by the Neh4 and Neh5 domains of Nrf2. Disruption of this interaction via small-molecule therapeutics could negate the effects of aberrant Nrf2 upregulation. Due to the disordered nature of these domains, there remains no three-dimensional structure of Neh4 or Neh5, making structure-based drug design a challenge. Here, we performed 48 μs of unbiased molecular dynamics (MD) simulations with the Amber99SB*-ILDNP and CHARMM36m force fields and circular dichroism (CD) spectropolarimetry experiments to elucidate the free-state structures of these domains; no previous data regarding their conformational landscapes exists. There are two main findings: First, we find Neh5 to be markedly more disordered than Neh4, which has nine residues in the middle of the domain showing α-helical propensity, thus pointing to Neh4 and Neh5 having different binding mechanisms. Second, the two force fields show strong differences for the glutamic acid-rich Neh5 peptide but are in reasonable agreement for Neh4, which has no glutamic acid. The CHARMM36m force field agrees more closely with the CD results.
Collapse
Affiliation(s)
- Megan Chang
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - Carter J Wilson
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada.,Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Nadun Chanaka Karunatilleke
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - Mohamed Hesham Moselhy
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada.,Department of Computer Science, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Mikko Karttunen
- Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.,Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| |
Collapse
|
22
|
Murrali MG, Felli IC, Pierattelli R. Adenoviral E1A Exploits Flexibility and Disorder to Target Cellular Proteins. Biomolecules 2020; 10:biom10111541. [PMID: 33187345 PMCID: PMC7698142 DOI: 10.3390/biom10111541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Direct interaction between intrinsically disordered proteins (IDPs) is often difficult to characterize hampering the elucidation of their binding mechanism. Particularly challenging is the study of fuzzy complexes, in which the intrinsically disordered proteins or regions retain conformational freedom within the assembly. To date, nuclear magnetic resonance spectroscopy has proven to be one of the most powerful techniques to characterize at the atomic level intrinsically disordered proteins and their interactions, including those cases where the formed complexes are highly dynamic. Here, we present the characterization of the interaction between a viral protein, the Early region 1A protein from Adenovirus (E1A), and a disordered region of the human CREB-binding protein, namely the fourth intrinsically disordered linker CBP-ID4. E1A was widely studied as a prototypical viral oncogene. Its interaction with two folded domains of CBP was mapped, providing hints for understanding some functional aspects of the interaction with this transcriptional coactivator. However, the role of the flexible linker connecting these two globular domains of CBP in this interaction was never explored before.
Collapse
Affiliation(s)
| | - Isabella C. Felli
- Correspondence: (I.C.F.); (R.P.); Tel.: +39-0554574242 (I.C.F.); +39-0554574265 (R.P.)
| | - Roberta Pierattelli
- Correspondence: (I.C.F.); (R.P.); Tel.: +39-0554574242 (I.C.F.); +39-0554574265 (R.P.)
| |
Collapse
|
23
|
Structural Determinants within the Adenovirus Early Region 1A Protein Spacer Region Necessary for Tumorigenesis. J Virol 2020; 94:JVI.01268-20. [PMID: 32847858 DOI: 10.1128/jvi.01268-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022] Open
Abstract
It has long been established that group A human adenoviruses (HAdV-A12, -A18, and -A31) can cause tumors in newborn rodents, with tumorigenicity related to the presence of a unique spacer region located between conserved regions 2 and 3 within the HAdV-A12 early region 1A (E1A) protein. Group B adenoviruses are weakly oncogenic, whereas most of the remaining human adenoviruses are nononcogenic. In an attempt to understand better the relationship between the structure of the AdE1A spacer region and oncogenicity of HAdVs, the structures of synthetic peptides identical or very similar to the adenovirus 12 E1A spacer region were determined and found to be α-helical using nuclear magnetic resonance (NMR) spectroscopy. This contrasts significantly with some previous suggestions that this region is unstructured. Using available predictive algorithms, the structures of spacer regions from other E1As were also examined, and the extent of the predicted α-helix was found to correlate reasonably well with the tumorigenicity of the respective virus. We suggest that this may represent an as-yet-unknown binding site for a partner protein required for tumorigenesis.IMPORTANCE This research analyzed small peptides equivalent to a region within the human adenovirus early region 1A protein that confers, in part, tumor-inducing properties to various degrees on several viral strains in rats and mice. The oncogenic spacer region is α-helical, which contrasts with previous suggestions that this region is unstructured. The helix is characterized by a stretch of amino acids rich in alanine residues that are organized into a hydrophobic, or "water-hating," surface that is considered to form a major site of interaction with cellular protein targets that mediate tumor formation. The extent of α-helix in E1A from other adenovirus species can be correlated to a limited degree to the tumorigenicity of that virus. Some serotypes show significant differences in predicted structural propensity, suggesting that the amino acid type and physicochemical properties are also of importance.
Collapse
|
24
|
Horvath A, Miskei M, Ambrus V, Vendruscolo M, Fuxreiter M. Sequence-based prediction of protein binding mode landscapes. PLoS Comput Biol 2020; 16:e1007864. [PMID: 32453748 PMCID: PMC7304629 DOI: 10.1371/journal.pcbi.1007864] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/19/2020] [Accepted: 04/09/2020] [Indexed: 02/04/2023] Open
Abstract
Interactions between disordered proteins involve a wide range of changes in the structure and dynamics of the partners involved. These changes can be classified in terms of binding modes, which include disorder-to-order (DO) transitions, when proteins fold upon binding, as well as disorder-to-disorder (DD) transitions, when the conformational heterogeneity is maintained in the bound states. Furthermore, systematic studies of these interactions are revealing that proteins may exhibit different binding modes with different partners. Proteins that exhibit this context-dependent binding can be referred to as fuzzy proteins. Here we investigate amino acid code for fuzzy binding in terms of the entropy of the probability distribution of transitions towards decreasing order. We implement these entropy calculations into the FuzPred (http://protdyn-fuzpred.org) algorithm to predict the range of context-dependent binding modes of proteins from their amino acid sequences. As we illustrate through a variety of examples, this method identifies those binding sites that are sensitive to the cellular context or post-translational modifications, and may serve as regulatory points of cellular pathways. Great advances have been made in the last several decades in deciphering how the behavior of proteins is encoded in their amino acid sequences. A variety of sequence-based prediction methods have been developed to estimate a wide range of properties of proteins, including secondary structure propensity, native state structures, preference for being disordered and tendency to aggregate. Much less is known, however, about the rules that regulate the conformational changes of proteins upon binding. In particular, many proteins change their binding modes upon interacting with different partners, or as a consequence of post-translational modifications or changes in the cellular milieu. Here we address the problem of how amino acid sequences can encode different binding modes depending on their binding partners, and describe the FuzPred method of predicting context-dependent binding modes.
