1
|
Somaiah N, Paudyal B, Winkler RE, Van Tine BA, Hirbe AC. Malignant Peripheral Nerve Sheath Tumor, a Heterogeneous, Aggressive Cancer with Diverse Biomarkers and No Targeted Standard of Care: Review of the Literature and Ongoing Investigational Agents. Target Oncol 2024; 19:665-678. [PMID: 38954182 PMCID: PMC11392982 DOI: 10.1007/s11523-024-01078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Malignant peripheral sheath tumor (MPNST) is a rare, aggressive form of soft-tissue sarcoma that presents a unique set of diagnostic and treatment challenges and is associated with major unmet treatment medical needs. OBJECTIVE The chief aim of this review is to consider the epidemiology, histology, anatomic distribution, pathologic signaling pathways, diagnosis, and management of MPNST, with a focus on potential targeted therapies. A subordinate objective was to establish benchmarks for the antitumor activity of such treatments. RESULTS MPNST has an incidence of 1:100,000 in the general population and 1:3500 among patients with the inherited condition of neurofibromatosis-1. Spindle-cell sarcomas of neural-crest origin, MPNSTs are frequently situated in the extremities and pelvis/trunk, often at the confluence of large nerve roots and bundles. Highly copy-number aberrant and enriched in chromosome 8, MPNSTs have a complex molecular pathogenesis that likely involves the interplay of multiple signaling pathways, including Ras/AKT/mTOR/MAPK, EGFR, p53, PTEN, and PRC2, as well as factors in the tumor microenvironment. A combination of magnetic resonance imaging (MRI) and positron emission tomography with 18F-fluorodeoxyglucose (FDG-PET) enables comprehensive assessment of both morphology and metabolism, while MRI- and ultrasound-guided core needle biopsy can confirm histopathology. Although surgery with wide excisional margins is now the chief curative approach to localized disease, MPNST-specific survival has not improved in decades. For advanced and metastatic MPNST, radiation and chemotherapy (chiefly with anthracyclines plus ifosfamide) have somewhat promising but still largely uncertain treatment roles, chiefly in local control, downstaging, and palliation. No single druggable target has emerged, no objective responses have been observed with a number of targeted therapies (cumulative disease control rate in our review = 22.9-34.8%), and combinatorial approaches directed toward multiple signal transduction mechanisms are hallmarks of ongoing clinical trials. CONCLUSIONS Despite advances in our understanding of the genetics and molecular biology of MPNST, further research is warranted to: (1) unravel the complex pathogenesis of this condition; (2) improve diagnostic yield; (3) delineate the appropriate roles of chemotherapy and radiation; and (4) develop a targeted therapy (or combination of such treatments) that is well tolerated and prolongs survival.
Collapse
Affiliation(s)
- Neeta Somaiah
- Chair of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Brian A Van Tine
- Medicine and of Pediatrics, Developmental Therapeutics (Phase 1) Program, Sarcoma Program, Washington University School of Medicine, Barnes and Jewish Hospital, Siteman Cancer Center, St. Louis, MO, USA
| | - Angela C Hirbe
- Medicine and Pediatrics, Adult Neurofibromatosis Clinical Program, Division of Oncology, Sarcoma Section, Couch Building, Room 3304, Washington University School of Medicine, Barnes Jewish Hospital, Siteman Cancer Center, 660 S. Euclid Avenue, Campus, Box 8076, St. Louis, MO, 63110-1010, USA.
| |
Collapse
|
2
|
Park GH, Park E, Lee SJ, Lim K, Kim J, Park JE, Jeong SY. Interferon-Induced Transmembrane Protein 1 (IFITM1) Is Downregulated in Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Int J Mol Sci 2024; 25:9265. [PMID: 39273214 PMCID: PMC11395022 DOI: 10.3390/ijms25179265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Neurofibromatosis type 1 (NF1), an autosomal dominant genetic disorder, is caused by mutations in the NF1 gene, which encodes the GTPase-activating protein neurofibromin. The pathogenesis of the tumor progression of benign plexiform neurofibromas (PNs) and malignant peripheral nerve sheath tumors (MPNSTs) remain unclear. Here, we found that interferon-induced transmembrane protein 1 (IFITM1) was downregulated in MPNST tissues compared to those in PN tissues from patients with NF1. Overexpression of IFITM1 in NF1-associated MPNST cells resulted in a significant decrease in Ras activation (GTP-Ras) and downstream extracellular regulatory kinase 1/2 (ERK1/2) phosphorylation, whereas downregulation of IFITM1 via treatment with small interfering RNA in normal Schwann cells had the opposite result, indicating that expression levels of IFITM1 are closely associated with tumor progression in NF1. Treatment of MPNST cells with interferon-gamma (IFN-γ) significantly augmented the expression of IFITM1, thereby leading to a decrease in Ras and ERK1/2 activation. Despite the small number of patient samples, these findings may potentially provide a new target for chemotherapy in patients with NF1-associated MPNSTs. In xenograft mice injected with MPNST cells, IFN-γ treatment successfully suppressed tumor progression with increased IFITM1 expression and decreased Ras and ERK1/2 activation in tumor tissues. Collectively, these results suggest that IFITM1 is closely involved in MPNST pathogenesis and that IFN-γ is a good candidate for the therapeutic treatment of MPNSTs in NF1.
Collapse
Affiliation(s)
- Gun-Hoo Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Jeju Bio Research Center, Jeju Research Institute, Korea Institute of Ocean Science & Technology (KIOST), Jeju-si 63349, Republic of Korea
| | - Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Jeonbuk Institute for Food-Bioindustry, Jeonju 54810, Republic of Korea
| | - Su-Jin Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Kyubin Lim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Jun Eun Park
- Department of Pediatrics, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Zamora PO, Altay G, Santamaria U, Dwarshuis N, Donthi H, Moon CI, Bakalar D, Zamora M. Drug Responses in Plexiform Neurofibroma Type I (PNF1) Cell Lines Using High-Throughput Data and Combined Effectiveness and Potency. Cancers (Basel) 2023; 15:5811. [PMID: 38136356 PMCID: PMC10742026 DOI: 10.3390/cancers15245811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Background: Neurofibromatosis type 1 (NF1) is a genetic disorder characterized by heterozygous germline NF1 gene mutations that predispose patients to developing plexiform neurofibromas, which are benign but often disfiguring tumors of the peripheral nerve sheath induced by loss of heterozygosity at the NF1 locus. These can progress to malignant peripheral nerve sheath tumors (MPNSTs). There are no approved drug treatments for adults with NF1-related inoperable plexiform neurofibromas, and only one drug (selumetinib), which is an FDA-approved targeted therapy for the treatment of symptomatic pediatric plexiform neurofibromas, highlighting the need for additional drug screening and development. In high-throughput screening, the effectiveness of drugs against cell lines is often assessed by measuring in vitro potency (AC50) or the area under the curve (AUC). However, the variability of dose-response curves across drugs and cell lines and the frequency of partial effectiveness suggest that these measures alone fail to provide a full picture of overall efficacy. Methods: Using concentration-response data, we combined response effectiveness (EFF) and potency (AC50) into (a) a score characterizing the effect of a compound on a single cell line, S = log[EFF/AC50], and (b) a relative score, ΔS, characterizing the relative difference between a reference (e.g., non-tumor) and test (tumor) cell line. ΔS was applied to data from high-throughput screening (HTS) of a drug panel tested on NF1-/- tumor cells, using immortalized non-tumor NF1+/- cells as a reference. Results: We identified drugs with sensitivity, targeting expected pathways, such as MAPK-ERK and PI3K-AKT, as well as serotonin-related targets, among others. The ΔS technique used here, in tandem with a supplemental ΔS web tool, simplifies HTS analysis and may provide a springboard for further investigations into drug response in NF1-related cancers. The tool may also prove useful for drug development in a variety of other cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Chang In Moon
- Dan L. Duncan Comprehensive Cancer Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana Bakalar
- National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
4
|
Chung MH, Aimaier R, Yu Q, Li H, Li Y, Wei C, Gu Y, Wang W, Guo Z, Long M, Li Q, Wang Z. RRM2 as a novel prognostic and therapeutic target of NF1-associated MPNST. Cell Oncol (Dordr) 2023; 46:1399-1413. [PMID: 37086345 DOI: 10.1007/s13402-023-00819-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas that typically develop in the setting of neurofibromatosis type 1 (NF1) and cause significant morbidity. Conventional therapies are often ineffective for MPNSTs. Ribonucleotide reductase subunit M2 (RRM2) is involved in DNA synthesis and repair, and is overexpressed in multiple cancers. However, its role in NF1-associated MPNSTs remains unknown. Our objective was to determine the therapeutic and prognostic potential of RRM2 in NF1-associated MPNSTs. METHODS Identification of hub genes was performed by using NF1-associated MPNST microarray datasets. We detected RRM2 expression by immunochemical staining in an MPNST tissue microarray, and assessed the clinical and prognostic significance of RRM2 in an MPNST cohort. RRM2 knockdown and the RRM2 inhibitor Triapine were used to assess cell proliferation and apoptosis in NF1-associated MPNST cells in vitro and in vivo. The underlying mechanism of RRM2 in NF1-associated MPNST was revealed by transcriptome analysis. RESULTS RRM2 is a key hub gene and its expression is significantly elevated in NF1-associated MPNST. We revealed that high RRM2 expression accounted for a larger proportion of NF1-associated MPNSTs and confirmed the correlation of high RRM2 expression with poor overall survival. Knockdown of RRM2 inhibited NF1-associated MPNST cell proliferation and promoted apoptosis and S-phase arrest. The RRM2 inhibitor Triapine displayed dose-dependent inhibitory effects in vitro and induced significant tumor growth reduction in vivo in NF1-associated MPNST. Analysis of transcriptomic changes induced by RRM2 knockdown revealed suppression of the AKT-mTOR signaling pathway. Overexpression of RRM2 activates the AKT pathway to promote NF1-associated MPNST cell proliferation. CONCLUSIONS RRM2 expression is significantly elevated in NF1-associated MPNST and that high RRM2 expression correlates with poorer outcomes. RRM2 acts as an integral part in the promotion of NF1-associated MPNST cell proliferation via the AKT-mTOR signaling pathway. Inhibition of RRM2 may be a promising therapeutic strategy for NF1-associated MPNST.
Collapse
Affiliation(s)
- Man-Hon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qingxiong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Voigt E, Quelle DE. FOXM1, MEK, and CDK4/6: New Targets for Malignant Peripheral Nerve Sheath Tumor Therapy. Int J Mol Sci 2023; 24:13596. [PMID: 37686402 PMCID: PMC10487994 DOI: 10.3390/ijms241713596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are deadly sarcomas, which desperately need effective therapies. Half of all MPNSTs arise in patients with neurofibromatosis type I (NF1), a common inherited disease. NF1 patients can develop benign lesions called plexiform neurofibromas (PNFs), often in adolescence, and over time, some PNFs, but not all, will transform into MPNSTs. A deeper understanding of the molecular and genetic alterations driving PNF-MPNST transformation will guide development of more targeted and effective treatments for these patients. This review focuses on an oncogenic transcription factor, FOXM1, which is a powerful oncogene in other cancers but little studied in MPNSTs. Elevated expression of FOXM1 was seen in patient MPNSTs and correlated with poor survival, but otherwise, its role in the disease is unknown. We discuss what is known about FOXM1 in MPNSTs relative to other cancers and how FOXM1 may be regulated by and/or regulate the most commonly altered players in MPNSTs, particularly in the MEK and CDK4/6 kinase pathways. We conclude by considering FOXM1, MEK, and CDK4/6 as new, clinically relevant targets for MPNST therapy.
