1
|
Sato K, Kadowaki T, Takenaka M, Konishi M, Ando M, Onodera T, Tsukuba T. RASEF/Rab45 regulates the formation and sorting of zymogen granules and secretion of digestive enzymes by pancreatic acinar cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167310. [PMID: 38901651 DOI: 10.1016/j.bbadis.2024.167310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The pancreas is a glandular organ with both endocrine and exocrine functions. Researchers have investigated the roles of several Rab proteins, which are major regulators of membrane trafficking, in pancreatic exocytosis of zymogen granules in exocrine cells, also known as acinar cells. However, detailed molecular mechanisms mediated by Rab proteins are not fully understood. RASEF/Rab45 is an atypical Rab GTPase that contains N-terminal EF-hand and coiled-coil domains, as well as a C-terminal Rab-GTPase domain. In this study, we investigated the in vivo role of RASEF in pancreatic acinar cells using RASEF-knockout (KO) mice. Morphological analyses revealed that pancreatic acinar cells in RASEF-KO mice had an increased number of zymogen granules and abnormal formations of organelles, such as the endoplasmic reticulum (ER) and lysosomes. Biochemical analyses showed that ER proteins were decreased, but digestive enzymes were increased in the RASEF-KO pancreas. Moreover, trypsinogen was activated and co-localized with the endo-lysosomal marker LAMP1 in RASEF-KO pancreas. Upon cerulein administration to induce acute pancreatitis, impaired enzyme release from the pancreas was observed in the serum of RASEF-KO mice. These findings suggest that RASEF likely regulates the formation and sorting of zymogen granules and secretion of digestive enzymes by pancreatic acinar cells.
Collapse
Affiliation(s)
- Keiko Sato
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki 852-8588, Japan.
| | - Mamoru Takenaka
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| | - Mayo Konishi
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| | - Miyabi Ando
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| | - Takae Onodera
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| |
Collapse
|
2
|
Trivedi A, Miratsky JA, Henderson EC, Singharoy A, Shrivastava A. A membrane-associated conveyor belt controls the rotational direction of the bacterial type 9 secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614571. [PMID: 39386584 PMCID: PMC11463627 DOI: 10.1101/2024.09.23.614571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Many bacteria utilize the type 9 secretion system (T9SS) for gliding motility, surface colonization, and pathogenesis. This dual-function motor supports both gliding motility and protein secretion, where rotation of the T9SS plays a central role. Fueled by the energy of the stored proton motive force and transmitted through the torque of membrane-anchored stator units, the rotary T9SS propels an adhesin-coated conveyor belt along the bacterial outer membrane like a molecular snowmobile, thereby enabling gliding motion. However, the mechanisms controlling the rotational direction and gliding motility of T9SS remain elusive. Shedding light on this mechanism, we find that in the gliding bacterium Flavobacterium johnsoniae , deletion of the C-terminus of a conveyor belt protein controls, and in fact, reverses the rotational direction of T9SS from counterclockwise (CCW) to clockwise (CW). Largescale conformational changes at the interface of the T9SS ring with the C-terminus of the conveyer belt, as well as those of the ring protein themselves, in concert with a CW bias of the stators general rotation brings forth a 'tri-component gearset' model: the conveyor belt controls the conformation of the T9SS ring, and thereby its rotational direction. Consequently, the CW rotating stator either push the outer edge of the T9SS rings, causing its CCW rotation or press against the inner surface of the rings, resulting in CW rotation. This regulatory mechanism exemplifies how an outer membrane associated conveyor belt adjusts the rotational direction of its driver, the T9SS, thus providing adaptive sensory feedback to control the motility of a molecular snowmobile.
Collapse
|
3
|
Saran A, Kim HM, Manning I, Hancock MA, Schmitz C, Madej M, Potempa J, Sola M, Trempe JF, Zhu Y, Davey ME, Zeytuni N. Unveiling the molecular mechanisms of the type IX secretion system's response regulator: Structural and functional insights. PNAS NEXUS 2024; 3:pgae316. [PMID: 39139265 PMCID: PMC11320123 DOI: 10.1093/pnasnexus/pgae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The type IX secretion system (T9SS) is a nanomachinery utilized by bacterial pathogens to facilitate infection. The system is regulated by a signaling cascade serving as its activation switch. A pivotal member in this cascade, the response regulator protein PorX, represents a promising drug target to prevent the secretion of virulence factors. Here, we provide a comprehensive characterization of PorX both in vitro and in vivo. First, our structural studies revealed PorX harbors a unique enzymatic effector domain, which, surprisingly, shares structural similarities with the alkaline phosphatase superfamily, involved in nucleotide and lipid signaling pathways. Importantly, such pathways have not been associated with the T9SS until now. Enzymatic characterization of PorX's effector domain revealed a zinc-dependent phosphodiesterase activity, with active site dimensions suitable to accommodate a large substrate. Unlike typical response regulators that dimerize via their receiver domain upon phosphorylation, we found that zinc can also induce conformational changes and promote PorX's dimerization via an unexpected interface. These findings suggest that PorX can serve as a cellular zinc sensor, broadening our understanding of its regulatory mechanisms. Despite the strict conservation of PorX in T9SS-utilizing bacteria, we demonstrate that PorX is essential for virulence factors secretion in Porphyromonas gingivalis and affects metabolic enzymes secretion in the nonpathogenic Flavobacterium johnsoniae, but not for the secretion of gliding adhesins. Overall, this study advances our structural and functional understanding of PorX, highlighting its potential as a druggable target for intervention strategies aimed at disrupting the T9SS and mitigating virulence in pathogenic species.
Collapse
Affiliation(s)
- Anshu Saran
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
| | - Hey-Min Kim
- Department of Microbiology, The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - Ireland Manning
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN 56001, USA
| | - Mark A Hancock
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Claus Schmitz
- Department of Structural Biology, Molecular Biology Institute of Barcelona, Spanish Research Council, Barcelona Science Park, Barcelona E-08028, Spain
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków PL-30-387, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków PL-30-387, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, 501 S Preston St, Louisville, KY 40202, USA
| | - Maria Sola
- Department of Structural Biology, Molecular Biology Institute of Barcelona, Spanish Research Council, Barcelona Science Park, Barcelona E-08028, Spain
| | - Jean-François Trempe
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Yongtao Zhu
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN 56001, USA
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Mary Ellen Davey
- Department of Microbiology, The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - Natalie Zeytuni
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
4
|
Nakao R, Takatsuka A, Mandokoro K, Narisawa N, Ikeda T, Takai H, Ogata Y. Multimodal inhibitory effect of matcha on Porphyromonas gingivalis. Microbiol Spectr 2024; 12:e0342623. [PMID: 38771061 PMCID: PMC11218439 DOI: 10.1128/spectrum.03426-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/29/2024] [Indexed: 05/22/2024] Open
Abstract
Porphyromonas gingivalis has been associated with progression of periodontitis, characterized by inflammation and destruction of periodontal tissues. Here, we report that matcha, a product of Camellia sinensis, hampers the adherence and survival of P. gingivalis through multiple tactics. Matcha extract (ME) inhibited the growth not only of P. gingivalis but also of Prevotella nigrescens and Fusobacterium nucleatum, while it did not inhibit growth of nine species of oral streptococci and Aggregatibacter actinomycetemcomitans. ME-mediated P. gingivalis growth inhibition was characterized by both morphological and physiological changes at the bacterial envelope, which were accompanied by nano-particle formation and decreased membrane fluidity/permeability without loss of membrane integrity. ME also triggered autoaggregation of P. gingivalis in a major fimbriae (FimA)-dependent manner. In addition, adherence of P. gingivalis was dramatically inhibited by ME, irrespective of fimbriae. Furthermore, a structure-activity relationship study tested a series of catechins isolated from ME and identified the pyrogallol-type B-ring of catechins as essential for P. gingivalis growth inhibition. In a clinical study to assess the microbiological and therapeutic effects of matcha mouthwash in patients with periodontitis, the P. gingivalis number in saliva was significantly reduced by matcha mouthwash compared to the pre-intervention level. A tendency toward improvement in probing pocket depth was observed in the matcha group, although the difference was not statistically significant. Taken together, we present a proof of concept, based on the multimodal inhibitory effect of matcha against P. gingivalis, and that matcha may have clinical applicability for prevention and treatment of periodontitis. IMPORTANCE Periodontitis, a multifactorial inflammatory disease of the oral cavity, results in alveolar bone destruction, and is a major cause of tooth loss of humans. In addition, emerging evidence has demonstrated associations between periodontitis and a wide range of other chronic inflammation-driven disorders, including diabetes mellitus, preterm birth, cardiovascular disease, aspiration pneumonia, rheumatoid arthritis, cognitive disorder, and cancer. In the present study, we report that matcha, a product of Camellia sinensis, hampers Porphyromonas gingivalis, a major periodontal pathobiont, in not only a series of in vitro experiments but also a pilot intervention clinical trial of patients with periodontitis, in which matcha mouthwash statistically significantly reduced the P. gingivalis number in saliva, as compared to the pre-intervention level. Taken together, we suggest that matcha may have clinical applicability for prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ayami Takatsuka
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Food Bioscience and Biotechnology, College of Bioresource Science, Nihon University, Kanagawa, Japan
| | - Kengo Mandokoro
- Department of Food Bioscience and Biotechnology, College of Bioresource Science, Nihon University, Kanagawa, Japan
| | - Naoki Narisawa
- Department of Food Bioscience and Biotechnology, College of Bioresource Science, Nihon University, Kanagawa, Japan
| | - Tsuyoshi Ikeda
- Department of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
5
|
Rocha ST, Shah DD, Shrivastava A. Ecological, beneficial, and pathogenic functions of the Type 9 Secretion System. Microb Biotechnol 2024; 17:e14516. [PMID: 38924452 PMCID: PMC11205867 DOI: 10.1111/1751-7915.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The recently discovered Type 9 Secretion System (T9SS) is present in bacteria of the Fibrobacteres-Bacteroidetes-Chlorobi superphylum, which are key constituents of diverse microbiomes. T9SS is instrumental in the extracellular secretion of over 270,000 proteins, including peptidases, sugar hydrolases, metal ion-binding proteins, and metalloenzymes. These proteins are essential for the interaction of bacteria with their environment. This mini-review explores the extensive array of proteins secreted by the T9SS. It highlights the diverse functions of these proteins, emphasizing their roles in pathogenesis, bacterial interactions, host colonization, and the overall health of the ecosystems inhabited by T9SS-containing bacteria.
