1
|
Brown HE, Varderesian HV, Keane SA, Ryder SP. The mex-3 3' untranslated region is essential for reproduction during temperature stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587367. [PMID: 38798418 PMCID: PMC11123400 DOI: 10.1101/2024.04.01.587367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Organisms must sense temperature and modify their physiology to ensure survival during environmental stress. Elevated temperature leads to reduced fertility in most sexually reproducing organisms. Maternally supplied mRNAs are required for embryogenesis. They encode proteins that govern early events in embryonic patterning. RNA-binding proteins (RBPs) are major effectors of maternal mRNA regulation. MEX-3 is a conserved RBP essential for anterior patterning of Caenorhabditis elegans embryos. We previously demonstrated that the mex-3 3' untranslated region (3'UTR) represses MEX-3 abundance in the germline yet is dispensable for fertility. Here, we show that the 3'UTR becomes essential during thermal stress. Deletion of the 3'UTR causes a highly penetrant temperature sensitive embryonic lethality phenotype distinct from a mex-3 null. Loss of the 3'UTR decreases MEX-3 abundance specifically in maturing oocytes and early embryos experiencing temperature stress, suggesting a mechanism that regulates MEX-3 abundance at the oocyte-to-embryo transition is sensitive to temperature. We propose that a primary role of the mex-3 3'UTR is to buffer MEX-3 expression to ensure viability during fluctuating temperature. We hypothesize that a major role of maternally supplied mRNAs is to ensure robust expression of key cell fate determinants in uncertain conditions.
Collapse
|
2
|
Yang K, Chen G, Yu F, Fang X, Zhang J, Zhang Z, Shi Y, Zhang L. Molecular mechanism of specific HLA-A mRNA recognition by the RNA-binding-protein hMEX3B to promote tumor immune escape. Commun Biol 2024; 7:158. [PMID: 38326406 PMCID: PMC10850505 DOI: 10.1038/s42003-024-05845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Immunotherapy, including immune checkpoint inhibitors and adoptive cell transfer, has obtained great progress, but their efficiencies vary among patients due to the genetic and epigenetic differences. Human MEX3B (hMEX3B) protein is an RNA-binding protein that contains two KH domains at the N-terminus and a RING domain at its C-terminus, which has the activity of E3 ubiquitin ligase and is essential for RNA degradation. Current evidence suggests that hMEX3B is involved in many important biological processes, including tumor immune evasion and HLA-A regulation, but the sequence of substrate RNA recognized by hMEX3B and the functional molecular mechanisms are unclear. Here, we first screened the optimized hMEX3B binding sequence on the HLA-A mRNA and reported that the two tandem KH domains can bind with their substrate one hundred times more than the individual KH domains. We systematically investigated the binding characteristics between the two KH domains and their RNA substrates by nuclear magnetic resonance (NMR). Based on this information and the small-angle X-ray scattering (SAXS) data, we used molecular dynamics simulations to obtain structural models of KH domains in complex with their corresponding RNAs. By analyzing the models, we noticed that on the KH domains' variable loops, there were two pairs of threonines and arginines that can disrupt the recognition of the RNA completely, and this influence had also been verified both in vitro and in vivo. Finally, we presented a functional model of the hMEX3B protein, which indicated that hMEX3B regulated the degradation of its substrate mRNAs in many biological processes. Taken together, our research illustrated how the hMEX3B protein played a key role in translation inhibition during the immune response to tumor cells and provided an idea and a lead for the study of the molecular mechanism and function of other MEX3 family proteins.
Collapse
Affiliation(s)
- Kanglong Yang
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China
| | - Guanglin Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Fan Yu
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Jiahai Zhang
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China
| | - Zhiyong Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Yunyu Shi
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China.
| | - Liang Zhang
- Hefei National Research Center for Cross disciplinary Science, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, Anhui, PR China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science & Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
3
|
Chen W, Hu L, Lu X, Wang X, Zhao C, Guo C, Li X, Ding Y, Zhao H, Tong D, Wang L, Huang C. The RNA binding protein MEX3A promotes tumor progression of breast cancer by post-transcriptional regulation of IGFBP4. Breast Cancer Res Treat 2023; 201:353-366. [PMID: 37433992 PMCID: PMC10460732 DOI: 10.1007/s10549-023-07028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Breast cancer (BC) is the most frequent malignant tumor in women worldwide with exceptionally high morbidity. The RNA-binding protein MEX3A plays a crucial role in genesis and progression of multiple cancers. We attempted to explore its clinicopathological and functional significance in BC in which MEX3A is expressed. METHODS The expression of MEX3A detected by RT-qPCR and correlated the results with clinicopathological variables in 53 BC patients. MEX3A and IGFBP4 profile data of BC patients were downloaded from TCGA and GEO database. Kaplan-Meier (KM) analysis was used to estimate the survival rate of BC patients. Western Blot, CCK-8, EdU, colony formation and flow cytometry were performed to investigate the role of MEX3A and IGFBP4 in BC cell proliferation, invasion and cell cycle in vitro. A subcutaneous tumor mouse model was constructed to analyze in vivo growth of BC cells after MEX3A knockdown. The interactions among MEX3A and IGFBP4 were measured by RNA pull-down and RNA immunoprecipitation. RESULTS The expression of MEX3A was upregulated in BC tissues compared to adjacent tissues and high expression of MEX3A was associated with poor prognosis. Subsequent in vitro studies demonstrated that MEX3A knockdown inhibited BC cells proliferation and migration, as well as xenograft tumor growth in vivo. The expression of IGFBP4 was significantly negatively correlated with MEX3A in BC tissues. Mechanistic investigation showed that MEX3A binds to IGFBP4 mRNA in BC cells, decreasing IGFBP4 mRNA levels, which further activated the PI3K/AKT and other downstream signaling pathways implicated cell cycle progression and cell migration. CONCLUSION Our results indicate that MEX3A plays a prominent oncogenic role in BC tumorigenesis and progression by targeting IGFBP4 mRNA and activating PI3K/AKT signaling, which can be used as a novel therapeutic target for BC.
Collapse
Affiliation(s)
- Wenhu Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shanxi, China
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Liqiang Hu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310012, China
| | - Xuemei Lu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaofei Wang
- Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Changan Zhao
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Chen Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shanxi, China
| | - Xiaoyan Li
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yuqin Ding
- Department of Breast Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310005, China
| | - Hongguang Zhao
- Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310005, China
| | - Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lifang Wang
- College of Innovation & Entrepreneurship, Hangzhou Medical College, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
4
|
Domingo-Muelas A, Duart-Abadia P, Morante-Redolat JM, Jordán-Pla A, Belenguer G, Fabra-Beser J, Paniagua-Herranz L, Pérez-Villalba A, Álvarez-Varela A, Barriga FM, Gil-Sanz C, Ortega F, Batlle E, Fariñas I. Post-transcriptional control of a stemness signature by RNA-binding protein MEX3A regulates murine adult neurogenesis. Nat Commun 2023; 14:373. [PMID: 36690670 PMCID: PMC9871011 DOI: 10.1038/s41467-023-36054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Neural stem cells (NSCs) in the adult murine subependymal zone balance their self-renewal capacity and glial identity with the potential to generate neurons during the lifetime. Adult NSCs exhibit lineage priming via pro-neurogenic fate determinants. However, the protein levels of the neural fate determinants are not sufficient to drive direct differentiation of adult NSCs, which raises the question of how cells along the neurogenic lineage avoid different conflicting fate choices, such as self-renewal and differentiation. Here, we identify RNA-binding protein MEX3A as a post-transcriptional regulator of a set of stemness associated transcripts at critical transitions in the subependymal neurogenic lineage. MEX3A regulates a quiescence-related RNA signature in activated NSCs that is needed for their return to quiescence, playing a role in the long-term maintenance of the NSC pool. Furthermore, it is required for the repression of the same program at the onset of neuronal differentiation. Our data indicate that MEX3A is a pivotal regulator of adult murine neurogenesis acting as a translational remodeller.
Collapse
Grants
- EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- Ministerio de Ciencia e Innovación (MICINN, Spain) - PID2020-119917RB-I00.
- Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- Ministerio de Ciencia e Innovación (MICINN, Spain) - PID2020-117937GB-I00, PID2020-119917RB-I00, PID 2019-109155RB-I00, PID2020-114227RB-I00, RyC-2015-19058, PRE2018-084838. Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED, Spain) - MICINN- CB06/05/0086.
Collapse
Affiliation(s)
- Ana Domingo-Muelas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Pere Duart-Abadia
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Jose Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Antonio Jordán-Pla
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Germán Belenguer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Jaime Fabra-Beser
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Lucía Paniagua-Herranz
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Ana Pérez-Villalba
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Adrián Álvarez-Varela
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Francisco M Barriga
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Cristina Gil-Sanz
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain.
| |
Collapse
|
5
|
Albarqi MMY, Ryder SP. The role of RNA-binding proteins in orchestrating germline development in Caenorhabditis elegans. Front Cell Dev Biol 2023; 10:1094295. [PMID: 36684428 PMCID: PMC9846511 DOI: 10.3389/fcell.2022.1094295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
RNA passed from parents to progeny controls several aspects of early development. The germline of the free-living nematode Caenorhabditis elegans contains many families of evolutionarily conserved RNA-binding proteins (RBPs) that target the untranslated regions of mRNA transcripts to regulate their translation and stability. In this review, we summarize what is known about the binding specificity of C. elegans germline RNA-binding proteins and the mechanisms of mRNA regulation that contribute to their function. We examine the emerging role of miRNAs in translational regulation of germline and embryo development. We also provide an overview of current technology that can be used to address the gaps in our understanding of RBP regulation of mRNAs. Finally, we present a hypothetical model wherein multiple 3'UTR-mediated regulatory processes contribute to pattern formation in the germline to ensure the proper and timely localization of germline proteins and thus a functional reproductive system.
Collapse
|
6
|
Gan T, Wang Y, Xie M, Wang Q, Zhao S, Wang P, Shi Q, Qian X, Miao F, Shen Z, Nie E. MEX3A Impairs DNA Mismatch Repair Signaling and Mediates Acquired Temozolomide Resistance in Glioblastoma. Cancer Res 2022; 82:4234-4246. [PMID: 36112059 DOI: 10.1158/0008-5472.can-22-2036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
MutS protein homolog 2 (MSH2) is a key element involved in the DNA mismatch repair (MMR) system, which is responsible for recognizing and repairing mispaired bases. Simultaneously, MSH2 identifies DNA adducts induced by temozolomide (TMZ) and triggers apoptosis and autophagy in tumor cells. Previous work has revealed that reduced MSH2 expression is often observed in patients with glioblastoma (GBM) who relapse after chemotherapy. Elucidation of the mechanism behind TMZ-mediated reduction of MSH2 could help improve GBM treatment. Here, we report significant upregulation of Mex-3 RNA binding family member A (MEX3A) in GBM tissues and cell lines following TMZ treatment. MEX3A bound to the MEX3 recognition element (MRE) of MSH2 mRNA, which in turn recruited CCR4-NOT complexes to target MSH2 mRNA for deadenylation and degradation. In addition, ectopic expression of MEX3A significantly decreased cellular DNA MMR activities and reduced the chemosensitivity of GBM cells via downregulation of MSH2, while depletion of MEX3A sensitized GBM cells to TMZ. In MGMT-deficient patients with GBM, MEX3A expression correlated with MSH2 levels, and high MEX3A expression was associated with poor prognosis. Overall, these findings reveal a potential mechanism by which MSH2 expression is reduced in post-TMZ recurrent GBM. SIGNIFICANCE A MEX3A/CCR4-NOT/MSH2 axis plays a crucial role in promoting temozolomide resistance, providing new insights into the function of MEX3A and suggesting MEX3A as a potential therapeutic target in therapy-resistant glioblastoma.