Collapse
Affiliation(s)
- Ellen Voigt
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Dawn E. Quelle
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Turner-Ivey B, Longo JF, Jenkins DP, Guest ST, Carroll SL. Genetic Profiling and Genome-Scale Dropout Screening to Identify Therapeutic Targets in Mouse Models of Malignant Peripheral Nerve Sheath Tumor. J Vis Exp 2023:10.3791/65430. [PMID: 37677047 PMCID: PMC11188578 DOI: 10.3791/65430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are derived from Schwann cells or their precursors. In patients with the tumor susceptibility syndrome neurofibromatosis type 1 (NF1), MPNSTs are the most common malignancy and the leading cause of death. These rare and aggressive soft-tissue sarcomas offer a stark future, with 5-year disease-free survival rates of 34-60%. Treatment options for individuals with MPNSTs are disappointingly limited, with disfiguring surgery being the foremost treatment option. Many once-promising therapies such as tipifarnib, an inhibitor of Ras signaling, have failed clinically. Likewise, phase II clinical trials with erlotinib, which targets the epidermal growth factor (EFGR), and sorafenib, which targets the vascular endothelial growth factor receptor (VEGF), platelet-derived growth factor receptor (PDGF), and Raf, in combination with standard chemotherapy, have also failed to produce a response in patients. In recent years, functional genomic screening methods combined with genetic profiling of cancer cell lines have proven useful for identifying essential cytoplasmic signaling pathways and the development of target-specific therapies. In the case of rare tumor types, a variation of this approach known as cross-species comparative oncogenomics is increasingly being used to identify novel therapeutic targets. In cross-species comparative oncogenomics, genetic profiling and functional genomics are performed in genetically engineered mouse (GEM) models and the results are then validated in the rare human specimens and cell lines that are available. This paper describes how to identify candidate driver gene mutations in human and mouse MPNST cells using whole exome sequencing (WES). We then describe how to perform genome-scale shRNA screens to identify and compare critical signaling pathways in mouse and human MPNST cells and identify druggable targets in these pathways. These methodologies provide an effective approach to identifying new therapeutic targets in a variety of human cancer types.
Collapse
Affiliation(s)
| | - Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| | - Dorea P Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| | - Stephen T Guest
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor
| | - Steven L Carroll
- Hollings Cancer Center, Medical University of South Carolina; Department of Pathology and Laboratory Medicine, Medical University of South Carolina;
| |
Collapse
|
7
|
Rumpf M, Pautz S, Drebes B, Herberg FW, Müller HAJ. Microtubule-Associated Serine/Threonine (MAST) Kinases in Development and Disease. Int J Mol Sci 2023; 24:11913. [PMID: 37569286 PMCID: PMC10419289 DOI: 10.3390/ijms241511913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Microtubule-Associated Serine/Threonine (MAST) kinases represent an evolutionary conserved branch of the AGC protein kinase superfamily in the kinome. Since the discovery of the founding member, MAST2, in 1993, three additional family members have been identified in mammals and found to be broadly expressed across various tissues, including the brain, heart, lung, liver, intestine and kidney. The study of MAST kinases is highly relevant for unraveling the molecular basis of a wide range of different human diseases, including breast and liver cancer, myeloma, inflammatory bowel disease, cystic fibrosis and various neuronal disorders. Despite several reports on potential substrates and binding partners of MAST kinases, the molecular mechanisms that would explain their involvement in human diseases remain rather obscure. This review will summarize data on the structure, biochemistry and cell and molecular biology of MAST kinases in the context of biomedical research as well as organismal model systems in order to provide a current profile of this field.
Collapse
Affiliation(s)
- Marie Rumpf
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| | - Sabine Pautz
- Department of Biochemistry, Institute of Biology, University of Kassel, 34321 Kassel, Germany
| | - Benedikt Drebes
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| | - Friedrich W. Herberg
- Department of Biochemistry, Institute of Biology, University of Kassel, 34321 Kassel, Germany
| | - Hans-Arno J. Müller
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| |
Collapse
|
8
|
d'Amati A, Gianno F, Scuccimarri L, Lastilla M, Messina R, Signorelli F, Zimatore DS, Barresi S, Miele E, Alaggio R, Rossi S, Maiorano E, Ingravallo G, Giangaspero F, Antonelli M. Intracranial mesenchymal tumor with (novel) COX14::PTEN rearrangement. Acta Neuropathol Commun 2023; 11:95. [PMID: 37312212 DOI: 10.1186/s40478-023-01596-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Mesenchymal tumors of the central nervous system (CNS) include numerous entities, with different pathological features and biological behavior. Mesenchymal non-meningothelial tumors are rare and comprise neoplasms that are exclusive to the CNS or show peculiar features when occurring in the CNS compared with other sites. Within this group there are three new entities, classified on the basis of specific molecular alterations and included in the 5th edition of the WHO Classification of CNS Tumors: primary intracranial sarcoma; DICER1-mutant; CIC-rearranged sarcoma; intracranial mesenchymal tumor, FET::CREB fusion-positive. These tumors often show variable morphology, making diagnosis very challenging, although the implementation of molecular techniques has led to better characterization and more precise identification of these entities. However, many molecular alterations have yet to be discovered and some recently reported CNS tumors are currently missing an appropriate classification. Herein, we report the case of a 43-year-old man who presented with an intracranial mesenchymal tumor. Histopathological examination showed a wide spectrum of peculiar morphological features and a non-specific immunohistochemical profile. Whole transcriptome sequencing revealed the presence of a novel genetic rearrangement involving COX14 and PTEN genes, which has never been reported before in any other neoplasm. The tumor did not cluster in any defined methylation class of the brain tumor classifier, but resulted in a calibrated score of 0.89 for the methylation class "Sarcoma, MPNST-like", when analyzed by the sarcoma classifier. Our study is the first to report about this tumor with unique pathological and molecular features, characterized by a novel rearrangement between COX14 and PTEN genes. Other studies are necessary in order to define it as a new entity or as a novel rearrangement involving recently described and incompletely characterized CNS mesenchymal tumors.
Collapse
Affiliation(s)
- Antonio d'Amati
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy.
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy.
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Viale Regina Elena 324, Rome, 00161, Italy.
| | - Francesca Gianno
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Viale Regina Elena 324, Rome, 00161, Italy
| | - Luciana Scuccimarri
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Michele Lastilla
- Division of Neurosurgery, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Raffaella Messina
- Division of Neurosurgery, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Francesco Signorelli
- Division of Neurosurgery, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Domenico Sergio Zimatore
- Interventional and Diagnostic Neuroradiology Unit, University Hospital Policlinico of Bari, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Sabina Barresi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, Rome, 00165, Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, Rome, 00165, Italy
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, Rome, 00165, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, Rome, 00165, Italy
| | - Eugenio Maiorano
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Giuseppe Ingravallo
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Felice Giangaspero
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Viale Regina Elena 324, Rome, 00161, Italy
| | - Manila Antonelli
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Viale Regina Elena 324, Rome, 00161, Italy
| |
Collapse
|
9
|
Liang L, Chen Y, Wu C, Cao Z, Xia L, Meng J, He L, Yang C, Wang Z. MicroRNAs: key regulators of the trophoblast function in pregnancy disorders. J Assist Reprod Genet 2023; 40:3-17. [PMID: 36508034 PMCID: PMC9742672 DOI: 10.1007/s10815-022-02677-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The placenta is essential for a successful pregnancy and healthy intrauterine development in mammals. During human pregnancy, the growth and development of the placenta are inseparable from the rapid proliferation, invasion, and migration of trophoblast cells. Previous reports have shown that the occurrence of many pregnancy disorders may be closely related to the dysfunction of trophoblasts. However, the function regulation of human trophoblast cells in the placenta is poorly understood. Therefore, studying the factors that regulate the function of trophoblast cells is necessary. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNA molecules. Increasing evidence suggests that miRNAs play a crucial role in regulating trophoblast functions. This review outlines the role of miRNAs in regulating the function of trophoblast cells and several common signaling pathways related to miRNA regulation in pregnancy disorders.
Collapse
Affiliation(s)
- Lingli Liang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Yanjun Chen
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Chunyan Wu
- grid.412017.10000 0001 0266 8918Department of Cardiovascular, The Third Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zitong Cao
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Linzhen Xia
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Jun Meng
- grid.461579.8Department of Function, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Lu He
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Chunfen Yang
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zuo Wang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| |
Collapse
|
10
|
Mutation of PTPN11 (Encoding SHP-2) Promotes MEK Activation and Malignant Progression in Neurofibromin-Deficient Cells in a Manner Sensitive to BRAP Mutation. Cancers (Basel) 2022; 14:cancers14102377. [PMID: 35625983 PMCID: PMC9140047 DOI: 10.3390/cancers14102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Germline mutations of NF1 cause neurofibromatosis type 1 (NF1), which is characterized by multiple benign peripheral nerve sheath tumors known as neurofibromas. In some individuals with NF1, plexiform neurofibromas can give rise to malignant peripheral nerve sheath tumors. Here, we applied genomic DNA sequencing to NF1-derived tumors and identified additional genetic alterations in PTPN11 (encoding Src homology region 2 domain-containing phosphatase-2 (SHP)-2) and BRAP associated with NF1 tumor malignancy. We found that the forced expression of the mutant form of SHP-2 activated the protein kinase MEK and increased tumorigenic activity in NF1 cells, and that these effects were attenuated by the forced expression of the mutant form of BRCA1-associated protein (BRAP). This suppressive action of mutant BRAP was not apparent in NF1-intact cells. Our data indicate that the combination of NF1 mutation and PTPN11 mutation drives the malignancy of NF1 cells and that SHP-2 inhibition by BRAP is a potential therapeutic strategy for NF1-associated malignant tumors. Abstract Germline mutations of NF1 cause neurofibromatosis type 1 (NF1) through the activation of the RAS signaling pathway, and some NF1 patients develop malignant peripheral nerve sheath tumors (MPNSTs). Here, we established subclones of the human NF1-MPNST cell line sNF96.2 that manifest increased tumorigenic activity and increased phosphorylation of the protein kinases MEK and Akt relative to the parental cells. Genomic DNA sequencing identified 14 additional heterozygous mutations within the coding regions of 13 cancer- and other disease-related genes in these subclones. One of these genes, PTPN11, encodes SHP-2, and the forced expression of the identified G503V mutant of SHP-2 increased both tumorigenic activity and MEK phosphorylation in parental sNF96.2 cells, suggesting that the combination of PTPN11 and NF1 mutations induces the pathological activation of the RAS pathway. These effects of SHP-2 (G503V) were inhibited by the coexpression of the G370A mutant of BRAP, which was also detected in the highly malignant subclones, and this inhibition was accompanied by the calpain-dependent cleavage of SHP-2 (G503V). The cleavage of SHP-2 (G503V) and suppression of MEK phosphorylation mediated by BRAP (G370A) were not detected in NF1-intact (HeLa) cells. Tumor promotion by SHP-2 (G503V) and its suppression by BRAP (G370A) may serve as a basis for the development of new treatment strategies for NF1.