Collapse
Affiliation(s)
- Attila Horvath
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Marton Miskei
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Viktor Ambrus
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (MV); (MF)
| | - Monika Fuxreiter
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
- * E-mail: (MV); (MF)
| |
Collapse
|
25
|
Lochhead MR, Brown AD, Kirlin AC, Chitayat S, Munro K, Findlay JE, Baillie GS, LeBrun DP, Langelaan DN, Smith SP. Structural insights into TAZ2 domain-mediated CBP/p300 recruitment by transactivation domain 1 of the lymphopoietic transcription factor E2A. J Biol Chem 2020; 295:4303-4315. [PMID: 32098872 PMCID: PMC7105314 DOI: 10.1074/jbc.ra119.011078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/21/2020] [Indexed: 01/02/2023] Open
Abstract
The E-protein transcription factors guide immune cell differentiation, with E12 and E47 (hereafter called E2A) being essential for B-cell specification and maturation. E2A and the oncogenic chimera E2A-PBX1 contain three transactivation domains (ADs), with AD1 and AD2 having redundant, independent, and cooperative functions in a cell-dependent manner. AD1 and AD2 both mediate their functions by binding to the KIX domain of the histone acetyltransferase paralogues CREB-binding protein (CBP) and E1A-binding protein P300 (p300). This interaction is necessary for B-cell maturation and oncogenesis by E2A-PBX1 and occurs through conserved ΦXXΦΦ motifs (with Φ denoting a hydrophobic amino acid) in AD1 and AD2. However, disruption of this interaction via mutation of the KIX domain in CBP/p300 does not completely abrogate binding of E2A and E2A-PBX1. Here, we determined that E2A-AD1 and E2A-AD2 also interact with the TAZ2 domain of CBP/p300. Characterization of the TAZ2:E2A-AD1(1-37) complex indicated that E2A-AD1 adopts an α-helical structure and uses its ΦXXΦΦ motif to bind TAZ2. Whereas this region overlapped with the KIX recognition region, key KIX-interacting E2A-AD1 residues were exposed, suggesting that E2A-AD1 could simultaneously bind both the KIX and TAZ2 domains. However, we did not detect a ternary complex involving E2A-AD1, KIX, and TAZ2 and found that E2A containing both intact AD1 and AD2 is required to bind to CBP/p300. Our findings highlight the structural plasticity and promiscuity of E2A-AD1 and suggest that E2A binds both the TAZ2 and KIX domains of CBP/p300 through AD1 and AD2.
Collapse
Affiliation(s)
- Marina R Lochhead
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Alexandra D Brown
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alyssa C Kirlin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Seth Chitayat
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Kim Munro
- Protein Function Discovery Group, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jane E Findlay
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - David P LeBrun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - David N Langelaan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
26
|
Glinsky GV. A Catalogue of 59,732 Human-Specific Regulatory Sequences Reveals Unique-to-Human Regulatory Patterns Associated with Virus-Interacting Proteins, Pluripotency, and Brain Development. DNA Cell Biol 2019; 39:126-143. [PMID: 31730374 DOI: 10.1089/dna.2019.4988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Extensive searches for genomic regions harboring various types of candidate human-specific regulatory sequences (HSRS) identified thousands' HSRS using high-resolution next-generation sequencing technologies and methodologically diverse comparative analyses of human and nonhuman primates' (NHPs) reference genomes. In this study, a comprehensive catalogue of 59,732 genomic loci harboring candidate HSRS has been assembled to facilitate the systematic analyses of genomic sequences that were either inherited from extinct common ancestors (ECAs) or created de novo in human genomes. These analyses identified thousands of candidate HSRS and HSRS-harboring loci that appear inherited from ECAs, yet absent in genomes of our closest evolutionary relatives, chimpanzee and bonobo, presumably due to the incomplete lineage sorting and/or species-specific loss or regulatory DNA. This pattern is particularly prominent for HSRS-harboring loci that have been putatively associated with human-specific gene expression changes in cerebral organoid models. A prominent majority of regions harboring human-specific mutations associated with human-specific expression changes during brain development is highly conserved in chimpanzee, bonobo, and gorilla genomes. Among NHPs, dominant fractions of HSRS-harboring loci associated with human-specific gene expression in both excitatory neurons (347 loci; 67%) and radial glia (683 loci; 72%) are highly conserved in the gorilla genome. Analysis of 4433 genes encoding virus-interacting proteins (VIPs) revealed that 95.9% of human VIPs are components of human-specific regulatory networks that appear to operate in distinct types of human cells from preimplantation embryos to adult dorsolateral prefrontal cortex. These analyses demonstrate that modern humans captured unique genome-wide combinations of regulatory sequences, divergent subsets of which are highly conserved in distinct species of six NHP separated by 30 million years of evolution. Concurrently, this unique-to-human mosaic of genomic regulatory patterns inherited from ECAs was supplemented with 12,486 created de novo HSRS. Genes encoding VIPs appear to represent a principal genomic target during evolution of human-specific regulatory networks, which contribute to fitness of Homo sapiens and affect a functionally diverse spectrum of biological and cellular processes controlled by VIP-containing liquid-liquid phase-separated condensates.
Collapse
Affiliation(s)
- Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
27
|
Gonzalez G, Bair CR, Lamson DM, Watanabe H, Panto L, Carr MJ, Kajon AE. Genomic characterization of human adenovirus type 4 strains isolated worldwide since 1953 identifies two separable phylogroups evolving at different rates from their most recent common ancestor. Virology 2019; 538:11-23. [PMID: 31550608 DOI: 10.1016/j.virol.2019.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/29/2022]
Abstract
Species Human mastadenovirus E (HAdV-E) comprises several simian types and a single human type: HAdV-E4, a respiratory and ocular pathogen. RFLP analysis for the characterization of intratypic genetic variability has previously distinguished two HAdV-E4 clusters: prototype (p)-like and a-like. Our analysis of whole genome sequences confirmed two distinct lineages, which we refer to as phylogroups (PGs). PGs I and II comprise the p- and a-like genomes, respectively, and differ significantly in their G + C content (57.7% ± 0.013 vs 56.3% ± 0.015). Sequence differences distinguishing the two clades map to several regions of the genome including E3 and ITR. Bayesian analyses showed that the two phylogroups diverged approximately 602 years before the present. A relatively faster evolutionary rate was identified for PG II. Our data provide a rationale for the incorporation of phylogroup identity to HAdV-E4 strain designation to reflect the identified unique genetic characteristics that distinguish PGs I and II.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| | - Camden R Bair
- Infectious Disease Program, Lovelace Respiratory Research Institute, New Mexico, USA
| | - Daryl M Lamson
- Wadsworth Center, New York State Department of Health, New York, USA
| | - Hidemi Watanabe
- Graduate School of Information Science and Technology, Hokkaido University, Japan
| | - Laura Panto
- Graduate School of Information Science and Technology, Hokkaido University, Japan
| | - Michael J Carr
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Japan; National Virus Reference Laboratory, School of Medicine, University College Dublin, Ireland
| | - Adriana E Kajon
- Infectious Disease Program, Lovelace Respiratory Research Institute, New Mexico, USA.