Collapse
Affiliation(s)
- Tian Gan
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Yan Wang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Manyi Xie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Qiang Wang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Saisai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Peng Wang
- Department of Neurosurgery, Rizhao Central Hospital, Rizhao, Shandong Province, P.R. China
| | - Qinyu Shi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Xuanchen Qian
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Faan Miao
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Zhigang Shen
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Er Nie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| |
Collapse
|
7
|
Elaswad MT, Watkins BM, Sharp KG, Munderloh C, Schisa JA. Large RNP granules in Caenorhabditis elegans oocytes have distinct phases of RNA-binding proteins. G3 GENES|GENOMES|GENETICS 2022; 12:6639704. [PMID: 35816006 PMCID: PMC9434171 DOI: 10.1093/g3journal/jkac173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022]
Abstract
The germ line provides an excellent in vivo system to study the regulation and function of RNP granules. Germ granules are conserved germ line-specific RNP granules that are positioned in the Caenorhabditis elegans adult gonad to function in RNA maintenance, regulation, and surveillance. In Caenorhabditis elegans, when oogenesis undergoes extended meiotic arrest, germ granule proteins and other RNA-binding proteins assemble into much larger RNP granules whose hypothesized function is to regulate RNA metabolism and maintain oocyte quality. To gain insight into the function of oocyte RNP granules, in this report, we characterize distinct phases for four protein components of RNP granules in arrested oocytes. We find that the RNA-binding protein PGL-1 is dynamic and has liquid-like properties, while the intrinsically disordered protein MEG-3 has gel-like properties, similar to the properties of the two proteins in small germ granules of embryos. We find that MEX-3 exhibits several gel-like properties but is more dynamic than MEG-3, while CGH-1 is dynamic but does not consistently exhibit liquid-like characteristics and may be an intermediate phase within RNP granules. These distinct phases of RNA-binding proteins correspond to, and may underlie, differential responses to stress. Interestingly, in oocyte RNP granules, MEG-3 is not required for the condensation of PGL-1 or other RNA-binding proteins, which differs from the role of MEG-3 in small, embryonic germ granules. Lastly, we show that the PUF-5 translational repressor appears to promote MEX-3 and MEG-3 condensation into large RNP granules; however, this role may be associated with regulation of oogenesis.
Collapse
Affiliation(s)
- Mohamed T Elaswad
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| | - Brooklynne M Watkins
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| | - Katherine G Sharp
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| | - Chloe Munderloh
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| | - Jennifer A Schisa
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| |
Collapse
|
8
|
RNA-binding protein MEX3A controls G1/S transition via regulating the RB/E2F pathway in clear cell renal cell carcinoma. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:241-255. [PMID: 34976441 PMCID: PMC8703191 DOI: 10.1016/j.omtn.2021.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022]
Abstract
MEX3A is an RNA-binding protein that mediates mRNA decay through binding to 3′ untranslated regions. However, its role and mechanism in clear cell renal cell carcinoma remain unknown. In this study, we found that MEX3A expression was transcriptionally activated by ETS1 and upregulated in clear cell renal cell carcinoma. Silencing MEX3A markedly reduced clear cell renal cell carcinoma cell proliferation in vitro and in vivo. Inhibiting MEX3A induced G1/S cell-cycle arrest. Gene set enrichment analysis revealed that E2F targets are the central downstream pathways of MEX3A. To identify MEX3A targets, systematic screening using enhanced cross-linking and immunoprecipitation sequencing, and RNA-immunoprecipitation sequencing assays were performed. A network of 4,000 genes was identified as potential targets of MEX3A. Gene ontology analysis of upregulated genes bound by MEX3A indicated that negative regulation of the cell proliferation pathway was highly enriched. Further assays indicated that MEX3A bound to the CDKN2B 3′ untranslated region, promoting its mRNA degradation. This leads to decreased levels of CDKN2B and an uncontrolled cell cycle in clear cell renal cell carcinoma, which was confirmed by rescue experiments. Our findings revealed that MEX3A acts as a post-transcriptional regulator of abnormal cell-cycle progression in clear cell renal cell carcinoma.
Collapse
|
9
|
Salamon I, Rasin MR. Evolution of the Neocortex Through RNA-Binding Proteins and Post-transcriptional Regulation. Front Neurosci 2022; 15:803107. [PMID: 35082597 PMCID: PMC8784817 DOI: 10.3389/fnins.2021.803107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
The human neocortex is undoubtedly considered a supreme accomplishment in mammalian evolution. It features a prenatally established six-layered structure which remains plastic to the myriad of changes throughout an organism’s lifetime. A fundamental feature of neocortical evolution and development is the abundance and diversity of the progenitor cell population and their neuronal and glial progeny. These evolutionary upgrades are partially enabled due to the progenitors’ higher proliferative capacity, compartmentalization of proliferative regions, and specification of neuronal temporal identities. The driving force of these processes may be explained by temporal molecular patterning, by which progenitors have intrinsic capacity to change their competence as neocortical neurogenesis proceeds. Thus, neurogenesis can be conceptualized along two timescales of progenitors’ capacity to (1) self-renew or differentiate into basal progenitors (BPs) or neurons or (2) specify their fate into distinct neuronal and glial subtypes which participate in the formation of six-layers. Neocortical development then proceeds through sequential phases of proliferation, differentiation, neuronal migration, and maturation. Temporal molecular patterning, therefore, relies on the precise regulation of spatiotemporal gene expression. An extensive transcriptional regulatory network is accompanied by post-transcriptional regulation that is frequently mediated by the regulatory interplay between RNA-binding proteins (RBPs). RBPs exhibit important roles in every step of mRNA life cycle in any system, from splicing, polyadenylation, editing, transport, stability, localization, to translation (protein synthesis). Here, we underscore the importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors. A particular emphasis will be placed on RBPs with mostly conserved but also divergent evolutionary functions in neural progenitors across different species. RBPs, when considered in the context of the fascinating process of neocortical development, deserve to be main protagonists in the story of the evolution and development of the neocortex.
Collapse
|
10
|
Vera-Otarola J, Castillo-Vargas E, Angulo J, Barriga FM, Batlle E, Lopez-Lastra M. The viral nucleocapsid protein and the human RNA-binding protein Mex3A promote translation of the Andes orthohantavirus small mRNA. PLoS Pathog 2021; 17:e1009931. [PMID: 34547046 PMCID: PMC8454973 DOI: 10.1371/journal.ppat.1009931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
The capped Small segment mRNA (SmRNA) of the Andes orthohantavirus (ANDV) lacks a poly(A) tail. In this study, we characterize the mechanism driving ANDV-SmRNA translation. Results show that the ANDV-nucleocapsid protein (ANDV-N) promotes in vitro translation from capped mRNAs without replacing eukaryotic initiation factor (eIF) 4G. Using an RNA affinity chromatography approach followed by mass spectrometry, we identify the human RNA chaperone Mex3A (hMex3A) as a SmRNA-3’UTR binding protein. Results show that hMex3A enhances SmRNA translation in a 3’UTR dependent manner, either alone or when co-expressed with the ANDV-N. The ANDV-N and hMex3A proteins do not interact in cells, but both proteins interact with eIF4G. The hMex3A–eIF4G interaction showed to be independent of ANDV-infection or ANDV-N expression. Together, our observations suggest that translation of the ANDV SmRNA is enhanced by a 5’-3’ end interaction, mediated by both viral and cellular proteins. Andes orthohantavirus (ANDV) is endemic in Argentina and Chile and is the primary etiological agent of hantavirus cardiopulmonary syndrome (HCPS) in South America. ANDV is unique among other members of the Hantaviridae family of viruses because of its ability to spread from person to person. The molecular mechanisms driving ANDV protein synthesis remain poorly understood. A previous report showed that translation of the Small segment mRNA (SmRNA) of ANDV relied on both the 5’cap and the 3’untranslated region (UTR) of the SmRNA. In this new study, we further characterize the mechanism by which the 5’ and 3’end of the SmRNA interact to assure viral protein synthesis. We establish that the viral nucleocapsid protein N and the cellular protein hMex3A participate in the process. These observations indicated that both viral and cellular proteins regulate viral gene expression during ANDV infection by enabling the viral mRNA to establish a non-covalent 5’-3’end interaction.
Collapse
Affiliation(s)
- Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Unidad de Virología Aplicada, Dirección de Investigación y Doctorados de la Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Estefania Castillo-Vargas
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Odontología, Universidad Finis Terrae, Santiago, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco M. Barriga
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology. Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology. Barcelona, Spain
- ICREA, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Marcelo Lopez-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
11
|
Albarqi MMY, Ryder SP. The endogenous mex-3 3´UTR is required for germline repression and contributes to optimal fecundity in C. elegans. PLoS Genet 2021; 17:e1009775. [PMID: 34424904 PMCID: PMC8412283 DOI: 10.1371/journal.pgen.1009775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/02/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
RNA regulation is essential to successful reproduction. Messenger RNAs delivered from parent to progeny govern early embryonic development. RNA-binding proteins (RBPs) are the key effectors of this process, regulating the translation and stability of parental transcripts to control cell fate specification events prior to zygotic gene activation. The KH-domain RBP MEX-3 is conserved from nematode to human. It was first discovered in Caenorhabditis elegans, where it is essential for anterior cell fate and embryo viability. Here, we show that loss of the endogenous mex-3 3´UTR disrupts its germline expression pattern. An allelic series of 3´UTR deletion variants identify repressing regions of the UTR and demonstrate that repression is not precisely coupled to reproductive success. We also show that several RBPs regulate mex-3 mRNA through its 3´UTR to define its unique germline spatiotemporal expression pattern. Additionally, we find that both poly(A) tail length control and the translation initiation factor IFE-3 contribute to its expression pattern. Together, our results establish the importance of the mex-3 3´UTR to reproductive health and its expression in the germline. Our results suggest that additional mechanisms control MEX-3 function when 3´UTR regulation is compromised. In sexually reproducing organisms, germ cells undergo meiosis and differentiate to form oocytes or sperm. Coordination of this process requires a gene regulatory program that acts while the genome is undergoing chromatin condensation. As such, RNA regulatory pathways are an important contributor. The germline of the nematode Caenorhabditis elegans is a suitable model system to study germ cell differentiation. Several RNA-binding proteins (RBPs) coordinate each transition in the germline such as the transition from mitosis to meiosis. MEX-3 is a conserved RNA-binding protein found in most animals including humans. In C. elegans, MEX-3 displays a highly restricted pattern of expression. Here, we define the importance of the 3´UTR in regulating MEX-3 expression pattern in vivo and characterize the RNA-binding proteins involved in this regulation. Our results show that deleting various mex-3 3´UTR regions alter the pattern of expression in the germline in various ways. These mutations also reduced—but did not eliminate—reproductive capacity. Finally, we demonstrate that multiple post-transcriptional mechanisms control MEX-3 levels in different domains of the germline. Our data suggest that coordination of MEX-3 activity requires multiple layers of regulation to ensure reproductive robustness.
