1
|
Fujii Y, Ioka H, Minamoto C, Kurisaki I, Tanaka S, Ohta K, Tominaga K. Vibrational frequency fluctuations of poly(N,N-diethylacrylamide) in the vicinity of coil-to-globule transition studied by two-dimensional infrared spectroscopy and molecular dynamics simulations. J Chem Phys 2024; 161:064903. [PMID: 39120037 DOI: 10.1063/5.0218180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Poly(N,N-diethylacrylamide) (PdEA), one of the thermoresponsive polymers, in aqueous solutions has attracted much attention because of its characteristic properties, such as coil-to-globule (CG) transition. We performed two-dimensional infrared spectroscopy and molecular dynamics (MD) simulations to understand the hydration dynamics in the vicinity of the CG transition at the molecular level via vibrational frequency fluctuations of the carbonyl stretching modes in the side chains of PdEA. Furthermore, N,N-diethylpropionamide, a repeating monomer unit of PdEA, is also investigated for comparison. From decays of the frequency-frequency time correlation functions (FFTCFs) of the carbonyl stretching modes, we consider that inhomogeneity of the hydration environments originates from various backbone configurations of PdEA. The degree of the inhomogeneity depends on temperature. Hydration water molecules near the carbonyl groups are influenced by the confinements of the polymers. The restricted reorientation of the embedded water, the local torsions of the backbone, and the rearrangement of the whole structure contribute to the slow spectral diffusion. By performing MD simulations, we calculated the FFTCFs and dynamical quantities, such as fluctuations of the dihedral angles of the backbone and the orientation of the hydration water molecules. The simulated FFTCFs match well with the experimental results, indicating that the retarded water reorientations via the excluded volume effect play an important role in the vibrational frequency fluctuations of the carbonyl stretching mode. It is also found the embedded water molecules are influenced by the local torsions of the backbone structure within the time scales of the spectral diffusion.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Hikaru Ioka
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Chihiro Minamoto
- Department of Applied Chemistry and Biotechnology, Niihama National College of Technology, Yakumo-cho 7-1, Niihama, Ehime 792-8580, Japan
| | - Ikuo Kurisaki
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Kaoru Ohta
- Molecular Photoscience Research Center, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Keisuke Tominaga
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
- Molecular Photoscience Research Center, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Hess KA, Rohler CK, Boutwell DR, Snyder JM, Buchanan LE. Suppressing sidechain modes and improving structural resolution for 2D IR spectroscopy via vibrational lifetimes. J Chem Phys 2024; 161:054201. [PMID: 39087534 PMCID: PMC11296734 DOI: 10.1063/5.0207523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Vibrational spectroscopy of protein structure often utilizes 13C18O-labeling of backbone carbonyls to further increase structural resolution. However, sidechains such as arginine, aspartate, and glutamate absorb within the same spectral region, complicating the analysis of isotope-labeled peaks. In this study, we report that the waiting time between pump and probe pulses in two-dimensional infrared spectroscopy can be used to suppress sidechain modes in favor of backbone amide I' modes based on differences in vibrational lifetimes. Furthermore, differences in the lifetimes of 13C18O-amide I' modes can aid in the assignment of secondary structure for labeled residues. Using model disordered and β-sheet peptides, it was determined that while β-sheets exhibit a longer lifetime than disordered structures, amide I' modes in both secondary structures exhibit longer lifetimes than sidechain modes. Overall, this work demonstrates that collecting 2D IR data at delayed waiting times, based on differences in vibrational lifetime between modes, can be used to effectively suppress interfering sidechain modes and further identify secondary structures.
Collapse
Affiliation(s)
- Kayla A. Hess
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Cade K. Rohler
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Dalton R. Boutwell
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Jason M. Snyder
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Lauren E. Buchanan
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| |
Collapse
|
3
|
Nachaki E, Kuroda DG. Transitioning from Regular Electrolytes to Solvate Ionic Liquids to High-Concentration Electrolytes: Changes in Transport Properties and Ionic Speciation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:11522-11533. [PMID: 39050925 PMCID: PMC11264273 DOI: 10.1021/acs.jpcc.4c02248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Glyme-based lithium-ion electrolytes have received considerable attention from the scientific community due to their improved safety, as well as electrochemical and thermal stability over carbonate-based electrolytes. However, these electrolytes suffer from major drawbacks such as high viscosities. To overcome the challenges that hinder their full potential, the molecular description of glyme-based lithium electrolytes in the high-concentration regime, particularly in the solvate ionic liquid (SIL) and high-concentration electrolyte (HCE) regimes, is needed. In this study, model glyme-based electrolytes based on a lithium thiocyanate and either tetraglyme (G4) or a mixture of monoglyme (G1) and diglyme (G2) were investigated as a function of the solvent-to-lithium ratio using linear and nonlinear IR spectroscopies, in combination with ab initio computations as well as electrochemical methods . The transport properties reveal enhanced ionicities in the HCE and SIL regimes ([O]/[Li] ≤ 5) compared to the regular electrolytes (REs, with [O]/[Li] > 5) in both pure (G4) and mixed (G1:G2) glymes. IR and ab initio computations relate these larger ionicities to the higher concentration of charged aggregates in the HCE and SIL electrolytes ([O]/[Li] ≤ 5). Moreover, it was observed that the use of mixed glymes appears to have a minimal effect on the transport properties of REs but exhibits deleterious effects on SILs. Overall, the results provide a molecular framework for describing the local structure of lithium glyme-based electrolytes and demonstrate the key role that the nature of glyme solvation plays in the molecular structure and consequently the macroscopic properties of the Li-glyme SILs, HCEs, and REs.
Collapse
Affiliation(s)
- Ernest
O. Nachaki
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daniel G. Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
4
|
Gómez-Castro CZ, Quintanar L, Vela A. An N-terminal acidic β-sheet domain is responsible for the metal-accumulation properties of amyloid-β protofibrils: a molecular dynamics study. J Biol Inorg Chem 2024; 29:407-425. [PMID: 38811408 PMCID: PMC11186886 DOI: 10.1007/s00775-024-02061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/10/2024] [Indexed: 05/31/2024]
Abstract
The influence of metal ions on the structure of amyloid- β (Aβ) protofibril models was studied through molecular dynamics to explore the molecular mechanisms underlying metal-induced Aβ aggregation relevant in Alzheimer's disease (AD). The models included 36-, 48-, and 188-mers of the Aβ42 sequence and two disease-modifying variants. Primary structural effects were observed at the N-terminal domain, as it became susceptible to the presence of cations. Specially when β-sheets predominate, this motif orients N-terminal acidic residues toward one single face of the β-sheet, resulting in the formation of an acidic region that attracts cations from the media and promotes the folding of the N-terminal region, with implications in amyloid aggregation. The molecular phenotype of the protofibril models based on Aβ variants shows that the AD-causative D7N mutation promotes the formation of N-terminal β-sheets and accumulates more Zn2+, in contrast to the non-amyloidogenic rodent sequence that hinders the β-sheets and is more selective for Na+ over Zn2+ cations. It is proposed that forming an acidic β-sheet domain and accumulating cations is a plausible molecular mechanism connecting the elevated affinity and concentration of metals in Aβ fibrils to their high content of β-sheet structure at the N-terminal sequence.
Collapse
Affiliation(s)
- Carlos Z Gómez-Castro
- Conahcyt-Universidad Autónoma del Estado de Hidalgo, Km 4.5 Carr. Pachuca-Tulancingo, Mineral de La Reforma, 42184, Hidalgo, Mexico.
| | - Liliana Quintanar
- Department of Chemistry, Cinvestav, Av. Instituto Politécnico Nacional 2508, CDMX, San Pedro Zacatenco, 07360, Gustavo A. Madero, Mexico.
| | - Alberto Vela
- Department of Chemistry, Cinvestav, Av. Instituto Politécnico Nacional 2508, CDMX, San Pedro Zacatenco, 07360, Gustavo A. Madero, Mexico.
| |
Collapse
|
5
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Madzharova F, Chatterley AS, Roeters SJ, Weidner T. Probing Backbone Coupling within Hydrated Proteins with Two-Color 2D Infrared Spectroscopy. J Phys Chem Lett 2024:4933-4939. [PMID: 38686860 DOI: 10.1021/acs.jpclett.4c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The vibrational coupling between protein backbone modes and the role of water interactions are important topics in biomolecular spectroscopy. Our work reports the first study of the coupling between amide I and amide A modes within peptides and proteins with secondary structure and water contacts. We use two-color two-dimensional infrared (2D IR) spectroscopy and observe cross peaks between amide I and amide A modes. In experiments with peptides with different secondary structures and side chains, we observe that the spectra are sensitive to secondary structure. Water interactions affect the cross peaks, which may be useful as probes for the accessibility of protein sites to hydration water. Moving to two-color 2D IR spectra of proteins, the data demonstrate that the cross peaks integrate the sensitivities of both amide I and amide A spectra and that a two-color detection scheme may be a promising tool for probing secondary structures in proteins.