Collapse
Affiliation(s)
- Sofia T. Rocha
- Biodesign InstituteArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Dhara D. Shah
- Biodesign InstituteArizona State UniversityTempeArizonaUSA
- School of Mathematical and Natural SciencesArizona State UniversityGlendaleArizonaUSA
| | - Abhishek Shrivastava
- Biodesign InstituteArizona State UniversityTempeArizonaUSA
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| |
Collapse
|
6
|
Mizgalska D, Rodríguez-Banqueri A, Veillard F, Książęk M, Goulas T, Guevara T, Eckhard U, Potempa J, Gomis-Rüth FX. Structural and functional insights into the C-terminal signal domain of the Bacteroidetes type-IX secretion system. Open Biol 2024; 14:230448. [PMID: 38862016 DOI: 10.1098/rsob.230448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 06/13/2024] Open
Abstract
Gram-negative bacteria from the Bacteroidota phylum possess a type-IX secretion system (T9SS) for protein secretion, which requires cargoes to have a C-terminal domain (CTD). Structurally analysed CTDs are from Porphyromonas gingivalis proteins RgpB, HBP35, PorU and PorZ, which share a compact immunoglobulin-like antiparallel 3+4 β-sandwich (β1-β7). This architecture is essential as a P. gingivalis strain with a single-point mutant of RgpB disrupting the interaction of the CTD with its preceding domain prevented secretion of the protein. Next, we identified the C-terminus ('motif C-t.') and the loop connecting strands β3 and β4 ('motif Lβ3β4') as conserved. We generated two strains with insertion and replacement mutants of PorU, as well as three strains with ablation and point mutants of RgpB, which revealed both motifs to be relevant for T9SS function. Furthermore, we determined the crystal structure of the CTD of mirolase, a cargo of the Tannerella forsythia T9SS, which shares the same general topology as in Porphyromonas CTDs. However, motif Lβ3β4 was not conserved. Consistently, P. gingivalis could not properly secrete a chimaeric protein with the CTD of peptidylarginine deiminase replaced with this foreign CTD. Thus, the incompatibility of the CTDs between these species prevents potential interference between their T9SSs.
Collapse
Affiliation(s)
- Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mirosław Książęk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Theodoros Goulas
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, Karditsa 43100, Greece
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Ulrich Eckhard
- Synthetic Structural Biology Group, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| |
Collapse
|
7
|
Saran A, Kim HM, Manning I, Hancock MA, Schmitz C, Madej M, Potempa J, Sola M, Trempe JF, Zhu Y, Davey ME, Zeytuni N. Unveiling the Molecular Mechanisms of the Type-IX Secretion System's Response Regulator: Structural and Functional Insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594396. [PMID: 38798656 PMCID: PMC11118453 DOI: 10.1101/2024.05.15.594396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The Type-IX secretion system (T9SS) is a nanomachinery utilized by bacterial pathogens to facilitate infection. The system is regulated by a signaling cascade serving as its activation switch. A pivotal member in this cascade, the response regulator protein PorX, represents a promising drug target to prevent the secretion of virulence factors. Here, we provide a comprehensive characterization of PorX both in vitro and in vivo . First, our structural studies revealed PorX harbours a unique enzymatic effector domain, which, surprisingly, shares structural similarities with the alkaline phosphatase superfamily, involved in nucleotide and lipid signaling pathways. Importantly, such pathways have not been associated with the T9SS until now. Enzymatic characterization of PorX's effector domain revealed a zinc-dependent phosphodiesterase activity, with active site dimensions suitable to accommodate a large substrate. Unlike typical response regulators that dimerize via their receiver domain upon phosphorylation, we found that zinc can also induce conformational changes and promote PorX's dimerization via an unexpected interface. These findings suggest that PorX can serve as a cellular zinc sensor, broadening our understanding of its regulatory mechanisms. Despite the strict conservation of PorX in T9SS-utilizing bacteria, we demonstrate that PorX is essential for virulence factors secretion in Porphyromonas gingivalis and affects metabolic enzymes secretion in the non-pathogenic Flavobacterium johnsoniae , but not for the secretion of gliding adhesins. Overall, this study advances our structural and functional understanding of PorX, highlighting its potential as a druggable target for intervention strategies aimed at disrupting the T9SS and mitigating virulence in pathogenic species.
Collapse
|
8
|
Thunes NC, Evenhuis JP, Lipscomb RS, Pérez-Pascual D, Stevick RJ, Birkett C, Ghigo JM, McBride MJ. Gliding motility proteins GldJ and SprB contribute to Flavobacterium columnare virulence. J Bacteriol 2024; 206:e0006824. [PMID: 38517170 PMCID: PMC11025331 DOI: 10.1128/jb.00068-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Flavobacterium columnare causes columnaris disease in fish. Columnaris disease is incompletely understood, and adequate control measures are lacking. The type IX secretion system (T9SS) is required for F. columnare gliding motility and virulence. The T9SS and gliding motility machineries share some, but not all, components. GldN (required for gliding and for secretion) and PorV (involved in secretion but not required for gliding) are both needed for virulence, implicating T9SS-mediated secretion in virulence. The role of motility in virulence is uncertain. We constructed and analyzed sprB, sprF, and gldJ mutants that were defective for motility but that maintained T9SS function to understand the role of motility in virulence. Wild-type cells moved rapidly and formed spreading colonies. In contrast, sprB and sprF deletion mutants were partially defective in gliding and formed nonspreading colonies. Both mutants exhibited reduced virulence in rainbow trout fry. A gldJ deletion mutant was nonmotile, secretion deficient, and avirulent in rainbow trout fry. To separate the roles of GldJ in secretion and in motility, we generated gldJ truncation mutants that produce nearly full-length GldJ. Mutant gldJ563, which produces GldJ truncated at amino acid 563, was defective for gliding but was competent for secretion as measured by extracellular proteolytic activity. This mutant displayed reduced virulence in rainbow trout fry, suggesting that motility contributes to virulence. Fish that survived exposure to the sprB deletion mutant or the gldJ563 mutant exhibited partial resistance to later challenge with wild-type cells. The results aid our understanding of columnaris disease and may suggest control strategies.IMPORTANCEFlavobacterium columnare causes columnaris disease in many species of freshwater fish in the wild and in aquaculture systems. Fish mortalities resulting from columnaris disease are a major problem for aquaculture. F. columnare virulence is incompletely understood, and control measures are inadequate. Gliding motility and protein secretion have been suggested to contribute to columnaris disease, but evidence directly linking motility to disease was lacking. We isolated and analyzed mutants that were competent for secretion but defective for motility. Some of these mutants exhibited decreased virulence. Fish that had been exposed to these mutants were partially protected from later exposure to the wild type. The results contribute to our understanding of columnaris disease and may aid development of control strategies.