Collapse
Affiliation(s)
- Mennatallah M. Y. Albarqi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Lederer M, Müller S, Glaß M, Bley N, Ihling C, Sinz A, Hüttelmaier S. Oncogenic Potential of the Dual-Function Protein MEX3A. BIOLOGY 2021; 10:415. [PMID: 34067172 PMCID: PMC8151450 DOI: 10.3390/biology10050415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
MEX3A belongs to the MEX3 (Muscle EXcess) protein family consisting of four members (MEX3A-D) in humans. Characteristic for MEX3 proteins is their domain structure with 2 HNRNPK homology (KH) domains mediating RNA binding and a C-terminal really interesting new gene (RING) domain that harbors E3 ligase function. In agreement with their domain composition, MEX3 proteins were reported to modulate both RNA fate and protein ubiquitination. MEX3 paralogs exhibit an oncofetal expression pattern, they are severely downregulated postnatally, and re-expression is observed in various malignancies. Enforced expression of MEX3 proteins in various cancers correlates with poor prognosis, emphasizing their oncogenic potential. The latter is supported by MEX3A's impact on proliferation, self-renewal as well as migration of tumor cells in vitro and tumor growth in xenograft studies.
Collapse
Affiliation(s)
- Marcell Lederer
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Simon Müller
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Markus Glaß
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Nadine Bley
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| | - Christian Ihling
- Center for Structural Mass Spectrometry, Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany; (C.I.); (A.S.)
| | - Andrea Sinz
- Center for Structural Mass Spectrometry, Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany; (C.I.); (A.S.)
| | - Stefan Hüttelmaier
- Charles Tanford Protein Center, Faculty of Medicine, Institute of Molecular Medicine, Section for Molecular Cell Biology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany; (S.M.).; (M.G.).; (N.B.); (S.H.)
| |
Collapse
|
13
|
Rothman J, Jarriault S. Developmental Plasticity and Cellular Reprogramming in Caenorhabditis elegans. Genetics 2019; 213:723-757. [PMID: 31685551 PMCID: PMC6827377 DOI: 10.1534/genetics.119.302333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
While Caenorhabditis elegans was originally regarded as a model for investigating determinate developmental programs, landmark studies have subsequently shown that the largely invariant pattern of development in the animal does not reflect irreversibility in rigidly fixed cell fates. Rather, cells at all stages of development, in both the soma and germline, have been shown to be capable of changing their fates through mutation or forced expression of fate-determining factors, as well as during the normal course of development. In this chapter, we review the basis for natural and induced cellular plasticity in C. elegans We describe the events that progressively restrict cellular differentiation during embryogenesis, starting with the multipotency-to-commitment transition (MCT) and subsequently through postembryonic development of the animal, and consider the range of molecular processes, including transcriptional and translational control systems, that contribute to cellular plasticity. These findings in the worm are discussed in the context of both classical and recent studies of cellular plasticity in vertebrate systems.
Collapse
Affiliation(s)
- Joel Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93111, and
| | - Sophie Jarriault
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Department of Development and Stem Cells, CNRS UMR7104, Inserm U1258, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| |
Collapse
|
14
|
Wang S, Ochoa SD, Khaliullin RN, Gerson-Gurwitz A, Hendel JM, Zhao Z, Biggs R, Chisholm AD, Desai A, Oegema K, Green RA. A high-content imaging approach to profile C. elegans embryonic development. Development 2019; 146:dev174029. [PMID: 30890570 PMCID: PMC6467471 DOI: 10.1242/dev.174029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
The Caenorhabditis elegans embryo is an important model for analyzing mechanisms of cell fate specification and tissue morphogenesis. Sophisticated lineage-tracing approaches for analyzing embryogenesis have been developed but are labor intensive and do not naturally integrate morphogenetic readouts. To enable the rapid classification of developmental phenotypes, we developed a high-content method that employs two custom strains: a Germ Layer strain that expresses nuclear markers in the ectoderm, mesoderm and endoderm/pharynx; and a Morphogenesis strain that expresses markers labeling epidermal cell junctions and the neuronal cell surface. We describe a procedure that allows simultaneous live imaging of development in 80-100 embryos and provide a custom program that generates cropped, oriented image stacks of individual embryos to facilitate analysis. We demonstrate the utility of our method by perturbing 40 previously characterized developmental genes in variants of the two strains containing RNAi-sensitizing mutations. The resulting datasets yielded distinct, reproducible signature phenotypes for a broad spectrum of genes that are involved in cell fate specification and morphogenesis. In addition, our analysis provides new in vivo evidence for MBK-2 function in mesoderm fate specification and LET-381 function in elongation.
Collapse
Affiliation(s)
- Shaohe Wang
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stacy D Ochoa
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Renat N Khaliullin
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Adina Gerson-Gurwitz
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffrey M Hendel
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhiling Zhao
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronald Biggs
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Spickard EA, Joshi PM, Rothman JH. The multipotency-to-commitment transition in Caenorhabditis elegans-implications for reprogramming from cells to organs. FEBS Lett 2018; 592:838-851. [PMID: 29334121 DOI: 10.1002/1873-3468.12977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
In animal embryos, cells transition from a multipotential state, with the capacity to adopt multiple fates, into an irreversible, committed state of differentiation. This multipotency-to-commitment transition (MCT) is evident from experiments in which cell fate is reprogrammed by transcription factors for cell type-specific differentiation, as has been observed extensively in Caenorhabditis elegans. Although factors that direct differentiation into each of the three germ layer types cannot generally reprogram cells after the MCT in this animal, transcription factors for endoderm development are able to do so in multiple differentiated cell types. In one case, these factors can redirect the development of an entire organ in the process of "transorganogenesis". Natural transdifferentiation also occurs in a small number of differentiated cells during normal C. elegans development. We review these reprogramming and transdifferentiation events, highlighting the cellular and developmental contexts in which they occur, and discuss common themes underlying direct cell lineage reprogramming. Although certain aspects may be unique to the model system, growing evidence suggests that some mechanisms are evolutionarily conserved and may shed light on cellular plasticity and disease in humans.
Collapse
Affiliation(s)
- Erik A Spickard
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| | - Pradeep M Joshi
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| |
Collapse
|
16
|
Yang L, Wang C, Li F, Zhang J, Nayab A, Wu J, Shi Y, Gong Q. The human RNA-binding protein and E3 ligase MEX-3C binds the MEX-3-recognition element (MRE) motif with high affinity. J Biol Chem 2017; 292:16221-16234. [PMID: 28808060 DOI: 10.1074/jbc.m117.797746] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/05/2017] [Indexed: 11/06/2022] Open
Abstract
MEX-3 is a K-homology (KH) domain-containing RNA-binding protein first identified as a translational repressor in Caenorhabditis elegans, and its four orthologs (MEX-3A-D) in human and mouse were subsequently found to have E3 ubiquitin ligase activity mediated by a RING domain and critical for RNA degradation. Current evidence implicates human MEX-3C in many essential biological processes and suggests a strong connection with immune diseases and carcinogenesis. The highly conserved dual KH domains in MEX-3 proteins enable RNA binding and are essential for the recognition of the 3'-UTR and post-transcriptional regulation of MEX-3 target transcripts. However, the molecular mechanisms of translational repression and the consensus RNA sequence recognized by the MEX-3C KH domain are unknown. Here, using X-ray crystallography and isothermal titration calorimetry, we investigated the RNA-binding activity and selectivity of human MEX-3C dual KH domains. Our high-resolution crystal structures of individual KH domains complexed with a noncanonical U-rich and a GA-rich RNA sequence revealed that the KH1/2 domains of human MEX-3C bound MRE10, a 10-mer RNA (5'-CAGAGUUUAG-3') consisting of an eight-nucleotide MEX-3-recognition element (MRE) motif, with high affinity. Of note, we also identified a consensus RNA motif recognized by human MEX-3C. The potential RNA-binding sites in the 3'-UTR of the human leukocyte antigen serotype (HLA-A2) mRNA were mapped with this RNA-binding motif and further confirmed by fluorescence polarization. The binding motif identified here will provide valuable information for future investigations of the functional pathways controlled by human MEX-3C and for predicting potential mRNAs regulated by this enzyme.
Collapse
Affiliation(s)
- Lingna Yang
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Chongyuan Wang
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Fudong Li
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Jiahai Zhang
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Anam Nayab
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Jihui Wu
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Yunyu Shi
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and.,CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingguo Gong
- From the Hefei National Laboratory for Physical Science at Microscale, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China and
| |
Collapse
|
17
|
Dowdle ME, Imboden SB, Park S, Ryder SP, Sheets MD. Horizontal Gel Electrophoresis for Enhanced Detection of Protein-RNA Complexes. J Vis Exp 2017. [PMID: 28784977 DOI: 10.3791/56031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Native polyacrylamide gel electrophoresis is a fundamental tool of molecular biology that has been used extensively for the biochemical analysis of RNA-protein interactions. These interactions have been traditionally analyzed with polyacrylamide gels generated between two glass plates and samples electrophoresed vertically. However, polyacrylamide gels cast in trays and electrophoresed horizontally offers several advantages. For example, horizontal gels used to analyze complexes between fluorescent RNA substrates and specific proteins can be imaged multiple times as electrophoresis progresses. This provides the unique opportunity to monitor RNA-protein complexes at several points during the experiment. In addition, horizontal gel electrophoresis makes it possible to analyze many samples in parallel. This can greatly facilitate time course experiments as well as analyzing multiple reactions simultaneously to compare different components and conditions. Here we provide a detailed protocol for generating and using horizontal native gel electrophoresis for analyzing RNA-Protein interactions.
