1
|
McDowell MA, Heimes M, Enkavi G, Farkas Á, Saar D, Wild K, Schwappach B, Vattulainen I, Sinning I. The GET insertase exhibits conformational plasticity and induces membrane thinning. Nat Commun 2023; 14:7355. [PMID: 37963916 PMCID: PMC10646013 DOI: 10.1038/s41467-023-42867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
The eukaryotic guided entry of tail-anchored proteins (GET) pathway mediates the biogenesis of tail-anchored (TA) membrane proteins at the endoplasmic reticulum. In the cytosol, the Get3 chaperone captures the TA protein substrate and delivers it to the Get1/Get2 membrane protein complex (GET insertase), which then inserts the substrate via a membrane-embedded hydrophilic groove. Here, we present structures, atomistic simulations and functional data of human and Chaetomium thermophilum Get1/Get2/Get3. The core fold of the GET insertase is conserved throughout eukaryotes, whilst thinning of the lipid bilayer occurs in the vicinity of the hydrophilic groove to presumably lower the energetic barrier of membrane insertion. We show that the gating interaction between Get2 helix α3' and Get3 drives conformational changes in both Get3 and the Get1/Get2 membrane heterotetramer. Thus, we provide a framework to understand the conformational plasticity of the GET insertase and how it remodels its membrane environment to promote substrate insertion.
Collapse
Affiliation(s)
- Melanie A McDowell
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438, Frankfurt am Main, Germany.
| | - Michael Heimes
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Giray Enkavi
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014, Helsinki, Finland
| | - Ákos Farkas
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Daniel Saar
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014, Helsinki, Finland
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Maggiolo AO, Mahajan S, Rees DC, Clemons WM. Intradimeric Walker A ATPases: Conserved Features of A Functionally Diverse Family. J Mol Biol 2023; 435:167965. [PMID: 37330285 DOI: 10.1016/j.jmb.2023.167965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 06/19/2023]
Abstract
Nucleoside-triphosphate hydrolases (NTPases) are a diverse, but essential group of enzymes found in all living organisms. NTPases that have a G-X-X-X-X-G-K-[S/T] consensus sequence (where X is any amino acid), known as the Walker A or P-loop motif, constitute a superfamily of P-loop NTPases. A subset of ATPases within this superfamily contains a modified Walker A motif, X-K-G-G-X-G-K-[S/T], wherein the first invariant lysine residue is essential to stimulate nucleotide hydrolysis. Although the proteins in this subset have vastly differing functions, ranging from electron transport during nitrogen fixation to targeting of integral membrane proteins to their correct membranes, they have evolved from a shared ancestor and have thus retained common structural features that affect their functions. These commonalities have only been disparately characterized in the context of their individual proteins systems, but have not been generally annotated as features that unite the members of this family. In this review, we report an analysis based on the sequences, structures, and functions of several members in this family that highlight their remarkable similarities. A principal feature of these proteins is their dependence on homodimerization. Since their functionalities are heavily influenced by changes that happen in conserved elements at the dimer interface, we refer to the members of this subclass as intradimeric Walker A ATPases.
Collapse
Affiliation(s)
- Ailiena O Maggiolo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Shivansh Mahajan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
3
|
Barlow AN, Manu MS, Saladi SM, Tarr PT, Yadav Y, Thinn AMM, Zhu Y, Laganowsky AD, Clemons WM, Ramasamy S. Structures of Get3d reveal a distinct architecture associated with the emergence of photosynthesis. J Biol Chem 2023; 299:104752. [PMID: 37100288 PMCID: PMC10248533 DOI: 10.1016/j.jbc.2023.104752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
Homologs of the protein Get3 have been identified in all domains yet remain to be fully characterized. In the eukaryotic cytoplasm, Get3 delivers tail-anchored (TA) integral membrane proteins, defined by a single transmembrane helix at their C terminus, to the endoplasmic reticulum. While most eukaryotes have a single Get3 gene, plants are notable for having multiple Get3 paralogs. Get3d is conserved across land plants and photosynthetic bacteria and includes a distinctive C-terminal α-crystallin domain. After tracing the evolutionary origin of Get3d, we solve the Arabidopsis thaliana Get3d crystal structure, identify its localization to the chloroplast, and provide evidence for a role in TA protein binding. The structure is identical to that of a cyanobacterial Get3 homolog, which is further refined here. Distinct features of Get3d include an incomplete active site, a "closed" conformation in the apo-state, and a hydrophobic chamber. Both homologs have ATPase activity and are capable of binding TA proteins, supporting a potential role in TA protein targeting. Get3d is first found with the development of photosynthesis and conserved across 1.2 billion years into the chloroplasts of higher plants across the evolution of photosynthesis suggesting a role in the homeostasis of photosynthetic machinery.
Collapse
Affiliation(s)
- Alexandra N Barlow
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - M S Manu
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Shyam M Saladi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Paul T Tarr
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Yashpal Yadav
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Aye M M Thinn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Yun Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| | - Sureshkumar Ramasamy
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.
| |
Collapse
|
4
|
Onishi M, Kubota M, Duan L, Tian Y, Okamoto K. The GET pathway serves to activate Atg32-mediated mitophagy by ER targeting of the Ppg1-Far complex. Life Sci Alliance 2023; 6:e202201640. [PMID: 36697253 PMCID: PMC9880027 DOI: 10.26508/lsa.202201640] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Mitophagy removes defective or superfluous mitochondria via selective autophagy. In yeast, the pro-mitophagic protein Atg32 localizes to the mitochondrial surface and interacts with the scaffold protein Atg11 to promote degradation of mitochondria. Although Atg32-Atg11 interactions are thought to be stabilized by Atg32 phosphorylation, how this posttranslational modification is regulated remains obscure. Here, we show that cells lacking the guided entry of the tail-anchored protein (GET) pathway exhibit reduced Atg32 phosphorylation and Atg32-Atg11 interactions, which can be rescued by additional loss of the ER-resident Ppg1-Far complex, a multi-subunit phosphatase negatively acting in mitophagy. In GET-deficient cells, Ppg1-Far is predominantly localized to mitochondria. An artificial ER anchoring of Ppg1-Far in GET-deficient cells significantly ameliorates defects in Atg32-Atg11 interactions and mitophagy. Moreover, disruption of GET and Msp1, an AAA-ATPase that extracts non-mitochondrial proteins localized to the mitochondrial surface, elicits synthetic defects in mitophagy. Collectively, we propose that the GET pathway mediates ER targeting of Ppg1-Far, thereby preventing dysregulated suppression of mitophagy activation.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Mitsutaka Kubota
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Lan Duan
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuan Tian
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Shan SO. Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond. Int J Mol Sci 2023; 24:1170. [PMID: 36674686 PMCID: PMC9866221 DOI: 10.3390/ijms24021170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The Hsp70 family of molecular chaperones acts as a central 'hub' in the cell that interacts with numerous newly synthesized proteins to assist in their biogenesis. Apart from its central and well-established role in facilitating protein folding, Hsp70s also act as key decision points in the cellular chaperone network that direct client proteins to distinct biogenesis and quality control pathways. In this paper, we review accumulating data that illustrate a new branch in the Hsp70 network: the post-translational targeting of nascent membrane and organellar proteins to diverse cellular organelles. Work in multiple pathways suggests that Hsp70, via its ability to interact with components of protein targeting and translocation machineries, can initiate elaborate substrate relays in a sophisticated cascade of chaperones, cochaperones, and receptor proteins, and thus provide a mechanism to safeguard and deliver nascent membrane proteins to the correct cellular membrane. We discuss the mechanistic principles gleaned from better-studied Hsp70-dependent targeting pathways and outline the observations and outstanding questions in less well-studied systems.