| |
Collapse
|
28
|
Entropy and Information within Intrinsically Disordered Protein Regions. ENTROPY 2019; 21:e21070662. [PMID: 33267376 PMCID: PMC7515160 DOI: 10.3390/e21070662] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023]
Abstract
Bioinformatics and biophysical studies of intrinsically disordered proteins and regions (IDRs) note the high entropy at individual sequence positions and in conformations sampled in solution. This prevents application of the canonical sequence-structure-function paradigm to IDRs and motivates the development of new methods to extract information from IDR sequences. We argue that the information in IDR sequences cannot be fully revealed through positional conservation, which largely measures stable structural contacts and interaction motifs. Instead, considerations of evolutionary conservation of molecular features can reveal the full extent of information in IDRs. Experimental quantification of the large conformational entropy of IDRs is challenging but can be approximated through the extent of conformational sampling measured by a combination of NMR spectroscopy and lower-resolution structural biology techniques, which can be further interpreted with simulations. Conformational entropy and other biophysical features can be modulated by post-translational modifications that provide functional advantages to IDRs by tuning their energy landscapes and enabling a variety of functional interactions and modes of regulation. The diverse mosaic of functional states of IDRs and their conformational features within complexes demands novel metrics of information, which will reflect the complicated sequence-conformational ensemble-function relationship of IDRs.
Collapse
|
29
|
Zemke NR, Gou D, Berk AJ. Dedifferentiation by adenovirus E1A due to inactivation of Hippo pathway effectors YAP and TAZ. Genes Dev 2019; 33:828-843. [PMID: 31171701 PMCID: PMC6601516 DOI: 10.1101/gad.324814.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/26/2019] [Indexed: 01/09/2023]
Abstract
In this study, Zemke et al. show that E1A inactivates the Hippo pathway-regulated TEAD coactivators YAP and TAZ by causing their sequestration in the cytoplasm. Their findings suggest that YAP/TAZ function in a developmental checkpoint controlled by signaling from the actin cytoskeleton that prevents differentiation of a progenitor cell until it is in the correct cellular and tissue environment. Adenovirus transformed cells have a dedifferentiated phenotype. Eliminating E1A in transformed human embryonic kidney cells derepressed ∼2600 genes, generating a gene expression profile closely resembling mesenchymal stem cells (MSCs). This was associated with a dramatic change in cell morphology from one with scant cytoplasm and a globular nucleus to one with increased cytoplasm, extensive actin stress fibers, and actomyosin-dependent flattening against the substratum. E1A-induced hypoacetylation at histone H3 Lys27 and Lys18 (H3K27/18) was reversed. Most of the increase in H3K27/18ac was in enhancers near TEAD transcription factors bound by Hippo signaling-regulated coactivators YAP and TAZ. E1A causes YAP/TAZ cytoplasmic sequestration. After eliminating E1A, YAP/TAZ were transported into nuclei, where they associated with poised enhancers with DNA-bound TEAD4 and H3K4me1. This activation of YAP/TAZ required RHO family GTPase signaling and caused histone acetylation by p300/CBP, chromatin remodeling, and cohesin loading to establish MSC-associated enhancers and then superenhancers. Consistent results were also observed in primary rat embryo kidney cells, human fibroblasts, and human respiratory tract epithelial cells. These results together with earlier studies suggest that YAP/TAZ function in a developmental checkpoint controlled by signaling from the actin cytoskeleton that prevents differentiation of a progenitor cell until it is in the correct cellular and tissue environment.
Collapse
Affiliation(s)
- Nathan R Zemke
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Dawei Gou
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Arnold J Berk
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
30
|
Divergent Evolution of E1A CR3 in Human Adenovirus Species D. Viruses 2019; 11:v11020143. [PMID: 30744049 PMCID: PMC6409611 DOI: 10.3390/v11020143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 12/31/2022] Open
Abstract
Adenovirus E1A is the first viral protein expressed during infection. E1A controls critical aspects of downstream viral gene expression and cell cycle deregulation, and its function is thought to be highly conserved among adenoviruses. Various bioinformatics analyses of E1A from 38 human adenoviruses of species D (HAdV-D), including likelihood clade model partitioning, provided highly significant evidence of divergence of HAdV-Ds into two distinct groups for the conserved region 3 (CR3), present only in the E1A 13S isoform. This variance within E1A 13S of HAdV-Ds was not found in any other human adenovirus (HAdV) species. By protein sequence and structural analysis, the zinc finger motif of E1A CR3, previously shown as critical for transcriptional activation, showed the greatest differences. Subsequent codon usage bias analysis revealed substantial divergence in E1A 13S between the two groups of HAdV-Ds, suggesting that these two sub-groups of HAdV-D evolved under different cellular conditions. Hence, HAdV-D E1A embodies a previously unappreciated evolutionary divergence among HAdVs.