Collapse
Affiliation(s)
- Megan E Dowdle
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health
| | - Susanne Blaser Imboden
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health
| | - Sookhee Park
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health
| | - Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School
| | - Michael D Sheets
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health;
| |
Collapse
|
18
|
Subasic D, Stoeger T, Eisenring S, Matia-González AM, Imig J, Zheng X, Xiong L, Gisler P, Eberhard R, Holtackers R, Gerber AP, Pelkmans L, Hengartner MO. Post-transcriptional control of executioner caspases by RNA-binding proteins. Genes Dev 2017; 30:2213-2225. [PMID: 27798844 PMCID: PMC5088569 DOI: 10.1101/gad.285726.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/16/2016] [Indexed: 12/03/2022]
Abstract
In this study, Subasic et al. investigated the post-transcriptional control of caspases. The authors describe four conserved RNA-binding proteins (RBPs) that sequentially repress the CED-3 caspase in distinct regions of the C. elegans germline and identify seven RBPs that regulate human caspase-3 expression and/or activation, suggesting that translational inhibition of executioner caspases by RBPs might be a general strategy used widely across the animal kingdom to control apoptosis. Caspases are key components of apoptotic pathways. Regulation of caspases occurs at several levels, including transcription, proteolytic processing, inhibition of enzymatic function, and protein degradation. In contrast, little is known about the extent of post-transcriptional control of caspases. Here, we describe four conserved RNA-binding proteins (RBPs)—PUF-8, MEX-3, GLD-1, and CGH-1—that sequentially repress the CED-3 caspase in distinct regions of the Caenorhabditis elegans germline. We demonstrate that GLD-1 represses ced-3 mRNA translation via two binding sites in its 3′ untranslated region (UTR), thereby ensuring a dual control of unwanted cell death: at the level of p53/CEP-1 and at the executioner caspase level. Moreover, we identified seven RBPs that regulate human caspase-3 expression and/or activation, including human PUF-8, GLD-1, and CGH-1 homologs PUM1, QKI, and DDX6. Given the presence of unusually long executioner caspase 3′ UTRs in many metazoans, translational control of executioner caspases by RBPs might be a strategy used widely across the animal kingdom to control apoptosis.
Collapse
Affiliation(s)
- Deni Subasic
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.,Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology, University of Zurich, 8057 Zurich, Switzerland
| | - Thomas Stoeger
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.,Systems Biology PhD Program, Swiss Federal Institute of Technology, University of Zurich, 8057 Zurich, Switzerland
| | - Seline Eisenring
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ana M Matia-González
- Faculty of Health and Medical Sciences, Department of Microbial and Cellular Sciences, University of Surrey, Stag Hill Campus, GU2 7XH Guildford, United Kingdom
| | - Jochen Imig
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Xue Zheng
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Lei Xiong
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Pascal Gisler
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ralf Eberhard
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - René Holtackers
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - André P Gerber
- Faculty of Health and Medical Sciences, Department of Microbial and Cellular Sciences, University of Surrey, Stag Hill Campus, GU2 7XH Guildford, United Kingdom
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
19
|
Tamburino AM, Kaymak E, Shrestha S, Holdorf AD, Ryder SP, Walhout AJM. PRIMA: a gene-centered, RNA-to-protein method for mapping RNA-protein interactions. ACTA ACUST UNITED AC 2017; 5:e1295130. [PMID: 28702278 DOI: 10.1080/21690731.2017.1295130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/23/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
Interactions between RNA binding proteins (RBPs) and mRNAs are critical to post-transcriptional gene regulation. Eukaryotic genomes encode thousands of mRNAs and hundreds of RBPs. However, in contrast to interactions between transcription factors (TFs) and DNA, the interactome between RBPs and RNA has been explored for only a small number of proteins and RNAs. This is largely because the focus has been on using 'protein-centered' (RBP-to-RNA) interaction mapping methods that identify the RNAs with which an individual RBP interacts. While powerful, these methods cannot as of yet be applied to the entire RBPome. Moreover, it may be desirable for a researcher to identify the repertoire of RBPs that can interact with an mRNA of interest-in a 'gene-centered' manner-yet few such techniques are available. Here, we present Protein-RNA Interaction Mapping Assay (PRIMA) with which an RNA 'bait' can be tested versus multiple RBP 'preys' in a single experiment. PRIMA is a translation-based assay that examines interactions in the yeast cytoplasm, the cellular location of mRNA translation. We show that PRIMA can be used with small RNA elements, as well as with full-length Caenorhabditis elegans 3' UTRs. PRIMA faithfully recapitulated numerous well-characterized RNA-RBP interactions and also identified novel interactions, some of which were confirmed in vivo. We envision that PRIMA will provide a complementary tool to expand the depth and scale with which the RNA-RBP interactome can be explored.
Collapse
Affiliation(s)
- Alex M Tamburino
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ebru Kaymak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shaleen Shrestha
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amy D Holdorf
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Albertha J M Walhout
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
20
|
Pushpa K, Kumar GA, Subramaniam K. Translational Control of Germ Cell Decisions. Results Probl Cell Differ 2017; 59:175-200. [PMID: 28247049 DOI: 10.1007/978-3-319-44820-6_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germline poses unique challenges to gene expression control at the transcriptional level. While the embryonic germline maintains a global hold on new mRNA transcription, the female adult germline produces transcripts that are not translated into proteins until embryogenesis of subsequent generation. As a consequence, translational control plays a central role in governing various germ cell decisions including the formation of primordial germ cells, self-renewal/differentiation decisions in the adult germline, onset of gametogenesis and oocyte maturation. Mechanistically, several common themes such as asymmetric localization of mRNAs, conserved RNA-binding proteins that control translation by 3' UTR binding, translational activation by the cytoplasmic elongation of the polyA tail and the assembly of mRNA-protein complexes called mRNPs have emerged from the studies on Caenorhabditis elegans, Xenopus and Drosophila. How mRNPs assemble, what influences their dynamics, and how a particular 3' UTR-binding protein turns on the translation of certain mRNAs while turning off other mRNAs at the same time and space are key challenges for future work.
Collapse
Affiliation(s)
- Kumari Pushpa
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ganga Anil Kumar
- Indian Institute of Technology-Kanpur, Kanpur, India.,Indian Institute of Technology-Madras, Chennai, India
| | | |
Collapse
|
21
|
Kaymak E, Farley BM, Hay SA, Li C, Ho S, Hartman DJ, Ryder SP. Efficient generation of transgenic reporter strains and analysis of expression patterns in Caenorhabditis elegans using library MosSCI. Dev Dyn 2016; 245:925-36. [PMID: 27294288 PMCID: PMC4981527 DOI: 10.1002/dvdy.24426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/09/2016] [Accepted: 06/03/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In C. elegans, germline development and early embryogenesis rely on posttranscriptional regulation of maternally transcribed mRNAs. In many cases, the 3' untranslated region (UTR) is sufficient to govern the expression patterns of these transcripts. Several RNA-binding proteins are required to regulate maternal mRNAs through the 3'UTR. Despite intensive efforts to map RNA-binding protein-mRNA interactions in vivo, the biological impact of most binding events remains unknown. Reporter studies using single copy integrated transgenes are essential to evaluate the functional consequences of interactions between RNA-binding proteins and their associated mRNAs. RESULTS In this report, we present an efficient method of generating reporter strains with improved throughput by using a library variant of MosSCI transgenesis. Furthermore, using RNA interference, we identify the suite of RNA-binding proteins that control the expression pattern of five different maternal mRNAs. CONCLUSIONS The results provide a generalizable and efficient strategy to assess the functional relevance of protein-RNA interactions in vivo, and reveal new regulatory connections between key RNA-binding proteins and their maternal mRNA targets. Developmental Dynamics 245:925-936, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ebru Kaymak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Brian M. Farley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Samantha A. Hay
- Virginia Commonwealth University School of Medicine, VA, USA
| | - Chihua Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Samantha Ho
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | | | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
22
|
Yang Y, Wang SY, Huang ZF, Zou HM, Yan BR, Luo WW, Wang YY. The RNA-binding protein Mex3B is a coreceptor of Toll-like receptor 3 in innate antiviral response. Cell Res 2016; 26:288-303. [PMID: 26823206 PMCID: PMC4783467 DOI: 10.1038/cr.2016.16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/20/2015] [Accepted: 12/13/2015] [Indexed: 12/20/2022] Open
Abstract
Recognition of viral dsRNA by Toll-like receptor 3 (TLR3) leads to induction of interferons (IFNs) and proinflammatory cytokines, and innate antiviral response. Here we identified the RNA-binding protein Mex3B as a positive regulator of TLR3-mediated signaling by expression cloning screens. Cells from Mex3b−/− mice exhibited reduced production of IFN-β in response to the dsRNA analog poly(I:C) but not infection with RNA viruses. Mex3b−/− mice injected with poly(I:C) was more resistant to poly(I:C)-induced death. Mex3B was associated with TLR3 in the endosomes. It bound to dsRNA and increased the dsRNA-binding activity of TLR3. Mex3B also promoted the proteolytic processing of TLR3, which is critical for its activation. Mutants of Mex3B lacking its RNA-binding activity inhibited TLR3-mediated IFN-β induction. These findings suggest that Mex3B acts as a coreceptor of TLR3 in innate antiviral response.
Collapse
Affiliation(s)
- Yan Yang
- Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Hubei 430071, China
| | - Su-Yun Wang
- Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Hubei 430071, China
| | - Zhe-Fu Huang
- Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Hubei 430071, China
| | - Hong-Mei Zou
- Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Hubei 430071, China
| | - Bing-Ru Yan
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Wei-Wei Luo
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Yan-Yi Wang
- Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Hubei 430071, China
| |
Collapse
|
23
|
Gracida X, Norris AD, Calarco JA. Regulation of Tissue-Specific Alternative Splicing: C. elegans as a Model System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:229-61. [DOI: 10.1007/978-3-319-29073-7_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Shigunov P, Dallagiovanna B. Stem Cell Ribonomics: RNA-Binding Proteins and Gene Networks in Stem Cell Differentiation. Front Mol Biosci 2015; 2:74. [PMID: 26734617 PMCID: PMC4686646 DOI: 10.3389/fmolb.2015.00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022] Open
Abstract
Stem cells are undifferentiated cells with the ability to self-renew and the potential to differentiate into all body cell types. Stem cells follow a developmental genetic program and are able to respond to alterations in the environment through various signaling pathways. The mechanisms that control these processes involve the activation of transcription followed by a series of post-transcriptional events. These post-transcriptional steps are mediated by the interaction of RNA-binding proteins (RBPs) with defined subpopulations of RNAs creating a regulatory gene network. Characterizing these RNA-protein networks is essential to understanding the regulatory mechanisms underlying the control of stem cell fate. Ribonomics is the combination of classical biochemical purification protocols with the high-throughput identification of transcripts applied to the functional characterization of RNA-protein complexes. Here, we describe the different approaches that can be used in a ribonomic approach and how they have contributed to understanding the function of several RBPs with central roles in stem cell biology.