Collapse
Affiliation(s)
- Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Fry MY, Najdrová V, Maggiolo AO, Saladi SM, Doležal P, Clemons WM. Structurally derived universal mechanism for the catalytic cycle of the tail-anchored targeting factor Get3. Nat Struct Mol Biol 2022; 29:820-830. [DOI: 10.1038/s41594-022-00798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
|
7
|
Giska F, Mariappan M, Bhattacharyya M, Gupta K. Deciphering the molecular organization of GET pathway chaperones through native mass spectrometry. Biophys J 2022; 121:1289-1298. [PMID: 35189106 PMCID: PMC9034188 DOI: 10.1016/j.bpj.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Get3/4/5 chaperone complex is responsible for targeting C-terminal tail-anchored membrane proteins to the endoplasmic reticulum. Despite the availability of several crystal structures of independent proteins and partial structures of subcomplexes, different models of oligomeric states and structural organization have been proposed for the protein complexes involved. Here, using native mass spectrometry (Native-MS), coupled with intact dissociation, we show that Get4/5 exclusively forms a tetramer using both Get5/5 and a novel Get4/4 dimerization interface. Addition of Get3 to this leads to a hexameric (Get3)2-(Get4)2-(Get5)2 complex with closed-ring cyclic architecture. We further validate our claims through molecular modeling and mutational abrogation of the proposed interfaces. Native-MS has become a principal tool to determine the state of oligomeric organization of proteins. The work demonstrates that for multiprotein complexes, native-MS, coupled with molecular modeling and mutational perturbation, can provide an alternative route to render a detailed view of both the oligomeric states as well as the molecular interfaces involved. This is especially useful for large multiprotein complexes with large unstructured domains that make it recalcitrant to conventional structure determination approaches.
Collapse
Affiliation(s)
- Fabian Giska
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Malaiyalam Mariappan
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | | | - Kallol Gupta
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut.
| |
Collapse
|
8
|
Mehlhorn DG, Asseck LY, Grefen C. Looking for a safe haven: tail-anchored proteins and their membrane insertion pathways. PLANT PHYSIOLOGY 2021; 187:1916-1928. [PMID: 35235667 PMCID: PMC8644595 DOI: 10.1093/plphys/kiab298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/05/2021] [Indexed: 06/14/2023]
Abstract
Insertion of membrane proteins into the lipid bilayer is a crucial step during their biosynthesis. Eukaryotic cells face many challenges in directing these proteins to their predestined target membrane. The hydrophobic signal peptide or transmembrane domain (TMD) of the nascent protein must be shielded from the aqueous cytosol and its target membrane identified followed by transport and insertion. Components that evolved to deal with each of these challenging steps range from chaperones to receptors, insertases, and sophisticated translocation complexes. One prominent translocation pathway for most proteins is the signal recognition particle (SRP)-dependent pathway which mediates co-translational translocation of proteins across or into the endoplasmic reticulum (ER) membrane. This textbook example of protein insertion is stretched to its limits when faced with secretory or membrane proteins that lack an amino-terminal signal sequence or TMD. Particularly, a large group of so-called tail-anchored (TA) proteins that harbor a single carboxy-terminal TMD require an alternative, post-translational insertion route into the ER membrane. In this review, we summarize the current research in TA protein insertion with a special focus on plants, address challenges, and highlight future research avenues.
Collapse
Affiliation(s)
- Dietmar G Mehlhorn
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Lisa Y Asseck
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Christopher Grefen
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
9
|
Keszei AF, Yip MC, Hsieh TC, Shao S. Structural insights into metazoan pretargeting GET complexes. Nat Struct Mol Biol 2021; 28:1029-1037. [PMID: 34887561 PMCID: PMC9477564 DOI: 10.1038/s41594-021-00690-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Close coordination between chaperones is essential for protein biosynthesis, including the delivery of tail-anchored (TA) proteins containing a single C-terminal transmembrane domain to the endoplasmic reticulum (ER) by the conserved GET pathway. For successful targeting, nascent TA proteins must be promptly chaperoned and loaded onto the cytosolic ATPase Get3 through a transfer reaction involving the chaperone SGTA and bridging factors Get4, Ubl4a and Bag6. Here, we report cryo-electron microscopy structures of metazoan pretargeting GET complexes at 3.3-3.6 Å. The structures reveal that Get3 helix 8 and the Get4 C terminus form a composite lid over the Get3 substrate-binding chamber that is opened by SGTA. Another interaction with Get4 prevents formation of Get3 helix 4, which links the substrate chamber and ATPase domain. Both interactions facilitate TA protein transfer from SGTA to Get3. Our findings show how the pretargeting complex primes Get3 for coordinated client loading and ER targeting.
Collapse
Affiliation(s)
- Alexander F.A. Keszei
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, 240 Longwood Ave., Boston, MA 02115
| | - Matthew C.J. Yip
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, 240 Longwood Ave., Boston, MA 02115
| | - Ta-Chien Hsieh
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, 240 Longwood Ave., Boston, MA 02115,Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave., Boston, MA 02115
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA, USA.
| |
Collapse
|
10
|
Kumar T, Maitra S, Rahman A, Bhattacharjee S. A conserved guided entry of tail-anchored pathway is involved in the trafficking of a subset of membrane proteins in Plasmodium falciparum. PLoS Pathog 2021; 17:e1009595. [PMID: 34780541 PMCID: PMC8629386 DOI: 10.1371/journal.ppat.1009595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/29/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023] Open
Abstract
Tail-anchored (TA) proteins are defined by the absence of N-terminus signal sequence and the presence of a single transmembrane domain (TMD) proximal to their C-terminus. They play fundamental roles in cellular processes including vesicular trafficking, protein translocation and quality control. Some of the TA proteins are post-translationally integrated by the Guided Entry of TA (GET) pathway to the cellular membranes; with their N-terminus oriented towards the cytosol and C-terminus facing the organellar lumen. The TA repertoire and the GET machinery have been extensively characterized in the yeast and mammalian systems, however, they remain elusive in the human malaria parasite Plasmodium falciparum. In this study, we bioinformatically predicted a total of 63 TA proteins in the P. falciparum proteome and revealed the association of a subset with the P. falciparum homolog of Get3 (PfGet3). In addition, our proximity labelling studies either definitively identified or shortlisted the other eligible GET constituents, and our in vitro association studies validated associations between PfGet3 and the corresponding homologs of Get4 and Get2 in P. falciparum. Collectively, this study reveals the presence of proteins with hallmark TA signatures and the involvement of evolutionary conserved GET trafficking pathway for their targeted delivery within the parasite. Tail-anchored (TA) membrane proteins are known to play essential cellular functions in the eukaryotes. These proteins are trafficked to their respective destinations by post-translational translocation pathways that are evolutionarily conserved from yeast to human. However, they remain unidentified in the malaria parasite Plasmodium falciparum. We have used bioinformatic prediction algorithms in conjunction with functional validation studies to identify the candidate TA repertoire and some of the homologs of the trafficking machinery in P. falciparum. Initially, we predicted the presence of 63 putative TA proteins localized to distinct compartments within this parasite, including a few confirmed TA homologs in other eukaryotic systems. We then identified and characterized PfGet3 as a central component in the Guided-Entry of TA (GET) translocation machinery, and our bacterial co-expression and pulldown assays with two selected recombinant TA proteins, PfBOS1 and PfUSE1, showed co-association with PfGet3. We also identified PfGet2 and PfGet4 as the other two components of the GET machinery in P. falciparum using proximity biotinylation followed by mass spectrometry. Interestingly, we also found six TA proteins in the parasite enriched in this fraction. We further validated the direct interactions between a few TA candidates, PfGet4 and PfGet2 with PfGet3 using recombinant-based pulldown studies. In conclusion, this study classified a subset of membrane proteins with the TA nomenclature and implicated a previously unidentified GET pathway for their translocation in this apicomplexan parasite.
Collapse
Affiliation(s)
- Tarkeshwar Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Satarupa Maitra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Abdur Rahman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
11
|
Chio US, Liu Y, Chung S, Shim WJ, Chandrasekar S, Weiss S, Shan SO. Subunit cooperation in the Get1/2 receptor promotes tail-anchored membrane protein insertion. J Cell Biol 2021; 220:212681. [PMID: 34614151 PMCID: PMC8530227 DOI: 10.1083/jcb.202103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
The guided entry of tail-anchored protein (GET) pathway, in which the Get3 ATPase delivers an essential class of tail-anchored membrane proteins (TAs) to the Get1/2 receptor at the endoplasmic reticulum, provides a conserved mechanism for TA biogenesis in eukaryotic cells. The membrane-associated events of this pathway remain poorly understood. Here we show that complex assembly between the cytosolic domains (CDs) of Get1 and Get2 strongly enhances the affinity of the individual subunits for Get3•TA, thus enabling efficient capture of the targeting complex. In addition to the known role of Get1CD in remodeling Get3 conformation, two molecular recognition features (MoRFs) in Get2CD induce Get3 opening, and both subunits are required for optimal TA release from Get3. Mutation of the MoRFs attenuates TA insertion into the ER in vivo. Our results demonstrate extensive cooperation between the Get1/2 receptor subunits in the capture and remodeling of the targeting complex, and emphasize the role of MoRFs in receptor function during membrane protein biogenesis.