Collapse
|
11
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
12
|
Anastasaki C, Orozco P, Gutmann DH. RAS and beyond: the many faces of the neurofibromatosis type 1 protein. Dis Model Mech 2022; 15:274437. [PMID: 35188187 PMCID: PMC8891636 DOI: 10.1242/dmm.049362] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurofibromatosis type 1 is a rare neurogenetic syndrome, characterized by pigmentary abnormalities, learning and social deficits, and a predisposition for benign and malignant tumor formation caused by germline mutations in the NF1 gene. With the cloning of the NF1 gene and the recognition that the encoded protein, neurofibromin, largely functions as a negative regulator of RAS activity, attention has mainly focused on RAS and canonical RAS effector pathway signaling relevant to disease pathogenesis and treatment. However, as neurofibromin is a large cytoplasmic protein the RAS regulatory domain of which occupies only 10% of its entire coding sequence, both canonical and non-canonical RAS pathway modulation, as well as the existence of potential non-RAS functions, are becoming apparent. In this Special article, we discuss our current understanding of neurofibromin function.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Paola Orozco
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
13
|
Kohlmeyer JL, Kaemmer CA, Lingo JJ, Voigt E, Leidinger MR, McGivney GR, Scherer A, Koppenhafer SL, Gordon DJ, Breheny P, Meyerholz DK, Tanas MR, Dodd RD, Quelle DE. Oncogenic RABL6A promotes NF1-associated MPNST progression in vivo. Neurooncol Adv 2022; 4:vdac047. [PMID: 35571990 PMCID: PMC9092646 DOI: 10.1093/noajnl/vdac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas with complex molecular and genetic alterations. Powerful tumor suppressors CDKN2A and TP53 are commonly disrupted along with NF1, a gene that encodes a negative regulator of Ras. Many additional factors have been implicated in MPNST pathogenesis. A greater understanding of critical drivers of MPNSTs is needed to guide more informed targeted therapies for patients. RABL6A is a newly identified driver of MPNST cell survival and proliferation whose in vivo role in the disease is unknown. Methods Using CRISPR-Cas9 targeting of Nf1 + Cdkn2a or Nf1 + Tp53 in the mouse sciatic nerve to form de novo MPNSTs, we investigated the biological significance of RABL6A in MPNST development. Terminal tumors were evaluated by western blot, qRT-PCR, and immunohistochemistry. Results Mice lacking Rabl6 displayed slower tumor progression and extended survival relative to wildtype animals in both genetic contexts. YAP oncogenic activity was selectively downregulated in Rabl6-null, Nf1 + Cdkn2a lesions whereas loss of RABL6A caused upregulation of the CDK inhibitor, p27, in all tumors. Paradoxically, both models displayed elevated Myc protein and Ki67 staining in terminal tumors lacking RABL6A. In Nf1 + p53 tumors, cellular atypia and polyploidy were evident and increased by RABL6A loss. Conclusions These findings demonstrate that RABL6A is required for optimal progression of NF1 mutant MPNSTs in vivo in both Cdkn2a and p53 inactivated settings. However, sustained RABL6A loss may provide selective pressure for unwanted alterations, including increased Myc, cellular atypia, and polyploidy, that ultimately promote a hyper-proliferative tumor phenotype akin to drug-resistant lesions.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, Iowa, USA
| | - Courtney A Kaemmer
- The Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, Iowa, USA
| | - Joshua J Lingo
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
| | - Ellen Voigt
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
| | - Mariah R Leidinger
- The Department of Pathology, The University of Iowa, Iowa City, Iowa, USA
| | - Gavin R McGivney
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
| | - Amanda Scherer
- The Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | - David J Gordon
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick Breheny
- Department of Biostatistics, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| | - David K Meyerholz
- The Department of Pathology, The University of Iowa, Iowa City, Iowa, USA
| | - Munir R Tanas
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Pathology, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| | - Rebecca D Dodd
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Cancer Biology Graduate Program, The University of Iowa, Iowa City, Iowa, USA
- Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
- The Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, Iowa, USA
- The Department of Pathology, The University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
14
|
Mo J, Anastasaki C, Chen Z, Shipman T, Papke J, Yin K, Gutmann DH, Le LQ. Humanized neurofibroma model from induced pluripotent stem cells delineates tumor pathogenesis and developmental origins. J Clin Invest 2021; 131:139807. [PMID: 33108355 DOI: 10.1172/jci139807] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common tumor predisposition syndrome caused by NF1 gene mutation, in which affected patients develop Schwann cell lineage peripheral nerve sheath tumors (neurofibromas). To investigate human neurofibroma pathogenesis, we differentiated a series of isogenic, patient-specific NF1-mutant human induced pluripotent stem cells (hiPSCs) into Schwannian lineage cells (SLCs). We found that, although WT and heterozygous NF1-mutant hiPSCs-SLCs did not form tumors following mouse sciatic nerve implantation, NF1-null SLCs formed bona fide neurofibromas with high levels of SOX10 expression. To confirm that SOX10+ SLCs contained the cells of origin for neurofibromas, both Nf1 alleles were inactivated in mouse Sox10+ cells, leading to classic nodular cutaneous and plexiform neurofibroma formation that completely recapitulated their human counterparts. Moreover, we discovered that NF1 loss impaired Schwann cell differentiation by inducing a persistent stem-like state to expand the pool of progenitors required to initiate tumor formation, indicating that, in addition to regulating MAPK-mediated cell growth, NF1 loss also altered Schwann cell differentiation to promote neurofibroma development. Taken together, we established a complementary humanized neurofibroma explant and, to our knowledge, first-in-kind genetically engineered nodular cutaneous neurofibroma mouse models that delineate neurofibroma pathogenesis amenable to future therapeutic target discovery and evaluation.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Zhiguo Chen
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Tracey Shipman
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jason Papke
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Kevin Yin
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lu Q Le
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA.,Simmons Comprehensive Cancer Center and.,Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Mohamad T, Plante C, Brosseau JP. Toward Understanding the Mechanisms of Malignant Peripheral Nerve Sheath Tumor Development. Int J Mol Sci 2021; 22:ijms22168620. [PMID: 34445326 PMCID: PMC8395254 DOI: 10.3390/ijms22168620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) originate from the neural crest lineage and are associated with the neurofibromatosis type I syndrome. MPNST is an unmet clinical need. In this review article, we summarize the knowledge and discuss research perspectives related to (1) the natural history of MPNST development; (2) the mouse models recapitulating the progression from precursor lesions to MPNST; (3) the role of the tumor microenvironment in MPNST development, and (4) the signaling pathways linked to MPNST development.
Collapse
Affiliation(s)
- Teddy Mohamad
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (T.M.); (C.P.)
| | - Camille Plante
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (T.M.); (C.P.)
| | - Jean-Philippe Brosseau
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (T.M.); (C.P.)
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Correspondence: ; Tel.: +1-819-821-8000 (ext. 72477)
| |
Collapse
|
16
|
Vasudevan HN, Lucas CHG, Villanueva-Meyer JE, Theodosopoulos PV, Raleigh DR. Genetic Events and Signaling Mechanisms Underlying Schwann Cell Fate in Development and Cancer. Neurosurgery 2021; 88:234-245. [PMID: 33094349 DOI: 10.1093/neuros/nyaa455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/08/2020] [Indexed: 01/08/2023] Open
Abstract
In this review, we describe Schwann cell development from embryonic neural crest cells to terminally differentiated myelinated and nonmyelinated mature Schwann cells. We focus on the genetic drivers and signaling mechanisms mediating decisions to proliferate versus differentiate during Schwann cell development, highlighting pathways that overlap with Schwann cell development and are dysregulated in tumorigenesis. We conclude by considering how our knowledge of the events underlying Schwann cell development and mouse models of schwannoma, neurofibroma, and malignant peripheral nerve sheath tumor can inform novel therapeutic strategies for patients with cancers derived from Schwann cell lineages.
Collapse
Affiliation(s)
- Harish N Vasudevan
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California.,Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Calixto-Hope G Lucas
- Department of Anatomic Pathology, University of California, San Francisco, San Francisco, California
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Philip V Theodosopoulos
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - David R Raleigh
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California.,Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
17
|
Longo JF, Brosius SN, Znoyko I, Alers VA, Jenkins DP, Wilson RC, Carroll AJ, Wolff DJ, Roth KA, Carroll SL. Establishment and genomic characterization of a sporadic malignant peripheral nerve sheath tumor cell line. Sci Rep 2021; 11:5690. [PMID: 33707600 PMCID: PMC7952412 DOI: 10.1038/s41598-021-85055-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive Schwann cell-derived neoplasms that occur sporadically or in patients with neurofibromatosis type 1 (NF1). Preclinical research on sporadic MPNSTs has been limited as few cell lines exist. We generated and characterized a new sporadic MPNST cell line, 2XSB, which shares the molecular and genomic features of the parent tumor. These cells have a highly complex karyotype with extensive chromothripsis. 2XSB cells show robust invasive 3-dimensional and clonogenic culture capability and form solid tumors when xenografted into immunodeficient mice. High-density single nucleotide polymorphism array and whole exome sequencing analyses indicate that, unlike NF1-associated MPNSTs, 2XSB cells have intact, functional NF1 alleles with no evidence of mutations in genes encoding components of Polycomb Repressor Complex 2. However, mutations in other genes implicated in MPNST pathogenesis were identified in 2XSB cells including homozygous deletion of CDKN2A and mutations in TP53 and PTEN. We also identified mutations in genes not previously associated with MPNSTs but associated with the pathogenesis of other human cancers. These include DNMT1, NUMA1, NTRK1, PDE11A, CSMD3, LRP5 and ACTL9. This sporadic MPNST-derived cell line provides a useful tool for investigating the biology and potential treatment regimens for sporadic MPNSTs.
Collapse
Affiliation(s)
- Jody Fromm Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA
| | - Stephanie N Brosius
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA.,Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA.,Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Iya Znoyko
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA
| | - Victoria A Alers
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA
| | - Dorea P Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, 29425-9080, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA
| | - Daynna J Wolff
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA
| | - Kevin A Roth
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA. .,Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, 29425-9080, USA. .,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, USA.
| |
Collapse
|
18
|
Inoue A, Janke LJ, Gudenas BL, Jin H, Fan Y, Paré J, Clay MR, Northcott PA, Hirbe AC, Cao X. A genetic mouse model with postnatal Nf1 and p53 loss recapitulates the histology and transcriptome of human malignant peripheral nerve sheath tumor. Neurooncol Adv 2021; 3:vdab129. [PMID: 34647023 PMCID: PMC8500687 DOI: 10.1093/noajnl/vdab129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas. Somatic inactivation of NF1 and cooperating tumor suppressors, including CDKN2A/B, PRC2, and p53, is found in most MPNST. Inactivation of LATS1/2 of the Hippo pathway was recently shown to cause tumors resembling MPNST histologically, although Hippo pathway mutations are rarely found in MPNST. Because existing genetically engineered mouse (GEM) models of MPNST do not recapitulate some of the key genetic features of human MPNST, we aimed to establish a GEM-MPNST model that recapitulated the human disease genetically, histologically, and molecularly. METHODS We combined 2 genetically modified alleles, an Nf1;Trp53 cis-conditional allele and an inducible Plp-CreER allele (NP-Plp), to model the somatic, possibly postnatal, mutational events in human MPNST. We also generated conditional Lats1;Lats2 knockout mice. We performed histopathologic analyses of mouse MPNST models and transcriptomic comparison of mouse models and human nerve sheath tumors. RESULTS Postnatal Nf1;Trp53 cis-deletion resulted in GEM-MPNST that were histologically more similar to human MPNST than the widely used germline Nf1;Trp53 cis-heterozygous (NPcis) model and showed partial loss of H3K27me3. At the transcriptome level, Nf1;p53-driven GEM-MPNST were distinct from Lats-driven GEM-MPNST and resembled human MPNST more closely than do Lats-driven tumors. CONCLUSIONS The NP-Plp model recapitulates human MPNST genetically, histologically, and molecularly.