Collapse
Affiliation(s)
- Fani Madzharova
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Adam S Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Steven J Roeters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Ye S, Zhong K, Huang Y, Zhang G, Sun C, Jiang J. Artificial Intelligence-based Amide-II Infrared Spectroscopy Simulation for Monitoring Protein Hydrogen Bonding Dynamics. J Am Chem Soc 2024; 146:2663-2672. [PMID: 38240637 DOI: 10.1021/jacs.3c12258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The structurally sensitive amide II infrared (IR) bands of proteins provide valuable information about the hydrogen bonding of protein secondary structures, which is crucial for understanding protein dynamics and associated functions. However, deciphering protein structures from experimental amide II spectra relies on time-consuming quantum chemical calculations on tens of thousands of representative configurations in solvent water. Currently, the accurate simulation of amide II spectra for whole proteins remains a challenge. Here, we present a machine learning (ML)-based protocol designed to efficiently simulate the amide II IR spectra of various proteins with an accuracy comparable to experimental results. This protocol stands out as a cost-effective and efficient alternative for studying protein dynamics, including the identification of secondary structures and monitoring the dynamics of protein hydrogen bonding under different pH conditions and during protein folding process. Our method provides a valuable tool in the field of protein research, focusing on the study of dynamic properties of proteins, especially those related to hydrogen bonding, using amide II IR spectroscopy.
Collapse
Affiliation(s)
- Sheng Ye
- School of Artificial Intelligence, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Kai Zhong
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747AG, Netherlands
| | - Yan Huang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guozhen Zhang
- Hefei National Research Center of Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Changyin Sun
- School of Artificial Intelligence, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
8
|
Chen X, Roeters SJ, Cavanna F, Alvarado J, Baiz CR. Crowding alters F-actin secondary structure and hydration. Commun Biol 2023; 6:900. [PMID: 37660224 PMCID: PMC10475093 DOI: 10.1038/s42003-023-05274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
Actin, an important component of eukaryotic cell cytoskeleton, regulates cell shape and transport. The morphology and biochemical properties of actin filaments are determined by their structure and protein-protein contacts. Crowded environments can organize filaments into bundles, but less is known about how they affect F-actin structure. This study used 2D IR spectroscopy and spectral calculations to examine how crowding and bundling impact the secondary structure and local environments in filaments and weakly or strongly bundled networks. The results reveal that bundling induces changes in actin's secondary structure, leading to a decrease in β-sheet and an increase in loop conformations. Strongly bundled networks exhibit a decrease in backbone solvent exposure, with less perturbed α-helices and nearly "locked" β-sheets. Similarly, the loops become less hydrated but maintain a dynamic environment. These findings highlight the role of loop structure in actin network morphology and stability under morphology control by PEG.
Collapse
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | - Steven J Roeters
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Department of Anatomy and Neurosciences, Vrije Universiteit, Amsterdam UMC, Amsterdam, Netherlands
| | - Francis Cavanna
- Department of Physics, University of Texas at Austin, Center for Nonlinear Dynamics, Austin, TX, USA
| | - José Alvarado
- Department of Physics, University of Texas at Austin, Center for Nonlinear Dynamics, Austin, TX, USA
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Rezaei-Ghaleh N, Amininasab M, Giller K, Becker S. Familial Alzheimer's Disease-Related Mutations Differentially Alter Stability of Amyloid-Beta Aggregates. J Phys Chem Lett 2023; 14:1427-1435. [PMID: 36734539 PMCID: PMC9940190 DOI: 10.1021/acs.jpclett.2c03729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Amyloid-beta (Aβ) deposition as senile plaques is a pathological hallmark of Alzheimer's disease (AD). AD is characterized by a large level of heterogeneity in amyloid pathology, whose molecular origin is poorly understood. Here, we employ NMR spectroscopy and MD simulation at ambient and high pressures and investigate how AD-related mutations in Aβ peptide influence the stability of Aβ aggregates. The pressure-induced monomer dissociation from Aβ aggregates monitored by NMR demonstrated that the Iowa (D23N), Arctic (E22G), and Osaka (ΔE22) mutations altered the pressure stability of Aβ40 aggregates in distinct manners. While the NMR data of monomeric Aβ40 showed only small localized effects of mutations, the MD simulation of mutated Aβ fibrils revealed their distinct susceptibility to elevated pressure. Our data propose a structural basis for the distinct stability of various Aβ fibrils and highlights "stability" as a molecular property potentially contributing to the large heterogeneity of amyloid pathology in AD.
Collapse
Affiliation(s)
- Nasrollah Rezaei-Ghaleh
- Institute
of Physical Biology, Heinrich Heine University
Düsseldorf, D-40225 Düsseldorf, Germany
- Institute
of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, D-52428 Jülich, Germany
- Department
of NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, D-37077 Göttingen, Germany
| | - Mehriar Amininasab
- Department
of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, 1417466191 Tehran, Iran
| | - Karin Giller
- Department
of NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, D-37077 Göttingen, Germany
| | - Stefan Becker
- Department
of NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, D-37077 Göttingen, Germany
| |
Collapse
|
10
|
Nachaki EO, Leonik FM, Kuroda DG. Effect of the N-Alkyl Side Chain on the Amide-Water Interactions. J Phys Chem B 2022; 126:8290-8299. [PMID: 36219826 DOI: 10.1021/acs.jpcb.2c04988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amide-water interactions influence the structure and functions of amide-based systems, such as proteins and homopolymers. In particular, the N-alkylation of the amide unit appears to play a critical role in defining the interactions of the amide group. Previous studies have linked the thermal behavior of amide-based polymers to the nature of their N-alkyl side chain. However, the connection between the chemical structure of the N-alkyl and the hydration of the amide remains elusive. In this study, the solvation structure and dynamics of amides, having differing N-alkyl groups, are investigated using a combination of linear and nonlinear infrared spectroscopies and computational methods. Interestingly, the dynamics of the amide local environment do not slow down as the N-alkyl side chain becomes bulkier, but rather speeds up. Computational calculations confirm the hydration dynamics and assign the effect to smaller amplitude and faster rotations of the bulkier group. It is also observed experimentally that the hydrogen-bond making and breaking between water and the amide carbonyl do not directly relate to the size of the N-alkyl side chain. The bulkier N-isopropyl substituent presents significantly slower chemical exchange dynamics than smaller chains (ethyl and methyl), but the two small groups do not present a major difference. The hydrogen-bond making and breaking disparities and similarities among groups are well modeled by the theory demonstrating that the N-alkyl group affects the amide hydration structure and dynamics via a steric effect. In summary, the results presented here show that the size of the N-substituted alkyl group significantly influences the hydration dynamics of amides and stress the importance of considering this effect on much larger systems, such as polymers.
Collapse
Affiliation(s)
- Ernest O Nachaki
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| | - Fedra M Leonik
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| |
Collapse
|
11
|
Chatterjee S, Nam Y, Salimi A, Lee JY. Monitoring early-stage β-amyloid dimer aggregation by histidine site-specific two-dimensional infrared spectroscopy in a simulation study. Phys Chem Chem Phys 2022; 24:18691-18702. [PMID: 35899740 DOI: 10.1039/d2cp02479a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monitoring early-stage β-amyloid (Aβ) dimerization is a formidable challenge for understanding neurological diseases. We compared β-sheet formation and histidine site-specific two-dimensional infrared (2D IR) spectroscopic signatures of Aβ dimers with different histidine states (δ; Nδ1-H, ε; Nε2-H, or π; both protonated). Molecular dynamics (MD) simulations revealed that β-sheet formation is favored for the δδδ:δδδ and πππ:πππ tautomeric isomers showing strong couplings and frequent contacts between the central hydrophobic core and C-terminus compared with the εεε:εεε isomer. Characteristic blue-shifts in the 2D IR central bands were observed upon monomer-dimer transformation. The εεε:εεε dimer exhibited larger frequency shifts than δδδ:δδδ and πππ:πππ implying that the red-shift may have a correlation with Nδ1-H(δ) protonation. Our results support the tautomerization/protonation hypothesis that attributes Aβ misfolding to histidine tautomers as a possible primary initiator for Aβ aggregation and facilitates the application of histidine site-specific 2D IR spectroscopy for studying early-stage Aβ self-assembly.
Collapse
Affiliation(s)
| | - Yeonsig Nam
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea. .,Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | - Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea.
| |
Collapse
|
12
|
Su H, Liu Y, Gao Y, Fu C, Li C, Qin R, Liang L, Yang P. Amyloid-Like Protein Aggregation Toward Pesticide Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105106. [PMID: 35257513 PMCID: PMC9069373 DOI: 10.1002/advs.202105106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/24/2022] [Indexed: 05/19/2023]
Abstract
Pesticide overuse is a major global problem and the cause of this problem is noticeable pesticide loss from undesired bouncing of sprayed pesticide droplets and rain erosion. This further becomes a primary source of soil and groundwater pollution. Herein, the authors report a method that can enhance pesticide droplet deposition and adhesion on superhydrophobic plant leave surfaces by amyloid-like aggregation of bovine serum albumin (BSA). Through the reduction of the disulfide bond of BSA by tris(2-carboxyethyl) phosphine hydrochloride (TCEP), the amyloid-like phase transition of BSA is triggered that rapidly affords abundant phase-transitioned BSA (PTB) oligomers to facilitate the invasion of the PTB droplet into the nanostructures on a leaf surface. Such easy penetration is further followed by a robust amyloid-mediated interfacial adhesion of PTB on leaf surface. As a result, after mixing with pesticides, the PTB system exhibits a remarkable pesticide adhesion capacity that is more than 10 times higher than conventional fixation of commercial pesticides. The practical farmland experiments show that the use of PTB aggregation could reduce the use of pesticides by 70-90% while ensuring yield. This work demonstrates that current pesticide dosage in actual agriculture production may be largely reduced by utilizing eco-friendly amyloid-like protein aggregation.