Collapse
Affiliation(s)
- Un Seng Chio
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Yumeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Woo Jun Shim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA.,Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
12
|
Farkas Á, Bohnsack KE. Capture and delivery of tail-anchored proteins to the endoplasmic reticulum. J Cell Biol 2021; 220:212470. [PMID: 34264263 PMCID: PMC8287540 DOI: 10.1083/jcb.202105004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Tail-anchored (TA) proteins fulfill diverse cellular functions within different organellar membranes. Their characteristic C-terminal transmembrane segment renders TA proteins inherently prone to aggregation and necessitates their posttranslational targeting. The guided entry of TA proteins (GET in yeast)/transmembrane recognition complex (TRC in humans) pathway represents a major route for TA proteins to the endoplasmic reticulum (ER). Here, we review important new insights into the capture of nascent TA proteins at the ribosome by the GET pathway pretargeting complex and the mechanism of their delivery into the ER membrane by the GET receptor insertase. Interestingly, several alternative routes by which TA proteins can be targeted to the ER have emerged, raising intriguing questions about how selectivity is achieved during TA protein capture. Furthermore, mistargeting of TA proteins is a fundamental cellular problem, and we discuss the recently discovered quality control machineries in the ER and outer mitochondrial membrane for displacing mislocalized TA proteins.
Collapse
Affiliation(s)
- Ákos Farkas
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Fry MY, Saladi SM, Clemons WM. The STI1-domain is a flexible alpha-helical fold with a hydrophobic groove. Protein Sci 2021; 30:882-898. [PMID: 33620121 PMCID: PMC7980504 DOI: 10.1002/pro.4049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/05/2023]
Abstract
STI1-domains are present in a variety of co-chaperone proteins and are required for the transfer of hydrophobic clients in various cellular processes. The domains were first identified in the yeast Sti1 protein where they were referred to as DP1 and DP2. Based on hidden Markov model searches, this domain had previously been found in other proteins including the mammalian co-chaperone SGTA, the DNA damage response protein Rad23, and the chloroplast import protein Tic40. Here, we refine the domain definition and carry out structure-based sequence alignment of STI1-domains showing conservation of five amphipathic helices. Upon examinations of these identified domains, we identify a preceding helix 0 and unifying sequence properties, determine new molecular models, and recognize that STI1-domains nearly always occur in pairs. The similarity at the sequence, structure, and molecular levels likely supports a unified functional role.
Collapse
Affiliation(s)
- Michelle Y. Fry
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Shyam M. Saladi
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - William M. Clemons
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
14
|
Structural and molecular mechanisms for membrane protein biogenesis by the Oxa1 superfamily. Nat Struct Mol Biol 2021; 28:234-239. [PMID: 33664512 DOI: 10.1038/s41594-021-00567-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Members of the Oxa1 superfamily perform membrane protein insertion in bacteria, the eukaryotic endoplasmic reticulum (ER), and endosymbiotic organelles. Here, we review recent structures of the three ER-resident insertases and discuss the extent to which structure and function are conserved with their bacterial counterpart YidC.
Collapse
|
15
|
Miller-Vedam LE, Bräuning B, Popova KD, Schirle Oakdale NT, Bonnar JL, Prabu JR, Boydston EA, Sevillano N, Shurtleff MJ, Stroud RM, Craik CS, Schulman BA, Frost A, Weissman JS. Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients. eLife 2020; 9:e62611. [PMID: 33236988 PMCID: PMC7785296 DOI: 10.7554/elife.62611] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Membrane protein biogenesis in the endoplasmic reticulum (ER) is complex and failure-prone. The ER membrane protein complex (EMC), comprising eight conserved subunits, has emerged as a central player in this process. Yet, we have limited understanding of how EMC enables insertion and integrity of diverse clients, from tail-anchored to polytopic transmembrane proteins. Here, yeast and human EMC cryo-EM structures reveal conserved intricate assemblies and human-specific features associated with pathologies. Structure-based functional studies distinguish between two separable EMC activities, as an insertase regulating tail-anchored protein levels and a broader role in polytopic membrane protein biogenesis. These depend on mechanistically coupled yet spatially distinct regions including two lipid-accessible membrane cavities which confer client-specific regulation, and a non-insertase EMC function mediated by the EMC lumenal domain. Our studies illuminate the structural and mechanistic basis of EMC's multifunctionality and point to its role in differentially regulating the biogenesis of distinct client protein classes.
Collapse
Affiliation(s)
- Lakshmi E Miller-Vedam
- Molecular, Cellular, and Computational Biophysics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Bastian Bräuning
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Katerina D Popova
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Nicole T Schirle Oakdale
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Jessica L Bonnar
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Jesuraj R Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Elizabeth A Boydston
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Natalia Sevillano
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Matthew J Shurtleff
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jonathan S Weissman
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
16
|
Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex. Mol Cell 2020; 80:72-86.e7. [DOI: 10.1016/j.molcel.2020.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/24/2020] [Accepted: 08/17/2020] [Indexed: 01/31/2023]
|
17
|
A Chaperone Lid Ensures Efficient and Privileged Client Transfer during Tail-Anchored Protein Targeting. Cell Rep 2020; 26:37-44.e7. [PMID: 30605684 DOI: 10.1016/j.celrep.2018.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/20/2018] [Accepted: 12/07/2018] [Indexed: 11/20/2022] Open
Abstract
Molecular chaperones play key roles in maintaining cellular proteostasis. In addition to preventing client aggregation, chaperones often relay substrates within a network while preventing off-pathway chaperones from accessing the substrate. Here we show that a conserved lid motif lining the substrate-binding groove of the Get3 ATPase enables these important functions during the targeted delivery of tail-anchored membrane proteins (TAs) to the endoplasmic reticulum. The lid prevents promiscuous TA handoff to off-pathway chaperones, and more importantly, it cooperates with the Get4/5 scaffolding complex to enable rapid and privileged TA transfer from the upstream co-chaperone Sgt2 to Get3. These findings provide a molecular mechanism by which chaperones maintain the pathway specificity of client proteins in the crowded cytosolic environment.
Collapse
|
18
|
Abstract
Due to their topology tail-anchored (TA) proteins must target to the membrane independently of the co-translational route defined by the signal sequence recognition particle (SRP), its receptor and the translocon Sec61. More than a decade of work has extensively characterized a highly conserved pathway, the yeast GET or mammalian TRC40 pathway, which is capable of countering the biogenetic challenge posed by the C-terminal TA anchor. In this review we briefly summarize current models of this targeting route and focus on emerging aspects such as the intricate interplay with the proteostatic network of cells and with other targeting pathways. Importantly, we consider the lessons provided by the in vivo analysis of the pathway in different model organisms and by the consideration of its full client spectrum in more recent studies. This analysis of the state of the field highlights directions in which the current models may be experimentally probed and conceptually extended.
Collapse
Affiliation(s)
- Nica Borgese
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy.
| | - Javier Coy-Vergara
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany
| | - Sara Francesca Colombo
- Institute of Neuroscience and BIOMETRA Department, Consiglio Nazionale delle Ricerche and Università degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Blanche Schwappach
- Department of Molecular Biology, University of Göttingen Medical Centre, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
19
|
Shan SO. Guiding tail-anchored membrane proteins to the endoplasmic reticulum in a chaperone cascade. J Biol Chem 2019; 294:16577-16586. [PMID: 31575659 PMCID: PMC6851334 DOI: 10.1074/jbc.rev119.006197] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Newly synthesized integral membrane proteins must traverse the aqueous cytosolic environment before arrival at their membrane destination and are prone to aggregation, misfolding, and mislocalization during this process. The biogenesis of integral membrane proteins therefore poses acute challenges to protein homeostasis within a cell and requires the action of effective molecular chaperones. Chaperones that mediate membrane protein targeting not only need to protect the nascent transmembrane domains from improper exposure in the cytosol, but also need to accurately select client proteins and actively guide their clients to the appropriate target membrane. The mechanisms by which cellular chaperones work together to coordinate this complex process are only beginning to be delineated. Here, we summarize recent advances in studies of the tail-anchored membrane protein targeting pathway, which revealed a network of chaperones, cochaperones, and targeting factors that together drive and regulate this essential process. This pathway is emerging as an excellent model system to decipher the mechanism by which molecular chaperones overcome the multiple challenges during post-translational membrane protein biogenesis and to gain insights into the functional organization of multicomponent chaperone networks.
