1
|
Deng Z, Ran Q, Chang W, Li C, Li B, Huang S, Huang J, Zhang K, Li Y, Liu X, Liang Y, Guo Z, Huang S. Cdon is essential for organ left-right patterning by regulating dorsal forerunner cells clustering and Kupffer's vesicle morphogenesis. Front Cell Dev Biol 2024; 12:1429782. [PMID: 39239564 PMCID: PMC11374761 DOI: 10.3389/fcell.2024.1429782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Cdon and boc are members of the cell adhesion molecule subfamily III Ig/fibronectin. Although they have been reported to be involved in muscle and neural development at late developmental stage, their early roles in embryonic development remain unknown. Here, we discovered that in zebrafish, cdon, but not boc, is expressed in dorsal forerunner cells (DFCs) and the epithelium of Kupffer's vesicle (KV), suggesting a potential role for cdon in organ left-right (LR) patterning. Further data showed that liver and heart LR patterning were disrupted in cdon morphants and cdon mutants. Mechanistically, we found that loss of cdon function led to defect in DFCs clustering, reduced KV lumen, and defective cilia, resulting in randomized Nodal/spaw signaling and subsequent organ LR patterning defects. Additionally, predominant distribution of a cdon morpholino (MO) in DFCs caused defects in DFC clustering, KV morphogenesis, cilia number/length, Nodal/spaw signaling, and organ LR asymmetry, similar to those observed in cdon morphants and cdon -/- embryos, indicating a cell-autonomous role for cdon in regulating KV formation during LR patterning. In conclusion, our data demonstrate that during gastrulation and early somitogenesis, cdon is essential for proper DFC clustering, KV formation, and normal cilia, thereby playing a critical role in establishing organ LR asymmetry.
Collapse
Affiliation(s)
- Zhilin Deng
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Ultrasound, Luzhou People's Hospital, Luzhou, China
| | - Qin Ran
- Department of Cardiology, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China
| | - Wenqi Chang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Chengni Li
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Botong Li
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Shuying Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Jingtong Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Ke Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yuanyuan Li
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Xingdong Liu
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Yundan Liang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Zhenhua Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| |
Collapse
|
2
|
Endo T. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps. Biochem Biophys Res Commun 2023; 682:223-243. [PMID: 37826946 DOI: 10.1016/j.bbrc.2023.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
3
|
Lencer E, Rains A, Binne E, Prekeris R, Artinger KB. Mutations in cdon and boc affect trunk neural crest cell migration and slow-twitch muscle development in zebrafish. Development 2023; 150:dev201304. [PMID: 37390228 PMCID: PMC10357035 DOI: 10.1242/dev.201304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
The transmembrane proteins cdon and boc are implicated in regulating hedgehog signaling during vertebrate development. Recent work showing roles for these genes in axon guidance and neural crest cell migration suggest that cdon and boc may play additional functions in regulating directed cell movements. We use newly generated and existing mutants to investigate a role for cdon and boc in zebrafish neural crest cell migration. We find that single mutant embryos exhibit normal neural crest phenotypes, but that neural crest migration is strikingly disrupted in double cdon;boc mutant embryos. We further show that this migration phenotype is associated with defects in the differentiation of slow-twitch muscle cells, and the loss of a Col1a1a-containing extracellular matrix, suggesting that neural crest defects may be a secondary consequence to defects in mesoderm development. Combined, our data add to a growing literature showing that cdon and boc act synergistically to promote hedgehog signaling during vertebrate development, and suggest that the zebrafish can be used to study the function of hedgehog receptor paralogs.
Collapse
Affiliation(s)
- Ezra Lencer
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Addison Rains
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Erin Binne
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Kristin B. Artinger
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Su L, Jing L, Zeng X, Chen T, Liu H, Kong Y, Wang X, Yang X, Fu C, Sun J, Huang D. 3D-Printed Prolamin Scaffolds for Cell-Based Meat Culture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207397. [PMID: 36271729 DOI: 10.1002/adma.202207397] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Cultivating meat from muscle stem cells in vitro requires 3D edible scaffolds as the supporting matrix. Electrohydrodynamic (EHD) printing is an emerging 3D-printing technology for fabricating ultrafine fibrous scaffolds with high precision microstructures for biomedical applications. However, edible EHD-printed scaffolds remain scarce in cultured meat (CM) production partly due to special requirements with regard to the printability of ink. Here, hordein or secalin is mixed, which are cereal prolamins extracted from barley or rye, with zein to produce pure prolamin-based inks, which exhibit favorable printability similar to common polycaprolactone ink. Zein/hordein and zein/secalin scaffolds with highly ordered tessellated structures are successfully fabricated after optimizing printing conditions. The prolamin scaffolds demonstrated good water stability and in vitro degradability due to the porous fiber surface, which is spontaneously generated by culturing muscle cells for 1 week. Moreover, mouse skeletal myoblasts (C2C12) and porcine skeletal muscle satellite cells (PSCs) can adhere and proliferate on the fibrous matrix, and a CM slice is produced by culturing PSCs on prolamin scaffolds with high tissue similarity. The upregulation of myogenic proteins shows that the differentiation process is triggered in the 3D culture, demonstrating the great potential of prolamin scaffolds in CM production.
Collapse
Affiliation(s)
- Lingshan Su
- Peak Of Excellent-Center Of Health and Food Technology, National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu, 215123, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Linzhi Jing
- Peak Of Excellent-Center Of Health and Food Technology, National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu, 215123, China
| | - Xianjian Zeng
- Peak Of Excellent-Center Of Health and Food Technology, National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu, 215123, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Tong Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Hang Liu
- Peak Of Excellent-Center Of Health and Food Technology, National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu, 215123, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Yan Kong
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Xiang Wang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Xin Yang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Caili Fu
- Peak Of Excellent-Center Of Health and Food Technology, National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu, 215123, China
| | - Jie Sun
- Department of Mechatronics and Robotics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Dejian Huang
- Peak Of Excellent-Center Of Health and Food Technology, National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu, 215123, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| |
Collapse
|
5
|
Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro. Cell Biol Toxicol 2022; 39:319-343. [PMID: 35701726 PMCID: PMC10042984 DOI: 10.1007/s10565-022-09730-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/10/2022] [Indexed: 12/16/2022]
Abstract
Adverse outcome pathways (AOPs) are organized sequences of key events (KEs) that are triggered by a xenobiotic-induced molecular initiating event (MIE) and summit in an adverse outcome (AO) relevant to human or ecological health. The AOP framework causally connects toxicological mechanistic information with apical endpoints for application in regulatory sciences. AOPs are very useful to link endophenotypic, cellular endpoints in vitro to adverse health effects in vivo. In the field of in vitro developmental neurotoxicity (DNT), such cellular endpoints can be assessed using the human "Neurosphere Assay," which depicts different endophenotypes for a broad variety of neurodevelopmental KEs. Combining this model with large-scale transcriptomics, we evaluated DNT hazards of two selected Chinese herbal medicines (CHMs) Lei Gong Teng (LGT) and Tian Ma (TM), and provided further insight into their modes-of-action (MoA). LGT disrupted hNPC migration eliciting an exceptional migration endophenotype. Time-lapse microscopy and intervention studies indicated that LGT disturbs laminin-dependent cell adhesion. TM impaired oligodendrocyte differentiation in human but not rat NPCs and activated a gene expression network related to oxidative stress. The LGT results supported a previously published AOP on radial glia cell adhesion due to interference with integrin-laminin binding, while the results of TM exposure were incorporated into a novel putative, stressor-based AOP. This study demonstrates that the combination of phenotypic and transcriptomic analyses is a powerful tool to elucidate compounds' MoA and incorporate the results into novel or existing AOPs for a better perception of the DNT hazard in a regulatory context.
Collapse
|
6
|
Kann AP, Hung M, Wang W, Nguyen J, Gilbert PM, Wu Z, Krauss RS. An injury-responsive Rac-to-Rho GTPase switch drives activation of muscle stem cells through rapid cytoskeletal remodeling. Cell Stem Cell 2022; 29:933-947.e6. [PMID: 35597234 PMCID: PMC9177759 DOI: 10.1016/j.stem.2022.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/14/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Many tissues harbor quiescent stem cells that are activated upon injury, subsequently proliferating and differentiating to repair tissue damage. Mechanisms by which stem cells sense injury and transition from quiescence to activation, however, remain largely unknown. Resident skeletal muscle stem cells (MuSCs) are essential orchestrators of muscle regeneration and repair. Here, with a combination of in vivo and ex vivo approaches, we show that quiescent MuSCs have elaborate, Rac GTPase-promoted cytoplasmic projections that respond to injury via the upregulation of Rho/ROCK signaling, facilitating projection retraction and driving downstream activation events. These early events involve rapid cytoskeletal rearrangements and occur independently of exogenous growth factors. This mechanism is conserved across a broad range of MuSC activation models, including injury, disease, and genetic loss of quiescence. Our results redefine MuSC activation and present a central mechanism by which quiescent stem cells initiate responses to injury.