Collapse
Affiliation(s)
- Nicole C. Thunes
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, West Virginia, USA
| | - Ryan S. Lipscomb
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, West Virginia, USA
| | - David Pérez-Pascual
- Institut Pasteur, Université Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Rebecca J. Stevick
- Institut Pasteur, Université Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, USDA, Kearneysville, West Virginia, USA
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris-Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
9
|
Lauber F, Deme JC, Liu X, Kjær A, Miller HL, Alcock F, Lea SM, Berks BC. Structural insights into the mechanism of protein transport by the Type 9 Secretion System translocon. Nat Microbiol 2024; 9:1089-1102. [PMID: 38538833 PMCID: PMC10994853 DOI: 10.1038/s41564-024-01644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024]
Abstract
Secretion systems are protein export machines that enable bacteria to exploit their environment through the release of protein effectors. The Type 9 Secretion System (T9SS) is responsible for protein export across the outer membrane (OM) of bacteria of the phylum Bacteroidota. Here we trap the T9SS of Flavobacterium johnsoniae in the process of substrate transport by disrupting the T9SS motor complex. Cryo-EM analysis of purified substrate-bound T9SS translocons reveals an extended translocon structure in which the previously described translocon core is augmented by a periplasmic structure incorporating the proteins SprE, PorD and a homologue of the canonical periplasmic chaperone Skp. Substrate proteins bind to the extracellular loops of a carrier protein within the translocon pore. As transport intermediates accumulate on the translocon when energetic input is removed, we deduce that release of the substrate-carrier protein complex from the translocon is the energy-requiring step in T9SS transport.
Collapse
Affiliation(s)
- Frédéric Lauber
- Department of Biochemistry, University of Oxford, Oxford, UK
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Justin C Deme
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- The Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, Oxford, UK
| | - Xiaolong Liu
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Andreas Kjær
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Helen L Miller
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford, UK
| | - Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford, UK
- Newcastle University Biosciences Institute, Newcastle University, Newcastle, UK
| | - Susan M Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- The Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, Oxford, UK.
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Zammit M, Bartoli J, Kellenberger C, Melani P, Roussel A, Cascales E, Leone P. Structure-function analysis of PorX Fj, the PorX homolog from Flavobacterium johnsioniae, suggests a role of the CheY-like domain in type IX secretion motor activity. Sci Rep 2024; 14:6577. [PMID: 38503809 PMCID: PMC10951265 DOI: 10.1038/s41598-024-57089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
The type IX secretion system (T9SS) is a large multi-protein transenvelope complex distributed into the Bacteroidetes phylum and responsible for the secretion of proteins involved in pathogenesis, carbohydrate utilization or gliding motility. In Porphyromonas gingivalis, the two-component system PorY sensor and response regulator PorX participate to T9SS gene regulation. Here, we present the crystal structure of PorXFj, the Flavobacterium johnsoniae PorX homolog. As for PorX, the PorXFj structure is comprised of a CheY-like N-terminal domain and an alkaline phosphatase-like C-terminal domain separated by a three-helix bundle central domain. While not activated and monomeric in solution, PorXFj crystallized as a dimer identical to active PorX. The CheY-like domain of PorXFj is in an active-like conformation, and PorXFj possesses phosphodiesterase activity, in agreement with the observation that the active site of its phosphatase-like domain is highly conserved with PorX.
Collapse
Affiliation(s)
- Mariotte Zammit
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR7255), Institut de Microbiologie de la Méditerranée, Aix Marseille Univ, Centre National de la Recherche Scientifique, Marseille, France
| | - Julia Bartoli
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR7255), Institut de Microbiologie de la Méditerranée, Aix Marseille Univ, Centre National de la Recherche Scientifique, Marseille, France
| | - Christine Kellenberger
- Laboratoire de Chimie Bactérienne (LCB, UMR7283), Institut de Microbiologie de la Méditerranée, Aix Marseille Univ, Centre National de la Recherche Scientifique, Marseille, France
| | - Pauline Melani
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR7255), Institut de Microbiologie de la Méditerranée, Aix Marseille Univ, Centre National de la Recherche Scientifique, Marseille, France
| | - Alain Roussel
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR7255), Institut de Microbiologie de la Méditerranée, Aix Marseille Univ, Centre National de la Recherche Scientifique, Marseille, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR7255), Institut de Microbiologie de la Méditerranée, Aix Marseille Univ, Centre National de la Recherche Scientifique, Marseille, France
| | - Philippe Leone
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM, UMR7255), Institut de Microbiologie de la Méditerranée, Aix Marseille Univ, Centre National de la Recherche Scientifique, Marseille, France.
| |
Collapse
|
11
|
Cabrera MÁ, Márquez SL, Pérez-Donoso JM. New insights into xenobiotic tolerance of Antarctic bacteria: transcriptomic analysis of Pseudomonas sp. TNT3 during 2,4,6-trinitrotoluene biotransformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17256-17274. [PMID: 38337121 DOI: 10.1007/s11356-024-32298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
The xenobiotic 2,4,6-trinitrotoluene (TNT) is a highly persistent environmental contaminant, whose biotransformation by microorganisms has attracted renewed attention. In previous research, we reported the discovery of Pseudomonas sp. TNT3, the first described Antarctic bacterium with the ability to biotransform TNT. Furthermore, through genomic analysis, we identified distinctive features in this isolate associated with the biotransformation of TNT and other xenobiotics. However, the metabolic pathways and genes active during TNT exposure in this bacterium remained unexplored. In the present transcriptomic study, we used RNA-sequencing to investigate gene expression changes in Pseudomonas sp. TNT3 exposed to 100 mg/L of TNT. The results showed differential expression of 194 genes (54 upregulated and 140 downregulated), mostly encoding hypothetical proteins. The most highly upregulated gene (> 1000-fold) encoded an azoreductase enzyme not previously described. Other significantly upregulated genes were associated with (nitro)aromatics detoxification, oxidative, thiol-specific, and nitrosative stress responses, and (nitro)aromatic xenobiotic tolerance via efflux pumps. Most of the downregulated genes were involved in the electron transport chain, pyrroloquinoline quinone (PQQ)-related alcohol oxidation, and motility. These findings highlight a complex cellular response to TNT exposure, with the azoreductase enzyme likely playing a crucial role in TNT biotransformation. Our study provides new insights into the molecular mechanisms of TNT biotransformation and aids in developing effective TNT bioremediation strategies. To the best of our knowledge, this report is the first transcriptomic response analysis of an Antarctic bacterium during TNT biotransformation.