Collapse
Affiliation(s)
- Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
20
|
Abstract
One-fourth of eukaryotic genes code for integral membrane proteins, nearly all of which are inserted and assembled at the endoplasmic reticulum (ER). The defining feature of membrane proteins is one or more transmembrane domains (TMDs). During membrane protein biogenesis, TMDs are selectively recognized, shielded, and chaperoned into the lipid bilayer, where they often assemble with other TMDs. If maturation fails, exposed TMDs serve as a cue for engagement of degradation pathways. Thus, TMD-recognition factors in the cytosol and ER are essential for membrane protein biogenesis and quality control. Here, we discuss the growing assortment of cytosolic and membrane-embedded TMD-recognition factors, the pathways within which they operate, and mechanistic principles of recognition.
Collapse
|
21
|
Lin TW, Chen CC, Wu SM, Chang YC, Li YC, Su YW, Hsiao CD, Chang HY. Structural analysis of chloroplast tail-anchored membrane protein recognition by ArsA1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:128-143. [PMID: 30891827 DOI: 10.1111/tpj.14316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
In mammals and yeast, tail-anchored (TA) membrane proteins destined for the post-translational pathway are safely delivered to the endoplasmic reticulum (ER) membrane by a well-known targeting factor, TRC40/Get3. In contrast, the underlying mechanism for translocation of TA proteins in plants remains obscure. How this unique eukaryotic membrane-trafficking system correctly distinguishes different subsets of TA proteins destined for various organelles, including mitochondria, chloroplasts and the ER, is a key question of long standing. Here, we present crystal structures of algal ArsA1 (the Get3 homolog) in a distinct nucleotide-free open state and bound to adenylyl-imidodiphosphate. This approximately 80-kDa protein possesses a monomeric architecture, with two ATPase domains in a single polypeptide chain. It is capable of binding chloroplast (TOC34 and TOC159) and mitochondrial (TOM7) TA proteins based on features of its transmembrane domain as well as the regions immediately before and after the transmembrane domain. Several helices located above the TA-binding groove comprise the interlocking hook-like motif implicated by mutational analyses in TA substrate recognition. Our data provide insights into the molecular basis of the highly specific selectivity of interactions of algal ArsA1 with the correct sets of TA substrates before membrane targeting in plant cells.
Collapse
Affiliation(s)
- Tai-Wen Lin
- Molecular and Cell Biology, International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Chi-Chih Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan
| | - Shu-Mei Wu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Yu-Ching Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Yi-Chuan Li
- Molecular and Cell Biology, International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Wang Su
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chwan-Deng Hsiao
- Molecular and Cell Biology, International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Hsin-Yang Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan
| |
Collapse
|
22
|
Coy-Vergara J, Rivera-Monroy J, Urlaub H, Lenz C, Schwappach B. A trap mutant reveals the physiological client spectrum of TRC40. J Cell Sci 2019; 132:jcs.230094. [PMID: 31182645 PMCID: PMC6633398 DOI: 10.1242/jcs.230094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
The transmembrane recognition complex (TRC) pathway targets tail-anchored (TA) proteins to the membrane of the endoplasmic reticulum (ER). While many TA proteins are known to be able to use this pathway, it is essential for the targeting of only a few. Here, we uncover a large number of TA proteins that engage with TRC40 when other targeting machineries are fully operational. We use a dominant-negative ATPase-impaired mutant of TRC40 in which aspartate 74 was replaced by a glutamate residue to trap TA proteins in the cytoplasm. Manipulation of the hydrophobic TA-binding groove in TRC40 (also known as ASNA1) reduces interaction with most, but not all, substrates suggesting that co-purification may also reflect interactions unrelated to precursor protein targeting. We confirm known TRC40 substrates and identify many additional TA proteins interacting with TRC40. By using the trap approach in combination with quantitative mass spectrometry, we show that Golgi-resident TA proteins such as the golgins golgin-84, CASP and giantin as well as the vesicle-associated membrane-protein-associated proteins VAPA and VAPB interact with TRC40. Thus, our results provide new avenues to assess the essential role of TRC40 in metazoan organisms. This article has an associated First Person interview with the first author of the paper. Summary: A strategy to decipher which tail-anchored proteins do (as opposed to can or must) use the TRC pathway in intact cells generates a comprehensive list of human TRC40 clients.
Collapse
Affiliation(s)
- Javier Coy-Vergara
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Jhon Rivera-Monroy
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.,Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.,Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen 37073, Germany .,Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
23
|
Mateja A, Keenan RJ. A structural perspective on tail-anchored protein biogenesis by the GET pathway. Curr Opin Struct Biol 2018; 51:195-202. [PMID: 30173121 DOI: 10.1016/j.sbi.2018.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Abstract
Many tail-anchored (TA) membrane proteins are targeted to and inserted into the endoplasmic reticulum (ER) by the `guided entry of tail-anchored proteins' (GET) pathway. This post-translational pathway uses transmembrane-domain selective cytosolic chaperones for targeting, and a dedicated membrane protein complex for insertion. The past decade has seen rapid progress towards defining the molecular basis of TA protein biogenesis by the GET pathway. Here we review the mechanisms underlying each step of the pathway, emphasizing recent structural work and highlighting key questions that await future studies.
Collapse
Affiliation(s)
- Agnieszka Mateja
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Kempf G, Stjepanovic G, Sloan J, Hendricks A, Lapouge K, Sinning I. The Escherichia coli SRP Receptor Forms a Homodimer at the Membrane. Structure 2018; 26:1440-1450.e5. [PMID: 30146170 DOI: 10.1016/j.str.2018.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/14/2018] [Accepted: 07/22/2018] [Indexed: 01/19/2023]
Abstract
The Escherichia coli signal recognition particle (SRP) receptor, FtsY, plays a fundamental role in co-translational targeting of membrane proteins via the SRP pathway. Efficient targeting relies on membrane interaction of FtsY and heterodimerization with the SRP protein Ffh, which is driven by detachment of α helix (αN1) in FtsY. Here we show that apart from the heterodimer, FtsY forms a nucleotide-dependent homodimer on the membrane, and upon αN1 removal also in solution. Homodimerization triggers reciprocal stimulation of GTP hydrolysis and occurs in vivo. Biochemical characterization together with integrative modeling suggests that the homodimer employs the same interface as the heterodimer. Structure determination of FtsY NG+1 with GMPPNP shows that a dimerization-induced conformational switch of the γ-phosphate is conserved in Escherichia coli, filling an important gap in SRP GTPase activation. Our findings add to the current understanding of SRP GTPases and may challenge previous studies that did not consider homodimerization of FtsY.
Collapse
Affiliation(s)
- Georg Kempf
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Goran Stjepanovic
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Jeremy Sloan
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Astrid Hendricks
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Centre, Heidelberg 69120, Germany.
| |
Collapse
|
25
|
Abstract
Proper localization of membrane proteins is essential for the function of biological membranes and for the establishment of organelle identity within a cell. Molecular machineries that mediate membrane protein biogenesis need to not only achieve a high degree of efficiency and accuracy, but also prevent off-pathway aggregation events that can be detrimental to cells. The posttranslational targeting of tail-anchored proteins (TAs) provides tractable model systems to probe these fundamental issues. Recent advances in understanding TA-targeting pathways reveal sophisticated molecular machineries that drive and regulate these processes. These findings also suggest how an interconnected network of targeting factors, cochaperones, and quality control machineries together ensures robust membrane protein biogenesis.
Collapse
Affiliation(s)
- Un Seng Chio
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| |
Collapse
|
26
|
Zalisko BE, Chan C, Denic V, Rock RS, Keenan RJ. Tail-Anchored Protein Insertion by a Single Get1/2 Heterodimer. Cell Rep 2018; 20:2287-2293. [PMID: 28877464 DOI: 10.1016/j.celrep.2017.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/27/2017] [Accepted: 08/07/2017] [Indexed: 01/19/2023] Open
Abstract
The Get1/2 transmembrane complex drives the insertion of tail-anchored (TA) proteins from the cytosolic chaperone Get3 into the endoplasmic reticulum membrane. Mechanistic insight into how Get1/2 coordinates this process is confounded by a lack of understanding of the basic architecture of the complex. Here, we define the oligomeric state of full-length Get1/2 in reconstituted lipid bilayers by combining single-molecule and bulk fluorescence measurements with quantitative in vitro insertion analysis. We show that a single Get1/2 heterodimer is sufficient for insertion and demonstrate that the conserved cytosolic regions of Get1 and Get2 bind asymmetrically to opposing subunits of the Get3 homodimer. Altogether, our results define a simplified model for how Get1/2 and Get3 coordinate TA protein insertion.