Collapse
Affiliation(s)
- Hao Su
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Yingtao Gao
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Chengyu Fu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Chen Li
- School of Chemistry and Chemical EngineeringHenan Institute of Science and TechnologyEastern HuaLan AvenueXinxiangHenan453003China
| | - Rongrong Qin
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| | - Lei Liang
- School of Chemistry and Chemical EngineeringHenan Institute of Science and TechnologyEastern HuaLan AvenueXinxiangHenan453003China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710119China
| |
Collapse
|
13
|
Weeks WB, Tainter CJ, Buchanan LE. Investigating the effects of N-terminal acetylation on KFE8 self-assembly with 2D IR spectroscopy. Biophys J 2022; 121:1549-1559. [PMID: 35247339 PMCID: PMC9072574 DOI: 10.1016/j.bpj.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 03/01/2022] [Indexed: 12/01/2022] Open
Abstract
Peptide self-assembly is an exciting and robust approach to create novel nanoscale materials for biomedical applications. However, the complex interplay between intra- and intermolecular interactions in peptide aggregation means that minor changes in peptide sequence can yield dramatic changes in supramolecular structure. Here, we use two-dimensional infrared (2D IR) spectroscopy to study a model amphiphilic peptide, KFE8, and its N-terminal acetylated counterpart, AcKFE8. 2D IR spectra of isotope-labeled peptides reveal that AcKFE8 aggregates comprise two distinct β-sheet structures while KFE8 aggregates comprise only one of these structures. Using an excitonic Hamiltonian to simulate the vibrational spectra of model β-sheets, we determine that the spectra are consistent with antiparallel β-sheets with different strand alignments, specifically a two-residue shift in the register of the β-strands. These findings bring forth new insights into how N-terminal acetylation may subtly impact secondary structure, leading to larger effects on overall aggregate morphology. Additionally, these results highlight the importance of understanding the residue-level structural differences that result from changes in peptide sequence in order to facilitate the rational design of peptide materials.
Collapse
Affiliation(s)
- William B Weeks
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Craig J Tainter
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
14
|
Adams ZC, Olson EJ, Lopez-Silva TL, Lian Z, Kim AY, Holcomb M, Zimmermann J, Adhikary R, Dawson PE. Direct observation of peptide hydrogel self-assembly. Chem Sci 2022; 13:10020-10028. [PMID: 36128231 PMCID: PMC9430618 DOI: 10.1039/d1sc06562a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
The characterization of self-assembling molecules presents significant experimental challenges, especially when associated with phase separation or precipitation. Transparent window infrared (IR) spectroscopy leverages site-specific probes that absorb in the “transparent window” region of the biomolecular IR spectrum. Carbon–deuterium (C–D) bonds are especially compelling transparent window probes since they are non-perturbative, can be readily introduced site selectively into peptides and proteins, and their stretch frequencies are sensitive to changes in the local molecular environment. Importantly, IR spectroscopy can be applied to a wide range of molecular samples regardless of solubility or physical state, making it an ideal technique for addressing the solubility challenges presented by self-assembling molecules. Here, we present the first continuous observation of transparent window probes following stopped-flow initiation. To demonstrate utility in a self-assembling system, we selected the MAX1 peptide hydrogel, a biocompatible material that has significant promise for use in drug delivery and medical applications. C–D labeled valine was synthetically introduced into five distinct positions of the twenty-residue MAX1 β-hairpin peptide. Consistent with current structural models, steady-state IR absorption frequencies and linewidths of C–D bonds at all labeled positions indicate that these side chains occupy a hydrophobic region of the hydrogel and that the motion of side chains located in the middle of the hairpin is more restricted than those located on the hairpin ends. Following a rapid change in ionic strength to initiate self-assembly, the peptide absorption spectra were monitored as function of time, allowing determination of site-specific time constants. We find that within the experimental resolution, MAX1 self-assembly occurs as a cooperative process. These studies suggest that stopped-flow transparent window FTIR can be extended to other time-resolved applications, such as protein folding and enzyme kinetics. To facilitate the characterization of phase-transitioning molecules, site-specific non-perturbative infrared probes are leveraged for continuous observation of the self-assembly of fibrils in a peptide hydrogel following stopped-flow initiation.![]()
Collapse
Affiliation(s)
- Zoë C. Adams
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Erika J. Olson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Tania L. Lopez-Silva
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Zhengwen Lian
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Audrey Y. Kim
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Matthew Holcomb
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Philip E. Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| |
Collapse
|
15
|
Singh A, Khatun S, Pawar N, Gupta AN. Interactive patches over amyloid-β oligomers mediate fractal self-assembly. Phys Rev E 2021; 104:064404. [PMID: 35030868 DOI: 10.1103/physreve.104.064404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
The monomeric units of intrinsically disordered proteins self-assemble into oligomers, protofilaments, and eventually fibrils which may turn into amyloid. The aggregation of these proteins is primarily studied in bulk with no restriction on their degrees of freedom. Herein we experimentally demonstrate that amyloid-β (Aβ) aggregation under diffusion-limited conditions leads to its fractal self-assembly. Confocal microscopy and scanning electron microscopy with energy dispersion x-ray analysis were used to confirm that the fractal self-assemblies were formed from Aβ rather than the salt present in the two supporting media: deionized water and phosphate buffered saline. The results from the molecular docking experiments implicated that electrostatic and hydrophobic patches on the solvent-accessible surface area of the Aβ oligomers mediate the fractal self-assembly. These implications were tested with laser light scattering experiments on the oligomers formed by breaking mature fibrils of Aβ through sonication, which were observed to self-assemble into fractals when sonicated solutions were drop casted. The electrostatic interactions modulate the fractal morphologies with pH of the solution, which leads to a morphological phase transition observed through the variation in their fractal dimension. These transitions provide experimental evidence for the existing theoretical framework in terms of different kinetic models. The higher surface-to-volume ratio of these fractal self-assemblies may have applications in drug delivery, biosensing, and other biomedical applications.
Collapse
Affiliation(s)
- Anurag Singh
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Suparna Khatun
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Nisha Pawar
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| |
Collapse
|
16
|
Boopathi S, Poma AB, Garduño-Juárez R. An Overview of Several Inhibitors for Alzheimer's Disease: Characterization and Failure. Int J Mol Sci 2021; 22:10798. [PMID: 34639140 PMCID: PMC8509255 DOI: 10.3390/ijms221910798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 01/04/2023] Open
Abstract
Amyloid beta (Aβ) oligomers are the most neurotoxic aggregates causing neuronal death and cognitive damage. A detailed elucidation of the aggregation pathways from oligomers to fibril formation is crucial to develop therapeutic strategies for Alzheimer's disease (AD). Although experimental techniques rely on the measure of time- and space-average properties, they face severe difficulties in the investigation of Aβ peptide aggregation due to their intrinsically disorder character. Computer simulation is a tool that allows tracing the molecular motion of molecules; hence it complements Aβ experiments, as it allows to explore the binding mechanism between metal ions and Aβ oligomers close to the cellular membrane at the atomic resolution. In this context, integrated studies of experiments and computer simulations can assist in mapping the complete pathways of aggregation and toxicity of Aβ peptides. Aβ oligomers are disordered proteins, and due to a rapid exploration of their intrinsic conformational space in real-time, they are challenging therapeutic targets. Therefore, no good drug candidate could have been identified for clinical use. Our previous investigations identified two small molecules, M30 (2-Octahydroisoquinolin-2(1H)-ylethanamine) and Gabapentin, capable of Aβ binding and inhibiting molecular aggregation, synaptotoxicity, intracellular calcium signaling, cellular toxicity and memory losses induced by Aβ. Thus, we recommend these molecules as novel candidates to assist anti-AD drug discovery in the near future. This review discusses the most recent research investigations about the Aβ dynamics in water, close contact with cell membranes, and several therapeutic strategies to remove plaque formation.
Collapse
Affiliation(s)
- Subramanian Boopathi
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Adolfo B. Poma
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research Polish Academy of Science, Pawińskiego 5B, 02-106 Warsaw, Poland
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| |
Collapse
|
17
|
Cho Y, Christoff-Tempesta T, Kaser SJ, Ortony JH. Dynamics in supramolecular nanomaterials. SOFT MATTER 2021; 17:5850-5863. [PMID: 34114584 DOI: 10.1039/d1sm00047k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly of amphiphilic small molecules in water leads to nanostructures with customizable structure-property relationships arising from their tunable chemistries. Characterization of these assemblies is generally limited to their static structures -e.g. their geometries and dimensions - but the implementation of tools that provide a deeper understanding of molecular motions has recently emerged. Here, we summarize recent reports showcasing dynamics characterization tools and their application to small molecule assemblies, and we go on to highlight supramolecular systems whose properties are substantially affected by their conformational, exchange, and water dynamics. This review illustrates the importance of considering dynamics in rational amphiphile design.