Collapse
Affiliation(s)
- Akira Inoue
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Brian L Gudenas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Joshua Paré
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Michael R Clay
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Angela C Hirbe
- Division of Medical Oncology, Washington University, St. Louis, Missouri, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
19
|
Jiang Z, Zhang T, Chen C, Sun L, Li S, Ding X. New PTEN mutation identified in a patient with rare bilateral choroidal ganglioneuroma. BMC Ophthalmol 2020; 20:487. [PMID: 33308182 PMCID: PMC7733288 DOI: 10.1186/s12886-020-01760-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/07/2020] [Indexed: 12/02/2022] Open
Abstract
Background Choroidal ganglioneuroma is an extremely rare tumor, and there is little knowledge regarding its pathogenesis. We aimed to investigate the phenotypic and genetic alterations in one sporadic patient with a rare case of bilateral choroidal ganglioneuroma. Methods A 6-year-old boy with histological diagnosis of bilateral ganglioneuroma was recruited for the study. Comprehensive ophthalmic examinations were performed. Genomic DNA was extracted from the peripheral blood samples collected from the patient, his unaffected family members, and 200 unrelated control subjects from the same population. Whole exome sequencing was performed and raw reads were aligned to the human genome reference (hg19) using Burrows-Wheeler Aligner. DNA from all available family members was Sanger sequenced for segregation analysis. Results Extensive bilateral retinal detachments were observed via optical coherence tomography. Diffuse thickening of choroid was identified with ultrasound B scan and magnetic resonance imaging. Genetic analysis revealed the presence of a novel heterozygous PTEN frameshift mutation, c.498delA (p.Thr167LeufsTer16), in exon 6. It was present in the affected individual, but not in any of the family members. Genetic analysis revealed that there was no mutation in neurofibromatosis-related genes in the family. Upon performing comprehensive systemic examinations, no obvious abnormalities in other organs were observed. Conclusions A novel de novo PTEN mutation was identified in a patient with bilateral choroidal ganglioneuroma. Although PTEN mutations are known to induce multiple abnormalities, choroidal ganglioneuroma can be the first manifestation without abnormalities in other organs. Further studies are needed to confirm the association between choroidal ganglioneuroma and PTEN mutation.
Collapse
Affiliation(s)
- Zhaoxin Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Chonglin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Songshan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
20
|
Dodd RD, Scherer A, Huang W, McGivney GR, Gutierrez WR, Laverty EA, Ashcraft KA, Stephens VR, Yousefpour P, Saha S, Knepper-Adrian V, Floyd W, Chen M, Ma Y, Mastria EM, Cardona DM, Eward WC, Chilkoti A, Kirsch DG. Tumor Subtype Determines Therapeutic Response to Chimeric Polypeptide Nanoparticle-based Chemotherapy in Pten-deleted Mouse Models of Sarcoma. Clin Cancer Res 2020; 26:5036-5047. [PMID: 32718998 PMCID: PMC7641033 DOI: 10.1158/1078-0432.ccr-19-2597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Nanoparticle-encapsulated drug formulations can improve responses to conventional chemotherapy by increasing drug retention within the tumor and by promoting a more effective antitumor immune response than free drug. New drug delivery modalities are needed in sarcomas because they are often chemoresistant cancers, but the rarity of sarcomas and the complexity of diverse subtypes makes it challenging to investigate novel drug formulations. EXPERIMENTAL DESIGN New drug formulations can be tested in animal models of sarcomas where the therapeutic response of different formulations can be compared using mice with identical tumor-initiating mutations. Here, using Cre/loxP and CRISPR/Cas9 techniques, we generated two distinct mouse models of Pten-deleted soft-tissue sarcoma: malignant peripheral nerve sheath tumor (MPNST) and undifferentiated pleomorphic sarcoma (UPS). We used these models to test the efficacy of chimeric polypeptide doxorubicin (CP-Dox), a nanoscale micelle formulation, in comparison with free doxorubicin. RESULTS The CP-Dox formulation was superior to free doxorubicin in MPNST models. However, in UPS tumors, CP-Dox did not improve survival in comparison with free doxorubicin. While CP-Dox treatment resulted in elevated intratumoral doxorubicin concentrations in MPNSTs, this increase was absent in UPS tumors. In addition, elevation of CD8+ T cells was observed exclusively in CP-Dox-treated MPNSTs, although these cells were not required for full efficacy of the CP nanoparticle-based chemotherapy. CONCLUSIONS These results have important implications for treating sarcomas with nanoparticle-encapsulated chemotherapy by highlighting the tumor subtype-dependent nature of therapeutic response.
Collapse
Affiliation(s)
- Rebecca D Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa.
| | - Amanda Scherer
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Wesley Huang
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Gavin R McGivney
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Wade R Gutierrez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| | - Emily A Laverty
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Kathleen A Ashcraft
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | | | - Parisa Yousefpour
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Soumen Saha
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | - Warren Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina
| | - Mark Chen
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina
| | - Yan Ma
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Eric M Mastria
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina
| | - Diana M Cardona
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - William C Eward
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - David G Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina.
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
21
|
Woycinck Kowalski T, Brussa Reis L, Finger Andreis T, Ashton-Prolla P, Rosset C. Systems Biology Approaches Reveal Potential Phenotype-Modifier Genes in Neurofibromatosis Type 1. Cancers (Basel) 2020; 12:cancers12092416. [PMID: 32858845 PMCID: PMC7565824 DOI: 10.3390/cancers12092416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Neurofibromatosis type (NF1) is a syndrome characterized by varied symptoms, ranging from mild to more aggressive phenotypes. The variation is not explained only by genetic and epigenetic changes in the NF1 gene and the concept of phenotype-modifier genes in extensively discussed in an attempt to explain this variability. Many datasets and tools are already available to explore the relationship between genetic variation and disease, including systems biology and expression data. To suggest potential NF1 modifier genes, we selected proteins related to NF1 phenotype and NF1 gene ontologies. Protein–protein interaction (PPI) networks were assembled, and network statistics were obtained by using forward and reverse genetics strategies. We also evaluated the heterogeneous networks comprising the phenotype ontologies selected, gene expression data, and the PPI network. Finally, the hypothesized phenotype-modifier genes were verified by a random-walk mathematical model. The network statistics analyses combined with the forward and reverse genetics strategies, and the assembly of heterogeneous networks, resulted in ten potential phenotype-modifier genes: AKT1, BRAF, EGFR, LIMK1, PAK1, PTEN, RAF1, SDC2, SMARCA4, and VCP. Mathematical models using the random-walk approach suggested SDC2 and VCP as the main candidate genes for phenotype-modifiers.
Collapse
Affiliation(s)
- Thayne Woycinck Kowalski
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; (T.W.K.); (L.B.R.); (T.F.A.); (P.A.-P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, PPGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
- CESUCA - Faculdade Inedi, Cachoeirinha 94935-630, Rio Grande do Sul, Brazil
| | - Larissa Brussa Reis
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; (T.W.K.); (L.B.R.); (T.F.A.); (P.A.-P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, PPGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
| | - Tiago Finger Andreis
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; (T.W.K.); (L.B.R.); (T.F.A.); (P.A.-P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, PPGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
| | - Patricia Ashton-Prolla
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; (T.W.K.); (L.B.R.); (T.F.A.); (P.A.-P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, PPGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
| | - Clévia Rosset
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil; (T.W.K.); (L.B.R.); (T.F.A.); (P.A.-P.)
- Unidade de Pesquisa Laboratorial, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-007, Rio Grande do Sul, Brazil
- Correspondence: ; Tel.: +55-51-3359-7661
| |
Collapse
|
22
|
Moon CI, Tompkins W, Wang Y, Godec A, Zhang X, Pipkorn P, Miller CA, Dehner C, Dahiya S, Hirbe AC. Unmasking Intra-tumoral Heterogeneity and Clonal Evolution in NF1-MPNST. Genes (Basel) 2020; 11:genes11050499. [PMID: 32369930 PMCID: PMC7291009 DOI: 10.3390/genes11050499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are highly aggressive cancers that have a high propensity for metastasis, fail to respond to conventional therapies, and carry a poor 5-year survival rate. This is particularly true for patients with neurofibromatosis type 1 (NF1), in which 8%–13% of affected individuals will develop a malignant peripheral nerve sheath tumor (MPNST). Despite continued research, no effective therapies have emerged from recent clinical trials based on preclinical work. One explanation for these failures could be the lack of attention to intra-tumoral heterogeneity. Prior studies have relied on a single sample from these tumors, which may not be representative of all subclones present within the tumor. In the current study, samples were taken from three distinct areas within a single tumor from a patient with an NF1-MPNST. Whole exome sequencing, RNA sequencing, and copy number analysis were performed on each sample. A blood sample was obtained as a germline DNA control. Distinct mutational signatures were identified in different areas of the tumor as well as significant differences in gene expression among the spatially distinct areas, leading to an understanding of the clonal evolution within this patient. These data suggest that multi-regional sampling may be important for driver gene identification and biomarker development in the future.
Collapse
Affiliation(s)
- Chang-In Moon
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - William Tompkins
- Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Yuxi Wang
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - Abigail Godec
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Xiaochun Zhang
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - Patrik Pipkorn
- Department of Otolaryngology, Division of Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
| | - Christopher A. Miller
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- McDonnell Genome Institute, Division of Oncology—Stem Cell Biology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carina Dehner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Sonika Dahiya
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Angela C. Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- Correspondence: ; Tel.: +1-314-747-3096
| |
Collapse
|
23
|
Williams KB, Largaespada DA. New Model Systems and the Development of Targeted Therapies for the Treatment of Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Genes (Basel) 2020; 11:E477. [PMID: 32353955 PMCID: PMC7290716 DOI: 10.3390/genes11050477] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is a common genetic disorder and cancer predisposition syndrome (1:3000 births) caused by mutations in the tumor suppressor gene NF1. NF1 encodes neurofibromin, a negative regulator of the Ras signaling pathway. Individuals with NF1 often develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage, some of which progress further to malignant peripheral nerve sheath tumors (MPNSTs). Treatment options for neurofibromas and MPNSTs are extremely limited, relying largely on surgical resection and cytotoxic chemotherapy. Identification of novel therapeutic targets in both benign neurofibromas and MPNSTs is critical for improved patient outcomes and quality of life. Recent clinical trials conducted in patients with NF1 for the treatment of symptomatic plexiform neurofibromas using inhibitors of the mitogen-activated protein kinase (MEK) have shown very promising results. However, MEK inhibitors do not work in all patients and have significant side effects. In addition, preliminary evidence suggests single agent use of MEK inhibitors for MPNST treatment will fail. Here, we describe the preclinical efforts that led to the identification of MEK inhibitors as promising therapeutics for the treatment of NF1-related neoplasia and possible reasons they lack single agent efficacy in the treatment of MPNSTs. In addition, we describe work to find targets other than MEK for treatment of MPNST. These have come from studies of RAS biochemistry, in vitro drug screening, forward genetic screens for Schwann cell tumors, and synthetic lethal screens in cells with oncogenic RAS gene mutations. Lastly, we discuss new approaches to exploit drug screening and synthetic lethality with NF1 loss of function mutations in human Schwann cells using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Kyle B. Williams
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Kohlmeyer JL, Gordon DJ, Tanas MR, Monga V, Dodd RD, Quelle DE. CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets. Int J Mol Sci 2020; 21:E3018. [PMID: 32344731 PMCID: PMC7215455 DOI: 10.3390/ijms21083018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcomas represent one of the most challenging tumor types to treat due to their diverse nature and our incomplete understanding of their underlying biology. Recent work suggests cyclin-dependent kinase (CDK) pathway activation is a powerful driver of sarcomagenesis. CDK proteins participate in numerous cellular processes required for normal cell function, but their dysregulation is a hallmark of many pathologies including cancer. The contributions and significance of aberrant CDK activity to sarcoma development, however, is only partly understood. Here, we describe what is known about CDK-related alterations in the most common subtypes of sarcoma and highlight areas that warrant further investigation. As disruptions in CDK pathways appear in most, if not all, subtypes of sarcoma, we discuss the history and value of pharmacologically targeting CDKs to combat these tumors. The goals of this review are to (1) assess the prevalence and importance of CDK pathway alterations in sarcomas, (2) highlight the gap in knowledge for certain CDKs in these tumors, and (3) provide insight into studies focused on CDK inhibition for sarcoma treatment. Overall, growing evidence demonstrates a crucial role for activated CDKs in sarcoma development and as important targets for sarcoma therapy.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
| | - David J Gordon
- The Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Munir R Tanas
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Varun Monga
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Rebecca D Dodd
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
25
|
Gugel I, Ebner FH, Grimm F, Czemmel S, Paulsen F, Hagel C, Tatagiba M, Nahnsen S, Tabatabai G. Contribution of mTOR and PTEN to Radioresistance in Sporadic and NF2-Associated Vestibular Schwannomas: A Microarray and Pathway Analysis. Cancers (Basel) 2020; 12:cancers12010177. [PMID: 31936793 PMCID: PMC7016954 DOI: 10.3390/cancers12010177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 01/29/2023] Open
Abstract
The use of radiation treatment has increased for both sporadic and neurofibromatosis type 2 (NF2)-associated vestibular schwannoma (VS). However, there are a subset of radioresistant tumors and systemic treatments that are seldom used in these patients. We investigated molecular alterations after radiation in three NF2-associated and five sporadically operated recurrent VS after primary irradiation. We compared these findings with 49 non-irradiated (36 sporadic and 13 NF2-associated) VS through gene-expression profiling and pathway analysis. Furthermore, we stained the key molecules of the distinct pathway by immunohistochemistry. A total of 195 differentially expressed genes in sporadic and NF2-related comparisons showed significant differences based on the criteria of p value < 0.05 and a two-fold change. These genes were involved in pathways that are known to be altered upon irradiation (e.g., mammalian target of rapamycin (mTOR), phosphatase and tensin homolog (PTEN) and vascular endothelial growth factor (VEGF) signaling). We observed a combined downregulation of PTEN signaling and an upregulation of mTOR signaling in progressive NF2-associated VS after irradiation. Immunostainings with mTOR and PTEN antibodies confirmed the respective molecular alterations. Taken together, mTOR inhibition might be a promising therapeutic strategy in NF2-associated VS progress after irradiation.