Collapse
Affiliation(s)
- Patrícia Shigunov
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation Curitiba, Brazil
| | - Bruno Dallagiovanna
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation Curitiba, Brazil
| |
Collapse
|
25
|
Elewa A, Shirayama M, Kaymak E, Harrison PF, Powell DR, Du Z, Chute CD, Woolf H, Yi D, Ishidate T, Srinivasan J, Bao Z, Beilharz TH, Ryder SP, Mello CC. POS-1 Promotes Endo-mesoderm Development by Inhibiting the Cytoplasmic Polyadenylation of neg-1 mRNA. Dev Cell 2015; 34:108-18. [PMID: 26096734 DOI: 10.1016/j.devcel.2015.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/17/2015] [Accepted: 05/27/2015] [Indexed: 12/01/2022]
Abstract
The regulation of mRNA translation is of fundamental importance in biological mechanisms ranging from embryonic axis specification to the formation of long-term memory. POS-1 is one of several CCCH zinc-finger RNA-binding proteins that regulate cell fate specification during C. elegans embryogenesis. Paradoxically, pos-1 mutants exhibit striking defects in endo-mesoderm development but have wild-type distributions of SKN-1, a key determinant of endo-mesoderm fates. RNAi screens for pos-1 suppressors identified genes encoding the cytoplasmic poly(A)-polymerase homolog GLD-2, the Bicaudal-C homolog GLD-3, and the protein NEG-1. We show that NEG-1 localizes in anterior nuclei, where it negatively regulates endo-mesoderm fates. In posterior cells, POS-1 binds the neg-1 3' UTR to oppose GLD-2 and GLD-3 activities that promote NEG-1 expression and cytoplasmic lengthening of the neg-1 mRNA poly(A) tail. Our findings uncover an intricate series of post-transcriptional regulatory interactions that, together, achieve precise spatial expression of endo-mesoderm fates in C. elegans embryos.
Collapse
Affiliation(s)
- Ahmed Elewa
- Program in Molecular Medicine, RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Masaki Shirayama
- Program in Molecular Medicine, RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Ebru Kaymak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Paul F Harrison
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria 3800, Australia; Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3053, Australia
| | - David R Powell
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria 3800, Australia; Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, Victoria 3053, Australia
| | - Zhuo Du
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Christopher D Chute
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Life Science and Bioengineering Center, Gateway Park, 60 Prescott Street, Worcester, MA 01605, USA
| | - Hannah Woolf
- Program in Molecular Medicine, RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Dongni Yi
- Program in Molecular Medicine, RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Takao Ishidate
- Program in Molecular Medicine, RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Life Science and Bioengineering Center, Gateway Park, 60 Prescott Street, Worcester, MA 01605, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Traude H Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig C Mello
- Program in Molecular Medicine, RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
26
|
Osborne Nishimura E, Zhang JC, Werts AD, Goldstein B, Lieb JD. Asymmetric transcript discovery by RNA-seq in C. elegans blastomeres identifies neg-1, a gene important for anterior morphogenesis. PLoS Genet 2015; 11:e1005117. [PMID: 25875092 PMCID: PMC4395330 DOI: 10.1371/journal.pgen.1005117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/03/2015] [Indexed: 11/23/2022] Open
Abstract
After fertilization but prior to the onset of zygotic transcription, the C. elegans zygote cleaves asymmetrically to create the anterior AB and posterior P1 blastomeres, each of which goes on to generate distinct cell lineages. To understand how patterns of RNA inheritance and abundance arise after this first asymmetric cell division, we pooled hand-dissected AB and P1 blastomeres and performed RNA-seq. Our approach identified over 200 asymmetrically abundant mRNA transcripts. We confirmed symmetric or asymmetric abundance patterns for a subset of these transcripts using smFISH. smFISH also revealed heterogeneous subcellular patterning of the P1-enriched transcripts chs-1 and bpl-1. We screened transcripts enriched in a given blastomere for embryonic defects using RNAi. The gene neg-1 (F32D1.6) encoded an AB-enriched (anterior) transcript and was required for proper morphology of anterior tissues. In addition, analysis of the asymmetric transcripts yielded clues regarding the post-transcriptional mechanisms that control cellular mRNA abundance during asymmetric cell divisions, which are common in developing organisms.
Collapse
Affiliation(s)
- Erin Osborne Nishimura
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jay C. Zhang
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adam D. Werts
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bob Goldstein
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason D. Lieb
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
27
|
Spike CA, Coetzee D, Nishi Y, Guven-Ozkan T, Oldenbroek M, Yamamoto I, Lin R, Greenstein D. Translational control of the oogenic program by components of OMA ribonucleoprotein particles in Caenorhabditis elegans. Genetics 2014; 198:1513-33. [PMID: 25261697 PMCID: PMC4256769 DOI: 10.1534/genetics.114.168823] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 08/29/2014] [Indexed: 02/02/2023] Open
Abstract
The oocytes of most sexually reproducing animals arrest in meiotic prophase I. Oocyte growth, which occurs during this period of arrest, enables oocytes to acquire the cytoplasmic components needed to produce healthy progeny and to gain competence to complete meiosis. In the nematode Caenorhabditis elegans, the major sperm protein hormone promotes meiotic resumption (also called meiotic maturation) and the cytoplasmic flows that drive oocyte growth. Prior work established that two related TIS11 zinc-finger RNA-binding proteins, OMA-1 and OMA-2, are redundantly required for normal oocyte growth and meiotic maturation. We affinity purified OMA-1 and identified associated mRNAs and proteins using genome-wide expression data and mass spectrometry, respectively. As a class, mRNAs enriched in OMA-1 ribonucleoprotein particles (OMA RNPs) have reproductive functions. Several of these mRNAs were tested and found to be targets of OMA-1/2-mediated translational repression, dependent on sequences in their 3'-untranslated regions (3'-UTRs). Consistent with a major role for OMA-1 and OMA-2 in regulating translation, OMA-1-associated proteins include translational repressors and activators, and some of these proteins bind directly to OMA-1 in yeast two-hybrid assays, including OMA-2. We show that the highly conserved TRIM-NHL protein LIN-41 is an OMA-1-associated protein, which also represses the translation of several OMA-1/2 target mRNAs. In the accompanying article in this issue, we show that LIN-41 prevents meiotic maturation and promotes oocyte growth in opposition to OMA-1/2. Taken together, these data support a model in which the conserved regulators of mRNA translation LIN-41 and OMA-1/2 coordinately control oocyte growth and the proper spatial and temporal execution of the meiotic maturation decision.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| | - Donna Coetzee
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| | - Yuichi Nishi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Tugba Guven-Ozkan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Marieke Oldenbroek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ikuko Yamamoto
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Rueyling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| |
Collapse
|
28
|
Huang NN, Hunter CP. The RNA binding protein MEX-3 retains asymmetric activity in the early Caenorhabditis elegans embryo in the absence of asymmetric protein localization. Gene 2014; 554:160-73. [PMID: 25445286 DOI: 10.1016/j.gene.2014.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
Abstract
The RNA binding protein MEX-3 is required to restrict translation of pal-1, the Caenorhabditis elegans caudal homolog, to the posterior of the early embryo. MEX-3 is present uniformly throughout the newly fertilized embryo, but becomes depleted in the posterior by the 4-cell stage. This MEX-3 patterning requires the CCCH zinc-finger protein MEX-5, the RNA Recognition Motif protein SPN-4, and the kinase PAR-4. Genetic and biochemical evidence suggests that MEX-5 binds to MEX-3 in the anterior of the embryo, protecting MEX-3 from degradation and allowing it to bind the pal-1 3'UTR and repress translation. MEX-3 that is not bound to MEX-5 becomes inactivated by par-4, then targeted for spn-4 dependent degradation. After the 4-cell stage, residual MEX-3 is degraded in somatic cells, and only persists in the germline precursors. To better understand regulation of mex-3, GFP was fused to MEX-3 or regions of MEX-3 and expressed in developing oocytes. GFP::MEX-3 expressed in this manner can replace endogenous MEX-3, but surprisingly is not asymmetrically localized at the 4-cell stage. These results indicate that GFP::MEX-3 retains asymmetric activity even in the absence of asymmetric protein localization. Neither the mex-3 3'UTR nor protein degradation at the 4-cell stage is strictly required. A region of MEX-3 containing a glutamine-rich region and potential ubiquitination and phosphorylation sites is sufficient for soma-germline asymmetry. Results from mex-5/6 and spn-4(RNAi) suggest two pathways for MEX-3 degradation, an early spn-4 dependent pathway and a later spn-4 independent pathway. These results indicate that mex-3 activity is regulated at multiple levels, leading to rapid and robust regulation in the quickly developing early embryo.
Collapse
Affiliation(s)
- Nancy N Huang
- Molecular Biology Department, Colorado College, Colorado Springs, CO 80903, USA.
| | - Craig P Hunter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
Le Borgne M, Chartier N, Buchet-Poyau K, Destaing O, Faurobert E, Thibert C, Rouault JP, Courchet J, Nègre D, Bouvard D, Albiges-Rizo C, Rousseaux S, Khochbin S, Segretain D, Crépieux P, Guillou F, Durand P, Perrard MH, Billaud M. The RNA-binding protein Mex3b regulates the spatial organization of the Rap1 pathway. Development 2014; 141:2096-107. [DOI: 10.1242/dev.108514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The four related mammalian MEX-3 RNA-binding proteins are evolutionarily conserved molecules for which the in vivo functions have not yet been fully characterized. Here, we report that male mice deficient for the gene encoding Mex3b are subfertile. Seminiferous tubules of Mex3b-deficient mice are obstructed as a consequence of the disrupted phagocytic capacity of somatic Sertoli cells. In addition, both the formation and the integrity of the blood-testis barrier are compromised owing to mislocalization of N-cadherin and connexin 43 at the surface of Sertoli cells. We further establish that Mex3b acts to regulate the cortical level of activated Rap1, a small G protein controlling phagocytosis and cell-cell interaction, through the activation and transport of Rap1GAP. The active form of Rap1 (Rap1-GTP) is abnormally increased at the membrane cortex and chemically restoring Rap1-GTP to physiological levels rescues the phagocytic and adhesion abilities of Sertoli cells. Overall, these findings implicate Mex3b in the spatial organization of the Rap1 pathway that orchestrates Sertoli cell functions.