Collapse
Affiliation(s)
- Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei Wang
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada
| | - Zhuhao Wu
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Uluca B, Lektemur Esen C, Saritas Erdogan S, Kumbasar A. NFI transcriptionally represses CDON and is required for SH-SY5Y cell survival. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194798. [PMID: 35151899 DOI: 10.1016/j.bbagrm.2022.194798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Nuclear Factor One (NFI) family of transcription factors regulate proliferation and multiple aspects of differentiation, playing analogous roles in embryonic development and various types of cancer. While all NFI family members are expressed in the developing brain and are involved in progression of brain cancers, their role in neuroblastoma has not been studied. Here we show that NFIB is required for the survival and proliferation of SH-SY5Y neuroblastoma cells, assessed by viability and colony formation assays. Cdon, an Ig superfamily member, is a SHH dependence receptor that acts as a tumor suppressor in neuroblastoma. In the absence of NFI, Cdon is upregulated in the developing mouse brain, however the mechanisms by which its transcription is regulated remains unknown. We report CDON as a downstream target of NFIs in SH-SY5Y cells. There are three putative NFI binding sites within the one kb CDON promoter, two of which are occupied by NFIs in SH-SY5Y cells and human neural stem cells. In dual-luciferase assays, Nfib directly represses CDON proximal promoter activity. Moreover, silencing NFIB leads to upregulation of CDON in SH-SY5Y cells, however, decreased cell proliferation in NFIB silenced cells could not be rescued by concomitantly silencing CDON, suggesting other molecular players are involved. For instance, p21, an NFI target in glioblastoma and breast cancer cells, is also upregulated upon NFIB knock-down. We propose that NFIB is indispensable for SH-SY5Y cells which may involve regulation of apoptosis inducer proteins CDON and p21.
Collapse
Affiliation(s)
- Betül Uluca
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; Department of Molecular Biotechnology, Turkish-German University, Beykoz, Istanbul 34820, Turkey
| | - Cemre Lektemur Esen
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Sinem Saritas Erdogan
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Asli Kumbasar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| |
Collapse
|
8
|
Taylor L, Wankell M, Saxena P, McFarlane C, Hebbard L. Cell adhesion an important determinant of myogenesis and satellite cell activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119170. [PMID: 34763027 DOI: 10.1016/j.bbamcr.2021.119170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Skeletal muscles represent a complex and highly organised tissue responsible for all voluntary body movements. Developed through an intricate and tightly controlled process known as myogenesis, muscles form early in development and are maintained throughout life. Due to the constant stresses that muscles are subjected to, skeletal muscles maintain a complex course of regeneration to both replace and repair damaged myofibers and to form new functional myofibers. This process, made possible by a pool of resident muscle stem cells, termed satellite cells, and controlled by an array of transcription factors, is additionally reliant on a diverse range of cell adhesion molecules and the numerous signaling cascades that they initiate. This article will review the literature surrounding adhesion molecules and their roles in skeletal muscle myogenesis and repair.
Collapse
Affiliation(s)
- Lauren Taylor
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Pankaj Saxena
- Department of Cardiothoracic Surgery, The Townsville University Hospital, Townsville, Queensland, Australia; College of Medicine, Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Craig McFarlane
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia.
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
9
|
ZSWIM8 is a myogenic protein that partly prevents C2C12 differentiation. Sci Rep 2021; 11:20880. [PMID: 34686700 PMCID: PMC8536758 DOI: 10.1038/s41598-021-00306-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
Cell adhesion molecule-related/downregulated by oncogenes (Cdon) is a cell-surface receptor that mediates cell–cell interactions and positively regulates myogenesis. The cytoplasmic region of Cdon interacts with other proteins to form a Cdon/JLP/Bnip-2/CDC42 complex that activates p38 mitogen-activated protein kinase (MAPK) and induces myogenesis. However, Cdon complex may include other proteins during myogenesis. In this study, we found that Cullin 2-interacting protein zinc finger SWIM type containing 8 (ZSWIM8) ubiquitin ligase is induced during C2C12 differentiation and is included in the Cdon complex. We knocked-down Zswim8 in C2C12 cells to determine the effect of ZSWIM8 on differentiation. However, we detected neither ZSWIM8-dependent ubiquitination nor the degradation of Bnip2, Cdon, or JLP. In contrast, ZSWIM8 knockdown accelerated C2C12 differentiation. These results suggest that ZSWIM8 is a Cdon complex-included myogenic protein that prevents C2C12 differentiation without affecting the stability of Bnip2, Cdon, and JLP.
Collapse
|
10
|
Chen X, Sun Y, Zhang T, Roepstorff P, Yang F. Comprehensive Analysis of the Proteome and PTMomes of C2C12 Myoblasts Reveals that Sialylation Plays a Role in the Differentiation of Skeletal Muscle Cells. J Proteome Res 2020; 20:222-235. [PMID: 33216553 DOI: 10.1021/acs.jproteome.0c00353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The C2C12 myoblast is a model that has been used extensively to study the process of skeletal muscle differentiation. Proteomics has advanced our understanding of skeletal muscle biology and also the differentiation process of skeletal muscle cells. However, there is still no comprehensive analysis of C2C12 myoblast proteomes, which is important for the understanding of key drivers for the differentiation of skeletal muscle cells. Here, we conducted multidimensional proteome profiling to get a comprehensive analysis of proteomes and PTMomes of C2C12 myoblasts with a TiSH strategy. A total of 8313 protein groups were identified, including 7827 protein groups from nonmodified peptides, 3803 phosphoproteins, and 977 formerly sialylated N-linked glycoproteins. Integrated analysis of proteomic and PTMomic data showed that almost all of the kinases and transcription factors in the muscle cell differentiation pathway were phosphorylated. Further analysis indicated that sialylation might play a role in the differentiation of C2C12 myoblasts. Further functional analysis demonstrated that C2C12 myoblasts showed a decreased level of sialylation during skeletal muscle cell differentiation. Inhibition of sialylation with the sialyltransferase inhibitor 3Fax-Neu5Ac resulted in the lower expression of MHC and suppression of myoblast fusion. In all, these results indicate that sialylation has an effect on the differentiation of skeletal muscle cells.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100149, China
| | - Yaping Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100149, China
| | - Tingting Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100149, China
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100149, China
| |
Collapse
|
11
|
Hong M, Christ A, Christa A, Willnow TE, Krauss RS. Cdon mutation and fetal alcohol converge on Nodal signaling in a mouse model of holoprosencephaly. eLife 2020; 9:60351. [PMID: 32876567 PMCID: PMC7467722 DOI: 10.7554/elife.60351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Holoprosencephaly (HPE), a defect in midline patterning of the forebrain and midface, arises ~1 in 250 conceptions. It is associated with predisposing mutations in the Nodal and Hedgehog (HH) pathways, with penetrance and expressivity graded by genetic and environmental modifiers, via poorly understood mechanisms. CDON is a multifunctional co-receptor, including for the HH pathway. In mice, Cdon mutation synergizes with fetal alcohol exposure, producing HPE phenotypes closely resembling those seen in humans. We report here that, unexpectedly, Nodal signaling is a major point of synergistic interaction between Cdon mutation and fetal alcohol. Window-of-sensitivity, genetic, and in vitro findings are consistent with a model whereby brief exposure of Cdon mutant embryos to ethanol during gastrulation transiently and partially inhibits Nodal pathway activity, with consequent effects on midline patterning. These results illuminate mechanisms of gene-environment interaction in a multifactorial model of a common birth defect.
Collapse
Affiliation(s)
- Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Annabel Christ
- Max-Delbruck-Center for Molecular Medicine, Berlin, Germany
| | - Anna Christa
- Max-Delbruck-Center for Molecular Medicine, Berlin, Germany
| | | | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
12
|
Joseph GA, Hung M, Goel AJ, Hong M, Rieder MK, Beckmann ND, Serasinghe MN, Chipuk JE, Devarakonda PM, Goldhamer DJ, Aldana-Hernandez P, Curtis J, Jacobs RL, Krauss RS. Late-onset megaconial myopathy in mice lacking group I Paks. Skelet Muscle 2019; 9:5. [PMID: 30791960 PMCID: PMC6383276 DOI: 10.1186/s13395-019-0191-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Group I Paks are serine/threonine kinases that function as major effectors of the small GTPases Rac1 and Cdc42, and they regulate cytoskeletal dynamics, cell polarity, and transcription. We previously demonstrated that Pak1 and Pak2 function redundantly to promote skeletal myoblast differentiation during postnatal development and regeneration in mice. However, the roles of Pak1 and Pak2 in adult muscle homeostasis are unknown. Choline kinase β (Chk β) is important for adult muscle homeostasis, as autosomal recessive mutations in CHKβ are associated with two human muscle diseases, megaconial congenital muscular dystrophy and proximal myopathy with focal depletion of mitochondria. METHODS We analyzed mice conditionally lacking Pak1 and Pak2 in the skeletal muscle lineage (double knockout (dKO) mice) over 1 year of age. Muscle integrity in dKO mice was assessed with histological stains, immunofluorescence, electron microscopy, and western blotting. Assays for mitochondrial respiratory complex function were performed, as was mass spectrometric quantification of products of choline kinase. Mice and cultured myoblasts deficient for choline kinase β (Chk β) were analyzed for Pak1/2 phosphorylation. RESULTS dKO mice developed an age-related myopathy. By 10 months of age, dKO mouse muscles displayed centrally-nucleated myofibers, fibrosis, and signs of degeneration. Disease severity occurred in a rostrocaudal gradient, hindlimbs more strongly affected than forelimbs. A distinctive feature of this myopathy was elongated and branched intermyofibrillar (megaconial) mitochondria, accompanied by focal mitochondrial depletion in the central region of the fiber. dKO muscles showed reduced mitochondrial respiratory complex I and II activity. These phenotypes resemble those of rmd mice, which lack Chkβ and are a model for human diseases associated with CHKβ deficiency. Pak1/2 and Chkβ activities were not interdependent in mouse skeletal muscle, suggesting a more complex relationship in regulation of mitochondria and muscle homeostasis. CONCLUSIONS Conditional loss of Pak1 and Pak2 in mice resulted in an age-dependent myopathy with similarity to mice and humans with CHKβ deficiency. Protein kinases are major regulators of most biological processes but few have been implicated in muscle maintenance or disease. Pak1/Pak2 dKO mice offer new insights into these processes.