Collapse
Affiliation(s)
- Ma Ángeles Cabrera
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Av. República 330, Santiago, Chile
| | - Sebastián L Márquez
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Av. República 330, Santiago, Chile
- Fundación Científica y Cultural Biociencia, José Domingo Cañas 2280, Ñuñoa, Santiago, Chile
| | - José M Pérez-Donoso
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Av. República 330, Santiago, Chile.
| |
Collapse
|
12
|
Zhou R, Wang L, Li Y, Wu H, Lu L, Zang R, Xu H. Effects of Tail Vegetable Fermented Feed on the Growth and Rumen Microbiota of Lambs. Animals (Basel) 2024; 14:303. [PMID: 38254472 PMCID: PMC10812633 DOI: 10.3390/ani14020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This study explored the impact of integrating fermented feed into the starter diet of lambs, focusing on growth, health, serum antioxidants, immune markers, rumen fermentation, and microbial communities. Thirty-six ten-day-old female Tail Han lambs were randomly divided into three experimental groups, which were separately fed with alfalfa hay (LA group), tail vegetable fermented feed (LB group), and tail vegetable fermented feed supplemented with 0.1% microbial inoculants (LC group) during the experimental period. This study assessed the influence of fermented feed on various parameters, including growth performance, fiber degradation, rumen fermentation, enzymatic activities, and ruminal histomorphology. The results indicate that compared to the control group, the addition of fermented feed can increase the daily weight gain of lambs. Simultaneously, the addition of fermented feed can enhance the total antioxidant capacity of serum (p < 0.05). The addition of fermented feed promoted the increased height of villi in the duodenum or jejunum of lambs (p < 0.05), and the ratio of villi height to crypt depth in the LB and LC groups was also improved (p < 0.05). The addition of fermented feed increased the richness and diversity of the rumen microbial community in lambs (p < 0.05), primarily increasing the relative abundance of Ruminococcus_1, Ruminococcaceae_UCG-005, Lachnospiraceae, and Lachnospiraceae_NK4A136_group.
Collapse
Affiliation(s)
- Rui Zhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730100, China; (R.Z.); (L.W.); (Y.L.); (L.L.)
| | - Lueyu Wang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730100, China; (R.Z.); (L.W.); (Y.L.); (L.L.)
| | - Yaodong Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730100, China; (R.Z.); (L.W.); (Y.L.); (L.L.)
| | - Huihao Wu
- Experimental Teaching Department, Northwest Minzu University, Lanzhou 730100, China;
| | - Liping Lu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730100, China; (R.Z.); (L.W.); (Y.L.); (L.L.)
| | - Rongxin Zang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730100, China; (R.Z.); (L.W.); (Y.L.); (L.L.)
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730100, China; (R.Z.); (L.W.); (Y.L.); (L.L.)
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
13
|
Luo Y, Chen Z, Lian S, Ji X, Zhu C, Zhu G, Xia P. The Love and Hate Relationship between T5SS and Other Secretion Systems in Bacteria. Int J Mol Sci 2023; 25:281. [PMID: 38203452 PMCID: PMC10778856 DOI: 10.3390/ijms25010281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Bacteria have existed on Earth for billions of years, exhibiting ubiquity and involvement in various biological activities. To ensure survival, bacteria usually release and secrete effector proteins to acquire nutrients and compete with other microorganisms for living space during long-term evolution. Consequently, bacteria have developed a range of secretion systems, which are complex macromolecular transport machines responsible for transporting proteins across the bacterial cell membranes. Among them, one particular secretion system that stands out from the rest is the type V secretion system (T5SS), known as the "autotransporter". Bacterial activities mediated by T5SS include adherence to host cells or the extracellular matrix, invasion of host cells, immune evasion and serum resistance, contact-dependent growth inhibition, cytotoxicity, intracellular flow, protease activity, autoaggregation, and biofilm formation. In a bacterial body, it is not enough to rely on T5SS alone; in most cases, T5SS cooperates with other secretion systems to carry out bacterial life activities, but regardless of how good the relationship is, there is friction between the secretion systems. T5SS and T1SS/T2SS/T3SS/T6SS all play a synergistic role in the pathogenic processes of bacteria, such as nutrient acquisition, pathogenicity enhancement, and immune modulation, but T5SS indirectly inhibits the function of T4SS. This could be considered a love-hate relationship between secretion systems. This paper uses the systematic literature review methodology to review 117 journal articles published within the period from 1995 to 2024, which are all available from the PubMed, Web of Science, and Scopus databases and aim to elucidate the link between T5SS and other secretion systems, providing clues for future prevention and control of bacterial diseases.
Collapse
Affiliation(s)
- Yi Luo
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Ziyue Chen
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Xingduo Ji
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou 225009, China;
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Jung H, Lee D, Lee S, Kong HJ, Park J, Seo YS. Comparative genomic analysis of Chryseobacterium species: deep insights into plant-growth-promoting and halotolerant capacities. Microb Genom 2023; 9:001108. [PMID: 37796250 PMCID: PMC10634447 DOI: 10.1099/mgen.0.001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023] Open
Abstract
Members of the genus Chryseobacterium have attracted great interest as beneficial bacteria that can promote plant growth and biocontrol. Given the recent risks of climate change, it is important to develop tolerance strategies for efficient applications of plant-beneficial bacteria in saline environments. However, the genetic determinants of plant-growth-promoting and halotolerance effects in Chryseobacterium have not yet been investigated at the genomic level. Here, a comparative genomic analysis was conducted with seven Chryseobacterium species. Phylogenetic and phylogenomic analyses revealed niche-specific evolutionary distances between soil and freshwater Chryseobacterium species, consistent with differences in genomic statistics, indicating that the freshwater bacteria have smaller genome sizes and fewer genes than the soil bacteria. Phosphorus- and zinc-cycling genes (required for nutrient acquisition in plants) were universally present in all species, whereas nitrification and sulphite reduction genes (required for nitrogen- and sulphur-cycling, respectively) were distributed only in soil bacteria. A pan-genome containing 6842 gene clusters was constructed, which reflected the general features of the core, accessory and unique genomes. Halotolerant species with an accessory genome shared a Kdp potassium transporter and biosynthetic pathways for branched-chain amino acids and the carotenoid lycopene, which are associated with countermeasures against salt stress. Protein-protein interaction network analysis was used to define the genetic determinants of Chryseobacterium salivictor NBC122 that reduce salt damage in bacteria and plants. Sixteen hub genes comprised the aromatic compound degradation and Por secretion systems, which are required to cope with complex stresses associated with saline environments. Horizontal gene transfer and CRISPR-Cas analyses indicated that C. salivictor NBC122 underwent more evolutionary events when interacting with different environments. These findings provide deep insights into genomic adaptation to dynamic interactions between plant-growth-promoting Chryseobacterium and salt stress.
Collapse
Affiliation(s)
- Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, South Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Duyoung Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, South Korea
| | - Seungchul Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, South Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, South Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
15
|
Sahoo A, Vivek-Ananth RP, Chivukula N, Rajaram SV, Mohanraj K, Khare D, Acharya C, Samal A. T9GPred: A Comprehensive Computational Tool for the Prediction of Type 9 Secretion System, Gliding Motility, and the Associated Secreted Proteins. ACS OMEGA 2023; 8:34091-34102. [PMID: 37744817 PMCID: PMC10515386 DOI: 10.1021/acsomega.3c05155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Type 9 secretion system (T9SS) is one of the least characterized secretion systems exclusively found in the Bacteroidetes phylum, which comprises various environmental and economically relevant bacteria. While T9SS plays a central role in bacterial movement termed gliding motility, survival, and pathogenicity, there is an unmet need for a comprehensive tool that predicts T9SS, gliding motility, and proteins secreted via T9SS. In this study, we develop such a computational tool, Type 9 secretion system and Gliding motility Prediction (T9GPred). To build this tool, we manually curated published experimental evidence and identified mandatory components for T9SS and gliding motility prediction. We also compiled experimentally characterized proteins secreted via T9SS and determined the presence of three unique types of C-terminal domain signals, and these insights were leveraged to predict proteins secreted via T9SS. Notably, using recently published experimental evidence, we show that T9GPred has high predictive power. Thus, we used T9GPred to predict the presence of T9SS, gliding motility, and associated secreted proteins across 693 completely sequenced Bacteroidetes strains. T9GPred predicted 402 strains to have T9SS, of which 327 strains are also predicted to exhibit gliding motility. Further, T9GPred also predicted putative secreted proteins for the 402 strains. In a nutshell, T9GPred is a novel computational tool for systems-level prediction of T9SS and streamlining future experimentation. The source code of the computational tool is available in our GitHub repository: https://github.com/asamallab/T9GPred. The tool and its predicted results are compiled in a web server available at: https://cb.imsc.res.in/t9gpred/.