Collapse
Affiliation(s)
- Isabel Gugel
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
- Centre of Neurofibromatosis and Rare Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-7071-2980325; Fax: +49-07071-295245
| | - Florian H. Ebner
- Department of Neurosurgery, Alfried Krupp Hospital, 45131 Essen, Germany
| | - Florian Grimm
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
| | - Frank Paulsen
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Marcos Tatagiba
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
- Centre of Neurofibromatosis and Rare Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
| | - Ghazaleh Tabatabai
- Center for Neuro-Oncol., Comprehensive Cancer Center Tübingen Stuttgart, 72076 Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
- Interdisciplinary Division of Neuro-Oncol., University Hospital Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Pemov A, Li H, Presley W, Wallace MR, Miller DT. Genetics of human malignant peripheral nerve sheath tumors. Neurooncol Adv 2019; 2:i50-i61. [PMID: 32642732 PMCID: PMC7317054 DOI: 10.1093/noajnl/vdz049] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are heterogeneous, highly aggressive tumors with no widely effective treatment other than surgery. Genomic architecture of MPNST is similar to other soft tissue sarcomas, with a relatively modest burden of single nucleotide variants and an elevated frequency of copy-number alterations. Recent advances in genomic studies identified previously unrecognized critical involvement of polycomb repressor complex 2 (PRC2) core components SUZ12 and EED in transition to malignancy. Notably, somatic changes in NF1, CDKN2A/B, and PRC2 are found in most MPNST regardless of their etiology (e.g. neurofibromatosis type 1-associated vs. sporadic vs. radiation-induced), indicating that similar molecular mechanisms impact pathogenesis in these neoplasms. The timing and specific order of genetic or epigenetic changes may, however, explain the typically poorer prognosis of NF1-associated MPNSTs. Studies that reveal genes and regulatory pathways uniquely altered in malignancies are essential to development of targeted tumor therapies. Characterization of MPNST molecular profiles may also contribute to tools for earlier detection, and prediction of prognosis or drug response. Here we review the genetic discoveries and their implications in understanding MPNST biology.
Collapse
Affiliation(s)
- Alexander Pemov
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Hua Li
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida
| | - William Presley
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida
| | - Margaret R Wallace
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida.,University of Florida Health Cancer Center, University of Florida, Gainesville, Florida
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
27
|
The PTEN Tumor Suppressor Gene in Soft Tissue Sarcoma. Cancers (Basel) 2019; 11:cancers11081169. [PMID: 31416195 PMCID: PMC6721622 DOI: 10.3390/cancers11081169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Soft tissue sarcoma (STS) is a rare malignancy of mesenchymal origin classified into more than 50 different subtypes with distinct clinical and pathologic features. Despite the poor prognosis in the majority of patients, only modest improvements in treatment strategies have been achieved, largely due to the rarity and heterogeneity of these tumors. Therefore, the discovery of new prognostic and predictive biomarkers, together with new therapeutic targets, is of enormous interest. Phosphatase and tensin homolog (PTEN) is a well-known tumor suppressor that commonly loses its function via mutation, deletion, transcriptional silencing, or protein instability, and is frequently downregulated in distinct sarcoma subtypes. The loss of PTEN function has consequent alterations in important pathways implicated in cell proliferation, survival, migration, and genomic stability. PTEN can also interact with other tumor suppressors and oncogenic signaling pathways that have important implications for the pathogenesis in certain STSs. The aim of the present review is to summarize the biological significance of PTEN in STS and its potential role in the development of new therapeutic strategies.
Collapse
|
28
|
Yang K, Guo W, Ren T, Huang Y, Han Y, Zhang H, Zhang J. Knockdown of HMGA2 regulates the level of autophagy via interactions between MSI2 and Beclin1 to inhibit NF1-associated malignant peripheral nerve sheath tumour growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:185. [PMID: 31053152 PMCID: PMC6500071 DOI: 10.1186/s13046-019-1183-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Background Malignant peripheral nerve sheath tumours (MPNSTs) are sarcomas of Schwann cell lineage origin that occur sporadically or in association with the inherited syndrome, neurofibromatosis type 1 (NF1). This study aimed to examine the function of High mobility group protein A2 (HMGA2) in NF1 MPNST progression and the underlying molecular mechanism. Methods Immunohistochemistry (IHC) was used to detect HMGA2 expression in MPNST and neurofibroma patient samples. Cell Cycle Kit-8 (CCK-8) and 5-ethynyl-20-deoxyuridine (EdU) assays, terminal deoxynucleotidyl transferase-mediated nick end labelling, and transmission electron microscopy were performed to reveal HMGA2 functions in NF1 MPNST cells in vitro and in vivo. Chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) were used to detect HMGA2-modulated genes regulating autophagy and growth in NF1 MPNSTs in vitro and in vivo. Results NF1 MPNST samples exhibit higher HMGA2 positivity rates (13/16) than sporadic MPNST (16/41) and neurofibroma (0/7) patient samples. High HMGA2 expression is correlated with poor prognosis. Neurofibromin 1 (NF1)-deficient MPNST cells display elevated HMGA2 expression. Functional experiments revealed that HMGA2 knockdown inhibits NF1 MPNST cell growth in vitro and in vivo. In addition to promoting cell cycle arrest and apoptosis, HMGA2 knockdown inhibits autophagy, favouring cell death. RNA-Seq and ChIP-Seq revealed that HMGA2 directly activates the Musashi-2 (MSI2) promoter region, and MSI2 overexpression reverses autophagy and growth in shHMGA2-transfected cells. MSI2 interacts with Beclin1, and Beclin1 blockade inhibits autophagy, thereby inhibiting cell proliferation. Conclusions HMGA2 knockdown regulates autophagy via MSI2-Beclin1 interactions to inhibit NF1 MPNST growth, revealing potential therapeutic targets for these untreatable tumours. Electronic supplementary material The online version of this article (10.1186/s13046-019-1183-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kang Yang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China.
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Yu Han
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Jie Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
29
|
Evaluation of the most commonly used (semi-)quantitative parameters of 18F-FDG PET/CT to detect malignant transformation of neurofibromas in neurofibromatosis type 1. Nucl Med Commun 2018; 39:961-968. [PMID: 30106798 DOI: 10.1097/mnm.0000000000000889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In patients with neurofibromatosis type 1, transformation of neurofibromas into a malignant peripheral nerve sheath tumor (MPNST) is a severe complication of the disease. Fluorine-18-fluorodeoxyglucose PET/computed tomography (PET/CT) is a viable option for detecting malignant tumors in neurofibromatosis type 1 patients. The aim of this review was to assess the diagnostic performance of the most frequently used parameters of PET/CT in detecting MPNST. An extensive computer search was performed using the Cochrane Library, Pubmed, and Medline/Embase databases. Two reviewers independently extracted data of relevant studies and assessed the methodological quality (QUADAS-2). The diagnostic performance of PET/CT parameters in individual studies was determined by calculating a diagnostic odds ratio (DOR) using the absolute numbers of true-positive, true-negative, false-positive, and false-negative test results. A total of eight studies were included, of which three evaluated the standardized uptake value as a diagnostic parameter, two assessed the tumor-to-liver (T/L) ratio, and three articles described both parameters. The cut-off values for maximum standardized uptake value (SUVmax) ranged from 3.2 to 4.5; for the T/L ratio, the cut-off values were between 1.0 and 4.3. The sensitivity and specificity ranged from 90 to 100% and from 80 to 100%, respectively (SUVmax). T/L ratios were associated with 92-100% sensitivity and 72-94% specificity. The corresponding DORs ranged from 57 to 145 (SUVmax) and 35 to 655 (T/L ratio). Both the SUV and the T/L ratio are associated with high sensitivity combined with acceptable specificity in detecting MPNST. There is a tendency toward higher DORs using the T/L ratio, but the number of studies is limited.
Collapse
|
30
|
Recent Advances in the Diagnosis and Pathogenesis of Neurofibromatosis Type 1 (NF1)-associated Peripheral Nervous System Neoplasms. Adv Anat Pathol 2018; 25:353-368. [PMID: 29762158 DOI: 10.1097/pap.0000000000000197] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The diagnosis of a neurofibroma or a malignant peripheral nerve sheath tumor (MPNST) often raises the question of whether the patient has the genetic disorder neurofibromatosis type 1 (NF1) as well as how this will impact the patient's outcome, what their risk is for developing additional neoplasms and whether treatment options differ for NF1-associated and sporadic peripheral nerve sheath tumors. Establishing a diagnosis of NF1 is challenging as this disorder has numerous neoplastic and non-neoplastic manifestations which are variably present in individual patients. Further, other genetic diseases affecting the Ras signaling cascade (RASopathies) mimic many of the clinical features of NF1. Here, we review the clinical manifestations of NF1 and compare and contrast them with those of the RASopathies. We also consider current approaches to genetic testing for germline NF1 mutations. We then focus on NF1-associated neurofibromas, considering first the complicated clinical behavior and pathology of these neoplasms and then discussing our current understanding of the genomic abnormalities that drive their pathogenesis, including the mutations encountered in atypical neurofibromas. As several neurofibroma subtypes are capable of undergoing malignant transformation to become MPNSTs, we compare and contrast patient outcomes in sporadic, NF1-associated and radiation-induced MPNSTs, and review the challenging pathology of these lesions. The mutations involved in neurofibroma-MPNST progression, including the recent identification of mutations affecting epigenetic regulators, are then considered. Finally, we explore how our current understanding of neurofibroma and MPNST pathogenesis is informing the design of new therapies for these neoplasms.