Collapse
Affiliation(s)
- Giselle A Joseph
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.,Present address: Novartis Institutes for BioMedical Research, 181 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - Aviva J Goel
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - Marysia-Kolbe Rieder
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - Noam D Beckmann
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - Madhavika N Serasinghe
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Parvathi M Devarakonda
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - David J Goldhamer
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Paulina Aldana-Hernandez
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Jonathan Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA. .,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.
| |
Collapse
|
13
|
Rasouli SJ, El-Brolosy M, Tsedeke AT, Bensimon-Brito A, Ghanbari P, Maischein HM, Kuenne C, Stainier DY. The flow responsive transcription factor Klf2 is required for myocardial wall integrity by modulating Fgf signaling. eLife 2018; 7:e38889. [PMID: 30592462 PMCID: PMC6329608 DOI: 10.7554/elife.38889] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/24/2018] [Indexed: 12/17/2022] Open
Abstract
Complex interplay between cardiac tissues is crucial for their integrity. The flow responsive transcription factor KLF2, which is expressed in the endocardium, is vital for cardiovascular development but its exact role remains to be defined. To this end, we mutated both klf2 paralogues in zebrafish, and while single mutants exhibit no obvious phenotype, double mutants display a novel phenotype of cardiomyocyte extrusion towards the abluminal side. This extrusion requires cardiac contractility and correlates with the mislocalization of N-cadherin from the lateral to the apical side of cardiomyocytes. Transgenic rescue data show that klf2 expression in endothelium, but not myocardium, prevents this cardiomyocyte extrusion phenotype. Transcriptome analysis of klf2 mutant hearts reveals that Fgf signaling is affected, and accordingly, we find that inhibition of Fgf signaling in wild-type animals can lead to abluminal cardiomyocyte extrusion. These studies provide new insights into how Klf2 regulates cardiovascular development and specifically myocardial wall integrity.
Collapse
Affiliation(s)
- Seyed Javad Rasouli
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Mohamed El-Brolosy
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Ayele Taddese Tsedeke
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Anabela Bensimon-Brito
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Parisa Ghanbari
- Department of Cardiac Development and RemodelingMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Hans-Martin Maischein
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Carsten Kuenne
- Bioinformatics Core UnitMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Didier Y Stainier
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| |
Collapse
|
14
|
Cerquone Perpetuini A, Re Cecconi AD, Chiappa M, Martinelli GB, Fuoco C, Desiderio G, Castagnoli L, Gargioli C, Piccirillo R, Cesareni G. Group I Paks support muscle regeneration and counteract cancer-associated muscle atrophy. J Cachexia Sarcopenia Muscle 2018; 9:727-746. [PMID: 29781585 PMCID: PMC6104114 DOI: 10.1002/jcsm.12303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Skeletal muscle is characterized by an efficient regeneration potential that is often impaired during myopathies. Understanding the molecular players involved in muscle homeostasis and regeneration could help to find new therapies against muscle degenerative disorders. Previous studies revealed that the Ser/Thr kinase p21 protein-activated kinase 1 (Pak1) was specifically down-regulated in the atrophying gastrocnemius of Yoshida hepatoma-bearing rats. In this study, we evaluated the role of group I Paks during cancer-related atrophy and muscle regeneration. METHODS We examined Pak1 expression levels in the mouse Tibialis Anterior muscles during cancer cachexia induced by grafting colon adenocarcinoma C26 cells and in vitro by dexamethasone treatment. We investigated whether the overexpression of Pak1 counteracts muscle wasting in C26-bearing mice and in vitro also during interleukin-6 (IL6)-induced or dexamethasone-induced C2C12 atrophy. Moreover, we analysed the involvement of group I Paks on myogenic differentiation in vivo and in vitro using the group I chemical inhibitor IPA-3. RESULTS We found that Pak1 expression levels are reduced during cancer-induced cachexia in the Tibialis Anterior muscles of colon adenocarcinoma C26-bearing mice and in vitro during dexamethasone-induced myotube atrophy. Electroporation of muscles of C26-bearing mice with plasmids directing the synthesis of PAK1 preserves fiber size in cachectic muscles by restraining the expression of atrogin-1 and MuRF1 and possibly by inducing myogenin expression. Consistently, the overexpression of PAK1 reduces the dexamethasone-induced expression of MuRF1 in myotubes and increases the phospho-FOXO3/FOXO3 ratio. Interestingly, the ectopic expression of PAK1 counteracts atrophy in vitro by restraining the IL6-Stat3 signalling pathway measured in luciferase-based assays and by reducing rates of protein degradation in atrophying myotubes exposed to IL6. On the other hand, we observed that the inhibition of group I Paks has no effect on myotube atrophy in vitro and is associated with impaired muscle regeneration in vivo and in vitro. In fact, we found that mice treated with the group I inhibitor IPA-3 display a delayed recovery from cardiotoxin-induced muscle injury. This is consistent with in vitro experiments showing that IPA-3 impairs myogenin expression and myotube formation in vessel-associated myogenic progenitors, C2C12 myoblasts, and satellite cells. Finally, we observed that IPA-3 reduces p38α/β phosphorylation that is required to proceed through various stages of satellite cells differentiation: activation, asymmetric division, and ultimately myotube formation. CONCLUSIONS Our data provide novel evidence that is consistent with group I Paks playing a central role in the regulation of muscle homeostasis, atrophy and myogenesis.
Collapse
Affiliation(s)
| | - Andrea David Re Cecconi
- Department of NeurosciencesIRCCS‐Mario Negri Institute for Pharmacological ResearchVia Giuseppe La Masa20156MilanItaly
| | - Michela Chiappa
- Department of NeurosciencesIRCCS‐Mario Negri Institute for Pharmacological ResearchVia Giuseppe La Masa20156MilanItaly
| | - Giulia Benedetta Martinelli
- Department of NeurosciencesIRCCS‐Mario Negri Institute for Pharmacological ResearchVia Giuseppe La Masa20156MilanItaly
| | - Claudia Fuoco
- Department of BiologyUniversity of Rome Tor VergataVia della ricerca scientifica00133RomeItaly
| | - Giovanni Desiderio
- Department of BiologyUniversity of Rome Tor VergataVia della ricerca scientifica00133RomeItaly
| | - Luisa Castagnoli
- Department of BiologyUniversity of Rome Tor VergataVia della ricerca scientifica00133RomeItaly
| | - Cesare Gargioli
- Department of BiologyUniversity of Rome Tor VergataVia della ricerca scientifica00133RomeItaly
| | - Rosanna Piccirillo
- Department of NeurosciencesIRCCS‐Mario Negri Institute for Pharmacological ResearchVia Giuseppe La Masa20156MilanItaly
| | - Gianni Cesareni
- Department of BiologyUniversity of Rome Tor VergataVia della ricerca scientifica00133RomeItaly
| |
Collapse
|
15
|
Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM, Monsoro-Burq AH. A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates. PLoS Biol 2017; 15:e2004045. [PMID: 29049289 PMCID: PMC5663519 DOI: 10.1371/journal.pbio.2004045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 10/31/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022] Open
Abstract
During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research. Vertebrate embryo germ layers become progressively regionalized by evolutionarily conserved molecular processes. Catching the early steps of this dynamic spatial cell diversification at the scale of the transcriptome was challenging, even with the advent of efficient RNA sequencing. We have microdissected complementary and defined areas of a single germ layer, the developing ectoderm, and explored how the transcriptome changes over time and space in the ectoderm during the differentiation of frog epidermis, neural plate, and neural crest. We have created EctoMap, a searchable interface using these regional transcriptomes, to predict the expression of the 31 thousand genes expressed in neurulae and their networks of co-expression, predictive of functional relationships. Through several examples, we illustrate how these data provide insights in development, cancer, evolution and stem cell biology.