Collapse
Affiliation(s)
- Maïlys Le Borgne
- INSERM, U823; Université Joseph Fourier-Grenoble 1; Institut Albert Bonniot, Grenoble F-38700, France
| | - Nicolas Chartier
- INSERM, U823; Université Joseph Fourier-Grenoble 1; Institut Albert Bonniot, Grenoble F-38700, France
| | - Karine Buchet-Poyau
- Hospices Civils de Lyon, Pôle Information Médicale Evaluation Recherche, Lyon F-69003, France
| | - Olivier Destaing
- INSERM, U823; Université Joseph Fourier-Grenoble 1; Institut Albert Bonniot, Grenoble F-38700, France
| | - Eva Faurobert
- INSERM, U823; Université Joseph Fourier-Grenoble 1; Institut Albert Bonniot, Grenoble F-38700, France
| | - Chantal Thibert
- INSERM, U823; Université Joseph Fourier-Grenoble 1; Institut Albert Bonniot, Grenoble F-38700, France
| | - Jean-Pierre Rouault
- Institut de Génomique Fonctionnelle de Lyon, UMR5242 CNRS/INRA/UCBL/ENS, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, Lyon 69364, Cedex 07, France
| | - Julien Courchet
- Columbia University Department of Neurosciences, New York, NY 10032, USA
| | - Didier Nègre
- Université de Lyon, Inserm, EVIR, U758, Human Virology Department, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon F-69007, France
| | - Daniel Bouvard
- INSERM, U823; Université Joseph Fourier-Grenoble 1; Institut Albert Bonniot, Grenoble F-38700, France
| | - Corinne Albiges-Rizo
- INSERM, U823; Université Joseph Fourier-Grenoble 1; Institut Albert Bonniot, Grenoble F-38700, France
| | - Sophie Rousseaux
- INSERM, U823; Université Joseph Fourier-Grenoble 1; Institut Albert Bonniot, Grenoble F-38700, France
| | - Saadi Khochbin
- INSERM, U823; Université Joseph Fourier-Grenoble 1; Institut Albert Bonniot, Grenoble F-38700, France
| | - Dominique Segretain
- UMR S775, University Paris Descartes, 45 rue des Saints Pères, Paris 75006, France
- University of Versailles, Saint Quentin 78035, France
| | - Pascale Crépieux
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA-CNRS-Université de Tours, Nouzilly 37380, France
| | - Florian Guillou
- Physiologie de la Reproduction et des Comportements, UMR 7247 INRA-CNRS-Université de Tours, Nouzilly 37380, France
| | - Philippe Durand
- Institut de Génomique Fonctionnelle de Lyon, UMR5242 CNRS/INRA/UCBL/ENS, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, Lyon 69364, Cedex 07, France
| | - Marie-Hélène Perrard
- Institut de Génomique Fonctionnelle de Lyon, UMR5242 CNRS/INRA/UCBL/ENS, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, Lyon 69364, Cedex 07, France
| | - Marc Billaud
- INSERM, U823; Université Joseph Fourier-Grenoble 1; Institut Albert Bonniot, Grenoble F-38700, France
| |
Collapse
|
30
|
Pagano JM, Kwak H, Waters CT, Sprouse RO, White BS, Ozer A, Szeto K, Shalloway D, Craighead HG, Lis JT. Defining NELF-E RNA binding in HIV-1 and promoter-proximal pause regions. PLoS Genet 2014; 10:e1004090. [PMID: 24453987 PMCID: PMC3894171 DOI: 10.1371/journal.pgen.1004090] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/22/2013] [Indexed: 11/22/2022] Open
Abstract
The four-subunit Negative Elongation Factor (NELF) is a major regulator of RNA Polymerase II (Pol II) pausing. The subunit NELF-E contains a conserved RNA Recognition Motif (RRM) and is proposed to facilitate Poll II pausing through its association with nascent transcribed RNA. However, conflicting ideas have emerged for the function of its RNA binding activity. Here, we use in vitro selection strategies and quantitative biochemistry to identify and characterize the consensus NELF-E binding element (NBE) that is required for sequence specific RNA recognition (NBE: CUGAGGA(U) for Drosophila). An NBE-like element is present within the loop region of the transactivation-response element (TAR) of HIV-1 RNA, a known regulatory target of human NELF-E. The NBE is required for high affinity binding, as opposed to the lower stem of TAR, as previously claimed. We also identify a non-conserved region within the RRM that contributes to the RNA recognition of Drosophila NELF-E. To understand the broader functional relevance of NBEs, we analyzed promoter-proximal regions genome-wide in Drosophila and show that the NBE is enriched +20 to +30 nucleotides downstream of the transcription start site. Consistent with the role of NELF in pausing, we observe a significant increase in NBEs among paused genes compared to non-paused genes. In addition to these observations, SELEX with nuclear run-on RNA enrich for NBE-like sequences. Together, these results describe the RNA binding behavior of NELF-E and supports a biological role for NELF-E in promoter-proximal pausing of both HIV-1 and cellular genes. RNA polymerase II (Pol II) is a molecular machine that is responsible for transcribing all protein coding genes in the eukaryotic genome. Transcription by Pol II is a highly regulated process consisting of several rate-limiting steps. During transcription elongation, a number of transcription factors are essential to modulate Pol II activity. One of these factors is the Negative Elongation Factor (NELF), and it plays a major role in promoter-proximal pausing, a widespread phenomenon during early transcription elongation. NELF-E, a protein subunit of the NELF complex contains a conserved RNA binding domain that is thought to regulate transcription through its interaction with newly transcribed RNA made by Pol II. However, the function of the RNA binding activity of NELF-E remains unresolved due to prior conflicting studies. Here, we clarify the RNA binding properties of NELF-E and provide insight into how this protein might facilitate promoter-proximal pausing of Pol II in transcription. Moreover, we identify the precise region of NELF-E binding in one of its known regulatory targets, HIV-1. Taken together, the results presented indicate a dynamic interplay between NELF and specific RNA sequences around the promoter pause region to modulate early transcription elongation.
Collapse
Affiliation(s)
- John M Pagano
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Colin T Waters
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Rebekka O Sprouse
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Brian S White
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Abdullah Ozer
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Kylan Szeto
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, United States of America
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Harold G Craighead
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, United States of America
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
31
|
Oldenbroek M, Robertson SM, Guven-Ozkan T, Spike C, Greenstein D, Lin R. Regulation of maternal Wnt mRNA translation in C. elegans embryos. Development 2013; 140:4614-23. [PMID: 24131629 DOI: 10.1242/dev.096313] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The restricted spatiotemporal translation of maternal mRNAs, which is crucial for correct cell fate specification in early C. elegans embryos, is regulated primarily through the 3'UTR. Although genetic screens have identified many maternally expressed cell fate-controlling RNA-binding proteins (RBPs), their in vivo targets and the mechanism(s) by which they regulate these targets are less clear. These RBPs are translated in oocytes and localize to one or a few blastomeres in a spatially and temporally dynamic fashion unique for each protein and each blastomere. Here, we characterize the translational regulation of maternally supplied mom-2 mRNA, which encodes a Wnt ligand essential for two separate cell-cell interactions in early embryos. A GFP reporter that includes only the mom-2 3'UTR is translationally repressed properly in oocytes and early embryos, and then correctly translated only in the known Wnt signaling cells. We show that the spatiotemporal translation pattern of this reporter is regulated combinatorially by a set of nine maternally supplied RBPs. These nine proteins all directly bind the mom-2 3'UTR in vitro and function as positive or negative regulators of mom-2 translation in vivo. The net translational readout for the mom-2 3'UTR reporter is determined by competitive binding between positive- and negative-acting RBPs for the 3'UTR, along with the distinct spatiotemporal localization patterns of these regulators. We propose that the 3'UTR of maternal mRNAs contains a combinatorial code that determines the topography of associated RBPs, integrating positive and negative translational inputs.
Collapse
Affiliation(s)
- Marieke Oldenbroek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kaymak E, Ryder SP. RNA recognition by the Caenorhabditis elegans oocyte maturation determinant OMA-1. J Biol Chem 2013; 288:30463-30472. [PMID: 24014033 DOI: 10.1074/jbc.m113.496547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maternally supplied mRNAs encode proteins that pattern early embryos in many species. In the nematode Caenorhabditis elegans, a suite of RNA-binding proteins regulates expression of maternal mRNAs during oogenesis, the oocyte to embryo transition, and early embryogenesis. To understand how these RNA-binding proteins contribute to development, it is necessary to determine how they select specific mRNA targets for regulation. OMA-1 and OMA-2 are redundant proteins required for oocyte maturation--an essential part of meiosis that prepares oocytes for fertilization. Both proteins have CCCH type tandem zinc finger RNA-binding domains. Here, we define the RNA binding specificity of OMA-1 and demonstrate that OMA-1/2 are required to repress the expression of a glp-1 3'-UTR reporter in developing oocytes. OMA-1 binds with high affinity to a conserved region of the glp-1 3'-UTR previously shown to interact with POS-1 and GLD-1, RNA-binding proteins required for glp-1 reporter repression in the posterior of fertilized embryos. Our results reveal that OMA-1 is a sequence-specific RNA-binding protein required to repress expression of maternal transcripts during oogenesis and suggest that interplay between OMA-1 and other factors for overlapping binding sites helps to coordinate the transition from oocyte to embryo.
Collapse
Affiliation(s)
- Ebru Kaymak
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Sean P Ryder
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| |
Collapse
|
33
|
MEX-3 proteins: recent insights on novel post-transcriptional regulators. Trends Biochem Sci 2013; 38:477-9. [PMID: 23999169 DOI: 10.1016/j.tibs.2013.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 11/21/2022]
Abstract
RNA-binding proteins of the evolutionarily-conserved MEX-3 family are mediators of post-transcriptional regulation in different organisms. Recent studies highlight their involvement in diverse physiological settings, including the maintenance of a balance between stem cell self-renewal and differentiation. Here, we draw attention to their putative role in tissue homeostasis and disease, particularly cancer.
Collapse
|
34
|
Pereira B, Sousa S, Barros R, Carreto L, Oliveira P, Oliveira C, Chartier NT, Plateroti M, Rouault JP, Freund JN, Billaud M, Almeida R. CDX2 regulation by the RNA-binding protein MEX3A: impact on intestinal differentiation and stemness. Nucleic Acids Res 2013; 41:3986-99. [PMID: 23408853 PMCID: PMC3627580 DOI: 10.1093/nar/gkt087] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The homeobox transcription factor CDX2 plays a crucial role in intestinal cell fate specification, both during normal development and in tumorigenic processes involving intestinal reprogramming. The CDX2 regulatory network is intricate, but it has not yet been fully uncovered. Through genome-wide screening of a 3D culture system, the RNA-binding protein MEX3A was identified as putatively involved in CDX2 regulation; therefore, its biological relevance was addressed by setting up cell-based assays together with expression studies in murine intestine. We demonstrate here that MEX3A has a repressive function by controlling CDX2 levels in gastric and colorectal cellular models. This is dependent on the interaction with a specific binding determinant present in CDX2 mRNA 3'untranslated region. We have further determined that MEX3A impairs intestinal differentiation and cellular polarization, affects cell cycle progression and promotes increased expression of intestinal stem cell markers, namely LGR5, BMI1 and MSI1. Finally, we show that MEX3A is expressed in mouse intestine, supporting an in vivo context for interaction with CDX2 and modulation of stem cell properties. Therefore, we describe a novel CDX2 post-transcriptional regulatory mechanism, through the RNA-binding protein MEX3A, with a major impact in intestinal differentiation, polarity and stemness, likely contributing to intestinal homeostasis and carcinogenesis.