Collapse
Affiliation(s)
- Ajaya
Kumar Sahoo
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| | - R. P. Vivek-Ananth
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Nikhil Chivukula
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Shri Vishalini Rajaram
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
- Centre
for Biotechnology, Anna University, Chennai 600025, India
| | - Karthikeyan Mohanraj
- Institute
for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Devanshi Khare
- Molecular
Biology Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Celin Acharya
- Molecular
Biology Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Areejit Samal
- The
Institute of Mathematical Sciences (IMSc), Chennai 600113, India
- Homi
Bhabha National Institute (HBNI), Mumbai 400094, India
| |
Collapse
|
16
|
Rocha ST, Shah DD, Zhu Q, Shrivastava A. The prevalence of motility within the human oral microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549387. [PMID: 37503047 PMCID: PMC10370060 DOI: 10.1101/2023.07.17.549387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The human oral and nasal microbiota contains approximately 770 cultivable bacterial species. More than 2000 genome sequences of these bacteria can be found in the expanded Human Oral Microbiome Database (eHOMD). We developed HOMDscrape, a freely available Python software tool to programmatically retrieve and process amino acid sequences and sequence identifiers from BLAST results acquired from the eHOMD website. Using the data obtained through HOMDscrape, the phylogeny of proteins involved in bacterial flagellar motility, Type 4 pilus driven twitching motility, and Type 9 Secretion system (T9SS) driven gliding motility was constructed. A comprehensive phylogenetic analysis was conducted for all components of the rotary T9SS, a machinery responsible for secreting various enzymes, virulence factors, and enabling bacterial gliding motility. Results revealed that the T9SS outer membrane ß-barrel protein SprA of human oral microbes underwent horizontal evolution. Overall, we catalog motile microbes that inhabit the human oral microbiota and document their evolutionary connections. These results will serve as a guide for further studies exploring the impact of motility on shaping of the human oral microbiota.
Collapse
|
17
|
Nakao R, Hirayama S, Yamaguchi T, Senpuku H, Hasegawa H, Suzuki T, Akeda Y, Ohnishi M. A bivalent outer membrane vesicle-based intranasal vaccine to prevent infection of periodontopathic bacteria. Vaccine 2023; 41:4369-4383. [PMID: 37302966 DOI: 10.1016/j.vaccine.2023.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/30/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
Periodontal disease has become a serious public health problem, not only causing tooth loss, but also inducing chronic disorders of extra-oral organs. The present study assessed an intranasal vaccine strategy to prevent periodontal disease using outer membrane vesicles (OMVs) of two major periodontopathic bacteria, Porphyromonas gingivalis (Pg) and Aggregatibacter actinomycetemcomitans (Aa). We compared the morphology, composition, and immune activity between OMVs of Pg strain ATCC 33277 and Aa strain Y4. Aa OMVs had a smoother surface and stronger lipid A activity compared to Pg OMVs. The in vitro immune activity elicited by Aa OMVs in macrophage-like cells was remarkably stronger than that of Pg OMVs. Intranasal immunization of mice with Aa OMVs alone resulted in robust, humoral immune responses in blood and saliva. Despites the intrinsically low mucosal immunogenicity of Pg OMVs alone, using Aa OMVs as a mucosal adjuvant strongly enhanced Pg-specific immune responses, resulting in both serum IgG and salivary IgA, both of which aggregated Pg and Aa cells. Furthermore, Aa OMVs were found to be a more potent mucosal adjuvant than Poly(I:C) in the context of enhancing the production of Pg-specific IgG (especially IgG2a) and IgA. In addition, in a randomized, blinded study, mice oral challenged with Pg and Aa after intranasal immunization with Pg OMVs and Aa OMVs had significantly decreased numbers of both microorganisms compared to mock-immunized mice. Furthermore, in an intracerebral injection mouse model, there were no serious adverse effects on the brain even after administrating a dose of OMVs as same as that used for intranasal administration. Taken together, the bivalent OMV intranasal vaccine may be effective in preventing colonization of periodontopathic bacteria in the oral cavity and related systemic disorders associated with periodontal diseases.
Collapse
Affiliation(s)
- Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Satoru Hirayama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Microbiology and Immunology, School of Dentistry at Matsudo, Nihon University, Chiba 271-8587, Japan
| | - Hideki Hasegawa
- Department of Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
18
|
Veith PD, Gorasia DG, Reynolds EC. Characterization of the O-Glycoproteome of Flavobacterium johnsoniae. J Bacteriol 2023; 205:e0009323. [PMID: 37162352 PMCID: PMC10294664 DOI: 10.1128/jb.00093-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Flavobacterium johnsoniae is a free-living member of the Bacteroidota phylum that is found in soil and water. It is frequently used as a model species for studying a type of gliding motility dependent on the type IX secretion system (T9SS). O-Glycosylation has been reported in several Bacteroidota species, and the O-glycosylation of S-layer proteins in Tannerella forsythia was shown to be important for certain virulence features. In this study, we characterized the O-glycoproteome of F. johnsoniae and identified 325 O-glycosylation sites within 226 glycoproteins. The structure of the major glycan was found to be a hexasaccharide with the sequence Hex-(Me-dHex)-Me-HexA-Pent-HexA-Me-HexNAcA. Bioinformatic localization of the glycoproteins predicted 68 inner membrane proteins, 60 periplasmic proteins, 26 outer membrane proteins, 57 lipoproteins, and 9 proteins secreted by the T9SS. The glycosylated sites were predominantly located in the periplasm, where they are postulated to be beneficial for protein folding/stability. Six proteins associated with gliding motility or the T9SS were demonstrated to be O-glycosylated. IMPORTANCE Flavobacterium johnsoniae is a Gram-negative bacterium that is found in soil and water. It is frequently used as a model species for studying gliding motility and the T9SS. In this study, we characterized the O-glycoproteome of F. johnsoniae and identified 325 O-glycosylation sites within 226 glycoproteins. The glycosylated domains were mainly localized to the periplasm. The function of O-glycosylation is likely related to protein folding and stability; therefore, the finding of the glycosylation sites has relevance for studies involving expression of the proteins. Six proteins associated with gliding motility or the T9SS were demonstrated to be O-glycosylated, which may impact the structure and function of these components.
Collapse
Affiliation(s)
- Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Dhana G. Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Sasaki Y, Shoji M, Sueyoshi T, Shibata S, Matsuo T, Yukitake H, Wolf M, Naito M. A conditional gene expression system in Porphyromonas gingivalis for study of the secretion mechanisms of lipoproteins and T9SS cargo proteins. Mol Oral Microbiol 2023. [PMID: 37339018 DOI: 10.1111/omi.12426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 06/22/2023]
Abstract
The Gram-negative anaerobe, Porphyromonas gingivalis, is known to be a pathogen associated with chronic periodontitis. P. gingivalis possesses virulence factors such as fimbriae and gingipain proteinases. Fimbrial proteins are secreted to the cell surface as lipoproteins. In contrast, gingipain proteinases are secreted into the bacterial cell surface via the type IX secretion system (T9SS). The transport mechanisms of lipoproteins and T9SS cargo proteins are entirely different and remain unknown. Therefore, using the Tet-on system developed for the genus Bacteroides, we newly created a conditional gene expression system in P. gingivalis. We succeeded in establishing conditional expression of nanoluciferase and its derivatives for lipoprotein export, of FimA for a representative of lipoprotein export, and of T9SS cargo proteins such as Hbp35 and PorA for representatives of type 9 protein export. Using this system, we showed that the lipoprotein export signal, which has recently been found in other species in the phylum Bacteroidota, is also functional in FimA, and that a proton motive force inhibitor can affect type 9 protein export. Collectively, our conditional protein expression method is useful for screening inhibitors of virulence factors, and may be used to investigate the role of proteins essential to bacterial survival in vivo.