Collapse
|
31
|
Rehman AU, Rahman MU, Arshad T, Chen HF. Allosteric Modulation of Intrinsically Disordered Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:335-357. [PMID: 31707710 DOI: 10.1007/978-981-13-8719-7_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The allosteric property of globular proteins is applauded as their intrinsic ability to regulate distant sites, and this property further plays a critical role in a wide variety of cellular regulatory mechanisms. Recent advancements and studies have revealed the manifestation of allostery in intrinsically disordered proteins or regions as allosteric sites present within or mediated by IDP/IDRs facilitates the signaling interactions for various biological mechanisms which would otherwise be impossible for globular proteins to regulate. This thematic review has highlighted the biological outcomes that can be achieved by the mechanism of allosteric regulation of intrinsically disordered proteins or regions. The similar mechanism has been implemented on Adenovirus 5 early region 1A and tumor apoptosis protein p53 in correspondence with other partners in binary and ternary complexes, which are the subject of the current review. Both these proteins regulate once they bind to their partners, consequently, forming either a binary or a ternary complex. Allosteric regulation by IDPs is currently a subject undergoing intense study, and the ongoing research work will ensure a better understanding of precision and efficiency of cellular regulation by them. Allosteric regulation mechanism can also be researched by intrinsically disordered protein-specific force field.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Taaha Arshad
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Center for Bioinformation Technology, Shanghai, China.
| |
Collapse
|
32
|
Li D, Tian G, Wang J, Zhao LY, Co O, Underill ZC, Mymryk JS, Claessens F, Dehm SM, Daaka Y, Liao D. Inhibition of androgen receptor transactivation function by adenovirus type 12 E1A undermines prostate cancer cell survival. Prostate 2018; 78:1140-1156. [PMID: 30009471 PMCID: PMC6424568 DOI: 10.1002/pros.23689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mutations or truncation of the ligand-binding domain (LBD) of androgen receptor (AR) underlie treatment resistance for prostate cancer (PCa). Thus, targeting the AR N-terminal domain (NTD) could overcome such resistance. METHODS Luciferase reporter assays after transient transfection of various DNA constructs were used to assess effects of E1A proteins on AR-mediated transcription. Immunofluorescence microscopy and subcellular fractionation were applied to assess intracellular protein localization. Immunoprecipitation and mammalian two-hybrid assays were used to detect protein-protein interactions. qRT-PCR was employed to determine RNA levels. Western blotting was used to detect protein expression in cells. Effects of adenoviruses on prostate cancer cell survival were evaluated with CellTiter-Glo assays. RESULTS Adenovirus 12 E1A (E1A12) binds specifically to the AR. Interestingly, the full-length E1A12 (266 aa) preferentially binds to full-length AR, while the small E1A12 variant (235 aa) interacts more strongly with AR-V7. E1A12 promotes AR nuclear translocation, likely through mediating intramolecular AR NTD-LBD interactions. In the nucleus, AR and E1A12 co-expression in AR-null PCa cells results in E1A12 redistribution from nuclear foci containing CBX4 (also known as Pc2), suggesting a preferential AR-E1A12 interaction over other E1A12 interactors. E1A12 represses AR-mediated transcription in reporter gene assays and endogenous AR target genes such as ATAD2 and MYC in AR-expressing PCa cells. AR-expressing PCa cells are more sensitive to death induced by a recombinant adenovirus expressing E1A12 (Ad-E1A12) than AR-deficient PCa cells, which could be attributed to the increased viral replication promoted by androgen stimulation. Targeting the AR by E1A12 promotes apoptosis in PCa cells that express the full-length AR or C-terminally truncated AR variants. Importantly, inhibition of mTOR signaling that blocks the expression of anti-apoptotic proteins markedly augments Ad-E1A12-induced apoptosis of AR-expressing cells. Mechanistically, Ad-E1A12 infection triggers apoptotic response while activating the PI3K-AKT-mTOR signaling axis; thus, mTOR inhibition enhances apoptosis in AR-expressing PCa cells infected by Ad-E1A12. CONCLUSION Ad12 E1A inhibits AR-mediated transcription and suppresses PCa cell survival, suggesting that targeting the AR by E1A12 might have therapeutic potential for treating advanced PCa with heightened AR signaling.
Collapse
Affiliation(s)
- Dawei Li
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, P. R. China
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Guimei Tian
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Jia Wang
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Affiliated Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Lisa Y. Zhao
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Present address: Department of Medicine, University of Florida, Gainesville, FL 32610
| | - Olivia Co
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Zoe C. Underill
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, the University of Western Ontario, London Regional Cancer Centre, Ontario, Canada
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO box 901, 3000 Leuven, Belgium
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center and UF Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
- Corresponding author: Department of Anatomy and Cell Biology, University of Florida, 1333 Center Drive, Gainesville, Florida, 32610-0235, , Phone: 352-273-8188, Fax: 352-846-1248
| |
Collapse
|
33
|
Glavina J, Román EA, Espada R, de Prat-Gay G, Chemes LB, Sánchez IE. Interplay between sequence, structure and linear motifs in the adenovirus E1A hub protein. Virology 2018; 525:117-131. [PMID: 30265888 DOI: 10.1016/j.virol.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 01/04/2023]
Abstract
E1A is the main transforming protein in mastadenoviruses. This work uses bioinformatics to extrapolate experimental knowledge from Human adenovirus serotype 5 and 12 E1A proteins to all known serotypes. A conserved domain architecture with a high degree of intrinsic disorder acts as a scaffold for multiple linear motifs with variable occurrence mediating the interaction with over fifty host proteins. While linear motifs contribute strongly to sequence conservation within intrinsically disordered E1A regions, motif repertoires can deviate significantly from those found in prototypical serotypes. Close to one hundred predicted residue-residue contacts suggest the presence of stable structure in the CR3 domain and of specific conformational ensembles involving both short- and long-range intramolecular interactions. Our computational results suggest that E1A sequence conservation and co-evolution reflect the evolutionary pressure to maintain a mainly disordered, yet non-random conformation harboring a high number of binding motifs that mediate viral hijacking of the cell machinery.
Collapse
Affiliation(s)
- Juliana Glavina
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas. Buenos Aires, Argentina
| | - Ernesto A Román
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| | - Rocío Espada
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas. Buenos Aires, Argentina
| | - Gonzalo de Prat-Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Lucía B Chemes
- Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biotecnológicas IIB-INTECH, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina; Departamento de Fisiología y Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Ignacio E Sánchez
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales. Laboratorio de Fisiología de Proteínas. Buenos Aires, Argentina.