Collapse
Affiliation(s)
- Yukio Cho
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ty Christoff-Tempesta
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Samuel J Kaser
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julia H Ortony
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Natesh SR, Hummels AR, Sachleben JR, Sosnick TR, Freed KF, Douglas JF, Meredith SC, Haddadian EJ. Molecular dynamics study of water channels in natural and synthetic amyloid-β fibrils. J Chem Phys 2021; 154:235102. [PMID: 34241272 PMCID: PMC8214467 DOI: 10.1063/5.0049250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
We compared all-atom explicit solvent molecular dynamics simulations of three types of Aβ(1-40) fibrils: brain-seeded fibrils (2M4J, with a threefold axial symmetry) and the other two, all-synthetic fibril polymorphs (2LMN and 2LMP, made under different fibrillization conditions). Fibril models were constructed using either a finite or an infinite number of layers made using periodic images. These studies yielded four conclusions. First, finite fibrils tend to unravel in a manner reminiscent of fibril dissolution, while infinite fibrils were more stable during simulations. Second, salt bridges in these fibrils remained stable in those fibrils that contained them initially, and those without salt bridges did not develop them over the time course of the simulations. Third, all fibrils tended to develop a "stagger" or register shift of β-strands along the fibril axis. Fourth and most importantly, the brain-seeded, 2M4J, infinite fibrils allowed bidirectional transport of water in and out of the central longitudinal core of the fibril by rapidly developing gaps at the fibril vertices. 2LMP fibrils also showed this behavior, although to a lesser extent. The diffusion of water molecules in the fibril core region involved two dynamical states: a localized state and directed diffusion in the presence of obstacles. These observations provided support for the hypothesis that Aβ fibrils could act as nanotubes. At least some Aβ oligomers resembled fibrils structurally in having parallel, in-register β-sheets and a sheet-turn-sheet motif. Thus, our findings could have implications for Aβ cytotoxicity, which may occur through the ability of oligomers to form abnormal water and ion channels in cell membranes.
Collapse
Affiliation(s)
- S. R. Natesh
- Biological Sciences Collegiate Division, The University of Chicago, Chicago, Illinois 60637, USA
| | - A. R. Hummels
- Biological Sciences Collegiate Division, The University of Chicago, Chicago, Illinois 60637, USA
| | - J. R. Sachleben
- Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637, USA
| | - T. R. Sosnick
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - K. F. Freed
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - J. F. Douglas
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - S. C. Meredith
- Departments of Pathology, Biochemistry, and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - E. J. Haddadian
- Biological Sciences Collegiate Division, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
19
|
Hassan I, Ferraro F, Imhof P. Effect of the Hydration Shell on the Carbonyl Vibration in the Ala-Leu-Ala-Leu Peptide. Molecules 2021; 26:2148. [PMID: 33917998 PMCID: PMC8068333 DOI: 10.3390/molecules26082148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
The vibrational spectrum of the Ala-Leu-Ala-Leu peptide in solution, computed from first-principles simulations, shows a prominent band in the amide I region that is assigned to stretching of carbonyl groups. Close inspection reveals combined but slightly different contributions by the three carbonyl groups of the peptide. The shift in their exact vibrational signature is in agreement with the different probabilities of these groups to form hydrogen bonds with the solvent. The central carbonyl group has a hydrogen bond probability intermediate to the other two groups due to interchanges between different hydrogen-bonded states. Analysis of the interaction energies of individual water molecules with that group shows that shifts in its frequency are directly related to the interactions with the water molecules in the first hydration shell. The interaction strength is well correlated with the hydrogen bond distance and hydrogen bond angle, though there is no perfect match, allowing geometrical criteria for hydrogen bonds to be used as long as the sampling is sufficient to consider averages. The hydrogen bond state of a carbonyl group can therefore serve as an indicator of the solvent's effect on the vibrational frequency.
Collapse
Affiliation(s)
- Irtaza Hassan
- Institute for Theoretical Physics, Freie Universtiät Berlin, Arnimallee 14, 14195 Berlin, Germany;
| | - Federica Ferraro
- Computer Chemistry Center, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany;
| | - Petra Imhof
- Institute for Theoretical Physics, Freie Universtiät Berlin, Arnimallee 14, 14195 Berlin, Germany;
- Computer Chemistry Center, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany;
| |
Collapse
|
20
|
Basu A, Vaskevich A, Chuntonov L. Glutathione Self-Assembles into a Shell of Hydrogen-Bonded Intermolecular Aggregates on "Naked" Silver Nanoparticles. J Phys Chem B 2021; 125:895-906. [PMID: 33440116 DOI: 10.1021/acs.jpcb.0c10089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A detailed understanding of the molecular structure in nanoparticle ligand capping layers is crucial for their efficient incorporation into modern scientific and technological applications. Peptide ligands render the nanoparticles as biocompatible materials. Glutathione, a γ-ECG tripeptide, self-assembles into aggregates on the surface of ligand-free silver nanoparticles through intermolecular hydrogen bonding and forms a few nanometer-thick shells. Two-dimensional nonlinear infrared (2DIR) spectroscopy suggests that aggregates adopt a conformation resembling the β-sheet secondary structure. The shell thickness was evaluated with localized surface plasmon resonance spectroscopy and X-ray photoelectron spectroscopy. The amount of glutathione on the surface was obtained with spectrophotometry of a thiol-reactive probe. Our results suggest that the shell consists of ∼15 stacked molecular layers. These values correspond to the inter-sheet distances, which are significantly shorter than those in amyloid fibrils with relatively bulky side chains, but are comparable to glycine-rich silk fibrils, where the side chains are compact. The tight packing of the glutathione layers can be facilitated by hydrogen-bonded carboxylic acid dimers of glycine and the intermolecular salt bridges between the zwitterionic γ-glutamyl groups. The structure of the glutathione aggregates was studied by 2DIR spectroscopy of the amide-I vibrational modes using 13C isotope labeling of the cysteine carbonyl. Isotope dilution experiments revealed the coupling of modes forming vibrational excitons along the cysteine chain. The coupling along the γ-glutamyl exciton chain was estimated from these values. The obtained coupling strengths are slightly lower than those of native β-sheets, yet they appear large enough to point onto an ordered conformation of the peptides within the aggregate. Analysis of the excitons' anharmonicities and the strength of the transition dipole moments generally is in agreement with these observations.
Collapse
Affiliation(s)
- Arghyadeep Basu
- Schulich Faculty of Chemistry and Solid State Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alexander Vaskevich
- Department of Materials and Interfaces, and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
21
|
Nguyen H, Linh HQ, Matteini P, La Penna G, Li MS. Emergence of Barrel Motif in Amyloid-β Trimer: A Computational Study. J Phys Chem B 2020; 124:10617-10631. [PMID: 33180492 PMCID: PMC7735726 DOI: 10.1021/acs.jpcb.0c05508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/29/2020] [Indexed: 12/20/2022]
Abstract
Amyloid-β (Aβ) peptides form assemblies that are pathological hallmarks of Alzheimer's disease. Aβ oligomers are soluble, mobile, and toxic forms of the peptide that act in the extracellular space before assembling into protofibrils and fibrils. Therefore, oligomers play an important role in the mechanism of Alzheimer's disease. Since it is difficult to determine by experiment the atomic structures of oligomers, which accumulate fast and are polymorphic, computer simulation is a useful tool to investigate elusive oligomers' structures. In this work, we report extended all-atom molecular dynamics simulations, both canonical and replica exchange, of Aβ(1-42) trimer starting from two different initial conformations: (i) the pose produced by the best docking of a monomer aside of a dimer (simulation 1), representing oligomers freshly formed by assembling monomers, and (ii) a configuration extracted from an experimental mature fibril structure (simulation 2), representing settled oligomers in equilibrium with extended fibrils. We showed that in simulation 1, regions with small β-barrels are populated, indicating the chance of spontaneous formation of domains resembling channel-like structures. These structural domains are alternative to those more representative of mature fibrils (simulation 2), the latter showing a stable bundle of C-termini that is not sampled in simulation 1. Moreover, trimer of Aβ(1-42) can form internal pores that are large enough to be accessed by water molecules and Ca2+ ions.
Collapse
Affiliation(s)
- Hoang
Linh Nguyen
- Institute
for Computational Science and Technology, SBI Building, Quang Trung Software
City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Ho
Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Huynh Quang Linh
- Ho
Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Paolo Matteini
- Institute
of Applied Physics “Nello Carrara”, National Research Council, Via Madonna Del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Giovanni La Penna
- National
Research Council of Italy (CNR), Institute
for Chemistry of Organometallic Compounds (ICCOM), 50019 Florence, Italy
- National Institute for Nuclear Physics
(INFN), Section of Roma-Tor
Vergata Institute of Physics, Polish Academy of
Sciences, Al. Lotnikow
32/46, 02-668 Warsaw, Poland
| | - Mai Suan Li
- National Institute for Nuclear Physics
(INFN), Section of Roma-Tor
Vergata Institute of Physics, Polish Academy of
Sciences, Al. Lotnikow
32/46, 02-668 Warsaw, Poland
| |
Collapse
|
22
|
Fields CR, Dicke SS, Petti MK, Zanni MT, Lomont JP. A Different hIAPP Polymorph Is Observed in Human Serum Than in Aqueous Buffer: Demonstration of a New Method for Studying Amyloid Fibril Structure Using Infrared Spectroscopy. J Phys Chem Lett 2020; 11:6382-6388. [PMID: 32706257 PMCID: PMC7968077 DOI: 10.1021/acs.jpclett.0c01345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is enormous interest in measuring amyloid fibril structures, but most structural studies measure fibril formation in vitro using aqueous buffer. Ideally, one would like to measure fibril structure and mechanism under more physiological conditions. Toward this end, we have developed a method for studying amyloid fibril structure in human serum. Our approach uses isotope labeling, antibody depletion of the most abundant proteins (albumin and IgG), and infrared spectroscopy to measure aggregation in human serum with reduced protein content. Reducing the nonamyloid protein content enables the measurements by decreasing background signals but retains the full composition of salts, sugars, metal ions, etc. that are naturally present but usually missing from in vitro studies. We demonstrate the method by measuring the two-dimensional infrared (2D IR) spectra of isotopically labeled human islet amyloid polypeptide (hIAPP or amylin). We find that the fibril structure of hIAPP formed in serum differs from that formed via aggregation in aqueous buffer at residues Gly24 and Ala25, which reside in the putative "amyloidogenic core" or FGAIL region of the sequence. The spectra are consistent with extended parallel stacks of strands consistent with β-sheet-like structure, rather than a partially disordered loop that forms in aqueous buffer. These experiments provide a new method for using infrared spectroscopy to monitor the structure of proteins under physiological conditions and reveal the formation of a significantly different polymorph structure in the most important region of hIAPP.