Collapse
Affiliation(s)
- Yuko Sasaki
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takayuki Sueyoshi
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Satoshi Shibata
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Faculty of Medicine, Division of Bacteriology, Department of Microbiology & Immunology, Tottori University, Tottori, Japan
| | - Takehiro Matsuo
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideharu Yukitake
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
20
|
Maphosa S, Moleleki LN, Motaung TE. Bacterial secretion system functions: evidence of interactions and downstream implications. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37083586 DOI: 10.1099/mic.0.001326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unprecedented insights into the biology and functions of bacteria have been and continue to be gained through studying bacterial secretion systems in isolation. This method, however, results in our understanding of the systems being primarily based on the idea that they operate independently, ignoring the subtleties of downstream interconnections. Gram-negative bacteria are naturally able to adapt to and navigate their frequently varied and dynamic surroundings, mostly because of the covert connections between secretion systems. Therefore, to comprehend some of the linked downstream repercussions for organisms that follow this discourse, it is vital to have mechanistic insights into how the intersecretion system functions in bacterial rivalry, virulence, and survival, among other things. To that purpose, this paper discusses a few key instances of molecular antagonistic and interdependent relationships between bacterial secretion systems and their produced functional products.
Collapse
Affiliation(s)
- Silindile Maphosa
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Lucy N Moleleki
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Thabiso E Motaung
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
21
|
Shibata S, Nakane D. Isolation and Visualization of Gliding Motility Machinery in Bacteroidota. Methods Mol Biol 2023; 2646:267-276. [PMID: 36842121 DOI: 10.1007/978-1-0716-3060-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Many members of the phylum Bacteroidota (formerly called Bacteroidetes) adhere to and move on solid surfaces. This type of bacterial motility is called gliding and does not involve the conventional bacterial motility machinery, such as flagella and pili. To understand the mechanism of gliding motility of some Bacteroidota bacteria such as a soil bacterium Flavobacterium johnsoniae and a marine bacterium Saprospira grandis, the gliding motility machines of these two bacteria have been analyzed by electron microscopy with negative staining. Here, we describe methods to directly observe the gliding motility machinery in Bacteroidota by transmission electron microscopy.
Collapse
Affiliation(s)
- Satoshi Shibata
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Tottori, Japan.
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
22
|
Live Cell Imaging of Gliding Motility of Flavobacterium johnsoniae Under High-Resolution Microscopy. Methods Mol Biol 2023; 2646:277-286. [PMID: 36842122 DOI: 10.1007/978-1-0716-3060-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Many phylum Bacteroidetes bacteria are motile without either flagella or pili. These cells move on surfaces such as glass or agar, and a motor generates a propulsion force for the cells via a proton motive force across the cytoplasmic membrane. The gliding motility depends on the helical track of cell adhesin along the longer axis of the cell body. Here, we describe live-cell imaging of gliding motility under optical microscopy, as well as an immunofluorescent labeling method for visualizing helical trajectories.
Collapse
|
23
|
Social Motility Assays of Flavobacterium johnsoniae. Methods Mol Biol 2023; 2646:287-298. [PMID: 36842123 DOI: 10.1007/978-1-0716-3060-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Flavobacterium johnsoniae cells move rapidly over solid surfaces by gliding motility. The collective migration of F. johnsoniae on the surfaces results in the formation of spreading colonies. Colony spreading is influenced by adhesin components on the cell surface and the concentrations of agar and glucose. For example, on nutrient-poor agar media, film-like, round spreading colonies are formed. F. johnsoniae displays at least two types of migration: small cell cluster movements leading to concentric colonies and individual cell movements leading to dendritic colonies. The methods for observing colony morphology are described in this chapter.
Collapse
|
24
|
Kondo Y, Ohara K, Fujii R, Nakai Y, Sato C, Naito M, Tsukuba T, Kadowaki T, Sato K. Transposon mutagenesis and genome sequencing identify two novel, tandem genes involved in the colony spreading of Flavobacterium collinsii, isolated from an ayu fish, Plecoglossus altivelis. Front Cell Infect Microbiol 2023; 13:1095919. [PMID: 36844397 PMCID: PMC9950754 DOI: 10.3389/fcimb.2023.1095919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Bacteria of the family Flavobacteriaceae (flavobacteria) primarily comprise nonpathogenic bacteria that inhabit soil and water (both marine and freshwater). However, some bacterial species in the family, including Flavobacterium psychrophilum and Flavobacterium columnare, are known to be pathogenic to fish. Flavobacteria, including the abovementioned pathogenic bacteria, belong to the phylum Bacteroidota and possess two phylum-specific features, gliding motility and a protein secretion system, which are energized by a common motor complex. Herein, we focused on Flavobacterium collinsii (GiFuPREF103) isolated from a diseased fish (Plecoglossus altivelis). Genomic analysis of F. collinsii GiFuPREF103 revealed the presence of a type IX secretion system and additional genes associated with gliding motility and spreading. Using transposon mutagenesis, we isolated two mutants with altered colony morphology and colony spreading ability; these mutants had transposon insertions in pep25 and lbp26. The glycosylation material profiles revealed that these mutants lacked the high-molecular-weight glycosylated materials present in the wild-type strain. In addition, the wild-type strains exhibited fast cell population movement at the edge of the spreading colony, whereas reduced cell population behavior was observed in the pep25- and lbp26-mutant strains. In the aqueous environment, the surface layers of these mutant strains were more hydrophobic, and they formed biofilms with enhanced microcolony growth compared to those with the wild-type. In Flavobacterium johnsoniae, the Fjoh_0352 and Fjoh_0353 mutant strains were generated, which were based on the ortholog genes of pep25 and lbp26. In these F. johnsoniae mutants, as in F. collinsii GiFuPREF103, colonies with diminished spreading capacity were formed. Furthermore, cell population migration was observed at the edge of the colony in wild-type F. johnsoniae, whereas individual cells, and not cell populations, migrated in these mutant strains. The findings of the present study indicate that pep25 and lbp26 contribute to the colony spreading of F. collinsii.
Collapse
Affiliation(s)
- Yoshio Kondo
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan,*Correspondence: Yoshio Kondo, ; Keiko Sato,
| | - Kenichi Ohara
- Gifu Prefectural Research Institute for Fisheries and Aquatic Environments, Gifu, Japan
| | - Ryoji Fujii
- Gifu Prefectural Research Institute for Fisheries and Aquatic Environments, Gifu, Japan
| | - Yudai Nakai
- Department of Frontier Oral Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chikara Sato
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Ibaraki, Japan,Biological Science Course, Graduate School of Science and Engineering, Aoyama Gakuin University, Kanagawa, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Keiko Sato
- Department of Frontier Oral Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan,*Correspondence: Yoshio Kondo, ; Keiko Sato,
| |
Collapse
|
25
|
Thunes NC, Mohammed HH, Evenhuis JP, Lipscomb RS, Pérez-Pascual D, Stevick RJ, Birkett C, Conrad RA, Ghigo JM, McBride MJ. Secreted peptidases contribute to virulence of fish pathogen Flavobacterium columnare. Front Cell Infect Microbiol 2023; 13:1093393. [PMID: 36816589 PMCID: PMC9936825 DOI: 10.3389/fcimb.2023.1093393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Flavobacterium columnare causes columnaris disease in freshwater fish in both natural and aquaculture settings. This disease is often lethal, especially when fish population density is high, and control options such as vaccines are limited. The type IX secretion system (T9SS) is required for F. columnare virulence, but secreted virulence factors have not been fully identified. Many T9SS-secreted proteins are predicted peptidases, and peptidases are common virulence factors of other pathogens. T9SS-deficient mutants, such as ΔgldN and ΔporV, exhibit strong defects in secreted proteolytic activity. The F. columnare genome has many peptidase-encoding genes that may be involved in nutrient acquisition and/or virulence. Mutants lacking individual peptidase-encoding genes, or lacking up to ten peptidase-encoding genes, were constructed and examined for extracellular proteolytic activity, for growth defects, and for virulence in zebrafish and rainbow trout. Most of the mutants retained virulence, but a mutant lacking 10 peptidases, and a mutant lacking the single peptidase TspA exhibited decreased virulence in rainbow trout fry, suggesting that peptidases contribute to F. columnare virulence.