| |
Collapse
|
34
|
Adenovirus E1A Activation Domain Regulates H3 Acetylation Affecting Varied Steps in Transcription at Different Viral Promoters. J Virol 2018; 92:JVI.00805-18. [PMID: 29976669 PMCID: PMC6146688 DOI: 10.1128/jvi.00805-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023] Open
Abstract
Despite a wealth of data associating promoter and enhancer region histone N-terminal tail lysine acetylation with transcriptional activity, there are relatively few examples of studies that establish causation between these histone posttranslational modifications and transcription. While hypoacetylation of histone H3 lysines 18 and 27 is associated with repression, the step(s) in the overall process of transcription that is blocked at a hypoacetylated promoter is not clearly established in most instances. Studies presented here confirm that the adenovirus 2 large E1A protein activation domain interacts with p300, as reported previously (P. Pelka, J. N. G. Ablack, J. Torchia, A. S. Turnell, R. J. A. Grand, J. S. Mymryk, Nucleic Acids Res 37:1095–1106, 2009, https://doi.org/10.1093/nar/gkn1057), and that the resulting acetylation of H3K18/27 affects varied steps in transcription at different viral promoters. How histone acetylation promotes transcription is not clearly understood. Here, we confirm an interaction between p300 and the adenovirus 2 large E1A activation domain (AD) and map the interacting regions in E1A by observing colocalization at an integrated lacO array of fusions of LacI-mCherry to E1A fragments with YFP-p300. Viruses with mutations in E1A subdomains were constructed and analyzed for kinetics of early viral RNA expression and association of acetylated H3K9, K18, K27, TBP, and RNA polymerase II (Pol II) across the viral genome. The results indicate that this E1A interaction with p300 is required for H3K18 and H3K27 acetylation at the E2early, E3, and E4 promoters and is required for TBP and Pol II association with the E2early promoter. In contrast, H3K18/27 acetylation was not required for TBP and Pol II association with the E3 and E4 promoters but was required for E4 transcription at a step subsequent to Pol II preinitiation complex assembly. IMPORTANCE Despite a wealth of data associating promoter and enhancer region histone N-terminal tail lysine acetylation with transcriptional activity, there are relatively few examples of studies that establish causation between these histone posttranslational modifications and transcription. While hypoacetylation of histone H3 lysines 18 and 27 is associated with repression, the step(s) in the overall process of transcription that is blocked at a hypoacetylated promoter is not clearly established in most instances. Studies presented here confirm that the adenovirus 2 large E1A protein activation domain interacts with p300, as reported previously (P. Pelka, J. N. G. Ablack, J. Torchia, A. S. Turnell, R. J. A. Grand, J. S. Mymryk, Nucleic Acids Res 37:1095–1106, 2009, https://doi.org/10.1093/nar/gkn1057), and that the resulting acetylation of H3K18/27 affects varied steps in transcription at different viral promoters.
Collapse
|
35
|
Bemanian V, Noone JC, Sauer T, Touma J, Vetvik K, Søderberg-Naucler C, Lindstrøm JC, Bukholm IR, Kristensen VN, Geisler J. Somatic EP300-G211S mutations are associated with overall somatic mutational patterns and breast cancer specific survival in triple-negative breast cancer. Breast Cancer Res Treat 2018; 172:339-351. [PMID: 30132219 DOI: 10.1007/s10549-018-4927-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE We have compared the mutational profiles of human breast cancer tumor samples belonging to all major subgroups with special emphasis on triple-negative breast cancer (TNBC). Our major goal was to identify specific mutations that could be potentially used for clinical decision making in TNBC patients. PATIENTS AND METHODS Primary tumor specimens from 149 Norwegian breast cancer patients were available. We analyzed the tissue samples for somatic mutations in 44 relevant breast cancer genes by targeted next-generation sequencing. As a second confirmatory technique, we performed pyrosequencing on selected samples. RESULTS We observed a distinct subgroup of TNBC patients, characterized by an almost completely lack of pathogenic somatic mutations. A point mutation in the adenoviral E1A binding protein p300 (EP300-G211S) was significantly correlated to this TNBC subgroup. The EP300-G211S mutation was exclusively found in the TNBC patients and its presence reduced the chance for other pathological somatic mutations in typical breast cancer genes investigated in our gene panel by 94.9% (P < 0.005). Interestingly, the EP300-G211S mutation also predicted a lower risk for relapses and decreased breast cancer-specific mortality during long-term follow-up of the patients. CONCLUSION Next-generation sequencing revealed specific mutations in EP300 to be associated with the mutational patterns in typical breast cancer genes and long-term outcome of triple-negative breast cancer patients.
Collapse
Affiliation(s)
- Vahid Bemanian
- Section of Gene Technology, Akershus University Hospital, 1478, Lørenskog, Norway
| | | | - Torill Sauer
- Department of Pathology, Akershus University Hospital, 1478, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Campus at Akershus University Hospital, 1478, Lørenskog, Norway
| | - Joel Touma
- Department of Breast and Endocrine Surgery, Akershus University Hospital, 1478, Lørenskog, Norway.,Department of Oncology, Akershus University Hospital, 1478, Lørenskog, Norway
| | - Katja Vetvik
- Institute of Clinical Medicine, University of Oslo, Campus at Akershus University Hospital, 1478, Lørenskog, Norway.,Department of Breast and Endocrine Surgery, Akershus University Hospital, 1478, Lørenskog, Norway
| | - Cecilia Søderberg-Naucler
- Department of Medicine at Solna, Experimental Cardiovascular Research Unit and Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institute, 17176, Stockholm, Sweden
| | - Jonas Christoffer Lindstrøm
- Institute of Clinical Medicine, University of Oslo, Campus at Akershus University Hospital, 1478, Lørenskog, Norway.,Health Services Research Unit, Akershus University Hospital, 1478, Lørenskog, Norway
| | - Ida Rashida Bukholm
- Department of Breast and Endocrine Surgery, Akershus University Hospital, 1478, Lørenskog, Norway.,Norwegian System of Compensation to Patients, Oslo, Norway.,The Norwegian University of Life Sciences, Ås, Norway
| | - Vessela N Kristensen
- Institute of Clinical Medicine, University of Oslo, Campus at Akershus University Hospital, 1478, Lørenskog, Norway.,Clinical Molecular Biology (EPIGEN), Akershus University Hospital, 1478, Lørenskog, Norway
| | - Jürgen Geisler
- Institute of Clinical Medicine, University of Oslo, Campus at Akershus University Hospital, 1478, Lørenskog, Norway. .,Department of Oncology, Akershus University Hospital, 1478, Lørenskog, Norway.
| |
Collapse
|
36
|
Tarakhovsky A, Prinjha RK. Drawing on disorder: How viruses use histone mimicry to their advantage. J Exp Med 2018; 215:1777-1787. [PMID: 29934321 PMCID: PMC6028506 DOI: 10.1084/jem.20180099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/24/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Humans carry trillions of viruses that thrive because of their ability to exploit the host. In this exploitation, viruses promote their own replication by suppressing the host antiviral response and by inducing changes in host biosynthetic processes, often with extremely small genomes of their own. In the review, we discuss the phenomenon of histone mimicry by viral proteins and how this mimicry allows the virus to dial in to the cell's transcriptional processes and establish a cell state that promotes infection. We suggest that histone mimicry is part of a broader viral strategy to use intrinsic protein disorder as a means to overcome the size limitations of its own genome and to maximize its impact on host protein networks. In particular, we discuss how intrinsic protein disorder may enable viral proteins to interfere with phase-separated host protein condensates, including those that contribute to chromatin-mediated control of gene expression.