Collapse
Affiliation(s)
- Caitlyn R Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sidney S Dicke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
Nam Y, Kalathingal M, Saito S, Lee JY. Tautomeric Effect of Histidine on β-Sheet Formation of Amyloid Beta 1-40: 2D-IR Simulations. Biophys J 2020; 119:831-842. [PMID: 32730791 DOI: 10.1016/j.bpj.2020.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
Histidine state (protonated or δ or ε tautomer) has been considered the origin of abnormal misfolding and aggregation of β-amyloid (Aβ). Our previous studies reported that the δδδ isomer of Aβ (1-40) has a greater propensity for β-sheet conformation compared to other isomers. However, direct proof of the tautomeric effect has not been reported. In this context, we calculated histidine site-specific two-dimensional infrared spectroscopy of the δδδ, εεε, and πππ (all protonated histidine) systems within the framework of classical molecular dynamics simulations aiming at connecting our previous results with the current experimental observations. Our results showed that β-sheet formation is favored for the δδδ and πππ tautomers compared with the εεε tautomer, consistent with our previous studies. This result was further supported by contact map analyses and the strength of dipole coupling between the amide-I bonds of each residue. The two-dimensional infrared diagonal trace for each tautomer included three distinctive spectrally resolvable peaks near 1680, 1686, and 1693 cm-1, as was also observed for histidine dipeptides. However, the peak positions at His6, His13, and His14 did not show a consensus trend with the histidine or protonation state but were instead affected by the presence of surrounding hydrogen bonds. Our study provides a deeper insight into the influence of tautomerism and protonation of histidine residues in Aβ (1-40) on amyloid misfolding and provides a connection between our previous simulations and experimental observations.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea; Institute for Molecular Science, Myodaiji, Okazaki, Japan
| | | | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Japan; The Graduate University for Advanced Studies, Myodaiji, Okazaki, Japan.
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
24
|
Roberson MG, Duncan JM, Flieth KJ, Geary LM, Tucker MJ. Photo-initiated rupture of azobenzene micelles to enable the spectroscopic analysis of antimicrobial peptide dynamics. RSC Adv 2020; 10:21464-21472. [PMID: 32879729 PMCID: PMC7449587 DOI: 10.1039/d0ra01920h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/27/2020] [Indexed: 01/03/2023] Open
Abstract
Antimicrobial peptides (AMPs) show promise for the treatment of bacterial infections, but many have undesired hemolytic activities. The AMP MP1 not only has broad spectrum bactericidal activity, but has been shown to have antitumor activity. The interaction between AMPs and cellular membranes gives rise to a peptide's cell-specificity and activity. However, direct analysis of the biophysical interactions between peptides and membrane is complex, in part due to the nature of membrane environments as well as structural changes in the peptide that occurs upon binding to the membrane. In order to investigate the interplay between cell selectivity, activity, and secondary structural changes involved in antimicrobial peptide activity, we sought to implement photolizable membrane mimics to assess the types of information available from infrared spectroscopic measurements that follow from photoinitiated peptide dynamics. Azo-surfactants (APEG) form micelles containing a photolizable azobenzene core, which upon irradiation can induce membrane deformation resulting in breakdown of micelles. Spectroscopic analysis of membrane deformation may provide insights into the physical behavior associated with unfolding and dissociation of antimicrobial peptides within a membrane environment. Herein, we synthesized and characterized two new azo-surfactants, APEGTMG and APEGNEt2MeI. Furthermore, we demonstrate the viability of azosurfactants as membrane mimics by examining both the membrane binding and dissociation induced secondary structural changes of the antimicrobial peptide, MP1.
Collapse
Affiliation(s)
- Matthew G Roberson
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| | - Julia M Duncan
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| | - Keveen J Flieth
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| | - Laina M Geary
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| |
Collapse
|
25
|
Ziaunys M, Smirnovas V. Additional Thioflavin-T Binding Mode in Insulin Fibril Inner Core Region. J Phys Chem B 2019; 123:8727-8732. [PMID: 31580671 DOI: 10.1021/acs.jpcb.9b08652] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloidogenic protein aggregation into fibrils is linked to several neurodegenerative disorders, such as Alzheimer's or Parkinson's disease. An amyloid specific fluorescent dye thioflavin-T (ThT) is often used to track the formation of these fibrils in vitro. Despite its wide application, it is still unknown how many types of ThT binding modes to amyloids exist, with multiple studies indicating varying numbers. In this work, we examine the binding of ThT to insulin fibrils generated at pH 2.4 and reveal a possible inner core binding mode which is not accessible to the dye molecule after aggregation occurs.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center , Vilnius University , Vilnius LT-10257 , Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center , Vilnius University , Vilnius LT-10257 , Lithuania
| |
Collapse
|
26
|
Stephens AD, Kaminski Schierle GS. The role of water in amyloid aggregation kinetics. Curr Opin Struct Biol 2019; 58:115-123. [PMID: 31299481 DOI: 10.1016/j.sbi.2019.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
The role of water in protein function and aggregation is highly important and may hold some answers to understanding initiation of misfolding diseases such as Parkinson's, Alzheimer's and Huntington's where soluble intrinsically disordered proteins (IDPs) aggregate into fibrillar structures. IDPs are highly dynamic and have larger solvent exposed areas compared to globular proteins, meaning they make and break hydrogen bonds with the surrounding water more frequently. The mobility of water can be altered by presence of ions, sugars, osmolytes, proteins and membranes which differ in different cell types, cell compartments and also as cells age. A reduction in water mobility and thus protein mobility enhances the probability that IDPs can associate to form intermolecular bonds and propagate into aggregates. This poses an interesting question as to whether localised water mobility inside cells can influence the propensity of an IDP to aggregate and furthermore whether it can influence fibril polymorphism and disease outcome.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| |
Collapse
|
27
|
Nguyen HL, Krupa P, Hai NM, Linh HQ, Li MS. Structure and Physicochemical Properties of the Aβ42 Tetramer: Multiscale Molecular Dynamics Simulations. J Phys Chem B 2019; 123:7253-7269. [DOI: 10.1021/acs.jpcb.9b04208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software
City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Biomedical Engineering Department, Ho Chi Minh City University of Technology-VNU HCM, 268 Ly Thuong Kiet Street, Distr. 10, Ho Chi Minh City 700000, Vietnam
| | - Pawel Krupa
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Nguyen Minh Hai
- Faculty of Physics and Engineering Physics, University of Science-VNU HCM, Ho Chi Minh City 700000, Vietnam
| | - Huynh Quang Linh
- Biomedical Engineering Department, Ho Chi Minh City University of Technology-VNU HCM, 268 Ly Thuong Kiet Street, Distr. 10, Ho Chi Minh City 700000, Vietnam
| | - Mai Suan Li
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
28
|
Wu H, Saltzberg DJ, Kratochvil HT, Jo H, Sali A, DeGrado WF. Glutamine Side Chain 13C═ 18O as a Nonperturbative IR Probe of Amyloid Fibril Hydration and Assembly. J Am Chem Soc 2019; 141:7320-7326. [PMID: 30998340 DOI: 10.1021/jacs.9b00577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infrared (IR) spectroscopy has provided considerable insight into the structures, dynamics, and formation mechanisms of amyloid fibrils. IR probes, such as main chain 13C═18O, have been widely employed to obtain site-specific structural information, yet only secondary structures and strand-to-strand arrangements can be probed. Very few nonperturbative IR probes are available to report on the side-chain conformation and environments, which are critical to determining sheet-to-sheet arrangements in steric zippers within amyloids. Polar residues, such as glutamine, contribute significantly to the stability of amyloids and thus are frequently found in core regions of amyloid peptides/proteins. Furthermore, polyglutamine (polyQ) repeats form toxic aggregates in several neurodegenerative diseases. Here we report the synthesis and application of a new nonperturbative IR probe-glutamine side chain 13C═18O. We use side chain 13C═18O labeling and isotope dilution to detect the presence of intermolecularly hydrogen-bonded arrays of glutamine side chains (Gln ladders) in amyloid-forming peptides. Moreover, the line width of the 13C═18O peak is highly sensitive to its local hydration environment. The IR data from side chain labeling allows us to unambiguously determine the sheet-to-sheet arrangement in a short amyloid-forming peptide, GNNQQNY, providing insight that was otherwise inaccessible through main chain labeling. With several different fibril samples, we also show the versatility of this IR probe in studying the structures and aggregation kinetics of amyloids. Finally, we demonstrate the capability of modeling amyloid structures with IR data using the integrative modeling platform (IMP) and the potential of integrating IR with other biophysical methods for more accurate structural modeling. Together, we believe that side chain 13C═18O will complement main chain isotope labeling in future IR studies of amyloids and integrative modeling using IR data will significantly expand the power of IR spectroscopy to elucidate amyloid assemblies.