Collapse
Affiliation(s)
- Jean-Louis Plouhinec
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
| | - Sofía Medina-Ruiz
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Caroline Borday
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Elsa Bernard
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
- Institut Curie, INSERM U900, Paris, France
- INSERM U900, Paris, France
| | - Jean-Philippe Vert
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
- Institut Curie, INSERM U900, Paris, France
- INSERM U900, Paris, France
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Richard M. Harland
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Anne H. Monsoro-Burq
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Universitaire de France, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Liu X, Liu Y, Zhao F, Hun T, Li S, Wang Y, Sun W, Wang W, Sun Y, Fan Y. Regulation of cell arrangement using a novel composite micropattern. J Biomed Mater Res A 2017; 105:3093-3101. [DOI: 10.1002/jbm.a.36157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/16/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoyi Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yaoping Liu
- Institute of Microelectronics, Peking University; Beijing 100871 People's Republic of China
| | - Feng Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Tingting Hun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Shan Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yuguang Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; 100083 People's Republic of China
| | - Weijie Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; 100083 People's Republic of China
| | - Wei Wang
- Institute of Microelectronics, Peking University; Beijing 100871 People's Republic of China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing 100871 China
- Innovation Center for Micro-Nano-electronics and Integrated System; Beijing 100871 China
| | - Yan Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- National Research Center for Rehabilitation Technical Aids; Beijing 100176 People's Republic of China
| |
Collapse
|
17
|
Hong M, Krauss RS. Ethanol itself is a holoprosencephaly-inducing teratogen. PLoS One 2017; 12:e0176440. [PMID: 28441416 PMCID: PMC5404885 DOI: 10.1371/journal.pone.0176440] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/10/2017] [Indexed: 02/05/2023] Open
Abstract
Ethanol is a teratogen, inducing a variety of structural defects in developing humans and animals that are exposed in utero. Mechanisms of ethanol teratogenicity in specific defects are not well understood. Oxidative metabolism of ethanol by alcohol dehydrogenase or cytochrome P450 2E1 has been implicated in some of ethanol's teratogenic effects, either via production of acetaldehyde or competitive inhibition of retinoic acid synthesis. Generalized oxidative stress in response to ethanol may also play a role in its teratogenicity. Among the developmental defects that ethanol has been implicated in is holoprosencephaly, a failure to define the midline of the forebrain and midface that is associated with a deficiency in Sonic hedgehog pathway function. Etiologically, holoprosencephaly is thought to arise from a complex combination of genetic and environmental factors. We have developed a gene-environment interaction model of holoprosencephaly in mice, in which mutation of the Sonic hedgehog coreceptor, Cdon, synergizes with transient in utero exposure to ethanol. This system was used to address whether oxidative metabolism is required for ethanol's teratogenic activity in holoprosencephaly. We report here that t-butyl alcohol, which is neither a substrate nor an inhibitor of alcohol dehydrogenases or Cyp2E1, is a potent inducer of holoprosencephaly in Cdon mutant mice. Additionally, antioxidant treatment did not prevent ethanol- or t-butyl alcohol-induced HPE in these mice. These findings are consistent with the conclusion that ethanol itself, rather than a consequence of its metabolism, is a holoprosencephaly-inducing teratogen.
Collapse
Affiliation(s)
- Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
18
|
Cdon deficiency causes cardiac remodeling through hyperactivation of WNT/β-catenin signaling. Proc Natl Acad Sci U S A 2017; 114:E1345-E1354. [PMID: 28154134 DOI: 10.1073/pnas.1615105114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
On pathological stress, Wnt signaling is reactivated and induces genes associated with cardiac remodeling and fibrosis. We have previously shown that a cell surface receptor Cdon (cell-adhesion associated, oncogene regulated) suppresses Wnt signaling to promote neuronal differentiation however its role in heart is unknown. Here, we demonstrate a critical role of Cdon in cardiac function and remodeling. Cdon is expressed and predominantly localized at intercalated disk in both mouse and human hearts. Cdon-deficient mice develop cardiac dysfunction including reduced ejection fraction and ECG abnormalities. Cdon-/- hearts exhibit increased fibrosis and up-regulation of genes associated with cardiac remodeling and fibrosis. Electrical remodeling was demonstrated by up-regulation and mislocalization of the gap junction protein, Connexin 43 (Cx43) in Cdon-/- hearts. In agreement with altered Cx43 expression, functional analysis both using Cdon-/- cardiomyocytes and shRNA-mediated knockdown in rat cardiomyocytes shows aberrant gap junction activities. Analysis of the underlying mechanism reveals that Cdon-/- hearts exhibit hyperactive Wnt signaling as evident by β-catenin accumulation and Axin2 up-regulation. On the other hand, the treatment of rat cardiomyocytes with a Wnt activator TWS119 reduces Cdon levels and aberrant Cx43 activities, similarly to Cdon-deficient cardiomyocytes, suggesting a negative feedback between Cdon and Wnt signaling. Finally, inhibition of Wnt/β-catenin signaling by XAV939, IWP2 or dickkopf (DKK)1 prevented Cdon depletion-induced up-regulation of collagen 1a and Cx43. Taken together, these results demonstrate that Cdon deficiency causes hyperactive Wnt signaling leading to aberrant intercellular coupling and cardiac fibrosis. Cdon exhibits great potential as a target for the treatment of cardiac fibrosis and cardiomyopathy.
Collapse
|
19
|
Group I Paks Promote Skeletal Myoblast Differentiation In Vivo and In Vitro. Mol Cell Biol 2017; 37:MCB.00222-16. [PMID: 27920252 DOI: 10.1128/mcb.00222-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/26/2016] [Indexed: 12/15/2022] Open
Abstract
Skeletal myogenesis is regulated by signal transduction, but the factors and mechanisms involved are not well understood. The group I Paks Pak1 and Pak2 are related protein kinases and direct effectors of Cdc42 and Rac1. Group I Paks are ubiquitously expressed and specifically required for myoblast fusion in Drosophila We report that both Pak1 and Pak2 are activated during mammalian myoblast differentiation. One pathway of activation is initiated by N-cadherin ligation and involves the cadherin coreceptor Cdo with its downstream effector, Cdc42. Individual genetic deletion of Pak1 and Pak2 in mice has no overt effect on skeletal muscle development or regeneration. However, combined muscle-specific deletion of Pak1 and Pak2 results in reduced muscle mass and a higher proportion of myofibers with a smaller cross-sectional area. This phenotype is exacerbated after repair to acute injury. Furthermore, primary myoblasts lacking Pak1 and Pak2 display delayed expression of myogenic differentiation markers and myotube formation. These results identify Pak1 and Pak2 as redundant regulators of myoblast differentiation in vitro and in vivo and as components of the promyogenic Ncad/Cdo/Cdc42 signaling pathway.
Collapse
|
20
|
Krauss RS, Joseph GA, Goel AJ. Keep Your Friends Close: Cell-Cell Contact and Skeletal Myogenesis. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029298. [PMID: 28062562 DOI: 10.1101/cshperspect.a029298] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of skeletal muscle is a multistage process that includes lineage commitment of multipotent progenitor cells, differentiation and fusion of myoblasts into multinucleated myofibers, and maturation of myofibers into distinct types. Lineage-specific transcriptional regulation lies at the core of this process, but myogenesis is also regulated by extracellular cues. Some of these cues are initiated by direct cell-cell contact between muscle precursor cells themselves or between muscle precursors and cells of other lineages. Examples of the latter include interaction of migrating neural crest cells with multipotent muscle progenitor cells, muscle interstitial cells with myoblasts, and neurons with myofibers. Among the signaling factors involved are Notch ligands and receptors, cadherins, Ig superfamily members, and Ephrins and Eph receptors. In this article we describe recent progress in this area and highlight open questions raised by the findings.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Giselle A Joseph
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Aviva J Goel
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
21
|
Regulation of Skeletal Myoblast Differentiation by Drebrin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:361-373. [DOI: 10.1007/978-4-431-56550-5_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Wang LC, Kennedy TE, Almazan G. A novel function of TBK1 as a target of Cdon in oligodendrocyte differentiation and myelination. J Neurochem 2016; 140:451-462. [PMID: 27797401 DOI: 10.1111/jnc.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
During central nervous system development, oligodendrocyte progenitors elaborate multiple branched processes to contact axons and initiate myelination. Using cultured primary rat oligodendrocytes (OLGs), we have recently demonstrated that a cell surface protein belonging to the immunoglobulin superfamily, cell adhesion molecule-related, down-regulated by oncogenes (Cdon), is important in initiating OLG differentiation and axon myelination by promoting the formation of branched cellular processes; however, the molecular mechanism by which Cdon regulates OLG differentiation is not known. Here, using Cdon immunoprecipitation (IP) and liquid chromatography-tandem mass spectrometry analysis, we identified serine/threonine kinase TANK-binding kinase 1 (TBK1) as a candidate novel target of Cdon. We confirmed this interaction using co-IP and immunofluorescence with TBK1 antibodies, showing that TBK1 partly co-localizes with Cdon along cellular processes in puncta-like structures. We show that TBK1 is expressed throughout OLG differentiation, and surprisingly, that levels of phosphorylated TBK1 (ser172) increase during OLG maturation, while total levels of TBK1 protein decrease. To investigate function, TBK1 expression was knocked down using siRNA in OLG primary cultures, reducing protein levels by 69%. Two myelin-specific proteins, myelin basic protein and myelin-associated glycoprotein, were similarly reduced when examined at day 2 and day 4 of OLG differentiation. Reduced Cdon or TBK1 expression also decreased Akt phosphorylation at Threonine 308 in OLG. Our findings provide evidence that a Cdon-TBK1 complex is associated with Akt phosphorylation and early OLG differentiation.
Collapse
Affiliation(s)
- Li-Chun Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Guillermina Almazan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Wang LC, Almazan G. Role of Sonic Hedgehog Signaling in Oligodendrocyte Differentiation. Neurochem Res 2016; 41:3289-3299. [PMID: 27639396 DOI: 10.1007/s11064-016-2061-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 11/28/2022]
Abstract
During development, the secreted molecule Sonic Hedgehog (Shh) is required for lineage specification and proliferation of oligodendrocyte progenitors (OLPs), which are the glia cells responsible for the myelination of axons in the central nervous system (CNS). Shh signaling has been implicated in controlling both the generation of oligodendrocytes (OLGs) during embryonic development and their production in adulthood. Although, some evidence points to a role of Shh signaling in OLG development, its involvement in OLG differentiation remains to be fully determined. The objective of this study was to assess whether Shh signaling is involved in OLG differentiation after neural stem cell commitment to the OLG lineage. To address these questions, we manipulated Shh signaling using cyclopamine, a potent inhibitor of Shh signaling activator Smoothened (Smo), alone or combined with the agonist SAG in OLG primary cultures and assessed expression of myelin-specific markers. We found that inactivation of Shh signaling caused a dose-dependent decrease in myelin basic protein (MBP) and myelin associated glycoprotein (MAG) in differentiating OLGs. Co-treatment of the cells with SAG reversed the inhibitory effect of cyclopamine on both myelin-specific protein levels and morphological changes associated with it. Further experiments are required to elucidate the molecular mechanism by which Shh signaling regulates OLG differentiation.