Collapse
Affiliation(s)
- Alexander Tarakhovsky
- Laboratory of the Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY
| | - Rab K Prinjha
- Epigenetics DPU, Oncology and Immuno-inflammation TA Units, GlaxoSmithKline Medicines Research Centre, Stevenage, England, UK
| |
Collapse
|
37
|
Abstract
As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function.
Collapse
|
38
|
Berlow RB, Dyson HJ, Wright PE. Expanding the Paradigm: Intrinsically Disordered Proteins and Allosteric Regulation. J Mol Biol 2018; 430:2309-2320. [PMID: 29634920 DOI: 10.1016/j.jmb.2018.04.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 11/30/2022]
Abstract
Allosteric regulatory processes are implicated at all levels of biological function. Recent advances in our understanding of the diverse and functionally significant class of intrinsically disordered proteins have identified a multitude of ways in which disordered proteins function within the confines of the allosteric paradigm. Allostery within or mediated by intrinsically disordered proteins ensures robust and efficient signal integration through mechanisms that would be extremely unfavorable or even impossible for globular protein interaction partners. Here, we highlight recent examples that indicate the breadth of biological outcomes that can be achieved through allosteric regulation by intrinsically disordered proteins. Ongoing and future work in this rapidly evolving area of research will expand our appreciation of the central role of intrinsically disordered proteins in ensuring the fidelity and efficiency of cellular regulation.
Collapse
Affiliation(s)
- Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
A p53-independent apoptotic mechanism of adenoviral mutant E1A was involved in its selective antitumor activity for human cancer. Oncotarget 2018; 7:48309-48320. [PMID: 27340782 PMCID: PMC5217019 DOI: 10.18632/oncotarget.10221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
The conserved regions (CR) of adenoviral E1A had been shown to be necessary for disruption of pRb-E2F transcription factor complexes and induction of the S phase. Here we constructed a mutant adenoviral E1A with Rb-binding ability absent (E1A 30-60aa and 120-127aa deletion, mE1A) and investigated its antitumor capacities in vitro and in vivo. The mE1A suppressed the viability of tumor cells as efficiently as the wild type E1A, and there was no cytotoxic effect on normal cells. Although the mE1A arrested tumor cell cycle with the same manner as E1A, the former played a different role on cell cycle regulation compared with E1A in normal cells, which might contribute to its selective antitumor activity. E1A and mE1A had accumulated inactive p53, decreased the expression of mdm2, Cdkn1a (also named p21), increased p21's nuclear distribution and induced tumor cell apoptosis in a p53-indenpent manner. Further, E1A or mE1A significantly suppressed tumor growth in subcutaneous hepatocellular carcinoma xenograft models. Especially, tumor-bearing mice treated with mE1A had higher survival rate than those treated with E1A. Our data demonstrated that mutant adenoviral E1A significantly induced tumor cell apoptosis in a p53-indenpednt manner and had selective tumor suppressing ability. The observations of adenoviral E1A mutant had provided a novel mechanism for E1A's complex activities during infection.
Collapse
|
40
|
Functional Analysis of Human Hub Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions. Int J Mol Sci 2017; 18:ijms18122761. [PMID: 29257115 PMCID: PMC5751360 DOI: 10.3390/ijms18122761] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
Some of the intrinsically disordered proteins and protein regions are promiscuous interactors that are involved in one-to-many and many-to-one binding. Several studies have analyzed enrichment of intrinsic disorder among the promiscuous hub proteins. We extended these works by providing a detailed functional characterization of the disorder-enriched hub protein-protein interactions (PPIs), including both hubs and their interactors, and by analyzing their enrichment among disease-associated proteins. We focused on the human interactome, given its high degree of completeness and relevance to the analysis of the disease-linked proteins. We quantified and investigated numerous functional and structural characteristics of the disorder-enriched hub PPIs, including protein binding, structural stability, evolutionary conservation, several categories of functional sites, and presence of over twenty types of posttranslational modifications (PTMs). We showed that the disorder-enriched hub PPIs have a significantly enlarged number of disordered protein binding regions and long intrinsically disordered regions. They also include high numbers of targeting, catalytic, and many types of PTM sites. We empirically demonstrated that these hub PPIs are significantly enriched among 11 out of 18 considered classes of human diseases that are associated with at least 100 human proteins. Finally, we also illustrated how over a dozen specific human hubs utilize intrinsic disorder for their promiscuous PPIs.
Collapse
|
41
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|
42
|
Zemke NR, Berk AJ. The Adenovirus E1A C Terminus Suppresses a Delayed Antiviral Response and Modulates RAS Signaling. Cell Host Microbe 2017; 22:789-800.e5. [PMID: 29241042 PMCID: PMC5736016 DOI: 10.1016/j.chom.2017.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 08/01/2017] [Accepted: 11/17/2017] [Indexed: 01/22/2023]
Abstract
The N-terminal half of adenovirus e1a assembles multimeric complexes with host proteins that repress innate immune responses and force host cells into S-phase. In contrast, the functions of e1a's C-terminal interactions with FOXK, DCAF7, and CtBP are unknown. We found that these interactions modulate RAS signaling, and that a single e1a molecule must bind all three of these host proteins to suppress activation of a subset of IFN-stimulated genes (ISGs). These ISGs were otherwise induced in primary respiratory epithelial cells at 12 hr p.i. This delayed activation of ISGs required IRF3 and coincided with an ∼10-fold increase in IRF3 from protein stabilization. The induced IRF3 bound to chromatin and localized to the promoters of activated ISGs. While IRF3, STAT1/2, and IRF9 all greatly increased in concentration, there were no corresponding mRNA increases, suggesting that e1a regulates the stabilities of these key activators of innate immune responses, as shown directly for IRF3.