Collapse
|
31
|
Neurofibromin level directs RAS pathway signaling and mediates sensitivity to targeted agents in malignant peripheral nerve sheath tumors. Oncotarget 2018; 9:22571-22585. [PMID: 29854299 PMCID: PMC5978249 DOI: 10.18632/oncotarget.25181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a type of soft-tissue sarcoma strongly associated with dysfunction in neurofibromin; an inhibitor of the RAS pathway. We performed high-throughput screening of an array of FDA approved and promising agents in clinical development both alone and in combination at physiologically achievable concentrations against a panel of established MPNST cell line models. We found that drugs targeting a variety of factors in the RAS pathway can effectively lead to cell death in vitro with considerable drug combination synergy in regimens that target MEK or mTOR. We observed that the degree of relative sensitivity to chemotherapeutic agents was associated with the status of neurofibromin in these cell line models. Using a combination of agents that target MEK and mTORC1/2, we effectively silenced RAS/PI3K/MEK/mTOR signaling in vitro. Moreover, we employed RNAi against NF1 to establish that MPNST drug sensitivity is directly proportional to relative level of intracellular neurofibromin. Thus, two-drug combinations that target MEK and mTORC1/2 are most effective in halting the RAS signaling cascade, and the relative success of this and related small molecule interventions in MPNSTs may be predicated upon the molecular status of neurofibromin.
Collapse
|
32
|
James AW, Shurell E, Singh A, Dry SM, Eilber FC. Malignant Peripheral Nerve Sheath Tumor. Surg Oncol Clin N Am 2018; 25:789-802. [PMID: 27591499 DOI: 10.1016/j.soc.2016.05.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is the sixth most common type of soft tissue sarcoma. Most MPNSTs arise in association with a peripheral nerve or preexisting neurofibroma. Neurofibromatosis type is the most important risk factor for MPNST. Tumor size and fludeoxyglucose F 18 avidity are among the most helpful parameters to distinguish MPNST from a benign peripheral nerve sheath tumor. The histopathologic diagnosis is predominantly a diagnosis of light microscopy. Immunohistochemical stains are most helpful to distinguish high-grade MPNST from its histologic mimics. Current surgical management of high-grade MPNST is similar to that of other high-grade soft tissue sarcomas.
Collapse
Affiliation(s)
- Aaron W James
- Department of Pathology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287-6417, USA
| | - Elizabeth Shurell
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Arun Singh
- Sarcoma Service, Division of Hematology/Oncology, University of California, Los Angeles, 2825 Santa Monica Boulevard, Suite 213 TORL, Santa Monica, CA 90404, USA
| | - Sarah M Dry
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Box 951732, 13-145D CHS, Los Angeles, CA 90095-1732, USA
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, 10833 LeConte Avenue, Room 54-140 CHS, Los Angeles, CA 90095-1782, USA.
| |
Collapse
|
33
|
Characterizing the immune microenvironment of malignant peripheral nerve sheath tumor by PD-L1 expression and presence of CD8+ tumor infiltrating lymphocytes. Oncotarget 2018; 7:64300-64308. [PMID: 27588404 PMCID: PMC5325443 DOI: 10.18632/oncotarget.11734] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/16/2016] [Indexed: 12/31/2022] Open
Abstract
Background Malignant peripheral nerve sheath tumor (MPNST) is an aggressive sarcoma with few treatment options. Tumor immune state has not been characterized in MPNST, and is important in determining response to immune checkpoint blockade. Our aim was to evaluate the expression of programmed death-ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), and presence of CD8+ tumor infiltrating lymphocytes (TILs) in MPNST, and correlate these findings with clinical behavior and outcome. Results PD-L1 staining of at least 1% was seen in 0/20 nerves, 2/68 benign lesions and 9/53 MPNST. Two of 68 benign lesions and 7/53 (13%) MPNST had at least 5% PD-L1 staining. CD8 staining of at least 5% was seen in 1/20 (5%) nerves, 45/68 (66%) benign lesions and 30/53 (57%) MPNST. PD-L1 was statistically more prevalent in MPNST than both nerves and benign lesions (p=0.049 and p=0.008, respectively). Expression of PD-1 was absent in all tissue specimens. There was no correlation of PD-L1 or CD8 expression with disease state (primary versus metastatic) or patient survival. Methods A comprehensive PNST tissue microarray was created from 141 surgical specimens including primary, recurrent, and metastatic MPNST (n=53), neurofibromas (n=57), schwannoma (n=11), and normal nerve (n=20). Cores were stained in triplicate for PD-L1, PD-1, and CD8, and expression compared between tumor types. These data were then examined for survival correlates in 35 patients with primary MPNST. Conclusions MPNST is characterized by low PD-L1 and absent PD-1 expression with significant CD8+ TIL presence. MPNST immune microenvironment does not correlate with patient outcome.
Collapse
|
34
|
Kim A, Pratilas CA. The promise of signal transduction in genetically driven sarcomas of the nerve. Exp Neurol 2017; 299:317-325. [PMID: 28859862 DOI: 10.1016/j.expneurol.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/28/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome. Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas arising from peripheral nerve sheaths, and the most commonly lethal feature associated with NF1. The hallmark of NF1 and NF1-related MPNST is the loss of neurofibromin expression. Loss of neurofibromin is considered a tumor-promoting event, and leads to constitutive activation of RAS and its downstream effectors. However, RAS activation alone is not sufficient for MPNST formation, and additional tumor suppressors and signaling pathways have been implicated in tumorigenesis of MPNST. Taking advantage of the rapid development of novel therapeutics targeting key molecular pathways across all cancer types, the best-in-class modulators of these pathways can be assessed in pre-clinical models and translated into clinical trials for patients with MPNST. Here, we describe the genetic changes and molecular pathways that drive MPNST formation and highlight the promise of signal transduction to identify therapies that may treat these tumors more effectively.
Collapse
Affiliation(s)
- AeRang Kim
- Children's National Medical Center, Washington, D.C., United States
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States.
| |
Collapse
|
35
|
Vitte J, Gao F, Coppola G, Judkins AR, Giovannini M. Timing of Smarcb1 and Nf2 inactivation determines schwannoma versus rhabdoid tumor development. Nat Commun 2017; 8:300. [PMID: 28824165 PMCID: PMC5563506 DOI: 10.1038/s41467-017-00346-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 06/23/2017] [Indexed: 02/06/2023] Open
Abstract
Germline mutations of the SMARCB1 gene predispose to two distinct tumor syndromes: rhabdoid tumor predisposition syndrome, with malignant pediatric tumors mostly developing in brain and kidney, and familial schwannomatosis, with adulthood benign tumors involving cranial and peripheral nerves. The mechanisms by which SMARCB1 germline mutations predispose to rhabdoid tumors versus schwannomas are still unknown. Here, to understand the origin of these two types of SMARCB1-associated tumors, we generated different tissue- and developmental stage-specific conditional knockout mice carrying Smarcb1 and/or Nf2 deletion. Smarcb1 loss in early neural crest was necessary to initiate tumorigenesis in the cranial nerves and meninges with typical histological features and molecular profiles of human rhabdoid tumors. By inducing Smarcb1 loss at later developmental stage in the Schwann cell lineage, in addition to biallelic Nf2 gene inactivation, we generated the first mouse model developing schwannomas with the same underlying gene mutations found in schwannomatosis patients. SMARCB1 mutations predispose to rhabdoid tumors and schwannomas but the mechanisms underlying the tumor type specificity are unknown. Here the authors present new mouse models and show that early Smarcb1 loss causes rhabdoid tumors whereas loss at later stages combined with Nf2 gene inactivation causes shwannomas.
Collapse
Affiliation(s)
- Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Fuying Gao
- Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Giovanni Coppola
- Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
36
|
Xiao J, Tao T, Yin Y, Zhao L, Yang L, Hu L. miR-144 may regulate the proliferation, migration and invasion of trophoblastic cells through targeting PTEN in preeclampsia. Biomed Pharmacother 2017; 94:341-353. [PMID: 28772212 DOI: 10.1016/j.biopha.2017.07.130] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022] Open
Abstract
Previous studies indicated that microRNAs (miRNAs) were aberrantly expressed in the placentas of patients with Preeclampsia (PE); however, the underlying mechanism still requires further investigation. The aim of this study is to investigate the roles of miR-144 in preeclampsia and the related mechanism. The expression of miR-144 and PTEN in 30 placentas of patients with PE and 30 normal placentas was compared; next, HTR8/SVneo cells were transfected with miR-144 mimics and miR-144 inhibitors and cultured for 48h, and the proliferation and apoptosis, cell migration and invasion of the cells were examined; furthermore, the expression PTEN, Caspase-3 and Bcl-2 was examined; next, dual luciferase reporter assay has been performed to confirm that PTEN is a direct target of miR-144; finally, HTR-8/SVneo cells were transfected with either PTEN overexpression plasmid or PTEN RNAi to determine whether knockdown or overexpression of PTEN can mimic the effect of miR-144 We have observed that the expression of miR-144 was significantly decreased and the expression of PTEN was markedly increased in placentas of patients with PE compared with normal placentas; moreover, transfection of miR-144 mimics in trophoblastic cells induced significant increase in cell proliferation, migration, invasion, and decrease in cell apoptosis, and also affected the cell cycles; on the other hand, transfection of miR-144 inhibitors has shown the opposite effects; furthermore, transient overexpression of miR-144 induced marked decrease in the expression of PTEN, Caspase-3 and increase in expression of Bcl-2 (P<0.01), while transfection of miR-144 inhibitors showed the opposite effects; finally, PTEN has been confirmed as a direct target of miR-144; finally, transfection of PTEN overexpression plasmid or PTEN RNAi can mimic the results of miR-144 inhibitor or miR-144 mimics, respectively. In conclusion, miR-144 was down-regulated in PE, and miR-144 may play important roles in the pathogenesis of PE through targeting PTEN in trophoblastic cells. These results suggested that miR-144 has the potential to become a therapeutic target for the treatment of PE.
Collapse
Affiliation(s)
- Jianping Xiao
- Institute for Fetology, First Hospital of Soochow University, Suzhou 215006, China; Wuxi Maternity and Children Health Hospital Affiliated Nanjing Medical University, Wuxi 214000, China
| | - Tao Tao
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Yongxiang Yin
- Wuxi Maternity and Children Health Hospital Affiliated Nanjing Medical University, Wuxi 214000, China
| | - Li Zhao
- Wuxi Maternity and Children Health Hospital Affiliated Nanjing Medical University, Wuxi 214000, China
| | - Lan Yang
- Wuxi Maternity and Children Health Hospital Affiliated Nanjing Medical University, Wuxi 214000, China
| | - Lingqing Hu
- Wuxi Maternity and Children Health Hospital Affiliated Nanjing Medical University, Wuxi 214000, China.
| |
Collapse
|
37
|
Malignant Peripheral Nerve Sheath Tumors State of the Science: Leveraging Clinical and Biological Insights into Effective Therapies. Sarcoma 2017; 2017:7429697. [PMID: 28592921 PMCID: PMC5448069 DOI: 10.1155/2017/7429697] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is the leading cause of mortality in patients with neurofibromatosis type 1. In 2002, an MPNST consensus statement reviewed the current knowledge and provided guidance for the diagnosis and management of MPNST. Although the improvement in clinical outcome has not changed, substantial progress has been made in understanding the natural history and biology of MPNST through imaging and genomic advances since 2002. Genetically engineered mouse models that develop MPNST spontaneously have greatly facilitated preclinical evaluation of novel drugs for translation into clinical trials led by consortia efforts. Continued work in identifying alterations that contribute to the transformation, progression, and metastasis of MPNST coupled with longitudinal follow-up, biobanking, and data sharing is needed to develop prognostic biomarkers and effective prevention and therapeutic strategies for MPNST.