Collapse
|
29
|
Ghosh S, Wategaonkar S. C–H···O Hydrogen Bond Anchored Water Bridge in 1,2,4,5-Tetracyanobenzene-Water Clusters. J Phys Chem A 2019; 123:3851-3862. [DOI: 10.1021/acs.jpca.9b02238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sanat Ghosh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Sanjay Wategaonkar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| |
Collapse
|
30
|
Roberson MG, Smith DK, White SM, Wallace IS, Tucker MJ. Interspecies Bombolitins Exhibit Structural Diversity upon Membrane Binding, Leading to Cell Specificity. Biophys J 2019; 116:1064-1074. [PMID: 30824115 DOI: 10.1016/j.bpj.2019.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 02/05/2023] Open
Abstract
Bombolitins, a class of peptides produced by bees of the genus Bombus, target and disrupt cellular membranes, leading to lysis. Antimicrobial peptides exhibit various mechanisms of action resulting from the interplay between peptide structure, lipid composition, and cellular target membrane selectivity. Herein, two bombolitins displaying significant amino-acid-sequence similarity, BII and BL6, were assessed for antimicrobial activity as well as correlated dodecylphosphocholine (DPC) micelle binding and membrane-induced peptide conformational changes. Infrared and circular dichroism spectroscopies were used to assess the structure-function relationship of each bombolitin, and the results indicate that BII forms a rigid and helically ordered secondary structure upon binding to DPC micelles, whereas BL6 largely lacks secondary structural order. Moreover, the binding affinity of each peptide to DPC micelles was determined, revealing that BL6 displayed a difference in binding affinity by over two orders of magnitude. Further investigations into the growth-inhibitory activity of the two bombolitins were performed against Escherichia coli and Saccharomyces cerevisiae. Interestingly, BII specifically targeted S. cerevisiae, whereas BL6 more effectively inhibited E. coli growth. Overall, the antimicrobial selectivity and specificity of BII and BL6 are largely dependent on the primary as well as secondary structural content of the peptides and the membrane composition.
Collapse
Affiliation(s)
| | - Devin K Smith
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada
| | - Simon M White
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada
| | - Ian S Wallace
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada.
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada.
| |
Collapse
|
31
|
Vibrational Approach to the Dynamics and Structure of Protein Amyloids. Molecules 2019; 24:molecules24010186. [PMID: 30621325 PMCID: PMC6337179 DOI: 10.3390/molecules24010186] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Amyloid diseases, including neurodegenerative diseases such as Alzheimer’s and Parkinson’s, are linked to a poorly understood progression of protein misfolding and aggregation events that culminate in tissue-selective deposition and human pathology. Elucidation of the mechanistic details of protein aggregation and the structural features of the aggregates is critical for a comprehensive understanding of the mechanisms of protein oligomerization and fibrillization. Vibrational spectroscopies, such as Fourier transform infrared (FTIR) and Raman, are powerful tools that are sensitive to the secondary structure of proteins and have been widely used to investigate protein misfolding and aggregation. We address the application of the vibrational approaches in recent studies of conformational dynamics and structural characteristics of protein oligomers and amyloid fibrils. In particular, introduction of isotope labelled carbonyl into a peptide backbone, and incorporation of the extrinsic unnatural amino acids with vibrational moieties on the side chain, have greatly expanded the ability of vibrational spectroscopy to obtain site-specific structural and dynamic information. The applications of these methods in recent studies of protein aggregation are also reviewed.
Collapse
|
32
|
Zavitsas AA. Quest To Demystify Water: Ideal Solution Behaviors Are Obtained by Adhering to the Equilibrium Mass Action Law. J Phys Chem B 2019; 123:869-883. [DOI: 10.1021/acs.jpcb.8b07166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Andreas A. Zavitsas
- Department of Chemistry and Biochemistry, Long Island University, 1 University Plaza, Brooklyn, New York 11201, United States
| |
Collapse
|
33
|
Abstract
Fourier transform infrared (FTIR) spectroscopy has become one of the major techniques of structural characterization of proteins, peptides, and protein-membrane interactions. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or intermolecular interactions. The sensitivity of vibrational frequencies to atomic masses has led to development of "isotope-edited" FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as 13C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein-nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, the structural features of membrane pore forming proteins and peptides, and much more. The purpose of this chapter was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, is also presented.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
34
|
Yang F, Tao F, Li C, Gao L, Yang P. Self-assembled membrane composed of amyloid-like proteins for efficient size-selective molecular separation and dialysis. Nat Commun 2018; 9:5443. [PMID: 30575744 PMCID: PMC6303310 DOI: 10.1038/s41467-018-07888-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
The design and scalable construction of robust ultrathin protein membranes with tunable separation properties remain a key challenge in chemistry and materials science. Here, we report a macroscopic ultrathin protein membrane with the potential for scaled-up fabrication and excellent separation efficiency. This membrane, which is formed by fast amyloid-like lysozyme aggregation at air/water interface, has a controllable thickness that can be tuned to 30–250 nm and pores with a mean size that can be tailored from 1.8 to 3.2 nm by the protein concentration. This membrane can retain > 3 nm molecules and particles while permitting the transport of small molecules at a rate that is 1~4 orders of magnitude faster than the rate of existing materials. This membrane further exhibits excellent hemodialysis performance, especially for the removal of middle-molecular-weight uremic toxins, which is 5~6 times higher in the clearance per unit area than the typical literature values reported to date. Membrane separation is important for a range of industrial and medical applications. Here, the authors report on the formation of self-assembled protein membranes for size selective separation and demonstrate application in the separation of dyes, nanoparticles and in hemodialysis.
Collapse
Affiliation(s)
- Facui Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Fei Tao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chen Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingxiang Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
35
|
Buchanan LE, Maj M, Dunkelberger EB, Cheng PN, Nowick JS, Zanni MT. Structural Polymorphs Suggest Competing Pathways for the Formation of Amyloid Fibrils That Diverge from a Common Intermediate Species. Biochemistry 2018; 57:6470-6478. [PMID: 30375231 DOI: 10.1021/acs.biochem.8b00997] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is now recognized that many amyloid-forming proteins can associate into multiple fibril structures. Here, we use two-dimensional infrared spectroscopy to study two fibril polymorphs formed by human islet amyloid polypeptide (hIAPP or amylin), which is associated with type 2 diabetes. The polymorphs exhibit different degrees of structural organization near the loop region of hIAPP fibrils. The relative populations of these polymorphs are systematically altered by the presence of macrocyclic peptides which template β-sheet formation at specific sections of the hIAPP sequence. These experiments are consistent with polymorphs that result from competing pathways for fibril formation and that the macrocycles bias hIAPP aggregation toward one pathway or the other. Another macrocyclic peptide that matches the loop region but extends the lag time leaves the relative populations of the polymorphs unaltered, suggesting that the branching point for structural divergence occurs after the lag phase, when the oligomers convert into seeds that template fibril formation. Thus, we conclude that the structures of the polymorphs stem from restricting oligomers along diverging folding pathways, which has implications for drug inhibition, cytotoxicity, and the free energy landscape of hIAPP aggregation.
Collapse
Affiliation(s)
- Lauren E Buchanan
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Michał Maj
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Emily B Dunkelberger
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Pin-Nan Cheng
- Department of Chemistry , University of California-Irvine , Irvine , California 92697-2025 , United States
| | - James S Nowick
- Department of Chemistry , University of California-Irvine , Irvine , California 92697-2025 , United States
| | - Martin T Zanni
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| |
Collapse
|
36
|
Selig O, Cunha AV, van Eldijk MB, van Hest JCM, Jansen TLC, Bakker HJ, Rezus YLA. Temperature-Induced Collapse of Elastin-like Peptides Studied by 2DIR Spectroscopy. J Phys Chem B 2018; 122:8243-8254. [PMID: 30067028 PMCID: PMC6143280 DOI: 10.1021/acs.jpcb.8b05221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Indexed: 12/21/2022]
Abstract
Elastin-like peptides are hydrophobic biopolymers that exhibit a reversible coacervation transition when the temperature is raised above a critical point. Here, we use a combination of linear infrared spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations to study the structural dynamics of two elastin-like peptides. Specifically, we investigate the effect of the solvent environment and temperature on the structural dynamics of a short (5-residue) elastin-like peptide and of a long (450-residue) elastin-like peptide. We identify two vibrational energy transfer processes that take place within the amide I' band of both peptides. We observe that the rate constant of one of the exchange processes is strongly dependent on the solvent environment and argue that the coacervation transition is accompanied by a desolvation of the peptide backbone where up to 75% of the water molecules are displaced. We also study the spectral diffusion dynamics of the valine(1) residue that is present in both peptides. We find that these dynamics are relatively slow and indicative of an amide group that is shielded from the solvent. We conclude that the coacervation transition of elastin-like peptides is probably not associated with a conformational change involving this residue.