Collapse
Affiliation(s)
- Benjamin E Zalisko
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Charlene Chan
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, MA 02138, USA
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, MA 02138, USA.
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
27
|
A protean clamp guides membrane targeting of tail-anchored proteins. Proc Natl Acad Sci U S A 2017; 114:E8585-E8594. [PMID: 28973888 DOI: 10.1073/pnas.1708731114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proper localization of proteins to target membranes is a fundamental cellular process. How the nature and dynamics of the targeting complex help guide substrate proteins to the target membrane is not understood for most pathways. Here, we address this question for the conserved ATPase guided entry of tail-anchored protein 3 (Get3), which targets the essential class of tail-anchored proteins (TAs) to the endoplasmic reticulum (ER). Single-molecule fluorescence spectroscopy showed that, contrary to previous models of a static closed Get3•TA complex, Get3 samples open conformations on the submillisecond timescale upon TA binding, generating a fluctuating "protean clamp" that stably traps the substrate. Point mutations at the ATPase site bias Get3 toward closed conformations, uncouple TA binding from induced Get3•Get4/5 disassembly, and inhibit the ER targeting of the Get3•TA complex. These results demonstrate an essential role of substrate-induced Get3 dynamics in driving TA targeting to the membrane, and reveal a tightly coupled channel of communication between the TA-binding site, ATPase site, and effector interaction surfaces of Get3. Our results provide a precedent for large-scale dynamics in a substrate-bound chaperone, which provides an effective mechanism to retain substrate proteins with high affinity while also generating functional switches to drive vectorial cellular processes.
Collapse
|
28
|
Voth W, Jakob U. Stress-Activated Chaperones: A First Line of Defense. Trends Biochem Sci 2017; 42:899-913. [PMID: 28893460 DOI: 10.1016/j.tibs.2017.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
Proteins are constantly challenged by environmental stress conditions that threaten their structure and function. Especially problematic are oxidative, acid, and severe heat stress which induce very rapid and widespread protein unfolding and generate conditions that make canonical chaperones and/or transcriptional responses inadequate to protect the proteome. We review here recent advances in identifying and characterizing stress-activated chaperones which are inactive under non-stress conditions but become potent chaperones under specific protein-unfolding stress conditions. We discuss the post-translational mechanisms by which these chaperones sense stress, and consider the role that intrinsic disorder plays in their regulation and function. We examine their physiological roles under both non-stress and stress conditions, their integration into the cellular proteostasis network, and their potential as novel therapeutic targets.
Collapse
Affiliation(s)
- Wilhelm Voth
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular Biology, Universitätsmedizin Göttingen, 37073 Göttingen, Germany
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
29
|
Maestre-Reyna M, Wu SM, Chang YC, Chen CC, Maestre-Reyna A, Wang AHJ, Chang HY. In search of tail-anchored protein machinery in plants: reevaluating the role of arsenite transporters. Sci Rep 2017; 7:46022. [PMID: 28382961 PMCID: PMC5382584 DOI: 10.1038/srep46022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/07/2017] [Indexed: 11/09/2022] Open
Abstract
Although the mechanisms underlying selective targeting of tail-anchored (TA) membrane proteins are well established in mammalian and yeast cells, little is known about their role in mediating intracellular membrane trafficking in plant cells. However, a recent study suggested that, in green algae, arsenite transporters located in the cytosol (ArsA1 and ArsA2) control the insertion of TA proteins into the membrane-bound organelles. In the present work, we overproduced and purified these hydrophilic proteins to near homogeneity. The analysis of their catalytic properties clearly demonstrates that C. reinhardtii ArsA proteins exhibit oxyanion-independent ATPase activity, as neither arsenite nor antimonite showed strong effects. Co-expression of ArsA proteins with TA-transmembrane regions showed not only that the former interact with the latter, but that ArsA1 does not share the same ligand specificity as ArsA2. Together with a structural model and molecular dynamics simulations, we propose that C. reinhadtii ArsA proteins are not arsenite transporters, but a TA-protein targeting factor. Further, we propose that ArsA targeting specificity is achieved at the ligand level, with ArsA1 mainly carrying TA-proteins to the chloroplast, while ArsA2 to the endoplasmic reticulum.
Collapse
Affiliation(s)
| | - Shu-Mei Wu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Ching Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chi-Chih Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Alvaro Maestre-Reyna
- Escuela Tecnica Superior de Ingenierios Industriales, Universidad Politecnica de Valencia, Valencia, Spain
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yang Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung 80424, Taiwan
- The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
30
|
ATPase and GTPase Tangos Drive Intracellular Protein Transport. Trends Biochem Sci 2016; 41:1050-1060. [PMID: 27658684 DOI: 10.1016/j.tibs.2016.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 11/24/2022]
Abstract
The GTPase superfamily of proteins provides molecular switches to regulate numerous cellular processes. The 'GTPase switch' paradigm, in which external regulatory factors control the switch of a GTPase between 'on' and 'off' states, has been used to interpret the regulatory mechanism of many GTPases. However, recent work unveiled a class of nucleotide hydrolases that do not adhere to this classical paradigm. Instead, they use nucleotide-dependent dimerization cycles to regulate key cellular processes. In this review article, recent studies of dimeric GTPases and ATPases involved in intracellular protein targeting are summarized. It is suggested that these proteins can use the conformational plasticity at their dimer interface to generate multiple points of regulation, thereby providing the driving force and spatiotemporal coordination of complex cellular pathways.
Collapse
|
31
|
Shigemitsu S, Cao W, Terada T, Shimizu K. Development of a prediction system for tail-anchored proteins. BMC Bioinformatics 2016; 17:378. [PMID: 27634135 PMCID: PMC5025589 DOI: 10.1186/s12859-016-1202-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/24/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND "Tail-anchored (TA) proteins" is a collective term for transmembrane proteins with a C-terminal transmembrane domain (TMD) and without an N-terminal signal sequence. TA proteins account for approximately 3-5 % of all transmembrane proteins that mediate membrane fusion, regulation of apoptosis, and vesicular transport. The combined use of TMD and signal sequence prediction tools is typically required to predict TA proteins. RESULTS Here we developed a prediction system named TAPPM that predicted TA proteins solely from target amino acid sequences according to the knowledge of the sequence features of TMDs and the peripheral regions of TA proteins. Manually curated TA proteins were collected from published literature. We constructed hidden markov models of TA proteins as well as three different types of transmembrane proteins with similar structures and compared their likelihoods as TA proteins. CONCLUSIONS Using the HMM models, we achieved high prediction accuracy; area under the receiver operator curve values reaching 0.963. A command line tool written in Python is available at https://github.com/davecao/tappm_cli .
Collapse
Affiliation(s)
- Shunsuke Shigemitsu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wei Cao
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Tohru Terada
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Kentaro Shimizu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
32
|
Vogl C, Panou I, Yamanbaeva G, Wichmann C, Mangosing SJ, Vilardi F, Indzhykulian AA, Pangršič T, Santarelli R, Rodriguez-Ballesteros M, Weber T, Jung S, Cardenas E, Wu X, Wojcik SM, Kwan KY, Del Castillo I, Schwappach B, Strenzke N, Corey DP, Lin SY, Moser T. Tryptophan-rich basic protein (WRB) mediates insertion of the tail-anchored protein otoferlin and is required for hair cell exocytosis and hearing. EMBO J 2016; 35:2536-2552. [PMID: 27458190 DOI: 10.15252/embj.201593565] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/29/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022] Open
Abstract
The transmembrane recognition complex (TRC40) pathway mediates the insertion of tail-anchored (TA) proteins into membranes. Here, we demonstrate that otoferlin, a TA protein essential for hair cell exocytosis, is inserted into the endoplasmic reticulum (ER) via the TRC40 pathway. We mutated the TRC40 receptor tryptophan-rich basic protein (Wrb) in hair cells of zebrafish and mice and studied the impact of defective TA protein insertion. Wrb disruption reduced otoferlin levels in hair cells and impaired hearing, which could be restored in zebrafish by transgenic Wrb rescue and otoferlin overexpression. Wrb-deficient mouse inner hair cells (IHCs) displayed normal numbers of afferent synapses, Ca2+ channels, and membrane-proximal vesicles, but contained fewer ribbon-associated vesicles. Patch-clamp of IHCs revealed impaired synaptic vesicle replenishment. In vivo recordings from postsynaptic spiral ganglion neurons showed a use-dependent reduction in sound-evoked spiking, corroborating the notion of impaired IHC vesicle replenishment. A human mutation affecting the transmembrane domain of otoferlin impaired its ER targeting and caused an auditory synaptopathy. We conclude that the TRC40 pathway is critical for hearing and propose that otoferlin is an essential substrate of this pathway in hair cells.