Collapse
Affiliation(s)
- Nathan R Zemke
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Arnold J Berk
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1570, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095-1570, USA.
| |
Collapse
|
43
|
Charlier C, Bouvignies G, Pelupessy P, Walrant A, Marquant R, Kozlov M, De Ioannes P, Bolik-Coulon N, Sagan S, Cortes P, Aggarwal AK, Carlier L, Ferrage F. Structure and Dynamics of an Intrinsically Disordered Protein Region That Partially Folds upon Binding by Chemical-Exchange NMR. J Am Chem Soc 2017; 139:12219-12227. [PMID: 28780862 DOI: 10.1021/jacs.7b05823] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many intrinsically disordered proteins (IDPs) and protein regions (IDRs) engage in transient, yet specific, interactions with a variety of protein partners. Often, if not always, interactions with a protein partner lead to partial folding of the IDR. Characterizing the conformational space of such complexes is challenging: in solution-state NMR, signals of the IDR in the interacting region become broad, weak, and often invisible, while X-ray crystallography only provides information on fully ordered regions. There is thus a need for a simple method to characterize both fully and partially ordered regions in the bound state of IDPs. Here, we introduce an approach based on monitoring chemical exchange by NMR to investigate the state of an IDR that folds upon binding through the observation of the free state of the protein. Structural constraints for the bound state are obtained from chemical shifts, and site-specific dynamics of the bound state are characterized by relaxation rates. The conformation of the interacting part of the IDR was determined and subsequently docked onto the structure of the folded partner. We apply the method to investigate the interaction between the disordered C-terminal region of Artemis and the DNA binding domain of Ligase IV. We show that we can accurately reproduce the structure of the core of the complex determined by X-ray crystallography and identify a broader interface. The method is widely applicable to the biophysical investigation of complexes of disordered proteins and folded proteins.
Collapse
Affiliation(s)
- Cyril Charlier
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Université Paris 06, CNRS, PSL Research University , 24 rue Lhomond, Paris 75005, France.,Sorbonne Universités, UPMC Université Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM) , Paris 75005, France
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Université Paris 06, CNRS, PSL Research University , 24 rue Lhomond, Paris 75005, France.,Sorbonne Universités, UPMC Université Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM) , Paris 75005, France
| | - Philippe Pelupessy
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Université Paris 06, CNRS, PSL Research University , 24 rue Lhomond, Paris 75005, France.,Sorbonne Universités, UPMC Université Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM) , Paris 75005, France
| | - Astrid Walrant
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Université Paris 06, CNRS, PSL Research University , 24 rue Lhomond, Paris 75005, France.,Sorbonne Universités, UPMC Université Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM) , Paris 75005, France
| | - Rodrigue Marquant
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Université Paris 06, CNRS, PSL Research University , 24 rue Lhomond, Paris 75005, France.,Sorbonne Universités, UPMC Université Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM) , Paris 75005, France
| | - Mikhail Kozlov
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Pablo De Ioannes
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Nicolas Bolik-Coulon
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Université Paris 06, CNRS, PSL Research University , 24 rue Lhomond, Paris 75005, France.,Sorbonne Universités, UPMC Université Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM) , Paris 75005, France
| | - Sandrine Sagan
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Université Paris 06, CNRS, PSL Research University , 24 rue Lhomond, Paris 75005, France.,Sorbonne Universités, UPMC Université Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM) , Paris 75005, France
| | - Patricia Cortes
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States.,Department of Molecular, Cellular and Biomedical Science, CUNY School of Medicine, City College of New York , 160 Convent Avenue, New York, New York 10031, United States
| | - Aneel K Aggarwal
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Ludovic Carlier
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Université Paris 06, CNRS, PSL Research University , 24 rue Lhomond, Paris 75005, France.,Sorbonne Universités, UPMC Université Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM) , Paris 75005, France
| | - Fabien Ferrage
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Université Paris 06, CNRS, PSL Research University , 24 rue Lhomond, Paris 75005, France.,Sorbonne Universités, UPMC Université Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM) , Paris 75005, France
| |
Collapse
|
44
|
Uversky VN. Intrinsic Disorder, Protein-Protein Interactions, and Disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:85-121. [PMID: 29413001 DOI: 10.1016/bs.apcsb.2017.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It is recognized now that biologically active proteins without stable tertiary structure (known as intrinsically disordered proteins, IDPs) and hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) are important players found in any given proteome. These IDPs/IDPRs possess functions that complement functional repertoire of their ordered counterparts, being commonly related to recognition, as well as control and regulation of various signaling pathways. They are interaction masters, being able to utilize a wide spectrum of interaction mechanisms, ranging from induced folding to formation of fuzzy complexes where significant levels of disorder are preserved, to polyvalent stochastic interactions playing crucial roles in the liquid-liquid phase transitions leading to the formation of proteinaceous membrane-less organelles. IDPs/IDPRs are tightly controlled themselves via various means, including alternative splicing, precisely controlled expression and degradation, binding to specific partners, and posttranslational modifications. Distortions in the regulation and control of IDPs/IDPRs, as well as their aberrant interactivity are commonly associated with various human diseases. This review presents some aspects of the intrinsic disorder-based functionality and dysfunctionality, paying special attention to the normal and pathological protein-protein interactions.
Collapse
Affiliation(s)
- Vladimir N Uversky
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
45
|
Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochem J 2017; 474:2509-2532. [DOI: 10.1042/bcj20160631] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022]
Abstract
Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains targeting specific cis-acting elements in genes, and by the significant lack of fixed tertiary structure in their extensive intrinsically disordered regions. Recent research in protein intrinsic disorder (ID) has changed our understanding of transcriptional activation domains from ‘negative noodles’ to ID regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions. It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms and structural analysis of ID in the context of full-length TFs and suggests future directions for research in TF ID.