Collapse
Affiliation(s)
- Li-Chun Wang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Guillermina Almazan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
24
|
Krauss RS, Chihara D, Romer AI. Embracing change: striated-for-smooth muscle replacement in esophagus development. Skelet Muscle 2016; 6:27. [PMID: 27504178 PMCID: PMC4976477 DOI: 10.1186/s13395-016-0099-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
The esophagus functions to transport food from the oropharyngeal region to the stomach via waves of peristalsis and transient relaxation of the lower esophageal sphincter. The gastrointestinal tract, including the esophagus, is ensheathed by the muscularis externa (ME). However, while the ME of the gastrointestinal tract distal to the esophagus is exclusively smooth muscle, the esophageal ME of many vertebrate species comprises a variable amount of striated muscle. The esophageal ME is initially composed only of smooth muscle, but its developmental maturation involves proximal-to-distal replacement of smooth muscle with striated muscle. This fascinating phenomenon raises two important questions: what is the developmental origin of the striated muscle precursor cells, and what are the cellular and morphogenetic mechanisms underlying the process? Studies addressing these questions have provided controversial answers. In this review, we discuss the development of ideas in this area and recent work that has shed light on these issues. A working model has emerged that should permit deeper understanding of the role of ME development and maturation in esophageal disorders and in the functional and evolutionary underpinnings of the variable degree of esophageal striated myogenesis in vertebrate species.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA
| | - Daisuke Chihara
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA
| | - Anthony I Romer
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA ; Present address: Department of Genetics and Development, Columbia University, 701 West 168th Street, HHSC 1602, New York, NY 10032 USA
| |
Collapse
|
25
|
Wang LC, Almazan G. Cdon, a cell surface protein, mediates oligodendrocyte differentiation and myelination. Glia 2016; 64:1021-33. [PMID: 26988125 DOI: 10.1002/glia.22980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/11/2016] [Indexed: 12/13/2022]
Abstract
During central nervous system development, oligodendrocyte progenitors (OLPs) establish multiple branched processes and axonal contacts to initiate myelination. A complete understanding of the molecular signals implicated in cell surface interaction to initiate myelination/remyelination is currently lacking. The objective of our study was to assess whether Cdon, a cell surface protein that was shown to participate in muscle and neuron cell development, is involved in oligodendrocyte (OLG) differentiation and myelination. Here, we demonstrate that endogenous Cdon protein is expressed in OLPs, increasing in the early differentiation stages and decreasing in mature OLGs. Immunocytochemistry of endogenous Cdon showed localization on both OLG cell membranes and cellular processes exhibiting puncta- or varicosity-like structures. Cdon knockdown with siRNA decreased protein levels by 62% as well as two myelin-specific proteins, MBP and MAG. Conversely, overexpression of full-length rat Cdon increased myelin proteins in OLGs. The complexity of OLGs branching and contact point numbers with axons were also increased in Cdon overexpressing cells growing alone or in coculture with dorsal root ganglion neurons (DRGNs). Furthermore, myelination of DRGNs was decreased when OLPs were transfected with Cdon siRNA. Altogether, our results suggest that Cdon participates in OLG differentiation and myelination, most likely in the initial stages of development.
Collapse
Affiliation(s)
- Li-Chun Wang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
| | - Guillermina Almazan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
| |
Collapse
|
26
|
Powell DR, Williams JS, Hernandez-Lagunas L, Salcedo E, O'Brien JH, Artinger KB. Cdon promotes neural crest migration by regulating N-cadherin localization. Dev Biol 2015; 407:289-99. [PMID: 26256768 DOI: 10.1016/j.ydbio.2015.07.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/28/2022]
Abstract
Neural crest cells (NCCs) are essential embryonic progenitor cells that are unique to vertebrates and form a remarkably complex and coordinated system of highly motile cells. Migration of NCCs occurs along specific pathways within the embryo in response to both environmental cues and cell-cell interactions within the neural crest population. Here, we demonstrate a novel role for the putative Sonic hedgehog (Shh) receptor and cell adhesion regulator, cdon, in zebrafish neural crest migration. cdon is expressed in developing premigratory NCCs but is downregulated once the cells become migratory. Knockdown of cdon results in aberrant migration of trunk NCCs: crestin positive cells can emigrate out of the neural tube but stall shortly after the initiation of migration. Live cell imaging analysis demonstrates reduced directedness of migration, increased velocity and mispositioned cell protrusions. In addition, transplantation analysis suggests that cdon is required cell-autonomously for directed NCC migration in the trunk. Interestingly, N-cadherin is mislocalized following cdon knockdown suggesting that the role of cdon in NCCs is to regulate N-cadherin localization. Our results reveal a novel role for cdon in zebrafish neural crest migration, and suggest a mechanism by which Cdon is required to localize N-cadherin to the cell membrane in migratory NCCs for directed migration.
Collapse
Affiliation(s)
- Davalyn R Powell
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; Cell Biology, Stem Cells, and Development Graduate Program, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Jason S Williams
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; Cell Biology, Stem Cells, and Development Graduate Program, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Laura Hernandez-Lagunas
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Ernesto Salcedo
- Department of Cell and Developmental biology, School of Medicine and USA Rocky Mountain Taste and Smell Center, Anschutz Medical Campus , University of Colorado, Aurora, CO 80045, USA
| | - Jenean H O'Brien
- Department of Pharmacology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
27
|
Gardner S, Gross SM, David LL, Klimek JE, Rotwein P. Separating myoblast differentiation from muscle cell fusion using IGF-I and the p38 MAP kinase inhibitor SB202190. Am J Physiol Cell Physiol 2015; 309:C491-500. [PMID: 26246429 DOI: 10.1152/ajpcell.00184.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/30/2015] [Indexed: 11/22/2022]
Abstract
The p38 MAP kinases play critical roles in skeletal muscle biology, but the specific processes regulated by these kinases remain poorly defined. Here we find that activity of p38α/β is important not only in early phases of myoblast differentiation, but also in later stages of myocyte fusion and myofibrillogenesis. By treatment of C2 myoblasts with the promyogenic growth factor insulin-like growth factor (IGF)-I, the early block in differentiation imposed by the p38 chemical inhibitor SB202190 could be overcome. Yet, under these conditions, IGF-I could not prevent the later impairment of muscle cell fusion, as marked by the nearly complete absence of multinucleated myofibers. Removal of SB202190 from the medium of differentiating myoblasts reversed the fusion block, as multinucleated myofibers were detected several hours later and reached ∼90% of the culture within 30 h. Analysis by quantitative mass spectroscopy of proteins that changed in abundance following removal of the inhibitor revealed a cohort of upregulated muscle-enriched molecules that may be important for both myofibrillogenesis and fusion. We have thus developed a model system that allows separation of myoblast differentiation from muscle cell fusion and should be useful in identifying specific steps regulated by p38 MAP kinase-mediated signaling in myogenesis.
Collapse
Affiliation(s)
- Samantha Gardner
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Sean M Gross
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - John E Klimek
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| |
Collapse
|
28
|
Cdo suppresses canonical Wnt signalling via interaction with Lrp6 thereby promoting neuronal differentiation. Nat Commun 2014; 5:5455. [PMID: 25406935 DOI: 10.1038/ncomms6455] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 10/02/2014] [Indexed: 01/23/2023] Open
Abstract
Canonical Wnt signalling regulates expansion of neural progenitors and functions as a dorsalizing signal in the developing forebrain. In contrast, the multifunctional co-receptor Cdo promotes neuronal differentiation and is important for the function of the ventralizing signal, Shh. Here we show that Cdo negatively regulates Wnt signalling during neurogenesis. Wnt signalling is enhanced in Cdo-deficient cells, leading to impaired neuronal differentiation. The ectodomains of Cdo and Lrp6 interact via the Ig2 repeat of Cdo and the LDLR repeats of Lrp6, and the Cdo Ig2 repeat is necessary for Cdo-dependent Wnt inhibition. Furthermore, the Cdo-deficient dorsal forebrain displays stronger Wnt signalling activity, increased cell proliferation and enhanced expression of the dorsal markers and Wnt targets, Pax6, Gli3, Axin2. Therefore, in addition to promoting ventral central nervous system cell fates with Shh, Cdo promotes neuronal differentiation by suppression of Wnt signalling and provides a direct link between two major dorsoventral morphogenetic signalling pathways.
Collapse
|
29
|
Lee EA, Im SG, Hwang NS. Efficient myogenic commitment of human mesenchymal stem cells on biomimetic materials replicating myoblast topography. Biotechnol J 2014; 9:1604-12. [DOI: 10.1002/biot.201400020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/08/2014] [Accepted: 09/12/2014] [Indexed: 12/28/2022]
|
30
|
Cdon acts as a Hedgehog decoy receptor during proximal-distal patterning of the optic vesicle. Nat Commun 2014; 5:4272. [PMID: 25001599 PMCID: PMC4102123 DOI: 10.1038/ncomms5272] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Patterning of the vertebrate optic vesicle into proximal/optic stalk and distal/neural retina involves midline-derived Hedgehog (Hh) signalling, which promotes stalk specification. In the absence of Hh signalling, the stalks are not specified, causing cyclopia. Recent studies showed that the cell adhesion molecule Cdon forms a heteromeric complex with the Hh receptor Patched 1 (Ptc1). This receptor complex binds Hh and enhances signalling activation, indicating that Cdon positively regulates the pathway. Here we show that in the developing zebrafish and chick optic vesicle, in which cdon and ptc1 are expressed with a complementary pattern, Cdon acts as a negative Hh signalling regulator. Cdon predominantly localizes to the basolateral side of neuroepithelial cells, promotes the enlargement of the neuroepithelial basal end-foot and traps Hh protein, thereby limiting its dispersion. This Ptc-independent function protects the retinal primordium from Hh activity, defines the stalk/retina boundary and thus the correct proximo-distal patterning of the eye. The Drosophila homologue of the vertebrate cell surface glycoprotein Cdon binds Hedgehog ligand and thereby prevents its diffusion. Here, the authors provide evidence for a similar mechanism during vertebrate optic vesicle patterning, where Cdon acts as a negative regulator of Hedgehog signalling to define the boundary between the optic stalk and the retina.