Collapse
Affiliation(s)
- Christian Vogl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Iliana Panou
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Gulnara Yamanbaeva
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Systems Physiology Group and InnerEarLab, Department of Otolaryngology, University of Göttingen Medical Center, Göttingen, Germany
| | - Carolin Wichmann
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Sara J Mangosing
- Otolaryngology Division, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Fabio Vilardi
- Institute of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Artur A Indzhykulian
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tina Pangršič
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Synaptic Physiology of Mammalian Vestibular Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Rosamaria Santarelli
- Department of Neurosciences, University of Padova, Padova, Italy.,Audiology and Phoniatrics Service, Treviso Regional Hospital, Treviso, Italy
| | | | - Thomas Weber
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Sangyong Jung
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Elena Cardenas
- Otolaryngology Division, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Xudong Wu
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Kelvin Y Kwan
- W. M. Keck Center for Collaborative Neuroscience, Nelson Lab-D250, Rutgers University, Piscataway, NJ, USA
| | - Ignacio Del Castillo
- Servicio de Genetica, Hospital Universitario Ramon y Cajal, IRYCIS, Madrid, Spain.,Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Blanche Schwappach
- Institute of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Nicola Strenzke
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Systems Physiology Group and InnerEarLab, Department of Otolaryngology, University of Göttingen Medical Center, Göttingen, Germany
| | - David P Corey
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Shuh-Yow Lin
- Otolaryngology Division, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany .,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
33
|
Gristick HB, Rome ME, Chartron JW, Rao M, Hess S, Shan SO, Clemons WM. Mechanism of Assembly of a Substrate Transfer Complex during Tail-anchored Protein Targeting. J Biol Chem 2015; 290:30006-17. [PMID: 26451041 PMCID: PMC4705998 DOI: 10.1074/jbc.m115.677328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/02/2015] [Indexed: 11/06/2022] Open
Abstract
Tail-anchored (TA) proteins, defined as having a single transmembrane helix at their C terminus, are post-translationally targeted to the endoplasmic reticulum membrane by the guided entry of TA proteins (GET) pathway. In yeast, the handover of TA substrates is mediated by the heterotetrameric Get4/Get5 complex (Get4/5), which tethers the co-chaperone Sgt2 to the targeting factor, the Get3 ATPase. Binding of Get4/5 to Get3 is critical for efficient TA targeting; however, questions remain about the formation of the Get3·Get4/5 complex. Here we report crystal structures of a Get3·Get4/5 complex from Saccharomyces cerevisiae at 2.8 and 6.0 Å that reveal a novel interface between Get3 and Get4 dominated by electrostatic interactions. Kinetic and mutational analyses strongly suggest that these structures represent an on-pathway intermediate that rapidly assembles and then rearranges to the final Get3·Get4/5 complex. Furthermore, we provide evidence that the Get3·Get4/5 complex is dominated by a single Get4/5 heterotetramer bound to one monomer of a Get3 dimer, uncovering an intriguing asymmetry in the Get4/5 heterotetramer upon Get3 binding. Ultrafast diffusion-limited electrostatically driven Get3·Get4/5 association enables Get4/5 to rapidly sample and capture Get3 at different stages of the GET pathway.
Collapse
Affiliation(s)
| | - Michael E Rome
- From the Division of Chemistry and Chemical Engineering and
| | | | - Meera Rao
- From the Division of Chemistry and Chemical Engineering and
| | - Sonja Hess
- The Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Shu-ou Shan
- From the Division of Chemistry and Chemical Engineering and
| | | |
Collapse
|
34
|
Yamamoto Y, Sakisaka T. The emerging role of calcium-modulating cyclophilin ligand in posttranslational insertion of tail-anchored proteins into the endoplasmic reticulum membrane. J Biochem 2015; 157:419-29. [PMID: 25869254 DOI: 10.1093/jb/mvv035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/18/2015] [Indexed: 01/08/2023] Open
Abstract
Tail-anchored (TA) proteins, a class of membrane proteins having an N-terminal cytoplasmic region anchored to the membrane by a single C-terminal transmembrane domain, are posttranslationally inserted into the endoplasmic reticulum (ER) membrane. In yeasts, the posttranslational membrane insertion is mediated by the Guided Entry of TA Proteins (GET) complex. Get3, a cytosolic ATPase, targets newly synthesized TA proteins to the ER membrane, where Get2 and Get3 constitute the Get3 receptor driving the membrane insertion. While mammalian cells employ TRC40 and WRB, mammalian homologs of Get3 and Get1, respectively, they lack the gene homologous to Get2. We recently identified calcium-modulating cyclophilin ligand (CAML) as a TRC40 receptor, indicating that CAML was equivalent to Get2 in the context of the membrane insertion. On the other hand, CAML has been well characterized as a signaling molecule that regulates various biological processes, raising the question of how the two distinct actions of CAML, the membrane insertion and the signal transduction, are assembled. In this review, we summarize recent progress of the molecular mechanism of the membrane insertion of TA proteins and discuss the possibility that CAML could sense the various signals at the ER membrane, thereby controlling TA protein biogenesis.
Collapse
Affiliation(s)
- Yasunori Yamamoto
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
35
|
Mateja A, Paduch M, Chang HY, Szydlowska A, Kossiakoff AA, Hegde RS, Keenan RJ. Protein targeting. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 2015; 347:1152-5. [PMID: 25745174 PMCID: PMC4413028 DOI: 10.1126/science.1261671] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tail-anchored (TA) proteins are a physiologically important class of membrane proteins targeted to the endoplasmic reticulum by the conserved guided-entry of TA proteins (GET) pathway. During transit, their hydrophobic transmembrane domains (TMDs) are chaperoned by the cytosolic targeting factor Get3, but the molecular nature of the functional Get3-TA protein targeting complex remains unknown. We reconstituted the physiologic assembly pathway for a functional targeting complex and showed that it comprises a TA protein bound to a Get3 homodimer. Crystal structures of Get3 bound to different TA proteins showed an α-helical TMD occupying a hydrophobic groove that spans the Get3 homodimer. Our data elucidate the mechanism of TA protein recognition and shielding by Get3 and suggest general principles of hydrophobic domain chaperoning by cellular targeting factors.
Collapse
Affiliation(s)
- Agnieszka Mateja
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Marcin Paduch
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Hsin-Yang Chang
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Anna Szydlowska
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
36
|
Chen Y, Pieuchot L, Loh RA, Yang J, Kari TMA, Wong JY, Jedd G. Hydrophobic handoff for direct delivery of peroxisome tail-anchored proteins. Nat Commun 2014; 5:5790. [PMID: 25517356 DOI: 10.1038/ncomms6790] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/04/2014] [Indexed: 02/06/2023] Open
Abstract
Tail-anchored (TA) proteins are inserted into membranes post-translationally through a C-terminal transmembrane domain (TMD). The PEX19 protein binds peroxisome TA proteins in the cytoplasm and delivers them to the membrane through the PEX3 receptor protein. An amphipathic segment in PEX19 promotes docking on PEX3. However, how this leads to substrate insertion is unknown. Here we reconstitute peroxisome TA protein biogenesis into two sequential steps of substrate TMD engagement and membrane insertion. We identify a series of previously uncharacterized amphipathic segments in PEX19 and identify one whose hydrophobicity is required for membrane insertion, but not TMD chaperone activity or PEX3 binding. A membrane-proximal hydrophobic surface of PEX3 promotes an unconventional form of membrane intercalation, and is also required for TMD insertion. Together, these data support a mechanism in which hydrophobic moieties in the TMD chaperone and its membrane-associated receptor act in a concerted manner to prompt TMD release and membrane insertion.