Collapse
|
38
|
Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ. Neurofibromatosis type 1. Nat Rev Dis Primers 2017; 3:17004. [PMID: 28230061 DOI: 10.1038/nrdp.2017.4] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurofibromatosis type 1 is a complex autosomal dominant disorder caused by germline mutations in the NF1 tumour suppressor gene. Nearly all individuals with neurofibromatosis type 1 develop pigmentary lesions (café-au-lait macules, skinfold freckling and Lisch nodules) and dermal neurofibromas. Some individuals develop skeletal abnormalities (scoliosis, tibial pseudarthrosis and orbital dysplasia), brain tumours (optic pathway gliomas and glioblastoma), peripheral nerve tumours (spinal neurofibromas, plexiform neurofibromas and malignant peripheral nerve sheath tumours), learning disabilities, attention deficits, and social and behavioural problems, which can negatively affect quality of life. With the identification of NF1 and the generation of accurate preclinical mouse strains that model some of these clinical features, therapies that target the underlying molecular and cellular pathophysiology for neurofibromatosis type 1 are becoming available. Although no single treatment exists, current clinical management strategies include early detection of disease phenotypes (risk assessment) and biologically targeted therapies. Similarly, new medical and behavioural interventions are emerging to improve the quality of life of patients. Although considerable progress has been made in understanding this condition, numerous challenges remain; a collaborative and interdisciplinary approach is required to manage individuals with neurofibromatosis type1 and to develop effective treatments.
Collapse
Affiliation(s)
- David H Gutmann
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Rosalie E Ferner
- Department of Neurology, Guy's and St. Thomas' NHS Foundation Trust, London, UK.,Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robert H Listernick
- Department of Academic General Pediatrics and Primary Care, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pamela L Wolters
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
39
|
Hirbe AC, Dahiya S, Friedmann-Morvinski D, Verma IM, Clapp DW, Gutmann DH. Spatially- and temporally-controlled postnatal p53 knockdown cooperates with embryonic Schwann cell precursor Nf1 gene loss to promote malignant peripheral nerve sheath tumor formation. Oncotarget 2016; 7:7403-14. [PMID: 26859681 PMCID: PMC4884927 DOI: 10.18632/oncotarget.7232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive sarcomas that arise sporadically or in association with the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome. In individuals with NF1, MPNSTs are hypothesized to arise from Nf1-deficient Schwann cell precursor cells following the somatic acquisition of secondary cooperating genetic mutations (e.g., p53 loss). To model this sequential genetic cooperativity, we coupled somatic lentivirus-mediated p53 knockdown in the adult right sciatic nerve with embryonic Schwann cell precursor Nf1 gene inactivation in two different Nf1 conditional knockout mouse strains. Using this approach, ∼60% of mice with Periostin-Cre-mediated Nf1 gene inactivation (Periostin-Cre; Nf1flox/flox mice) developed tumors classified as low-grade MPNSTs following p53 knockdown (mean, 6 months). Similarly, ∼70% of Nf1+/− mice with GFAP-Cre-mediated Nf1 gene inactivation (GFAP-Cre; Nf1flox/null mice) developed low-grade MPNSTs following p53 knockdown (mean, 3 months). In addition, wild-type and Nf1+/− mice with GFAP-Cre-mediated Nf1 loss develop MPNSTs following somatic p53 knockout with different latencies, suggesting potential influences of Nf1+/− stromal cells in MPNST pathogenesis. Collectively, this new MPNST model system permits the analysis of somatically-acquired events as well as tumor microenvironment signals that potentially cooperate with Nf1 loss in the development and progression of this deadly malignancy.
Collapse
Affiliation(s)
- Angela C Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Inder M Verma
- The Salk Institute of Biological Studies, Laboratory of Genetics, La Jolla, CA, USA
| | - D Wade Clapp
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David H Gutmann
- Department of Neurology, Washington University, St. Louis, MO, USA
| |
Collapse
|
40
|
Shurell E, Vergara-Lluri ME, Li Y, Crompton JG, Singh A, Bernthal N, Wu H, Eilber FC, Dry SM. Comprehensive adipocytic and neurogenic tissue microarray analysis of NY-ESO-1 expression - a promising immunotherapy target in malignant peripheral nerve sheath tumor and liposarcoma. Oncotarget 2016; 7:72860-72867. [PMID: 27655679 PMCID: PMC5341949 DOI: 10.18632/oncotarget.12096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/09/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Immunotherapy targeting cancer-testis antigen NY-ESO-1 shows promise for tumors with poor response to chemoradiation. Malignant peripheral nerve sheath tumors (MPNSTs) and liposarcomas (LPS) are chemoresistant and have few effective treatment options. Materials Methods: Using a comprehensive tissue microarray (TMA) of both benign and malignant tumors in primary, recurrent, and metastatic samples, we examined NY-ESO-1 expression in peripheral nerve sheath tumor (PNST) and adipocytic tumors. The PNST TMA included 42 MPNSTs (spontaneous n = 26, NF1-associated n = 16), 35 neurofibromas (spontaneous n = 22, NF-1 associated n = 13), 11 schwannomas, and 18 normal nerves. The LPS TMA included 48 well-differentiated/dedifferentiated (WD/DD) LPS, 13 myxoid/round cell LPS, 3 pleomorphic LPS, 8 lipomas, 1 myelolipoma, and 3 normal adipocytic tissue samples. Stained in triplicate, NY-ESO-1 intensity and density were scored. RESULTS NY-ESO-1 expression was exclusive to malignant tumors. 100% of myxoid/round cell LPS demonstrated NY-ESO-1 expression, while only 6% of WD/DD LPS showed protein expression, one of which was WD LPS. Of MPNST, 4/26 (15%) spontaneous and 2/16 (12%) NF1-associated MPNSTs demonstrated NY-ESO-1 expression. Strong NY-ESO-1 expression was observed in myxoid/round cell and dedifferentiated LPS, and MPNST in primary, neoadjuvant, and metastatic settings. CONCLUSIONS We found higher prevalence of NY-ESO-1 expression in MPNSTs than previously reported, highlighting a subset of MPNST patients who may benefit from immunotherapy. This study expands our understanding of NY-ESO-1 in WD/DD LPS and is the first demonstration of staining in a WD LPS and metastatic/recurrent myxoid/round cell LPS. These results suggest immunotherapy targeting NY-ESO-1 may benefit patients with aggressive tumors resistant to conventional therapy.
Collapse
Affiliation(s)
- Elizabeth Shurell
- Division of Surgical Oncology, University of California, Los Angeles, CA 90095, USA
| | - Maria E. Vergara-Lluri
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yunfeng Li
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Joseph G. Crompton
- Division of Surgical Oncology, University of California, Los Angeles, CA 90095, USA
| | - Arun Singh
- Department of Hematology/Oncology, University of California, Los Angeles, CA 90095, USA
| | - Nicholas Bernthal
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Fritz C. Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA 90095, USA
| | - Sarah M. Dry
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Patel AV, Chaney KE, Choi K, Largaespada DA, Kumar AR, Ratner N. An ShRNA Screen Identifies MEIS1 as a Driver of Malignant Peripheral Nerve Sheath Tumors. EBioMedicine 2016; 9:110-119. [PMID: 27333032 PMCID: PMC4972548 DOI: 10.1016/j.ebiom.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 01/25/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are rare soft tissue sarcomas that are a major source of mortality in neurofibromatosis type 1 (NF1) patients. To identify MPNST driver genes, we performed a lentiviral short hairpin (sh) RNA screen, targeting all 130 genes up-regulated in neurofibroma and MPNSTs versus normal human nerve Schwann cells. NF1 mutant cells show activation of RAS/MAPK signaling, so a counter-screen in RAS mutant carcinoma cells was performed to exclude common RAS-pathway driven genes. We identified 7 genes specific for survival of MPSNT cells, including MEIS1. MEIS1 was frequently amplified or hypomethylated in human MPSNTs, correlating with elevated MEIS1 gene expression. In MPNST cells and in a genetically engineered mouse model, MEIS1 expression in developing nerve glial cells was necessary for MPNST growth. Mechanistically, MEIS1 drives MPNST cell growth via the transcription factor ID1, thereby suppressing expression of the cell cycle inhibitor p27Kip and maintaining cell survival. Targeting over-expressed genes facilitates identification of sarcoma driver genes. We identify MEIS1 as a MPNST oncogene. MEIS1 suppresses p27Kip enabling MPNST survival.
We identify MEIS1 as a sarcoma oncogene, and identify an additional 7 genes specific for survival of malignant peripheral nerve sheath cells. MEIS1 was frequently amplified or hypomethylated in human tumors, correlating with elevated MEIS1 gene and protein expression. MEIS1 enables cell cycle progression in these tumor cells through downregulation of expression of a pro-cell death protein p27Kip. Thus, inhibitors targeting cell cycle checkpoints and/or upregulating p27Kip may have therapeutic value for these patients, and perhaps for other tumor types in which MEIS1 is an oncogene.
Collapse
Affiliation(s)
- Ami V Patel
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229-0713, United States
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229-0713, United States
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229-0713, United States
| | - David A Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Ashish R Kumar
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229-0713, United States
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229-0713, United States.
| |
Collapse
|
42
|
Malignant Peripheral Nerve Sheath Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:495-530. [DOI: 10.1007/978-3-319-30654-4_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Sood A, Miller AM, Brogi E, Sui Y, Armenia J, McDonough E, Santamaria-Pang A, Carlin S, Stamper A, Campos C, Pang Z, Li Q, Port E, Graeber TG, Schultz N, Ginty F, Larson SM, Mellinghoff IK. Multiplexed immunofluorescence delineates proteomic cancer cell states associated with metabolism. JCI Insight 2016; 1:87030. [PMID: 27182557 DOI: 10.1172/jci.insight.87030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The phenotypic diversity of cancer results from genetic and nongenetic factors. Most studies of cancer heterogeneity have focused on DNA alterations, as technologies for proteomic measurements in clinical specimen are currently less advanced. Here, we used a multiplexed immunofluorescence staining platform to measure the expression of 27 proteins at the single-cell level in formalin-fixed and paraffin-embedded samples from treatment-naive stage II/III human breast cancer. Unsupervised clustering of protein expression data from 638,577 tumor cells in 26 breast cancers identified 8 clusters of protein coexpression. In about one-third of breast cancers, over 95% of all neoplastic cells expressed a single protein coexpression cluster. The remaining tumors harbored tumor cells representing multiple protein coexpression clusters, either in a regional distribution or intermingled throughout the tumor. Tumor uptake of the radiotracer 18F-fluorodeoxyglucose was associated with protein expression clusters characterized by hormone receptor loss, PTEN alteration, and HER2 gene amplification. Our study demonstrates an approach to generate cellular heterogeneity metrics in routinely collected solid tumor specimens and integrate them with in vivo cancer phenotypes.