Collapse
|
31
|
Lu M, Marsters S, Ye X, Luis E, Gonzalez L, Ashkenazi A. E-cadherin couples death receptors to the cytoskeleton to regulate apoptosis. Mol Cell 2014; 54:987-998. [PMID: 24882208 DOI: 10.1016/j.molcel.2014.04.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/11/2014] [Accepted: 04/22/2014] [Indexed: 01/14/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a cellular process essential to the development and maintenance of solid tissues. In cancer, EMT suppresses apoptosis, but the mechanisms remain unclear. EMT selectively attenuated apoptosis signaling via the death receptors DR4 and DR5. Loss of the epithelial cell adhesion protein E-cadherin recapitulated this outcome, whereas homotypic E-cadherin engagement promoted apoptotic signaling via DR4/DR5, but not Fas. Depletion of α-catenin, which couples E-cadherin to the actin cytoskeleton, or actin polymerization inhibitors similarly attenuated DR4/DR5-induced apoptosis. E-cadherin bound specifically to ligated DR4/DR5, requiring extracellular cadherin domain 1 and calcium. E-cadherin augmented DR4/DR5 clustering and assembly of the death-inducing signaling complex (DISC), increasing caspase-8 activation in high molecular weight cell fractions. Conversely, EMT attenuated DR4/DR5-mediated DISC formation and caspase-8 stimulation. Consistent with these findings, epithelial cancer cell lines expressing higher E-cadherin levels displayed greater sensitivity to DR4/DR5-mediated apoptosis. These results have potential implications for tissue homeostasis as well as cancer therapy.
Collapse
Affiliation(s)
- Min Lu
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Scot Marsters
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiaofen Ye
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Elizabeth Luis
- Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lino Gonzalez
- Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
32
|
Romer AI, Singh J, Rattan S, Krauss RS. Smooth muscle fascicular reorientation is required for esophageal morphogenesis and dependent on Cdo. ACTA ACUST UNITED AC 2013; 201:309-23. [PMID: 23569214 PMCID: PMC3628509 DOI: 10.1083/jcb.201301005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cdo-deficient mice have defects in smooth muscle fascicular reorientation during esophageal morphogenesis, resulting in structural and functional defects including an aberrantly proximal skeletal–smooth muscle boundary and achalasia. Postnatal maturation of esophageal musculature involves proximal-to-distal replacement of smooth muscle with skeletal muscle by elusive mechanisms. We report that this process is impaired in mice lacking the cell surface receptor Cdo and identify the underlying developmental mechanism. A myogenic transition zone containing proliferative skeletal muscle precursor cells migrated in a proximal–distal direction, leaving differentiated myofibers in its wake. Distal to the transition zone, smooth muscle fascicles underwent a morphogenetic process whereby they changed their orientation relative to each other and to the lumen. Consequently, a path was cleared for the transition zone, and smooth muscle ultimately occupied only the distal-most esophagus; there was no loss of smooth muscle. Cdo−/− mice were specifically defective in fascicular reorientation, resulting in an aberrantly proximal skeletal–smooth muscle boundary. Furthermore, Cdo−/− mice displayed megaesophagus and achalasia, and their lower esophageal sphincter was resistant to nitric oxide–induced relaxation, suggesting a developmental linkage between patterning and sphincter function. Collectively, these results illuminate mechanisms of esophageal morphogenesis and motility disorders.
Collapse
Affiliation(s)
- Anthony I Romer
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
33
|
Biau S, Jin S, Fan CM. Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling. Biol Open 2012; 2:144-55. [PMID: 23429478 PMCID: PMC3575649 DOI: 10.1242/bio.20123186] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 12/18/2022] Open
Abstract
The gastrointestinal (GI) tract defines the digestive system and is composed of the stomach, intestine and colon. Among the major cell types lining radially along the GI tract are the epithelium, mucosa, smooth muscles and enteric neurons. The Hedgehog (Hh) pathway has been implicated in directing various aspects of the developing GI tract, notably the mucosa and smooth muscle growth, and enteric neuron patterning, while the Ret signaling pathway is selectively required for enteric neuron migration, proliferation, and differentiation. The growth arrest specific gene 1 (Gas1) encodes a GPI-anchored membrane protein known to bind to Sonic Hh (Shh), Indian Hh (Ihh), and Ret. However, its role in the GI tract has not been examined. Here we show that the Gas1 mutant GI tract, compared to the control, is shorter, has thinner smooth muscles, and contains more enteric progenitors that are abnormally distributed. These phenotypes are similar to those of the Shh mutant, supporting that Gas1 mediates most of the Shh activity in the GI tract. Because Gas1 has been shown to inhibit Ret signaling elicited by Glial cell line-derived neurotrophic factor (Gdnf), we explored whether Gas1 mutant enteric neurons displayed any alteration of Ret signaling levels. Indeed, isolated mutant enteric progenitors not only showed increased levels of phospho-Ret and its downstream effectors, phospho-Akt and phospho-Erk, but also displayed altered responses to Gdnf and Shh. We therefore conclude that phenotypes observed in the Gas1 mutant are due to a combination of reduced Hh signaling and increased Ret signaling.
Collapse
Affiliation(s)
- Sandrine Biau
- Department of Embryology, Carnegie Institution of Washington , 3520 San Martin Drive, Baltimore, Maryland 21218 , USA ; 2iE Foundation, International Institute for Water and Environmental Engineering , Rue de la Science, 01 BP 594, Ouagadougou 01 , Burkina Faso
| | | | | |
Collapse
|
34
|
Hong M, Krauss RS. Cdon mutation and fetal ethanol exposure synergize to produce midline signaling defects and holoprosencephaly spectrum disorders in mice. PLoS Genet 2012; 8:e1002999. [PMID: 23071453 PMCID: PMC3469434 DOI: 10.1371/journal.pgen.1002999] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 08/14/2012] [Indexed: 11/18/2022] Open
Abstract
Holoprosencephaly (HPE) is a remarkably common congenital anomaly characterized by failure to define the midline of the forebrain and midface. HPE is associated with heterozygous mutations in Sonic hedgehog (SHH) pathway components, but clinical presentation is extremely variable and many mutation carriers are unaffected. It has been proposed that these observations are best explained by a multiple-hit model, in which the penetrance and expressivity of an HPE mutation is enhanced by a second mutation or the presence of cooperating, but otherwise silent, modifier genes. Non-genetic risk factors are also implicated in HPE, and gene-environment interactions may provide an alternative multiple-hit model to purely genetic multiple-hit models; however, there is little evidence for this contention. We report here a mouse model in which there is dramatic synergy between mutation of a bona fide HPE gene (Cdon, which encodes a SHH co-receptor) and a suspected HPE teratogen, ethanol. Loss of Cdon and in utero ethanol exposure in 129S6 mice give little or no phenotype individually, but together produce defects in early midline patterning, inhibition of SHH signaling in the developing forebrain, and a broad spectrum of HPE phenotypes. Our findings argue that ethanol is indeed a risk factor for HPE, but genetically predisposed individuals, such as those with SHH pathway mutations, may be particularly susceptible. Furthermore, gene-environment interactions are likely to be important in the multifactorial etiology of HPE.
Collapse
Affiliation(s)
| | - Robert S. Krauss
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Pan CQ, Sudol M, Sheetz M, Low BC. Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell Signal 2012; 24:2143-65. [PMID: 22743133 DOI: 10.1016/j.cellsig.2012.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/22/2012] [Accepted: 06/16/2012] [Indexed: 01/14/2023]
Abstract
Cells coordinate and integrate various functional modules that control their dynamics, intracellular trafficking, metabolism and gene expression. Such capacity is mediated by specific scaffold proteins that tether multiple components of signaling pathways at plasma membrane, Golgi apparatus, mitochondria, endoplasmic reticulum, nucleus and in more specialized subcellular structures such as focal adhesions, cell-cell junctions, endosomes, vesicles and synapses. Scaffold proteins act as "pacemakers" as well as "placemakers" that regulate the temporal, spatial and kinetic aspects of protein complex assembly by modulating the local concentrations, proximity, subcellular dispositions and biochemical properties of the target proteins through the intricate use of their modular protein domains. These regulatory mechanisms allow them to gate the specificity, integration and crosstalk of different signaling modules. In addition to acting as physical platforms for protein assembly, many professional scaffold proteins can also directly modify the properties of their targets while they themselves can be regulated by post-translational modifications and/or mechanical forces. Furthermore, multiple scaffold proteins can form alliances of higher-order regulatory networks. Here, we highlight the emerging themes of scaffold proteins by analyzing their common and distinctive mechanisms of action and regulation, which underlie their functional plasticity in cell signaling. Understanding these mechanisms in the context of space, time and force should have ramifications for human physiology and for developing new therapeutic approaches to control pathological states and diseases.