Collapse
Affiliation(s)
- Oleg Selig
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ana V. Cunha
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Mark B. van Eldijk
- Institute
for Molecules and Materials, Radboud University
Nijmegen, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Jan C. M. van Hest
- Department
of Chemical Engineering and Chemistry Kranenveld, Eindhoven University of Technology, Building 14, 5600 MB Eindhoven, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Huib J. Bakker
- FOM
institute AMOLF, Science
Park 104, 1098 XG Amsterdam, The Netherlands
| | | |
Collapse
|
37
|
Pilkington EH, Gustafsson OJR, Xing Y, Hernandez-Fernaud J, Zampronio C, Kakinen A, Faridi A, Ding F, Wilson P, Ke PC, Davis TP. Profiling the Serum Protein Corona of Fibrillar Human Islet Amyloid Polypeptide. ACS NANO 2018; 12:6066-6078. [PMID: 29746093 PMCID: PMC6239983 DOI: 10.1021/acsnano.8b02346] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amyloids may be regarded as native nanomaterials that form in the presence of complex protein mixtures. By drawing an analogy with the physicochemical properties of nanoparticles in biological fluids, we hypothesized that amyloids should form a protein corona in vivo that would imbue the underlying amyloid with a modified biological identity. To explore this hypothesis, we characterized the protein corona of human islet amyloid polypeptide (IAPP) fibrils in fetal bovine serum using two complementary methodologies developed herein: quartz crystal microbalance and "centrifugal capture", coupled with nanoliquid chromatography tandem mass spectroscopy. Clear evidence for a significant protein corona was obtained. No trends were identified for amyloid corona proteins based on their physicochemical properties, whereas strong binding with IAPP fibrils occurred for linear proteins or multidomain proteins with structural plasticity. Proteomic analysis identified amyloid-enriched proteins that are known to play significant roles in mediating cellular machinery and processing, potentially leading to pathological outcomes and therapeutic targets.
Collapse
Affiliation(s)
- Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Department of Chemistry , University of Warwick , Library Road , CV4 4AL Coventry , United Kingdom
| | - Ove J R Gustafsson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute , University of South Australia , University Boulevard , Mawson Lakes , SA 5095 , Australia
| | - Yanting Xing
- Department of Physics and Astronomy , Clemson University , Clemson , South Carolina 29634 , United States
| | - Juan Hernandez-Fernaud
- Warwick Proteomics Research Technology Platform, School of Life Sciences , University of Warwick , Gibbet Hill Road , CV4 7AL Coventry , United Kingdom
| | - Cleidi Zampronio
- Warwick Proteomics Research Technology Platform, School of Life Sciences , University of Warwick , Gibbet Hill Road , CV4 7AL Coventry , United Kingdom
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Feng Ding
- Department of Physics and Astronomy , Clemson University , Clemson , South Carolina 29634 , United States
| | - Paul Wilson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Department of Chemistry , University of Warwick , Library Road , CV4 4AL Coventry , United Kingdom
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences , 381 Royal Parade , Parkville , VIC 3052 , Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Department of Chemistry , University of Warwick , Library Road , CV4 4AL Coventry , United Kingdom
| |
Collapse
|
38
|
Pazos IM, Ma J, Mukherjee D, Gai F. Ultrafast Hydrogen-Bonding Dynamics in Amyloid Fibrils. J Phys Chem B 2018; 122:11023-11029. [PMID: 29883122 DOI: 10.1021/acs.jpcb.8b04642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While there are many studies on the subject of hydrogen-bonding dynamics in biological systems, few, if any, have investigated this fundamental process in amyloid fibrils. Herein, we seek to add insight into this topic by assessing the dynamics of a hydrogen bond buried in the dry interface of amyloid fibrils. To prepare a suitable model peptide system for this purpose, we introduce two mutations into the amyloid-forming Aβ16-22 peptide. The first one is a lysine analogue at position 19, which is used to help form structurally homogeneous fibrils, and the second one is an aspartic acid derivative (DM) at position 17, which is intended (1) to be used as a site-specific infrared probe and (2) to serve as a hydrogen-bond acceptor to lysine so that an inter-β-sheet hydrogen bond can be formed in the fibrils. Using both infrared spectroscopy and atomic force microscopy, we show that (1) this mutant peptide indeed forms well-defined fibrils, (2) when bulk solvent is removed, there is no detectable water present in the fibrils, (3) infrared results obtained with the DM probe are consistent with a protofibril structure that is composed of two antiparallel β-sheets stacked in a parallel fashion, leading to formation of the expected hydrogen bond. Using two-dimensional infrared spectroscopy, we further show that the dynamics of this hydrogen bond occur on a time scale of ∼2.3 ps, which is attributed to the rapid rotation of the -NH3+ group of lysine around its Cε-Nζ bond. Taken together, these results suggest that (1) DM is a useful infrared marker in facilitating structure determination of amyloid fibrils and (2) even in the tightly packed core of amyloid fibrils certain amino acid side chains can undergo ultrafast motions, hence contributing to the thermodynamic stability of the system.
Collapse
|
39
|
Insights into Stabilizing Forces in Amyloid Fibrils of Differing Sizes from Polarizable Molecular Dynamics Simulations. J Mol Biol 2018; 430:3819-3834. [PMID: 29782833 DOI: 10.1016/j.jmb.2018.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 11/23/2022]
Abstract
Pathological aggregation of amyloid-forming proteins is a hallmark of a number of human diseases, including Alzheimer's, type 2 diabetes, Parkinson's, and more. Despite having very different primary amino acid sequences, these amyloid proteins form similar supramolecular, fibril structures that are highly resilient to physical and chemical denaturation. To better understand the structural stability of disease-related amyloids and to gain a greater understanding of factors that stabilize functional amyloid assemblies, insights into tertiary and quaternary interactions are needed. We performed molecular dynamics simulations on human tau, amyloid-β, and islet amyloid polypeptide fibrils to determine key physicochemical properties that give rise to their unique characteristics and fibril structures. These simulations are the first of their kind in employing a polarizable force field to explore properties of local electric fields on dipole properties and other electrostatic forces that contribute to amyloid stability. Across these different amyloid fibrils, we focused on how the underlying forces stabilize fibrils to elucidate the driving forces behind the protein aggregation. The polarizable model allows for an investigation of how side-chain dipole moments, properties of structured water molecules in the fibril core, and the local environment around salt bridges contribute to the formation of interfaces essential for fibril stability. By systematically studying three amyloidogenic proteins of various fibril sizes for key structural properties and stabilizing forces, we shed light on properties of amyloid structures related to both diseased and functional states at the atomistic level.
Collapse
|
40
|
Zhang X, Kumar R, Kuroda DG. Acetate ion and its interesting solvation shell structure and dynamics. J Chem Phys 2018. [DOI: 10.1063/1.5019363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaoliu Zhang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Revati Kumar
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Daniel G. Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
41
|
Petti MK, Lomont JP, Maj M, Zanni MT. Two-Dimensional Spectroscopy Is Being Used to Address Core Scientific Questions in Biology and Materials Science. J Phys Chem B 2018; 122:1771-1780. [PMID: 29346730 DOI: 10.1021/acs.jpcb.7b11370] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-dimensional spectroscopy is a powerful tool for extracting structural and dynamic information from a wide range of chemical systems. We provide a brief overview of the ways in which two-dimensional visible and infrared spectroscopies are being applied to elucidate fundamental details of important processes in biological and materials science. The topics covered include amyloid proteins, photosynthetic complexes, ion channels, photovoltaics, batteries, as well as a variety of promising new methods in two-dimensional spectroscopy.
Collapse
Affiliation(s)
- Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
42
|
Cui Y, Kuroda DG. Evidence of Molecular Heterogeneities in Amide-Based Deep Eutectic Solvents. J Phys Chem A 2018; 122:1185-1193. [DOI: 10.1021/acs.jpca.7b10264] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yaowen Cui
- Department of Chemistry, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Daniel G. Kuroda
- Department of Chemistry, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
43
|
Hilaire MR, Ding B, Mukherjee D, Chen J, Gai F. Possible Existence of α-Sheets in the Amyloid Fibrils Formed by a TTR 105-115 Mutant. J Am Chem Soc 2018; 140:629-635. [PMID: 29241000 PMCID: PMC5796419 DOI: 10.1021/jacs.7b09262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we combine several methods to characterize the fibrils formed by a TTR105-115 mutant in which Leu111 is replaced by the unnatural amino acid aspartic acid 4-methyl ester. We find that this mutant peptide exhibits significantly different aggregation behavior than the wild-type peptide: (1) it forms fibrils with a much faster rate, (2) its fibrils lack the long-range helical twists observed in TTR105-115 fibrils, (3) its fibrils exhibit a giant far-UV circular dichroism signal, and (4) its fibrils give rise to an unusual amide I' band consisting of four distinct and sharp peaks. On the basis of these results and also several previous computational studies, we hypothesize that the fibrils formed by this TTR mutant peptide contain both β- and α-sheets.
Collapse
Affiliation(s)
- Mary Rose Hilaire
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Bei Ding
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
- The Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Jianxin Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
- The Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
- The Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
44
|
Lomont JP, Rich KL, Maj M, Ho JJ, Ostrander JS, Zanni MT. Spectroscopic Signature for Stable β-Amyloid Fibrils versus β-Sheet-Rich Oligomers. J Phys Chem B 2017; 122:144-153. [PMID: 29220175 DOI: 10.1021/acs.jpcb.7b10765] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We use two-dimensional IR (2D IR) spectroscopy to explore fibril formation for the two predominant isoforms of the β-amyloid (Aβ1-40 and Aβ1-42) protein associated with Alzheimer's disease. Two-dimensional IR spectra resolve a transition at 1610 cm-1 in Aβ fibrils that does not appear in other Aβ aggregates, even those with predominantly β-sheet-structure-like oligomers. This transition is not resolved in linear IR spectroscopy because it lies under the broad band centered at 1625 cm-1, which is the traditional infrared signature for amyloid fibrils. The feature is prominent in 2D IR spectra because 2D lineshapes are narrower and scale nonlinearly with transition dipole strengths. Transmission electron microscopy measurements demonstrate that the 1610 cm-1 band is a positive identification of amyloid fibrils. Sodium dodecyl sulfate micelles that solubilize and disaggregate preaggregated Aβ samples deplete the 1625 cm-1 band but do not affect the 1610 cm-1 band, demonstrating that the 1610 cm-1 band is due to very stable fibrils. We demonstrate that the 1610 cm-1 transition arises from amide I modes by mutating out the only side-chain residue that could give rise to this transition, and we explore the potential structural origins of the transition by simulating 2D IR spectra based on Aβ crystal structures. It was not previously possible to distinguish stable Aβ fibrils from the less stable β-sheet-rich oligomers with infrared light. This 2D IR signature will be useful for Alzheimer's research on Aβ aggregation, fibril formation, and toxicity.