Collapse
Affiliation(s)
- Anup Sood
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | | | | | - Yunxia Sui
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | | | - Elizabeth McDonough
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | - Alberto Santamaria-Pang
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | | | | | | | - Zhengyu Pang
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | - Qing Li
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | - Elisa Port
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
| | - Nikolaus Schultz
- Human Oncology and Pathogenesis Program.,Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Fiona Ginty
- Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA
| | | | - Ingo K Mellinghoff
- Department of Neurology.,Human Oncology and Pathogenesis Program.,Department of Pharmacology, Weill Cornell Medical School, New York, New York, USA
| |
Collapse
|
44
|
Boulter N, Suarez FG, Schibeci S, Sunderland T, Tolhurst O, Hunter T, Hodge G, Handelsman D, Simanainen U, Hendriks E, Duggan K. A simple, accurate and universal method for quantification of PCR. BMC Biotechnol 2016; 16:27. [PMID: 26956612 PMCID: PMC4784296 DOI: 10.1186/s12896-016-0256-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background Research into gene expression enables scientists to decipher the complex regulatory networks that control fundamental biological processes. Quantitative real-time PCR (qPCR) is a powerful and ubiquitous method for interrogation of gene expression. Accurate quantification is essential for correct interpretation of qPCR data. However, conventional relative and absolute quantification methodologies often give erroneous results or are laborious to perform. To overcome these failings, we developed an accurate, simple to use, universal calibrator, AccuCal. Results Herein, we show that AccuCal quantification can be used with either dye- or probe-based detection methods and is accurate over a dynamic range of ≥105 copies, for amplicons up to 500 base pairs (bp). By providing absolute quantification of all genes of interest, AccuCal exposes, and circumvents, the well-known biases of qPCR, thus allowing objective experimental conclusions to be drawn. Conclusion We propose that AccuCal supersedes the traditional quantification methods of PCR. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0256-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicky Boulter
- Accugen Pty Ltd, 11 Julius Avenue, North Ryde, NSW, 2113, Australia.
| | | | - Stephen Schibeci
- Westmead Millennium Institute, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.
| | - Trevor Sunderland
- Bitfuturistic Solutions, 9623 Lawndale Avenue SW, Lakewood, WA, 98498, USA.
| | - Ornella Tolhurst
- Accugen Pty Ltd, 11 Julius Avenue, North Ryde, NSW, 2113, Australia. .,Vectus Biosystems Pty Ltd, 11 Julius Avenue, North Ryde, NSW, 2113, Australia.
| | - Tegan Hunter
- Accugen Pty Ltd, 11 Julius Avenue, North Ryde, NSW, 2113, Australia. .,Vectus Biosystems Pty Ltd, 11 Julius Avenue, North Ryde, NSW, 2113, Australia.
| | - George Hodge
- Vectus Biosystems Pty Ltd, 11 Julius Avenue, North Ryde, NSW, 2113, Australia.
| | - David Handelsman
- ANZAC Research Institute, University of Sydney, Sydney, NSW, 2139, Australia.
| | - Ulla Simanainen
- ANZAC Research Institute, University of Sydney, Sydney, NSW, 2139, Australia.
| | - Edward Hendriks
- Accugen Pty Ltd, 11 Julius Avenue, North Ryde, NSW, 2113, Australia. .,Vectus Biosystems Pty Ltd, 11 Julius Avenue, North Ryde, NSW, 2113, Australia.
| | - Karen Duggan
- Accugen Pty Ltd, 11 Julius Avenue, North Ryde, NSW, 2113, Australia. .,Vectus Biosystems Pty Ltd, 11 Julius Avenue, North Ryde, NSW, 2113, Australia.
| |
Collapse
|
45
|
The Challenge of Cancer Genomics in Rare Nervous System Neoplasms: Malignant Peripheral Nerve Sheath Tumors as a Paradigm for Cross-Species Comparative Oncogenomics. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:464-77. [PMID: 26740486 DOI: 10.1016/j.ajpath.2015.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Comprehensive genomic analyses of common nervous system cancers provide new insights into their pathogenesis, diagnosis, and treatment. Although analogous studies of rare nervous system tumors are needed, there are major barriers to performing such studies. Cross-species comparative oncogenomics, identifying driver mutations in mouse cancer models and validating them in human tumors, is a promising alternative. Although still in its infancy, this approach is being applied to malignant peripheral nerve sheath tumors (MPNSTs), rare Schwann cell-derived malignancies that occur sporadically, after radiotherapy, and in neurofibromatosis type 1. Studies of human neurofibromatosis type 1-associated tumors suggest that NF1 tumor suppressor loss in Schwann cells triggers cell-autonomous and intercellular changes, resulting in development of benign neurofibromas; subsequent neurofibroma-MPNST progression is caused by aberrant growth factor signaling and mutations affecting the p16(INK4A)-cyclin D1-CDK4-Rb and p19(ARF)-Mdm2-p53 cell cycle pathways. Mice with Nf1, Trp53, and/or Cdkn2a mutations that overexpress the Schwann cell mitogen neuregulin-1 or overexpress the epidermal growth factor receptor validate observations in human tumors and, to various degrees, model human tumorigenesis. Genomic analyses of MPNSTs arising in neuregulin-1 and epidermal growth factor receptor-overexpressing mice and forward genetic screens with Sleeping Beauty transposons implicate additional signaling cascades in MPNST pathogenesis. These studies confirm the utility of mouse models for MPNST driver gene discovery and provide new insights into the complexity of MPNST pathogenesis.
Collapse
|
46
|
Abstract
Neurofibromatosis type 1 (NF1) is a relatively common tumour predisposition syndrome related to germline aberrations of NF1, a tumour suppressor gene. The gene product neurofibromin is a negative regulator of the Ras cellular proliferation pathway, and also exerts tumour suppression via other mechanisms. Recent next-generation sequencing projects have revealed somatic NF1 aberrations in various sporadic tumours. NF1 plays a critical role in a wide range of tumours. NF1 alterations appear to be associated with resistance to therapy and adverse outcomes in several tumour types. Identification of a patient's germline or somatic NF1 aberrations can be challenging, as NF1 is one of the largest human genes, with a myriad of possible mutations. Epigenetic factors may also contribute to inadequate levels of neurofibromin in cancer cells. Clinical trials of NF1-based therapeutic approaches are currently limited. Preclinical studies on neurofibromin-deficient malignancies have mainly been on malignant peripheral nerve sheath tumour cell lines or xenografts derived from NF1 patients. However, the emerging recognition of the role of NF1 in sporadic cancers may lead to the development of NF1-based treatments for other tumour types. Improved understanding of the implications of NF1 aberrations is critical for the development of novel therapeutic strategies.
Collapse
|
47
|
Chen F, Rosiene J, Che A, Becker A, LoTurco J. Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and piggyBac transposase lineage labeling. Development 2015; 142:3601-11. [PMID: 26400094 DOI: 10.1242/dev.118836] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 08/28/2015] [Indexed: 12/26/2022]
Abstract
The ability to induce targeted mutations in somatic cells in developing organisms and then track the fates of those cells is a powerful approach both for studying neural development and for modeling human disease. The CRISPR/Cas9 system allows for such targeted mutagenesis, and we therefore tested it in combination with a piggyBac transposase lineage labeling system to track the development of neocortical neural progenitors with targeted mutations in genes linked to neurodevelopmental disruptions and tumor formation. We show that sgRNAs designed to target PTEN successfully decreased PTEN expression, and led to neuronal hypertrophy and altered neuronal excitability. Targeting NF1, by contrast, caused increased astrocytogenesis at the expense of neurogenesis, and combined targeting of three tumor suppressors (PTEN, NF1 and P53) resulted in formation of glioblastoma tumors. Our results demonstrate that CRISPR/Cas9 combined with piggyBac transposase lineage labeling can produce unique models of neurodevelopmental disruption and tumors caused by somatic mutation in neural progenitors.
Collapse
Affiliation(s)
- Fuyi Chen
- Department of Physiology and Neurobiology, Institute for Systems Genomics, Institute for Brain and Cognitive Science, University of Connecticut, Storrs, CT 06268, USA
| | - Joel Rosiene
- Department of Physiology and Neurobiology, Institute for Systems Genomics, Institute for Brain and Cognitive Science, University of Connecticut, Storrs, CT 06268, USA
| | - Alicia Che
- Department of Physiology and Neurobiology, Institute for Systems Genomics, Institute for Brain and Cognitive Science, University of Connecticut, Storrs, CT 06268, USA
| | - Albert Becker
- Department of Neuropathology, University of Bonn Medical Center, 53105 Born, Germany
| | - Joseph LoTurco
- Department of Physiology and Neurobiology, Institute for Systems Genomics, Institute for Brain and Cognitive Science, University of Connecticut, Storrs, CT 06268, USA
| |
Collapse
|
48
|
|
49
|
Shurell E, Tran LM, Nakashima J, Smith KB, Tam BM, Li Y, Dry SM, Federman N, Tap WD, Wu H, Eilber FC. Gender dimorphism and age of onset in malignant peripheral nerve sheath tumor preclinical models and human patients. BMC Cancer 2014; 14:827. [PMID: 25398666 PMCID: PMC4237782 DOI: 10.1186/1471-2407-14-827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/23/2014] [Indexed: 12/14/2022] Open
Abstract
Background Gender-based differences in disease onset in murine models of malignant peripheral nerve sheath tumor (MPNST) and in patients with Neurofibromatosis type-1-(NF-1)-associated or spontaneous MPNST has not been well studied. Methods Forty-three mGFAP-Cre+;Ptenloxp/+;LSL-K-rasG12D/+ mice were observed for tumor development and evaluated for gender disparity in age of MPNST onset. Patient data from the prospectively collected UCLA sarcoma database (1974–2011, n = 113 MPNST patients) and 39 published studies on MPNST patients (n = 916) were analyzed for age of onset differences between sexes and between NF-1 and spontaneous MPNST patients. Results Our murine model showed gender-based differences in MPNST onset, with males developing MPNST significantly earlier than females (142 vs. 162 days, p = 0.015). In the UCLA patient population, males also developed MPNST earlier than females (median age 35 vs. 39.5 years, p = 0.048). Patients with NF-1-associated MPNST had significantly earlier age of onset compared to spontaneous MPNST (median age 33 vs. 39 years, p = 0.007). However, expanded analysis of 916 published MPNST cases revealed no significant age difference in MPNST onset between males and females. Similar to the UCLA dataset, patients with NF-1 developed MPNST at a significantly younger age than spontaneous MPNST patients (p < 0.0001, median age 28 vs. 41 years) and this disparity was maintained across North American, European, and Asian populations. Conclusions Although our preclinical model and single-institution patient cohort show gender dimorphism in MPNST onset, no significant gender disparity was detected in the larger MPNST patient meta-dataset. NF-1 patients develop MPNST 13 years earlier than patients with spontaneous MPNST, with little geographical variance. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-827) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hong Wu
- Department of Surgery, University of California - Los Angeles, Division of Surgical Oncology, 10833 Le Conte Ave, Room 54-140 CHS, 90095-1782 Los Angeles, California.
| | | |
Collapse
|
50
|
Kaul A, Toonen JA, Gianino SM, Gutmann DH. The impact of coexisting genetic mutations on murine optic glioma biology. Neuro Oncol 2014; 17:670-7. [PMID: 25246427 DOI: 10.1093/neuonc/nou287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/26/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Children with the neurofibromatosis type 1 (NF1) tumor predisposition syndrome are prone to the development of optic pathway gliomas resulting from biallelic inactivation of the NF1 gene. Recent studies have revealed the presence of other molecular alterations in a small portion of these NF1-associated brain tumors. The purpose of this study was to leverage Nf1 genetically engineered mouse strains to define the functional significance of these changes to optic glioma biology. METHODS Nf1+/- mice were intercrossed with Nf1(flox/flox) mice, which were then crossed with Nf1(flox/flox); GFAP-Cre mice, to generate Nf1(flox/mut); GFAP-Cre (FMC) mice. These mice were additionally mated with conditional KIAA1549:BRAF knock-in or Pten(flox/wt) mice to generate Nf1(flox/mut); f-BRAF; GFAP-Cre (FMBC) mice or Nf1(flox/mut); Pten(flox/wt); GFAP-Cre (FMPC) mice, respectively. The resulting optic gliomas were analyzed for changes in tumor volume, proliferation, and retinal ganglion cell loss. RESULTS While KIAA1549:BRAF conferred no additional biological properties on Nf1 optic glioma, FMPC mice had larger optic gliomas with greater proliferative indices and microglial infiltration. In addition, all 3 Nf1 murine optic glioma strains exhibited reduced retinal ganglion cell survival and numbers; however, FMPC mice had greater retinal nerve fiber layer thinning near the optic head relative to FMC and FMBC mice. CONCLUSIONS Collectively, these experiments demonstrate genetic cooperativity between Nf1 loss and Pten heterozygosity relevant to optic glioma biology and further underscore the value of employing genetically engineered mouse strains to define the contribution of discovered molecular alterations to brain tumor pathogenesis.
Collapse
Affiliation(s)
- Aparna Kaul
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph A Toonen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Scott M Gianino
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|