Collapse
Affiliation(s)
- Yinxiao Chen
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Laurent Pieuchot
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Rachel Ann Loh
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Jing Yang
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Teuku Mahfuzh Aufar Kari
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Jie Yun Wong
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Gregory Jedd
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| |
Collapse
|
37
|
Differential gradients of interaction affinities drive efficient targeting and recycling in the GET pathway. Proc Natl Acad Sci U S A 2014; 111:E4929-35. [PMID: 25368153 DOI: 10.1073/pnas.1411284111] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Efficient and accurate localization of membrane proteins requires a complex cascade of interactions between protein machineries. This requirement is exemplified in the guided entry of tail-anchored (TA) protein (GET) pathway, where the central targeting factor Get3 must sequentially interact with three distinct binding partners to ensure the delivery of TA proteins to the endoplasmic reticulum (ER) membrane. To understand the molecular principles that provide the vectorial driving force of these interactions, we developed quantitative fluorescence assays to monitor Get3-effector interactions at each stage of targeting. We show that nucleotide and substrate generate differential gradients of interaction energies that drive the ordered interaction of Get3 with successive effectors. These data also provide more molecular details on how the targeting complex is captured and disassembled by the ER receptor and reveal a previously unidentified role for Get4/5 in recycling Get3 from the ER membrane at the end of the targeting reaction. These results provide general insights into how complex protein interaction cascades are coupled to energy inputs in biological systems.
Collapse
|
38
|
The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions. Mol Cell 2014; 56:116-27. [PMID: 25242142 DOI: 10.1016/j.molcel.2014.08.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/01/2014] [Accepted: 08/14/2014] [Indexed: 11/23/2022]
Abstract
Exposure of cells to reactive oxygen species (ROS) causes a rapid and significant drop in intracellular ATP levels. This energy depletion negatively affects ATP-dependent chaperone systems, making ROS-mediated protein unfolding and aggregation a potentially very challenging problem. Here we show that Get3, a protein involved in ATP-dependent targeting of tail-anchored (TA) proteins under nonstress conditions, turns into an effective ATP-independent chaperone when oxidized. Activation of Get3's chaperone function, which is a fully reversible process, involves disulfide bond formation, metal release, and its conversion into distinct, higher oligomeric structures. Mutational studies demonstrate that the chaperone activity of Get3 is functionally distinct from and likely mutually exclusive with its targeting function, and responsible for the oxidative stress-sensitive phenotype that has long been noted for yeast cells lacking functional Get3. These results provide convincing evidence that Get3 functions as a redox-regulated chaperone, effectively protecting eukaryotic cells against oxidative protein damage.
Collapse
|
39
|
Gristick HB, Rao M, Chartron JW, Rome ME, Shan SO, Clemons WM. Crystal structure of ATP-bound Get3-Get4-Get5 complex reveals regulation of Get3 by Get4. Nat Struct Mol Biol 2014; 21:437-42. [PMID: 24727835 PMCID: PMC4386898 DOI: 10.1038/nsmb.2813] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/24/2014] [Indexed: 11/16/2022]
Abstract
Correct localization of membrane proteins is essential to all cells. Chaperone cascades coordinate the capture and handover of substrate proteins from the ribosomes to the target membranes, yet the mechanistic and structural details of these processes remain unclear. Here we investigate the conserved GET pathway, in which the Get4-Get5 complex mediates the handover of tail-anchor (TA) substrates from the cochaperone Sgt2 to the Get3 ATPase, the central targeting factor. We present a crystal structure of a yeast Get3-Get4-Get5 complex in an ATP-bound state and show how Get4 primes Get3 by promoting the optimal configuration for substrate capture. Structure-guided biochemical analyses demonstrate that Get4-mediated regulation of ATP hydrolysis by Get3 is essential to efficient TA-protein targeting. Analogous regulation of other chaperones or targeting factors could provide a general mechanism for ensuring effective substrate capture during protein biogenesis.
Collapse
Affiliation(s)
- Harry B. Gristick
- Division of Chemistry and Chemical Engineering, California Institute of Technology, CA, USA
| | - Meera Rao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, CA, USA
| | - Justin W. Chartron
- Division of Chemistry and Chemical Engineering, California Institute of Technology, CA, USA
| | - Michael E. Rome
- Division of Chemistry and Chemical Engineering, California Institute of Technology, CA, USA
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, CA, USA
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, CA, USA
| |
Collapse
|
40
|
Denic V, Dötsch V, Sinning I. Endoplasmic reticulum targeting and insertion of tail-anchored membrane proteins by the GET pathway. Cold Spring Harb Perspect Biol 2013; 5:a013334. [PMID: 23906715 PMCID: PMC3721280 DOI: 10.1101/cshperspect.a013334] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hundreds of eukaryotic membrane proteins are anchored to membranes by a single transmembrane domain at their carboxyl terminus. Many of these tail-anchored (TA) proteins are posttranslationally targeted to the endoplasmic reticulum (ER) membrane for insertion by the guided-entry of TA protein insertion (GET) pathway. In recent years, most of the components of this conserved pathway have been biochemically and structurally characterized. Get3 is the pathway-targeting factor that uses nucleotide-linked conformational changes to mediate the delivery of TA proteins between the GET pretargeting machinery in the cytosol and the transmembrane pathway components in the ER. Here we focus on the mechanism of the yeast GET pathway and make a speculative analogy between its membrane insertion step and the ATPase-driven cycle of ABC transporters.
Collapse
Affiliation(s)
- Vladimir Denic
- Department of Molecular and Cellular Biology, Harvard University, Northwest Laboratories, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
41
|
SIMIBI twins in protein targeting and localization. Nat Struct Mol Biol 2013; 20:776-80. [DOI: 10.1038/nsmb.2605] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/07/2013] [Indexed: 12/31/2022]
|
42
|
Precise timing of ATPase activation drives targeting of tail-anchored proteins. Proc Natl Acad Sci U S A 2013; 110:7666-71. [PMID: 23610396 DOI: 10.1073/pnas.1222054110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The localization of tail-anchored (TA) proteins, whose transmembrane domain resides at the extreme C terminus, presents major challenges to cellular protein targeting machineries. In eukaryotic cells, the highly conserved ATPase, guided entry of tail-anchored protein 3 (Get3), coordinates the delivery of TA proteins to the endoplasmic reticulum. How Get3 uses its ATPase cycle to drive this fundamental process remains unclear. Here, we establish a quantitative framework for the Get3 ATPase cycle and show that ATP specifically induces multiple conformational changes in Get3 that culminate in its ATPase activation through tetramerization. Further, upstream and downstream components actively regulate the Get3 ATPase cycle to ensure the precise timing of ATP hydrolysis in the pathway: the Get4/5 TA loading complex locks Get3 in the ATP-bound state and primes it for TA protein capture, whereas the TA substrate induces tetramerization of Get3 and activates its ATPase reaction 100-fold. Our results establish a precise model for how Get3 harnesses the energy from ATP to drive the membrane localization of TA proteins and illustrate how dimerization-activated nucleotide hydrolases regulate diverse cellular processes.
Collapse
|
43
|
Ast T, Schuldiner M. All roads lead to Rome (but some may be harder to travel): SRP-independent translocation into the endoplasmic reticulum. Crit Rev Biochem Mol Biol 2013; 48:273-88. [PMID: 23530742 DOI: 10.3109/10409238.2013.782999] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Translocation into the endoplasmic reticulum (ER) is the first biogenesis step for hundreds of eukaryotic secretome proteins. Over the past 30 years, groundbreaking biochemical, structural and genetic studies have delineated one conserved pathway that enables ER translocation- the signal recognition particle (SRP) pathway. However, it is clear that this is not the only pathway which can mediate ER targeting and insertion. In fact, over the past decade, several SRP-independent pathways have been uncovered, which recognize proteins that cannot engage the SRP and ensure their subsequent translocation into the ER. These SRP-independent pathways face the same challenges that the SRP pathway overcomes: chaperoning the preinserted protein while in the cytosol, targeting it rapidly to the ER surface and generating vectorial movement that inserts the protein into the ER. This review strives to summarize the various mechanisms and machineries which mediate these stages of SRP-independent translocation, as well as examine why SRP-independent translocation is utilized by the cell. This emerging understanding of the various pathways utilized by secretory proteins to insert into the ER draws light to the complexity of the translocational task, and underlines that insertion into the ER might be more varied and tailored than previously appreciated.