Collapse
Affiliation(s)
- Nicole C. Thunes
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Haitham H. Mohammed
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States,Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, TX, United States
| | - Jason P. Evenhuis
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Ryan S. Lipscomb
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - David Pérez-Pascual
- Institut Pasteur, Université de Paris-Cité, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Rebecca J. Stevick
- Institut Pasteur, Université de Paris-Cité, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Clayton Birkett
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV, United States
| | - Rachel A. Conrad
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris-Cité, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States,*Correspondence: Mark J. McBride,
| |
Collapse
|
26
|
Gorasia DG, Veith PD, Reynolds EC. Protein interactome mapping of Porphyromonas gingivalis provides insights into the formation of the PorQ-Z complex of the type IX secretion system. Mol Oral Microbiol 2023; 38:34-40. [PMID: 35862235 PMCID: PMC10947112 DOI: 10.1111/omi.12383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Porphyromonas gingivalis is an anaerobic Gram-negative human oral pathogen highly associated with the more severe forms of periodontal disease. Porphyromonas gingivalis utilises the type IX secretion system (T9SS) to transport ∼30 cargo proteins, including multiple virulence factors, to the cell surface. The T9SS is a multiprotein system consisting of at least 20 proteins, and recently, we characterised the protein interactome of these components. Similar to the T9SS, almost all biological processes are mediated through protein-protein interactions (PPIs). Therefore, mapping PPIs is important to understand the biological functions of many proteins in P. gingivalis. Herein, we provide native migration profiles of over 1000 P. gingivalis proteins. Using the T9SS, we demonstrate that our dataset is a useful resource for identifying novel protein interactions. Using this dataset and further analysis of T9SS P. gingivalis mutants, we discover new mechanistic insights into the formation of the PorQ-Z complex of the T9SS. This dataset is a valuable resource for studies of P. gingivalis.
Collapse
Affiliation(s)
- Dhana G. Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleAustralia
| | - Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleAustralia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 InstituteThe University of MelbourneParkvilleAustralia
| |
Collapse
|
27
|
Shibata S, Tahara YO, Katayama E, Kawamoto A, Kato T, Zhu Y, Nakane D, Namba K, Miyata M, McBride MJ, Nakayama K. Filamentous structures in the cell envelope are associated with bacteroidetes gliding machinery. Commun Biol 2023; 6:94. [PMID: 36690840 PMCID: PMC9870892 DOI: 10.1038/s42003-023-04472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Many bacteria belonging to the phylum Bacteroidetes move on solid surfaces, called gliding motility. In our previous study with the Bacteroidetes gliding bacterium Flavobacterium johnsoniae, we proposed a helical loop track model, where adhesive SprB filaments are propelled along a helical loop on the cell surface. In this study, we observed the gliding cell rotating counterclockwise about its axis when viewed from the rear to the advancing direction of the cell and revealed that one labeled SprB focus sometimes overtook and passed another SprB focus that was moving in the same direction. Several electron microscopic analyses revealed the presence of a possible multi-rail structure underneath the outer membrane, which was associated with SprB filaments and contained GldJ protein. These results provide insights into the mechanism of Bacteroidetes gliding motility, in which the SprB filaments are propelled along tracks that may form a multi-rail system underneath the outer membrane. The insights may give clues as to how the SprB filaments get their driving force.
Collapse
Affiliation(s)
- Satoshi Shibata
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan.
| | - Yuhei O Tahara
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
- Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
| | - Eisaku Katayama
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
- Waseda Research Institute for Science and Engineering, Okubo Shinjyuku, Tokyo, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yongtao Zhu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Makoto Miyata
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
- Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka, Japan
| | - Mark J McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
28
|
Wang J, Chen Y, He X, Du X, Gao Y, Shan X, Hu Z, Hu Q. PaR1 secreted by the type IX secretion system is a protective antigen of Riemerella anatipestifer. Front Microbiol 2023; 13:1082712. [PMID: 36713192 PMCID: PMC9874225 DOI: 10.3389/fmicb.2022.1082712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Riemerella anatipestifer mainly infects domestic ducks, geese, turkeys, and other birds, and causes considerable economic losses to the global duck industry. Previous studies have shown that concentrated cell-free culture filtrates of R. anatipestifer induce highly significant protection against homologous challenge. In this study, 12 immunogenic proteins were identified in the culture supernatant of R. anatipestifer strain Yb2 with immunoproteomic analysis. Of these, three immunogenic proteins, AS87_RS06600 (designated "PaR1" in this study), AS87_RS09020, and AS87_RS09965, which appeared in more than three spots on the western-blotted membrane, were expressed in Escherichia coli and purified. Animal experiments showed that the recombinant PaR1 (rPaR1) protein protected 41.67% of immunized ducklings against challenge with virulent Yb2, whereas rAS87_RS09020 or rAS87_RS09965 did not, and that ducklings immunized once with rPaR1 were 20, 40, and 0% protected from challenge with R. anatipestifer strains WJ4 (serotype 1), Yb2 (serotype 2), and HXb2 (serotype 10), respectively. In addition, rPaR1 immunized rabbit serum showed bactericidal activity against strain Yb2 at a titer of 1:8. These results indicate that rPaR1 of strain Yb2 protects against homologous challenge. Amino acid homology analysis show that PaR1 is a non-serotype-specific protein among different R. anatipestifer serotypes. Furthermore, PaR1 is mainly secreted outside the cell through the T9SS. Overall, our results demonstrate that R. anatipestifer PaR1 is a non-serotype-specific protective protein secreted by the T9SS.
Collapse
|
29
|
Riemerella anatipestifer GldG is necessary for secretion of effectors by type IX secretion system. Vet Microbiol 2023; 276:109628. [PMID: 36508857 DOI: 10.1016/j.vetmic.2022.109628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Riemerella anatipestifer secretes proteins through the type IX secretion system (T9SS). Recent studies have shown that the R. anatipestifer T9SS component proteins GldM and GldK also act as crucial virulence factors. In our previous study, the disruption of AS87_RS00460 gene, which encodes the predicted protein GldG, significantly reduced the bacterial virulence of R. anatipestifer wild-type strain Yb2, but the mechanism was unclear. In this study, we investigated the function of the GldG in bacterial virulence and protein secretion using the mutant strain Yb2ΔgldG and complementation strain cYb2ΔgldG. Our results demonstrate that the gldG gene encodes a gliding-motility-associated ABC transporter substrate-binding protein GldG, which was localized to the bacterial membrane in an immunoblotting analysis, and functions in the bacterium's adherence to and invasion of host cells and its survival in host blood. The resistance of mutant strain Yb2ΔgldG to complement-dependent killing was significantly reduced. Yb2ΔgldG displayed reduced gliding motility and deficient protein secretion. Label-free quantification (LFQ) with liquid chromatography-mass spectrometry (LC-MS) showed that 10 proteins with a conserved T9SS C-terminal domain were differentially secreted by Yb2ΔgldG and Yb2. The secretion levels of those 10 proteins were determined with immunoblotting, and the results were consistent with the LFQ LC-MS data. All of these effects were rescued by complementation with a plasmid encoding Yb2 gldG. Our results demonstrate that the R. anatipestifer gldG gene encodes the protein GldG, which is involved in bacterial virulence and protein secretion.
Collapse
|
30
|
Dorgan B, Liu Y, Wang S, Aduse-Opoku J, Whittaker SBM, Roberts MAJ, Lorenz CD, Curtis MA, Garnett JA. Structural Model of a Porphyromonas gingivalis type IX Secretion System Shuttle Complex. J Mol Biol 2022; 434:167871. [PMID: 36404438 DOI: 10.1016/j.jmb.2022.167871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Porphyromonas gingivalis is a gram-negative oral anaerobic pathogen and is one of the key causative agents of periodontitis. P. gingivalis utilises a range of virulence factors, including the cysteine protease RgpB, to drive pathogenesis and these are exported and attached to the cell surface via the type IX secretion system (T9SS). All cargo proteins possess a conserved C-terminal signal domain (CTD) which is recognised by the T9SS, and the outer membrane β-barrel protein PorV (PG0027/LptO) can interact with cargo proteins as they are exported to the bacterial surface. Using a combination of solution nuclear magnetic resonance (NMR) spectroscopy, biochemical analyses, machine-learning-based modelling and molecular dynamics (MD) simulations, we present a structural model of a PorV:RgpB-CTD complex from P. gingivalis. This is the first structural insight into CTD recognition by the T9SS and shows how the conserved motifs in the CTD are the primary sites that mediate binding. In PorV, interactions with extracellular surface loops are important for binding the CTD, and together these appear to cradle and lock RgpB-CTD in place. This work provides insight into cargo recognition by PorV but may also have important implications for understanding other aspects of type-IX dependent secretion.