Collapse
|
46
|
Characterizing the molecular architectures of chromatin-modifying complexes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1613-1622. [PMID: 28652207 DOI: 10.1016/j.bbapap.2017.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 11/23/2022]
Abstract
Eukaryotic cells package their genome in the form of a DNA-protein complex known as chromatin. This organization not only condenses the genome to fit within the confines of the nucleus, but also provides a platform for a cell to regulate accessibility to different gene sequences. The basic packaging element of chromatin is the nucleosome, which consists of 146 base pairs of DNA wrapped around histone proteins. One major means that a cell regulates chromatin structure is by depositing post-translational modifications on nucleosomal histone proteins, and thereby altering internucleosomal interactions and/or binding to different chromatin associated factors. These chromatin modifications are often catalyzed by multi-subunit enzyme complexes, whose large size, sophisticated composition, and inherent conformational flexibility pose significant technical challenges to their biochemical and structural characterization. Multiple structural approaches including nuclear magnetic resonance spectroscopy, X-ray crystallography, single-particle electron microscopy, and crosslinking coupled to mass spectrometry are often used synergistically to probe the overall architecture, subunit organization, and catalytic mechanisms of these macromolecular assemblies. In this review, we highlight several recent chromatin-modifying complexes studies that embodies this multipronged structural approach, and explore common themes amongst them. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
|
47
|
Rieder FJJ, Kastner MT, Hartl M, Puchinger MG, Schneider M, Majdic O, Britt WJ, Djinović-Carugo K, Steininger C. Human cytomegalovirus phosphoproteins are hypophosphorylated and intrinsically disordered. J Gen Virol 2017; 98:471-485. [PMID: 27959783 DOI: 10.1099/jgv.0.000675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein phosphorylation has important regulatory functions in cell homeostasis and is tightly regulated by kinases and phosphatases. The tegument of human cytomegalovirus (CMV) contains not only several proteins reported to be extensively phosphorylated but also cellular protein phosphatases (PP1 and PP2A). To investigate this apparent inconsistency, we evaluated the phosphorylation status of the tegument proteins pUL32 and pp65 by enzymatic dephosphorylation and MS. Enzymatic dephosphorylation with bacterial λ phosphatase, but not with PP1, shifted the pUL32-specific signal on reducing SDS-PAGE from ~150 to ~148 kDa, a mass still much larger than the ~118 kDa obtained from our diffusion studies and from the calculated protein mass of ~113 kDa. Remarkably, inhibition of phosphatases through treatment with the phosphatase inhibitors calyculin A and okadaic acid resulted in a shift to ~190 or ~180 kDa, respectively, indicating that a considerable number of potential phosphorylated residues on pUL32 are not phosphorylated under normal conditions. MS revealed a general state of hypophosphorylation of CMV phosphoproteins with only 17 phosphorylated residues detected on pUL32 and 19 on pp65, respectively. Moreover, bioinformatics analysis shows that the C-terminal two-thirds of pUL32 are intrinsically disordered and that most phosphorylations map to this region. In conclusion, we show that important CMV tegument proteins are indeed phosphorylated, though to a lesser extent than previously reported, and the difference in mobility on SDS-PAGE and calculated mass of pUL32 may not be attributed to phosphorylation but more likely due to the partially intrinsically disordered nature of pUL32.
Collapse
Affiliation(s)
- Franz J J Rieder
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Marie-Theres Kastner
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max F. Perutz Laboratories, Vienna Biocenter, Vienna, Austria
| | - Martin G Puchinger
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Martina Schneider
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Otto Majdic
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - William J Britt
- Department of Pediatrics, Children's Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristina Djinović-Carugo
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.,Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Christoph Steininger
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Dyson HJ. Making Sense of Intrinsically Disordered Proteins. Biophys J 2016; 110:1013-6. [PMID: 26958875 DOI: 10.1016/j.bpj.2016.01.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/29/2015] [Indexed: 11/27/2022] Open
Affiliation(s)
- H Jane Dyson
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
49
|
Frost JR, Olanubi O, Cheng SKH, Soriano A, Crisostomo L, Lopez A, Pelka P. The interaction of adenovirus E1A with the mammalian protein Ku70/XRCC6. Virology 2016; 500:11-21. [PMID: 27769014 DOI: 10.1016/j.virol.2016.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 11/30/2022]
Abstract
Human adenovirus infects terminally differentiated cells and to replicate it must induce S-phase. The chief architects that drive adenovirus-infected cells into S-phase are the E1A proteins, with 5 different isoforms expressed during infection. E1A remodels the infected cell by associating with cellular factors and modulating their activity. The C-terminus of E1A is known to bind to only a handful of proteins. We have identified a novel E1A C-terminus binding protein, Ku70 (XRCC6), which was found to bind directly within the CR4 of E1A from human adenovirus type 5. Depletion of Ku70 reduced virus growth, possibly by activating the DNA damage response pathway. Ku70 was found to localize to viral replication centers and associate with the viral genome. Ku70 was also recruited to cellular cell cycle regulated promoters following viral infection. Our study has identified, for the first time, Ku70 as a novel E1A-binding protein which affects virus life cycle.
Collapse
Affiliation(s)
- Jasmine Rae Frost
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB, Canada, R3T 2N2
| | - Oladunni Olanubi
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB, Canada, R3T 2N2
| | | | - Andrea Soriano
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB, Canada, R3T 2N2
| | - Leandro Crisostomo
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB, Canada, R3T 2N2
| | - Alennie Lopez
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB, Canada, R3T 2N2
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Buller Building Room 427, Winnipeg, MB, Canada, R3T 2N2.
| |
Collapse
|
50
|
Haberz P, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE. Mapping the interactions of adenoviral E1A proteins with the p160 nuclear receptor coactivator binding domain of CBP. Protein Sci 2016; 25:2256-2267. [PMID: 27699893 DOI: 10.1002/pro.3059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 01/03/2023]
Abstract
Many viruses deregulate the cell and force transcription of viral genes by competing with cellular proteins for binding to the transcriptional co-activators CREB-binding protein (CBP) and p300. Through its interactions with CBP/p300 and the retinoblastoma protein, the adenovirus (AdV) early region 1A (E1A) oncoprotein hijacks the cell cycle and, in rodents, transforms the cell; the mechanistic and structural basis for these effects remain unclear. In this study we compare the affinity of protein constructs from the E1A proteins from two adenovirus serotypes, non-oncogenic AdV5 and highly oncogenic AdV12, for binding to the nuclear receptor coactivator binding domain (NCBD) of CBP. NMR spectra show that the E1A constructs from both serotypes are intrinsically disordered in the free state and that each contains three homologous binding sites for the NCBD, one in the N-terminal region and two within conserved region 1 (CR1) of E1A. The binding sites in CR1 correspond to the motifs that bind the retinoblastoma protein and the TAZ2 domain of CBP/p300. The E1A and NCBD peptides fold synergistically upon complex formation. Binding affinities determined from NMR titrations show that, although the overall affinities for AdV5 and AdV12 E1A are comparable, there are significant differences between the two E1A serotypes in the relative strength with which their constituent interaction motifs bind to the NCBD. The individual E1A interaction motifs were unable to compete effectively with p53 for binding to the NCBD and both the N-terminal region and CR1 region of E1A are required for efficient competition with p53.
Collapse
Affiliation(s)
- Peter Haberz
- Department of Integrative Structural and Computational Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|