Collapse
Affiliation(s)
- Tslil Ast
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
44
|
Lee JG, Ye Y. Bag6/Bat3/Scythe: a novel chaperone activity with diverse regulatory functions in protein biogenesis and degradation. Bioessays 2013; 35:377-85. [PMID: 23417671 DOI: 10.1002/bies.201200159] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Upon emerging from the ribosome exiting tunnel, polypeptide folding occurs immediately with the assistance of both ribosome-associated and free chaperones. While many chaperones known to date are dedicated folding catalysts, recent studies have revealed a novel chaperoning system that functions at the interface of protein biogenesis and quality control by using a special "holdase" activity in order to sort and channel client proteins to distinct destinations. The key component, Bag6/Bat3/Scythe, can effectively shield long hydrophobic segments exposed on the surface of a polypeptide, preventing aggregation or inappropriate interactions before a triaging decision is made. The biological consequences of Bag6-mediated chaperoning are divergent for different substrates, ranging from membrane integration to proteasome targeting and destruction. Accordingly, Bag6 can act in various cellular contexts in order to execute many essential cellular functions, while dysfunctions in the Bag6 system can cause severe cellular abnormalities that may be associated with some pathological conditions.
Collapse
Affiliation(s)
- Jin-Gu Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
45
|
Post-translational translocation into the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:2403-9. [PMID: 23266354 DOI: 10.1016/j.bbamcr.2012.12.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 01/26/2023]
Abstract
Proteins destined for the endomembrane system of eukaryotic cells are typically translocated into or across the membrane of the endoplasmic reticulum and this process is normally closely coupled to protein synthesis. However, it is becoming increasingly apparent that a significant proportion of proteins are targeted to and inserted into the ER membrane post-translationally, that is after their synthesis is complete. These proteins must be efficiently captured and delivered to the target membrane, and indeed a failure to do so may even disrupt proteostasis resulting in cellular dysfunction and disease. In this review, we discuss the mechanisms by which various protein precursors can be targeted to the ER and either inserted into or translocated across the membrane post-translationally. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
46
|
Yamamoto Y, Sakisaka T. Molecular Machinery for Insertion of Tail-Anchored Membrane Proteins into the Endoplasmic Reticulum Membrane in Mammalian Cells. Mol Cell 2012; 48:387-97. [DOI: 10.1016/j.molcel.2012.08.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/02/2012] [Accepted: 08/27/2012] [Indexed: 11/27/2022]
|
47
|
Kubota K, Yamagata A, Sato Y, Goto-Ito S, Fukai S. Get1 stabilizes an open dimer conformation of get3 ATPase by binding two distinct interfaces. J Mol Biol 2012; 422:366-75. [PMID: 22684149 DOI: 10.1016/j.jmb.2012.05.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/25/2012] [Accepted: 05/27/2012] [Indexed: 01/14/2023]
Abstract
Tail-anchored (TA) proteins are integral membrane proteins that possess a single transmembrane domain near their carboxy terminus. TA proteins play critical roles in many important cellular processes such as membrane trafficking, protein translocation, and apoptosis. The GET complex mediates posttranslational insertion of newly synthesized TA proteins to the endoplasmic reticulum membrane. The GET complex is composed of the homodimeric Get3 ATPase and its heterooligomeric receptor, Get1/2. During insertion, the Get3 dimer shuttles between open and closed conformational states, coupled with ATP hydrolysis and the binding/release of TA proteins. We report crystal structures of ADP-bound Get3 in complex with the cytoplasmic domain of Get1 (Get1CD) in open and semi-open conformations at 3.0- and 4.5-Å resolutions, respectively. Our structures and biochemical data suggest that Get1 uses two interfaces to stabilize the open dimer conformation of Get3. We propose that one interface is sufficient for binding of Get1 by Get3, while the second interface stabilizes the open dimer conformation of Get3.
Collapse
Affiliation(s)
- Keiko Kubota
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, the University of Tokyo, Tokyo 113‐0032, Japan
| | | | | | | | | |
Collapse
|
48
|
Nucleotide-dependent mechanism of Get3 as elucidated from free energy calculations. Proc Natl Acad Sci U S A 2012; 109:7759-64. [PMID: 22547793 DOI: 10.1073/pnas.1117441109] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unique topology of tail-anchored (TA) proteins precludes them from utilizing the well-studied cotranslational translocation mechanism of most transmembrane proteins, forcing them into a distinct, posttranslational pathway. In yeast, this process is the guided entry of TA-proteins (GET) pathway, which utilizes a combination of cytosolic and transmembrane proteins to identify a TA protein, transfer it, and insert it into the endoplasmic reticulum membrane. At the center of this mechanism is the Get3 homodimer, which transfers a TA protein between the two GET phases by leveraging energy gained in ATP binding and hydrolysis to undergo significant structural changes from "open" to "closed" conformations. We present all-atom molecular dynamics simulations of Get3 in multiple nucleotide states, and through rigorous potential of mean force calculations, compute the free energy landscape of the Get3 opening/closing pathway. Results agree well with experiments on the nucleotide bias of Get3 open and closed structures in the crystallographically observed no-nucleotide, two ATP, and two ADP states, and also reveal their populations in the asymmetric one ATP and one ADP cases. Structures also compare well with the recently observed "semiopen" conformation and suggest that Get3 may sample this state free in solution and not just when bound to Get1, as observed in experiments. Finally, we present evidence for a unique, "wide-open" conformation of Get3. These calculations describe the nucleotide-dependent thermodynamics of Get3 in solution, and improve our understanding of its mechanism in each phase of the GET cycle.
Collapse
|
49
|
Chartron JW, Clemons WM, Suloway CJM. The complex process of GETting tail-anchored membrane proteins to the ER. Curr Opin Struct Biol 2012; 22:217-24. [PMID: 22444563 DOI: 10.1016/j.sbi.2012.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
Abstract
Biosynthesis of membrane proteins requires that hydrophobic transmembrane (TM) regions be shielded from the cytoplasm while being directed to the correct membrane. Tail-anchored (TA) membrane proteins, characterized by a single C-terminal TM, pose an additional level of complexity because they must be post-translationally targeted. In eukaryotes, the GET pathway shuttles TA-proteins to the endoplasmic reticulum. The key proteins required in yeast (Sgt2 and Get1-5) have been under extensive structural and biochemical investigation during recent years. The central protein Get3 utilizes nucleotide linked conformational changes to facilitate substrate loading and targeting. Here we analyze this complex process from a structural perspective, as understood in yeast, and further postulate on similar pathways in other domains of life.
Collapse
Affiliation(s)
- Justin W Chartron
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | | | | |
Collapse
|
50
|
Chang YW, Lin TW, Li YC, Huang YS, Sun YJ, Hsiao CD. Interaction surface and topology of Get3-Get4-Get5 protein complex, involved in targeting tail-anchored proteins to endoplasmic reticulum. J Biol Chem 2012; 287:4783-9. [PMID: 22190685 PMCID: PMC3281643 DOI: 10.1074/jbc.m111.318329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/18/2011] [Indexed: 02/03/2023] Open
Abstract
Recent work has uncovered the "GET system," which is responsible for endoplasmic reticulum targeting of tail-anchored proteins. Although structural information and the individual roles of most components of this system have been defined, the interactions and interplay between them remain to be elucidated. Here, we investigated the interactions between Get3 and the Get4-Get5 complex from Saccharomyces cerevisiae. We show that Get3 interacts with Get4-Get5 via an interface dominated by electrostatic forces. Using isothermal titration calorimetry and small-angle x-ray scattering, we further demonstrate that the Get3 homodimer interacts with two copies of the Get4-Get5 complex to form an extended conformation in solution.
Collapse
Affiliation(s)
- Yi-Wei Chang
- From the Institute of Molecular Biology, Academia Sinica, Taipei 115 and
| | - Tai-Wen Lin
- From the Institute of Molecular Biology, Academia Sinica, Taipei 115 and
| | - Yi-Chuan Li
- From the Institute of Molecular Biology, Academia Sinica, Taipei 115 and
- the Institute of Bioinformatics and Structural Biology, National Tsing Hua University and
| | - Yu-Shan Huang
- the National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Yuh-Ju Sun
- the Institute of Bioinformatics and Structural Biology, National Tsing Hua University and
| | - Chwan-Deng Hsiao
- From the Institute of Molecular Biology, Academia Sinica, Taipei 115 and
| |
Collapse
|