Collapse
Affiliation(s)
- Bruno Pereira
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-465 Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
A compendium of Caenorhabditis elegans RNA binding proteins predicts extensive regulation at multiple levels. G3-GENES GENOMES GENETICS 2013; 3:297-304. [PMID: 23390605 PMCID: PMC3564989 DOI: 10.1534/g3.112.004390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 02/06/2023]
Abstract
Gene expression is regulated at multiple levels, including transcription and translation, as well as mRNA and protein stability. Although systems-level functions of transcription factors and microRNAs are rapidly being characterized, few studies have focused on the posttranscriptional gene regulation by RNA binding proteins (RBPs). RBPs are important to many aspects of gene regulation. Thus, it is essential to know which genes encode RBPs, which RBPs regulate which gene(s), and how RBP genes are themselves regulated. Here we provide a comprehensive compendium of RBPs from the nematode Caenorhabditis elegans (wRBP1.0). We predict that as many as 887 (4.4%) of C. elegans genes may encode RBPs ~250 of which likely function in a gene-specific manner. In addition, we find that RBPs, and most notably gene-specific RBPs, are themselves enriched for binding and modification by regulatory proteins, indicating the potential for extensive regulation of RBPs at many different levels. wRBP1.0 will provide a significant contribution toward the comprehensive delineation of posttranscriptional regulatory networks and will provide a resource for further studies regulation by RBPs.
Collapse
|
36
|
Wang JT, Seydoux G. Germ cell specification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:17-39. [PMID: 22872473 DOI: 10.1007/978-1-4614-4015-4_2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The germline of Caenorhabditis elegans derives from a single founder cell, the germline blastomere P(4). P(4) is the product of four asymmetric cleavages that divide the zygote into distinct somatic and germline (P) lineages. P(4) inherits a specialized cytoplasm ("germ plasm") containing maternally encoded proteins and RNAs. The germ plasm has been hypothesized to specify germ cell fate, but the mechanisms involved remain unclear. Three processes stand out: (1) inhibition of mRNA transcription to prevent activation of somatic development, (2) translational regulation of the nanos homolog nos-2 and of other germ plasm mRNAs, and (3) establishment of a unique, partially repressive chromatin. Together, these processes ensure that the daughters of P(4), the primordial germ cells Z2 and Z3, gastrulate inside the embryo, associate with the somatic gonad, initiate the germline transcriptional program, and proliferate during larval development to generate ∼2,000 germ cells by adulthood.
Collapse
Affiliation(s)
- Jennifer T Wang
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
37
|
Smith SS, Kessler CB, Shenoy V, Rosen CJ, Delany AM. IGF-I 3' untranslated region: strain-specific polymorphisms and motifs regulating IGF-I in osteoblasts. Endocrinology 2013; 154:253-62. [PMID: 23183171 PMCID: PMC3529377 DOI: 10.1210/en.2012-1476] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 11/06/2012] [Indexed: 12/12/2022]
Abstract
Reduced IGF-I is associated with low bone mass in humans and mice. C3H/He/J (C3H) mice have higher skeletal IGF-I and greater bone mass than C57BL/6J (B6). We hypothesized that strain-related genotypic differences in Igf1 affected skeletal function. The Igf1 coding region is nonpolymorphic, but its 3' untranslated region (UTR) is polymorphic between C3H and B6. Luciferase-Igf1 3' UTR reporter constructs showed that these polymorphic regions did not affect UTR function. IGF-I splice variants give rise to a common mature IGF-I peptide, but different E peptides. We identified two splice products, exon 4+6 (Ea) and exon 4+5+6 (Eb, mechano-growth factor) and found that their abundance was unchanged during osteoblastic differentiation. The Igf1 3' UTR encoded by exon 6 contains alternative polyadenylation sites. Proximal site use produces a short 3' UTR of approximately 195 bases, whereas distal site usage results in an approximately 6300-base UTR. Although Igf1 mRNA levels did not change during osteoblastic differentiation, distal polyadenylation site usage was increased in B6 cells but not in C3H. The resulting long Igf1 RNA isoform is less stable and has decreased translation efficiency, which may be one mechanism contributing to decreased IGF-I in B6 vs. C3H mice. Although the long UTR contains a conserved [GU](18) repeat, which is a positive regulator of UTR activity, it is also targeted by negative regulators, miR-29 and miR-365. These microRNAs are increased in B6 and C3H cells during osteoblastic differentiation. Differential expression of the long Igf1 3' UTR isoform may be a possible mechanism for enhanced IGF-I regulation in B6 vs. C3H mice.
Collapse
Affiliation(s)
- Spenser S Smith
- Center for Molecular Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
38
|
Translational control in the Caenorhabditis elegans germ line. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:205-47. [PMID: 22872479 DOI: 10.1007/978-1-4614-4015-4_8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Translational control is a prevalent form of gene expression regulation in the Caenorhabditis elegans germ line. Linking the amount of protein synthesis to mRNA quantity and translational accessibility in the cell cytoplasm provides unique advantages over DNA-based controls for developing germ cells. This mode of gene expression is especially exploited in germ cell fate decisions and during oogenesis, when the developing oocytes stockpile hundreds of different mRNAs required for early embryogenesis. Consequently, a dense web of RNA regulators, consisting of diverse RNA-binding proteins and RNA-modifying enzymes, control the translatability of entire mRNA expression programs. These RNA regulatory networks are tightly coupled to germ cell developmental progression and are themselves under translational control. The underlying molecular mechanisms and RNA codes embedded in the mRNA molecules are beginning to be understood. Hence, the C. elegans germ line offers fertile grounds for discovering post-transcriptional mRNA regulatory mechanisms and emerges as great model for a systems level understanding of translational control during development.
Collapse
|
39
|
Farley BM, Ryder SP. POS-1 and GLD-1 repress glp-1 translation through a conserved binding-site cluster. Mol Biol Cell 2012; 23:4473-83. [PMID: 23034181 PMCID: PMC3510010 DOI: 10.1091/mbc.e12-03-0216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
RNA-binding proteins (RBPs) coordinate cell fate specification and differentiation in a variety of systems. RNA regulation is critical during oocyte development and early embryogenesis, in which RBPs control expression from maternal mRNAs encoding key cell fate determinants. The Caenorhabditis elegans Notch homologue glp-1 coordinates germline progenitor cell proliferation and anterior fate specification in embryos. A network of sequence-specific RBPs is required to pattern GLP-1 translation. Here, we map the cis-regulatory elements that guide glp-1 regulation by the CCCH-type tandem zinc finger protein POS-1 and the STAR-domain protein GLD-1. Our results demonstrate that both proteins recognize the glp-1 3' untranslated region (UTR) through adjacent, overlapping binding sites and that POS-1 binding excludes GLD-1 binding. Both factors are required to repress glp-1 translation in the embryo, suggesting that they function in parallel regulatory pathways. It is intriguing that two equivalent POS-1-binding sites are present in the glp-1 3' UTR, but only one, which overlaps with a translational derepression element, is functional in vivo. We propose that POS-1 regulates glp-1 mRNA translation by blocking access of other RBPs to a key regulatory sequence.
Collapse
Affiliation(s)
- Brian M Farley
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
40
|
Vaughn JN, Ellingson SR, Mignone F, von Arnim A. Known and novel post-transcriptional regulatory sequences are conserved across plant families. RNA (NEW YORK, N.Y.) 2012; 18:368-84. [PMID: 22237150 PMCID: PMC3285926 DOI: 10.1261/rna.031179.111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The sequence elements that mediate post-transcriptional gene regulation often reside in the 5' and 3' untranslated regions (UTRs) of mRNAs. Using six different families of dicotyledonous plants, we developed a comparative transcriptomics pipeline for the identification and annotation of deeply conserved regulatory sequences in the 5' and 3' UTRs. Our approach was robust to confounding effects of poor UTR alignability and rampant paralogy in plants. In the 3' UTR, motifs resembling PUMILIO-binding sites form a prominent group of conserved motifs. Additionally, Expansins, one of the few plant mRNA families known to be localized to specific subcellular sites, possess a core conserved RCCCGC motif. In the 5' UTR, one major subset of motifs consists of purine-rich repeats. A distinct and substantial fraction possesses upstream AUG start codons. Half of the AUG containing motifs reveal hidden protein-coding potential in the 5' UTR, while the other half point to a peptide-independent function related to translation. Among the former, we added four novel peptides to the small catalog of conserved-peptide uORFs. Among the latter, our case studies document patterns of uORF evolution that include gain and loss of uORFs, switches in uORF reading frame, and switches in uORF length and position. In summary, nearly three hundred post-transcriptional elements show evidence of purifying selection across the eudicot branch of flowering plants, indicating a regulatory function spanning at least 70 million years. Some of these sequences have experimental precedent, but many are novel and encourage further exploration.
Collapse
Affiliation(s)
- Justin N. Vaughn
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Sally R. Ellingson
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Flavio Mignone
- Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Albrecht von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee 37996, USA
- Corresponding author.E-mail .
| |
Collapse
|
41
|
Jiao Y, Bishop CE, Lu B. Mex3c regulates insulin-like growth factor 1 (IGF1) expression and promotes postnatal growth. Mol Biol Cell 2012; 23:1404-13. [PMID: 22357625 PMCID: PMC3327323 DOI: 10.1091/mbc.e11-11-0960] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mex3c is highly expressed in the testis, brain, and developing bone. Mex3c mutation causes postnatal growth retardation and background-dependent perinatal lethality, possibly through impairing the translation of insulin-like growth factor 1 mRNA in bone-forming cells. Insulin-like growth factor 1 (IGF1) mediates the growth-promoting activities of growth hormone. How Igf1 expression is regulated posttranscriptionally is unclear. Caenorhabditis elegans muscle excess 3 (MEX-3) is involved in cell fate specification during early embryonic development through regulating mRNAs involved in specifying cell fate. The function of its mammalian homologue, MEX3C, is unknown. Here we show that MEX3C deficiency in Mex3c homozygous mutant mice causes postnatal growth retardation and background-dependent perinatal lethality. Hypertrophy of chondrocytes in growth plates is significantly impaired. Circulating and bone local production of IGF1 are both decreased in mutant mice. Mex3c mRNA is strongly expressed in the testis and the brain, and highly expressed in resting and proliferating chondrocytes of the growth plates. MEX3C is able to enrich multiple mRNA species from tissue lysates, including Igf1. Igf1 expression in bone is decreased at the protein level but not at the mRNA level, indicating translational/posttranslational regulation. We propose that MEX3C protein plays an important role in enhancing the translation of Igf1 mRNA, which explains the perinatal lethality and growth retardation observed in MEX3C-deficient mice.