Collapse
Affiliation(s)
- Catherine Qiurong Pan
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Republic of Singapore.
| | | | | | | |
Collapse
|
36
|
Pan CQ, Low BC. Functional plasticity of the BNIP-2 and Cdc42GAP Homology (BCH) domain in cell signaling and cell dynamics. FEBS Lett 2012; 586:2674-91. [DOI: 10.1016/j.febslet.2012.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
37
|
Xiao F, Wang H, Fu X, Li Y, Wu Z. TRAF6 promotes myogenic differentiation via the TAK1/p38 mitogen-activated protein kinase and Akt pathways. PLoS One 2012; 7:e34081. [PMID: 22496778 PMCID: PMC3319550 DOI: 10.1371/journal.pone.0034081] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/21/2012] [Indexed: 12/31/2022] Open
Abstract
p38 mitogen-activated protein kinase (MAPK) is an essential kinase involved in myogenic differentiation. Although many substrates of p38 MAPK have been identified, little is known about its upstream activators during myogenic differentiation. TRAF6 is known to function in cytokine signaling during inflammatory responses. However, not much is known about its role in myogenic differentiation and muscle regeneration. We showed here that TRAF6 and its intrinsic ubiquitin E3 ligase activity are required for myogenic differentiation. In mouse myoblasts, knockdown of TRAF6 compromised the p38 MAPK and Akt pathways, while deliberate activation of either pathway rescued the differentiation defect caused by TRAF6 knockdown. TAK1 acted as a key signal transducer downstream of TRAF6 in myogenic differentiation. In vivo, knockdown of TRAF6 in mouse muscles compromised the injury-induced muscle regeneration without impairing macrophage infiltration and myoblast proliferation. Collectively, we demonstrated that TRAF6 promotes myogenic differentiation and muscle regeneration via the TAK1/p38 MAPK and Akt pathways.
Collapse
Affiliation(s)
| | | | | | | | - Zhenguo Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
- * E-mail:
| |
Collapse
|
38
|
Tran P, Ho SM, Kim BG, Vuong TA, Leem YE, Bae GU, Kang JS. TGF-β-activated kinase 1 (TAK1) and apoptosis signal-regulating kinase 1 (ASK1) interact with the promyogenic receptor Cdo to promote myogenic differentiation via activation of p38MAPK pathway. J Biol Chem 2012; 287:11602-15. [PMID: 22337877 DOI: 10.1074/jbc.m112.351601] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
p38MAPK plays an essential role in the transition of myoblasts to differentiated myotubes through the activation of MyoD family transcription factors. A promyogenic cell surface molecule, Cdo, promotes myogenic differentiation mainly through activation of the p38MAPK pathway. Two MAP3Ks, TAK1 and ASK1, can activate p38MAPK via MKK6 in various cell systems. Moreover TAK1 has been shown to promote myogenic differentiation via p38MAPK activation. In this study, we hypothesized that TAK1 and ASK1 might function as MAP3Ks in Cdo-mediated p38MAPK activation during myoblast differentiation. Both ASK1 and TAK1 were expressed in myoblasts and interacted with the cytoplasmic tail of Cdo and a scaffold protein, JLP. The depletion of TAK1 or ASK1 in C2C12 cells decreased myoblast differentiation, whereas overexpression of TAK1 or ASK1 in C2C12 cells enhanced myotube formation. In agreement with this, overexpression of ASK1 or TAK1 resulted in enhanced p38MAPK activation, and their knockdown inhibited p38MAPK in C2C12 cells. Overexpression of TAK1 or ASK1 in Cdo(-/-) myoblasts and Cdo-depleted C2C12 cells restored p38MAPK activation as well as myotube formation. Furthermore, ASK1 and TAK1 compensated for each other in p38MAPK activation and myoblast differentiation. Taken together, these findings suggest that ASK1 and TAK1 function as MAP3Ks in Cdo-mediated p38MAPK activation to promote myogenic differentiation.
Collapse
Affiliation(s)
- Phong Tran
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Cdon and Boc: Two transmembrane proteins implicated in cell-cell communication. Int J Biochem Cell Biol 2012; 44:698-702. [PMID: 22326621 DOI: 10.1016/j.biocel.2012.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/20/2012] [Accepted: 01/27/2012] [Indexed: 11/23/2022]
Abstract
Cdon and Boc, and their Drosophila homologues Ihog and Boi, are evolutionary conserved transmembrane glycoproteins belonging to a subgroup of the Immunoglobulin superfamily of cell adhesion molecules (CAMs). Initially isolated in vertebrates as CAMs that link cadherin function with MAPK signaling in myoblast differentiation, they have thereafter been shown to act as essential receptors for the Hedgehog (Hh) family of secreted proteins. They associate with both ligand and other Hh receptor components, including Ptch and Gas1, thus forming homo- and heteromeric complexes. In Drosophila, they are also involved in ligand processing and release from Hh producing cells. Cdon/Boc and Ihog/Boi can substitute one another and play redundant functions is some contexts. In addition, Boc, but not Cdon, mediates axon guidance information provided by Hh in specific neuronal populations, whereas mutations in the CDON cause holoprosencephaly, a human congenital anomaly defined by forebrain midline defects prominently associated with diminished Hh pathway activity.
Collapse
|
40
|
Hedgehog signaling regulates myelination in the peripheral nervous system through primary cilia. Differentiation 2012; 83:S78-85. [DOI: 10.1016/j.diff.2011.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 11/19/2022]
|
41
|
Lee HJ, Bae GU, Leem YE, Choi HK, Kang TM, Cho H, Kim ST, Kang JS. Phosphorylation of Stim1 at serine 575 via netrin-2/Cdo-activated ERK1/2 is critical for the promyogenic function of Stim1. Mol Biol Cell 2012; 23:1376-87. [PMID: 22298426 PMCID: PMC3315807 DOI: 10.1091/mbc.e11-07-0634] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The promyogenic cell surface molecule Cdo is required for activation of extracellular signal-regulated kinase (ERK) and nuclear factor of activated T cells c3 (NFATc3) induced by netrin-2 in myogenic differentiation. However, the molecular mechanism leading to NFATc3 activation is unknown. Stromal interaction molecule 1 (Stim1), an internal calcium sensor of the endoplasmic reticulum store, promotes myogenesis via activation of NFATc3. In this study we investigated the functional interaction between Cdo and Stim1 in myogenic differentiation. Overexpression and depletion of Stim1 enhanced or decreased myotube formation, respectively. Of interest, Stim1 protein levels were decreased in Cdo-deficient perinatal hindlimb muscles or primary myoblasts; this correlates with defective NFATc3 activation in Cdo(-/-) myoblasts upon differentiation. Forced activation of NFATc3 by overexpression of calcineurin restored differentiation of Cdo-depleted C2C12 myoblasts. Furthermore, Cdo and Stim1 formed a complex in 293T cells or in differentiating C2C12 myoblasts. The netrin-2-mediated NFATc3 activation was coincident with robust interactions between Cdo and Stim1 in myoblasts and the ERK-mediated Stim1 phosphorylation at serine 575. The serine 575 phosphorylation was enhanced in C2C12 cells upon differentiation, and the alanine substitution of serine 575 failed to restore differentiation of Stim1-depleted myoblasts. Taken together, the results indicate that cell adhesion signaling triggered by netrin-2/Cdo induces Stim1 phosphorylation at serine 575 by ERK, which promotes myoblast differentiation.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Leem YE, Han JW, Lee HJ, Ha HL, Kwon YL, Ho SM, Kim BG, Tran P, Bae GU, Kang JS. Gas1 cooperates with Cdo and promotes myogenic differentiation via activation of p38MAPK. Cell Signal 2011; 23:2021-9. [DOI: 10.1016/j.cellsig.2011.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 07/18/2011] [Indexed: 12/01/2022]
|
43
|
The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skelet Muscle 2011; 1:29. [PMID: 21902831 PMCID: PMC3180440 DOI: 10.1186/2044-5040-1-29] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/08/2011] [Indexed: 12/13/2022] Open
Abstract
Myogenesis is a complex and tightly regulated process, the end result of which is the formation of a multinucleated myofibre with contractile capability. Typically, this process is described as being regulated by a coordinated transcriptional hierarchy. However, like any cellular process, myogenesis is also controlled by members of the protein kinase family, which transmit and execute signals initiated by promyogenic stimuli. In this review, we describe the various kinases involved in mammalian skeletal myogenesis: which step of myogenesis a particular kinase regulates, how it is activated (if known) and what its downstream effects are. We present a scheme of protein kinase activity, similar to that which exists for the myogenic transcription factors, to better clarify the complex signalling that underlies muscle development.