Collapse
Affiliation(s)
- Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Kacie L Rich
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Jia-Jung Ho
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
45
|
Iyer A, Roeters SJ, Kogan V, Woutersen S, Claessens MMAE, Subramaniam V. C-Terminal Truncated α-Synuclein Fibrils Contain Strongly Twisted β-Sheets. J Am Chem Soc 2017; 139:15392-15400. [PMID: 28968082 PMCID: PMC5668890 DOI: 10.1021/jacs.7b07403] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
C-terminal truncations
of monomeric wild-type alpha-synuclein (henceforth
WT-αS) have been shown to enhance the formation of amyloid aggregates
both in vivo and in vitro and have
been associated with accelerated progression of Parkinson’s
disease (PD). The correlation with PD may not solely be a result of
faster aggregation, but also of which fibril polymorphs are preferentially
formed when the C-terminal residues are deleted. Considering that
different polymorphs are known to result in distinct pathologies,
it is important to understand how these truncations affect the organization
of αS into fibrils. Here we present high-resolution microscopy
and advanced vibrational spectroscopy studies that indicate that the
C-terminal truncation variant of αS, lacking residues 109–140
(henceforth referred to as 1–108-αS), forms amyloid fibrils
with a distinct structure and morphology. The 1–108-αS
fibrils have a unique negative circular dichroism band at ∼230
nm, a feature that differs from the canonical ∼218 nm band
usually observed for amyloid fibrils. We show evidence that 1–108-αS
fibrils consist of strongly twisted β-sheets with an increased
inter-β-sheet distance and a higher solvent exposure than WT-αS
fibrils, which is also indicated by the pronounced differences in
the 1D-IR (FTIR), 2D-IR, and vibrational circular dichroism spectra.
As a result of their distinct β-sheet structure, 1–108-αS
fibrils resist incorporation of WT-αS monomers.
Collapse
Affiliation(s)
- Aditya Iyer
- Nanoscale Biophysics Group, AMOLF , Science Park 104, Amsterdam 1098 XG, The Netherlands.,Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente , Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Steven J Roeters
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Vladimir Kogan
- Dannalab BV , Wethouder Beversstraat 185, Enschede 7543 BK, The Netherlands
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Mireille M A E Claessens
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente , Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Vinod Subramaniam
- Nanoscale Biophysics Group, AMOLF , Science Park 104, Amsterdam 1098 XG, The Netherlands.,Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente , Drienerlolaan 5, Enschede 7522 NB, The Netherlands.,Vrije Universiteit Amsterdam , De Boelelaan 1105, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
46
|
Bacci M, Vymětal J, Mihajlovic M, Caflisch A, Vitalis A. Amyloid β Fibril Elongation by Monomers Involves Disorder at the Tip. J Chem Theory Comput 2017; 13:5117-5130. [PMID: 28870064 DOI: 10.1021/acs.jctc.7b00662] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growth of amyloid fibrils from Aβ1-42 peptide, one of the key pathogenic players in Alzheimer's disease, is believed to follow a nucleation-elongation mechanism. Fibril elongation is often described as a "dock-lock" procedure, where a disordered monomer adsorbs to an existing fibril in a relatively fast process (docking), followed by a slower conformational transition toward the ordered state of the template (locking). Here, we use molecular dynamics simulations of an ordered pentamer of Aβ42 at fully atomistic resolution, which includes solvent, to characterize the elongation process. We construct a Markov state model from an ensemble of short trajectories generated by an advanced sampling algorithm that efficiently diversifies a subset of the system without any bias forces. This subset corresponds to selected dihedral angles of the peptide chain at the fibril tip favored to be the fast growing one experimentally. From the network model, we extract distinct locking pathways covering time scales in the high microsecond regime. Slow steps are associated with the exchange of hydrophobic contacts, between nonnative and native intermolecular contacts as well as between intra- and intermolecular ones. The N-terminal segments, which are disordered in fibrils and typically considered inert, are able to shield the lateral interfaces of the pentamer. We conclude by discussing our findings in the context of a refined dock-lock model of Aβ fibril elongation, which involves structural disorder for more than one monomer at the growing tip.
Collapse
Affiliation(s)
- Marco Bacci
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jiří Vymětal
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Maja Mihajlovic
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andreas Vitalis
- University of Zurich , Department of Biochemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
47
|
Lomont JP, Ostrander JS, Ho JJ, Petti MK, Zanni MT. Not All β-Sheets Are the Same: Amyloid Infrared Spectra, Transition Dipole Strengths, and Couplings Investigated by 2D IR Spectroscopy. J Phys Chem B 2017; 121:8935-8945. [PMID: 28851219 DOI: 10.1021/acs.jpcb.7b06826] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the transition dipole strengths and frequencies of the amyloid β-sheet amide I mode for the aggregated proteins amyloid-β1-40, calcitonin, α-synuclein, and glucagon. According to standard vibrational coupling models for proteins, the frequencies of canonical β-sheets are set by their size and structural and environmental disorder, which determines the delocalization length of the vibrational excitons. The larger the delocalization the lower the frequency of the main infrared-allowed transition, A⊥. The models also predict an accompanying increase in transition dipole strength. For the proteins measured here, we find no correlation between transition dipole strengths and amyloid β-sheet transition frequency. To understand this observation, we have extracted from the protein data bank crystal structures of amyloid peptides from which we calculate the amide I vibrational couplings, and we use these in a model β-sheet Hamiltonian to simulate amyloid vibrational spectra. We find that the variations in amyloid β-sheet structures (e.g., dihedral angles, interstrand distances, and orientations) create significant differences in the average values for interstrand and nearest neighbor couplings, and that those variations encompass the variation in measured A⊥ frequencies. We also find that off-diagonal disorder about the average values explains the range of transition dipole strengths observed experimentally. Thus, we conclude that the lack of correlation between transition dipole-strength and frequency is caused by variations in amyloid β-sheet structure. Taken together, these results indicate that the amide I frequency is very sensitive to amyloid β-sheet structure, the β-sheets of these 4 proteins are not identical, and the assumption that frequency of amyloids scales with β-sheet size cannot be adopted without an accompanying measurement of transition dipole strengths.
Collapse
Affiliation(s)
- Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Jia-Jung Ho
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| |
Collapse
|
48
|
Grasso G, Komatsu H, Axelsen P. Covalent modifications of the amyloid beta peptide by hydroxynonenal: Effects on metal ion binding by monomers and insights into the fibril topology. J Inorg Biochem 2017; 174:130-136. [DOI: 10.1016/j.jinorgbio.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022]
|
49
|
Ghosh A, Ostrander JS, Zanni MT. Watching Proteins Wiggle: Mapping Structures with Two-Dimensional Infrared Spectroscopy. Chem Rev 2017; 117:10726-10759. [PMID: 28060489 PMCID: PMC5500453 DOI: 10.1021/acs.chemrev.6b00582] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins exhibit structural fluctuations over decades of time scales. From the picosecond side chain motions to aggregates that form over the course of minutes, characterizing protein structure over these vast lengths of time is important to understanding their function. In the past 15 years, two-dimensional infrared spectroscopy (2D IR) has been established as a versatile tool that can uniquely probe proteins structures on many time scales. In this review, we present some of the basic principles behind 2D IR and show how they have, and can, impact the field of protein biophysics. We highlight experiments in which 2D IR spectroscopy has provided structural and dynamical data that would be difficult to obtain with more standard structural biology techniques. We also highlight technological developments in 2D IR that continue to expand the scope of scientific problems that can be accessed in the biomedical sciences.
Collapse
Affiliation(s)
| | - Joshua S. Ostrander
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
50
|
Abstract
Previously published experimental studies have suggested that when the 40-residue amyloid beta peptide is encapsulated in a reverse micelle, it folds into a structure that may nucleate amyloid fibril formation (Yeung, P. S.-W.; Axelsen, P. H. J. Am. Chem. Soc. 2012, 134, 6061 ). The factors that induce the formation of this structure have now been identified in a multi-microsecond simulation of the same reverse micelle system that was studied experimentally. Key features of the polypeptide-micelle interaction include the anchoring of a hydrophobic residue cluster into gaps in the reverse micelle surface, the formation of a beta turn at the anchor point that brings N- and C-terminal segments of the polypeptide into proximity, high ionic strength that promotes intramolecular hydrogen bond formation, and deformation of the reverse micelle surface to facilitate interactions with the surface along the entire length of the polypeptide. Together, these features cause the simulation-derived vibrational spectrum to red shift in a manner that reproduces the red-shift previously reported experimentally. On the basis of these findings, a new mechanism is proposed whereby membranes nucleate fibril formation and facilitate the in-register alignment of polypeptide strands that is characteristic of amyloid fibrils.
Collapse
Affiliation(s)
- Gözde Eskici
- Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104, United States
| | - Paul H Axelsen
- Departments of Pharmacology, Biochemistry and Biophysics, and Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|