Collapse
Affiliation(s)
- Yan Jiao
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
42
|
Oldenbroek M, Robertson SM, Guven-Ozkan T, Gore S, Nishi Y, Lin R. Multiple RNA-binding proteins function combinatorially to control the soma-restricted expression pattern of the E3 ligase subunit ZIF-1. Dev Biol 2012; 363:388-98. [PMID: 22265679 DOI: 10.1016/j.ydbio.2012.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 11/16/2022]
Abstract
In C. elegans embryos, transcriptional repression in germline blastomeres requires PIE-1 protein. Germline blastomere-specific localization of PIE-1 depends, in part, upon regulated degradation of PIE-1 in somatic cells. We and others have shown that the temporal and spatial regulation of PIE-1 degradation is controlled by translation of the substrate-binding subunit, ZIF-1, of an E3 ligase. We now show that ZIF-1 expression in embryos is regulated by five maternally-supplied RNA-binding proteins. POS-1, MEX-3, and SPN-4 function as repressors of ZIF-1 expression, whereas MEX-5 and MEX-6 antagonize this repression. All five proteins bind directly to the zif-1 3' UTR in vitro. We show that, in vivo, POS-1 and MEX-5/6 have antagonistic roles in ZIF-1 expression. In vitro, they bind to a common region of the zif-1 3' UTR, with MEX-5 binding impeding that by POS-1. The region of the zif-1 3' UTR bound by MEX-5/6 also partially overlaps with that bound by MEX-3, consistent with their antagonistic functions on ZIF-1 expression in vivo. Whereas both MEX-3 and SPN-4 repress ZIF-1 expression, neither protein alone appears to be sufficient, suggesting that they function together in ZIF-1 repression. We propose that MEX-3 and SPN-4 repress ZIF-1 expression exclusively in 1- and 2-cell embryos, the only period during embryogenesis when these two proteins co-localize. As the embryo divides, ZIF-1 continues to be repressed in germline blastomeres by POS-1, a germline blastomere-specific protein. MEX-5/6 antagonize repression by POS-1 and MEX-3, enabling ZIF-1 expression in somatic blastomeres. We propose that ZIF-1 expression results from a net summation of complex positive and negative translational regulation by 3' UTR-binding proteins, with expression in a specific blastomere dependent upon the precise combination of these proteins in that cell.
Collapse
Affiliation(s)
- Marieke Oldenbroek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
43
|
Mainpal R, Priti A, Subramaniam K. PUF-8 suppresses the somatic transcription factor PAL-1 expression in C. elegans germline stem cells. Dev Biol 2011; 360:195-207. [PMID: 21968099 PMCID: PMC3736097 DOI: 10.1016/j.ydbio.2011.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/30/2011] [Accepted: 09/18/2011] [Indexed: 10/17/2022]
Abstract
RNA-binding proteins of the PUF family are well conserved post-transcriptional regulators that control a variety of developmental processes. The C. elegans protein PUF-8 is essential for several aspects of germ cell development including the maintenance of germline stem cells (GSCs). To explore the molecular mechanisms underlying its function, we have identified 160 germline-expressed mRNAs as potential targets of PUF-8. We generated GFP::H2B-3' UTR fusions for 17 mRNAs to assay their post-transcriptional regulation in germ cells. Twelve transgenes were not expressed in the mitotic germ cells, and depletion of PUF-8 led to misexpression of six of them in these cells. In contrast, the expression of 3' UTR fusion of hip-1, which encodes the HSP-70 interacting protein, was dependent on PUF-8. These results indicate that PUF-8 may regulate the expression of its targets both negatively as well as positively. We investigated the PUF-8-mediated post-transcriptional control of one mRNA, namely pal-1, which encodes a homeodomain transcription factor responsible for muscle development. Our results show that PUF-8 binds in vitro to specific sequences within pal-1 3' UTR that are critical for post-transcriptional suppression in GSCs. Removal of PUF-8 resulted in PAL-1 misexpression, and PAL-1-dependent misexpression of the myogenic promoter HLH-1 in germ cells. We propose that PUF-8 protects GSCs from the influence of somatic differentiation factors such as PAL-1, which are produced in the maternal germline but meant for embryogenesis.
Collapse
Affiliation(s)
- Rana Mainpal
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Agarwal Priti
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kuppuswamy Subramaniam
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
44
|
Kalchhauser I, Farley BM, Pauli S, Ryder SP, Ciosk R. FBF represses the Cip/Kip cell-cycle inhibitor CKI-2 to promote self-renewal of germline stem cells in C. elegans. EMBO J 2011; 30:3823-9. [PMID: 21822213 DOI: 10.1038/emboj.2011.263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/11/2011] [Indexed: 11/09/2022] Open
Abstract
Although the decision between stem cell self-renewal and differentiation has been linked to cell-cycle modifications, our understanding of cell-cycle regulation in stem cells is very limited. Here, we report that FBF/Pumilio, a conserved RNA-binding protein, promotes self-renewal of germline stem cells by repressing CKI-2(Cip/Kip), a Cyclin E/Cdk2 inhibitor. We have previously shown that repression of CYE-1 (Cyclin E) by another RNA-binding protein, GLD-1/Quaking, promotes germ cell differentiation. Together, these findings suggest that a post-transcriptional regulatory circuit involving FBF and GLD-1 controls the self-renewal versus differentiation decision in the germline by promoting high CYE-1/CDK-2 activity in stem cells, and inhibiting CYE-1/CDK-2 activity in differentiating cells.
Collapse
Affiliation(s)
- Irene Kalchhauser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Abstract
The Caenorhabditis elegans hermaphrodite is a complex multicellular animal that is composed of 959 somatic cells. The C. elegans genome contains ∼20,000 protein-coding genes, 940 of which encode regulatory transcription factors (TFs). In addition, the worm genome encodes more than 100 microRNAs and many other regulatory RNA and protein molecules. Most C. elegans genes are subject to regulatory control, most likely by multiple regulators, and combined, this dictates the activation or repression of the gene and corresponding protein in the relevant cells and under the appropriate conditions. A major goal in C. elegans research is to determine the spatiotemporal expression pattern of each gene throughout development and in response to different signals, and to determine how this expression pattern is accomplished. Gene regulatory networks describe physical and/or functional interactions between genes and their regulators that result in specific spatiotemporal gene expression. Such regulators can act at transcriptional or post-transcriptional levels. Here, I will discuss the methods that can be used to delineate gene regulatory networks in C. elegans. I will mostly focus on gene-centered yeast one-hybrid (Y1H) assays that are used to map interactions between non-coding genic regions, such as promoters, and regulatory TFs. The approaches discussed here are not only relevant to C. elegans biology, but can also be applied to other model organisms and humans.
Collapse
Affiliation(s)
- Albertha J.M. Walhout
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Phone: 508-856-4364
| |
Collapse
|
46
|
Robert VJP, Bessereau JL. Genome engineering by transgene-instructed gene conversion in C. elegans. Methods Cell Biol 2011; 106:65-88. [PMID: 22118274 DOI: 10.1016/b978-0-12-544172-8.00003-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nematode Caenorhabditis elegans is an anatomically simple metazoan that has been used over the last 40 years to address an extremely wide range of biological questions. One major advantage of the C. elegans system is the possibility to conduct large-scale genetic screens on randomly mutagenized animals, either looking for a phenotype of interest and subsequently relate the mutated gene to the biological process under study ("forward genetics"), or screening for molecular lesions impairing the function of a specific gene and later analyze the phenotype of the mutant ("reverse genetics"). However, the nature of the genomic lesion is not controlled in either strategy. Here we describe a technique to engineer customized mutations in the C. elegans genome by homologous recombination. This technique, called MosTIC (for Mos1 excision induced transgene-instructed gene conversion), requires a C. elegans strain containing an insertion of the Drosophila transposon Mos1 within the locus to modify. Expression of the Mos transposase in the germ line triggers Mos1 excision, which causes a DNA double strand break (DSB) in the chromosome at the excision site. The DSB locally stimulates DNA repair by homologous recombination, which can sometimes occur between the chromosome and a transgene containing sequence homologous to the broken locus. In that case, sequence variations contained in the repair template will be copied by gene conversion into the genome. Here we provide a detailed protocol of the MosTIC technique, which can be used to introduce point mutations and generate knockout and knock-in alleles.
Collapse
Affiliation(s)
- Valérie J P Robert
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
| | | |
Collapse
|
47
|
Pagano JM, Clingman CC, Ryder SP. Quantitative approaches to monitor protein-nucleic acid interactions using fluorescent probes. RNA (NEW YORK, N.Y.) 2011; 17:14-20. [PMID: 21098142 PMCID: PMC3004055 DOI: 10.1261/rna.2428111] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sequence-specific recognition of nucleic acids by proteins is required for nearly every aspect of gene expression. Quantitative binding experiments are a useful tool to measure the ability of a protein to distinguish between multiple sequences. Here, we describe the use of fluorophore-labeled oligonucleotide probes to quantitatively monitor protein/nucleic acid interactions. We review two complementary experimental methods, fluorescence polarization and fluorescence electrophoretic mobility shift assays, that enable the quantitative measurement of binding affinity. We also present two strategies for post-synthetic end-labeling of DNA or RNA oligonucleotides with fluorescent dyes. The approaches discussed here are efficient and sensitive, providing a safe and accessible alternative to the more commonly used radio-isotopic methods.
Collapse
Affiliation(s)
- John M Pagano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
48
|
Hwang SY, Rose LS. Control of asymmetric cell division in early C. elegans embryogenesis: teaming-up translational repression and protein degradation. BMB Rep 2010; 43:69-78. [PMID: 20193124 DOI: 10.5483/bmbrep.2010.43.2.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Asymmetric cell division is a fundamental mechanism for the generation of body axes and cell diversity during early embryogenesis in many organisms. During intrinsically asymmetric divisions, an axis of polarity is established within the cell and the division plane is oriented to ensure the differential segregation of developmental determinants to the daughter cells. Studies in the nematode Caenorhabditis elegans have contributed greatly to our understanding of the regulatory mechanisms underlying cell polarity and asymmetric division. However, much remains to be elucidated about the molecular machinery controlling the spatiotemporal distribution of key components. In this review we discuss recent findings that reveal intricate interactions between translational control and targeted proteolysis. These two mechanisms of regulation serve to carefully modulate protein levels and reinforce asymmetries, or to eliminate proteins from certain cells.
Collapse
Affiliation(s)
- Sue-Yun Hwang
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
49
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|