Collapse
|
44
|
Minami M, Koyama T, Wakayama Y, Fukuhara S, Mochizuki N. EphrinA/EphA signal facilitates insulin-like growth factor-I-induced myogenic differentiation through suppression of the Ras/extracellular signal-regulated kinase 1/2 cascade in myoblast cell lines. Mol Biol Cell 2011; 22:3508-19. [PMID: 21795402 PMCID: PMC3172274 DOI: 10.1091/mbc.e11-03-0183] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) activates not only the phosphatidylinositol 3-kinase (PI3K)-AKT cascade that is essential for myogenic differentiation but also the extracellular signal-regulated kinase (ERK) 1/2 cascade that inhibits myogenesis. We hypothesized that there must be a signal that inhibits ERK1/2 upon cell-cell contact required for skeletal myogenesis. Cell-cell contact-induced engagement of ephrin ligands and Eph receptors leads to downregulation of the Ras-ERK1/2 pathway through p120 Ras GTPase-activating protein (p120RasGAP). We therefore investigated the significance of the ephrin/Eph signal in IGF-I-induced myogenesis. EphrinA1-Fc suppressed IGF-I-induced activation of Ras and ERK1/2, but not that of AKT, in C2C12 myoblasts, whereas ephrinB1-Fc affected neither ERK1/2 nor AKT activated by IGF-I. IGF-I-dependent myogenic differentiation of C2C12 myoblasts was potentiated by ephrinA1-Fc. In p120RasGAP-depleted cells, ephrinA1-Fc failed to suppress the Ras-ERK1/2 cascade by IGF-I and to promote IGF-I-mediated myogenesis. EphrinA1-Fc did not promote IGF-I-dependent myogenesis when the ERK1/2 was constitutively activated. Furthermore, a dominant-negative EphA receptor blunted IGF-I-induced myogenesis in C2C12 and L6 myoblasts. However, the inhibition of IGF-I-mediated myogenesis by down-regulation of ephrinA/EphA signal was canceled by inactivation of the ERK1/2 pathway. Collectively, these findings demonstrate that the ephrinA/EphA signal facilitates IGF-I-induced myogenesis by suppressing the Ras-ERK1/2 cascade through p120RasGAP in myoblast cell lines.
Collapse
Affiliation(s)
- Masayoshi Minami
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | | | | | | | | |
Collapse
|
45
|
Molecular and cellular mechanisms of mammalian cell fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:33-64. [PMID: 21432013 DOI: 10.1007/978-94-007-0763-4_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fusion of one cell with another occurs in development, injury and disease. Despite the diversity of fusion events, five steps in sequence appear common. These steps include programming fusion-competent status, chemotaxis, membrane adhesion, membrane fusion, and post-fusion resetting. Recent advances in the field start to reveal the molecules involved in each step. This review focuses on some key molecules and cellular events of cell fusion in mammals. Increasing evidence demonstrates that membrane lipid rafts, adhesion proteins and actin rearrangement are critical in the final step of membrane fusion. Here we propose a new model for the formation and expansion of membrane fusion pores based on recent observations on myotube formation. In this model, membrane lipid rafts first recruit adhesion molecules and align with opposing membranes, with the help of a cortical actin "wall" as a rigid supportive platform. Second, the membrane adhesion proteins interact with each other and trigger actin rearrangement, which leads to rapid dispersion of lipid rafts and flow of a highly fluidic phospholipid bilayer into the site. Finally, the opposing phospholipid bilayers are then pushed into direct contact leading to the formation of fusion pores by the force generated through actin polymerization. The actin polymerization generated force also drives the expansion of the fusion pores. However, several key questions about the process of cell fusion still remain to be explored. The understanding of the mechanisms of cell fusion may provide new opportunities in correcting development disorders or regenerating damaged tissues by inhibiting or promoting molecular events associated with fusion.
Collapse
|
46
|
Han JW, Lee HJ, Bae GU, Kang JS. Promyogenic function of Integrin/FAK signaling is mediated by Cdo, Cdc42 and MyoD. Cell Signal 2011; 23:1162-9. [DOI: 10.1016/j.cellsig.2011.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/03/2011] [Indexed: 12/11/2022]
|
47
|
Stoppani E, Rossi S, Meacci E, Penna F, Costelli P, Bellucci A, Faggi F, Maiolo D, Monti E, Fanzani A. Point mutated caveolin-3 form (P104L) impairs myoblast differentiation via Akt and p38 signalling reduction, leading to an immature cell signature. Biochim Biophys Acta Mol Basis Dis 2011; 1812:468-79. [DOI: 10.1016/j.bbadis.2010.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 11/30/2010] [Accepted: 12/08/2010] [Indexed: 11/24/2022]
|
48
|
Secretome Analysis of Skeletal Myogenesis Using SILAC and Shotgun Proteomics. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2011:329467. [PMID: 22084683 PMCID: PMC3200090 DOI: 10.1155/2011/329467] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/26/2011] [Indexed: 12/18/2022]
Abstract
Myogenesis, the formation of skeletal muscle, is a multistep event that commences with myoblast proliferation, followed by cell-cycle arrest, and finally the formation of multinucleated myotubes via fusion of mononucleated myoblasts. Each step is orchestrated by well-documented intracellular factors, such as cytoplasmic signalling molecules and nuclear transcription factors. Regardless, the key step in getting a more comprehensive understanding of the regulation of myogenesis is to explore the extracellular factors that are capable of eliciting the downstream intracellular factors. This could further provide valuable insight into the acute cellular response to extrinsic cues in maintaining normal muscle development. In this paper, we survey the intracellular factors that respond to extracellular cues that are responsible for the cascades of events during myogenesis: myoblast proliferation, cell-cycle arrest of myoblasts, and differentiation of myoblasts into myotubes. This focus on extracellular perspective of muscle development illustrates our mass spectrometry-based proteomic approaches to identify differentially expressed secreted factors during skeletal myogenesis.
Collapse
|
49
|
Ando K, Uemura K, Kuzuya A, Maesako M, Asada-Utsugi M, Kubota M, Aoyagi N, Yoshioka K, Okawa K, Inoue H, Kawamata J, Shimohama S, Arai T, Takahashi R, Kinoshita A. N-cadherin regulates p38 MAPK signaling via association with JNK-associated leucine zipper protein: implications for neurodegeneration in Alzheimer disease. J Biol Chem 2011; 286:7619-28. [PMID: 21177868 PMCID: PMC3045016 DOI: 10.1074/jbc.m110.158477] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 12/21/2010] [Indexed: 01/03/2023] Open
Abstract
Synaptic loss, which strongly correlates with the decline of cognitive function, is one of the pathological hallmarks of Alzheimer disease. N-cadherin is a cell adhesion molecule essential for synaptic contact and is involved in the intracellular signaling pathway at the synapse. Here we report that the functional disruption of N-cadherin-mediated cell contact activated p38 MAPK in murine primary neurons, followed by neuronal death. We further observed that treatment with Aβ(42) decreased cellular N-cadherin expression through NMDA receptors accompanied by increased phosphorylation of both p38 MAPK and Tau in murine primary neurons. Moreover, expression levels of phosphorylated p38 MAPK were negatively correlated with that of N-cadherin in human brains. Proteomic analysis of human brains identified a novel interaction between N-cadherin and JNK-associated leucine zipper protein (JLP), a scaffolding protein involved in the p38 MAPK signaling pathway. We demonstrated that N-cadherin expression had an inhibitory effect on JLP-mediated p38 MAPK signal activation by decreasing the interaction between JLP and p38 MAPK in COS7 cells. Also, this study demonstrated a novel physical and functional association between N-cadherin and p38 MAPK and suggested neuroprotective roles of cadherin-based synaptic contact. The dissociation of N-cadherin-mediated synaptic contact by Aβ may underlie the pathological basis of neurodegeneration such as neuronal death, synaptic loss, and Tau phosphorylation in Alzheimer disease brain.
Collapse
Affiliation(s)
- Koichi Ando
- the Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kengo Uemura
- Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Akira Kuzuya
- the Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Masato Maesako
- From the School of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Megumi Asada-Utsugi
- From the School of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Masakazu Kubota
- From the School of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Nobuhisa Aoyagi
- the Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Katsuji Yoshioka
- the Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | | | - Haruhisa Inoue
- the Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Jun Kawamata
- the Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Shun Shimohama
- the Department of Neurology, Sapporo Medical University, Sapporo 060-8556, Japan, and
| | - Tetsuaki Arai
- the Tokyo Institute of Psychiatry, Tokyo 156-8585, Japan
| | - Ryosuke Takahashi
- the Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Ayae Kinoshita
- From the School of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
50
|
Cariolato L, Cavin S, Diviani D. A-kinase anchoring protein (AKAP)-Lbc anchors a PKN-based signaling complex involved in α1-adrenergic receptor-induced p38 activation. J Biol Chem 2011; 286:7925-7937. [PMID: 21224381 DOI: 10.1074/jbc.m110.185645] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) pathways are highly organized signaling systems that transduce extracellular signals into a variety of intracellular responses. In this context, it is currently poorly understood how kinases constituting these signaling cascades are assembled and activated in response to receptor stimulation to generate specific cellular responses. Here, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor activity, is critically involved in the activation of the p38α MAPK downstream of α(1b)-adrenergic receptors (α(1b)-ARs). Our results indicate that AKAP-Lbc can assemble a novel transduction complex containing the RhoA effector PKNα, MLTK, MKK3, and p38α, which integrates signals from α(1b)-ARs to promote RhoA-dependent activation of p38α. In particular, silencing of AKAP-Lbc expression or disrupting the formation of the AKAP-Lbc·p38α signaling complex specifically reduces α(1)-AR-mediated p38α activation without affecting receptor-mediated activation of other MAPK pathways. These findings provide a novel mechanistic hypothesis explaining how assembly of macromolecular complexes can specify MAPK signaling downstream of α(1)-ARs.
Collapse
Affiliation(s)
- Luca Cariolato
- From the Département de Pharmacologie et de Toxicologie, Faculté de Biologie et Médecine, University of Lausanne, Lausanne 1005, Switzerland
| | - Sabrina Cavin
- From the Département de Pharmacologie et de Toxicologie, Faculté de Biologie et Médecine, University of Lausanne, Lausanne 1005, Switzerland
| | - Dario Diviani
- From the Département de Pharmacologie et de Toxicologie, Faculté de Biologie et Médecine, University of Lausanne, Lausanne 1005, Switzerland.
| |
Collapse
|