Collapse
Affiliation(s)
- Ben Dorgan
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK; School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Yichao Liu
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Sunjun Wang
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Joseph Aduse-Opoku
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Sara B-M Whittaker
- Institute of Cancer & Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark A J Roberts
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Christian D Lorenz
- Biological Physics & Soft Matter Research Group, Department of Physics, King's College London, London, UK
| | - Michael A Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
31
|
Schmitz C, Madej M, Nowakowska Z, Cuppari A, Jacula A, Ksiazek M, Mikruta K, Wisniewski J, Pudelko-Malik N, Saran A, Zeytuni N, Mlynarz P, Lamont RJ, Usón I, Siksnys V, Potempa J, Solà M. Response regulator PorX coordinates oligonucleotide signalling and gene expression to control the secretion of virulence factors. Nucleic Acids Res 2022; 50:12558-12577. [PMID: 36464236 PMCID: PMC9757075 DOI: 10.1093/nar/gkac1103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022] Open
Abstract
The PglZ family of proteins belongs to the alkaline phosphatase superfamily, which consists of metallohydrolases with limited sequence identity but similar metal-coordination architectures in otherwise divergent active sites. Proteins with a well-defined PglZ domain are ubiquitous among prokaryotes as essential components of BREX phage defence systems and two-component systems (TCSs). Whereas other members of the alkaline phosphatase superfamily are well characterized, the activity, structure and biological function of PglZ family proteins remain unclear. We therefore investigated the structure and function of PorX, an orphan response regulator of the Porphyromonas gingivalis TCS containing a putative PglZ effector domain. The crystal structure of PorX revealed a canonical receiver domain, a helical bundle, and an unprecedented PglZ domain, similar to the general organization of the phylogenetically related BREX-PglZ proteins. The PglZ domain of PorX features an active site cleft suitable for large substrates. An extensive search for substrates revealed that PorX is a phosphodiesterase that acts on cyclic and linear oligonucleotides, including signalling molecules such as cyclic oligoadenylates. These results, combined with mutagenesis, biophysical and enzymatic analysis, suggest that PorX coordinates oligonucleotide signalling pathways and indirectly regulates gene expression to control the secretion of virulence factors.
Collapse
Affiliation(s)
- Claus Schmitz
- Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Barcelona E-08028, Spain
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków PL-30-387, Poland
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków PL-30-387, Poland
| | - Anna Cuppari
- Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Barcelona E-08028, Spain
| | - Anna Jacula
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków PL-30-387, Poland
| | - Miroslaw Ksiazek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków PL-30-387, Poland
| | - Katarzyna Mikruta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków PL-30-387, Poland
| | - Jerzy Wisniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw PL-50-370, Poland
| | - Natalia Pudelko-Malik
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw PL-50-370, Poland
| | - Anshu Saran
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec H3A 0C7, Canada
| | - Natalie Zeytuni
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec H3A 0C7, Canada
| | - Piotr Mlynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw PL-50-370, Poland
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, USA
| | - Isabel Usón
- Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Barcelona E-08028, Spain
- ICREA Institució Catalana de Recerca i Estudis Avançats, Barcelona E-08010, Spain
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Vilnius 10257, Lithuania
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków PL-30-387, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, USA
| | - Maria Solà
- Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Barcelona E-08028, Spain
| |
Collapse
|
32
|
Phillips PL, Wu XJ, Reyes L. Differential affinity chromatography reveals a link between Porphyromonas gingivalis-induced changes in vascular smooth muscle cell differentiation and the type 9 secretion system. Front Cell Infect Microbiol 2022; 12:983247. [PMID: 36483452 PMCID: PMC9722745 DOI: 10.3389/fcimb.2022.983247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Porphyromonas gingivalis is implicated in adverse pregnancy outcome. We previously demonstrated that intrauterine infection with various strains of P. gingivalis impairs the physiologic remodeling of the uterine spiral arteries (IRSA) during pregnancy, which underlies the major obstetrical syndromes. Women diagnosed with IRSA also have a greater risk for premature cardiovascular disease in later life. The dysregulated plasticity of vascular smooth muscle cells (VSMCs) is present in both IRSA and premature cardiovascular events. We hypothesized that VSMCs could serve as a bait to identify P. gingivalis proteins associated with dysregulated VSMC plasticity as seen in IRSA. We first confirmed that dams with P. gingivalis A7UF-induced IRSA also show perturbed aortic smooth muscle cell (AoSMC) plasticity along with the P. gingivalis colonization of the tissue. The in vitro infection of AoSMCs with IRSA-inducing strain A7UF also perturbed AoSMC plasticity that did not occur with infection by non-IRSA-inducing strain W83. Far-Western blotting with strain W83 and strain A7UF showed a differential binding pattern to the rat aorta and primary rat AoSMCs. The affinity chromatography/pull-down assay combined with mass spectrometry was used to identify P. gingivalis/AoSMC protein interactions specific to IRSA. Membrane proteins with a high binding affinity to AoSMCs were identified in the A7UF pull-down but not in the W83 pull-down, most of which were the outer membrane components of the Type 9 secretion system (T9SS) and T9SS cargo proteins. Additional T9SS cargo proteins were detected in greater abundance in the A7UF pull-down eluate compared to W83. None of the proteins enriched in the W83 eluate were T9SS components nor T9SS cargo proteins despite their presence in the prey preparations used in the pull-down assay. In summary, differential affinity chromatography established that the components of IRSA-inducing P. gingivalis T9SS as well as its cargo directly interact with AoSMCs, which may play a role in the infection-induced dysregulation of VSMC plasticity. The possibility that the T9SS is involved in the microbial manipulation of host cell events important for cell differentiation and tissue remodeling would constitute a new virulence function for this system.
Collapse
Affiliation(s)
- Priscilla L. Phillips
- Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, United States
| | - Xiao-jun Wu
- Department of Pathobiological Sciences, University of Wisconsin - Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Leticia Reyes
- Department of Pathobiological Sciences, University of Wisconsin - Madison, School of Veterinary Medicine, Madison, WI, United States,*Correspondence: Leticia Reyes,
| |
Collapse
|
33
|
Saran A, Weerasinghe N, Thibodeaux CJ, Zeytuni N. Purification, crystallization and crystallographic analysis of the PorX response regulator associated with the type IX secretion system. Acta Crystallogr F Struct Biol Commun 2022; 78:354-362. [PMID: 36189719 PMCID: PMC9527653 DOI: 10.1107/s2053230x22008500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Pathogenic bacteria utilize specialized macromolecular secretion systems to transport virulence factors across membrane(s) and manipulate their infected host. To date, 11 secretion systems have been identified, including the type IX secretion system (T9SS) associated with human, avian and farmed-fish diseases. As a bacterial secretion system, the T9SS also facilitates gliding motility and the degradation of different macromolecules by the secretion of metabolic enzymes in nonpathogenic bacteria. PorX is a highly conserved protein that regulates the transcription of essential T9SS components and additionally mediates the function of T9SS via direct interaction with PorL, the rotary motor protein of the T9SS. PorX is also a member of a two-component system regulatory cascade, where it serves as the response regulator that relays a signal transduced from a conserved sensor histidine kinase, PorY, to a designated sigma factor. Here, the recombinant expression and purification of PorX homologous proteins from the pathogenic bacterium Porphyromonas gingivalis and the nonpathogenic bacterium Flavobacterium johnsoniae are reported. A bioinformatical characterization of the different domains comprising the PorX protein is also provided, and the crystallization and X-ray analysis of PorX from F. johnsoniae are reported.
Collapse
Affiliation(s)
- Anshu Saran
- The Department of Anatomy and Cell Biology and the Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Nuwani Weerasinghe
- The Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | | | - Natalie Zeytuni
- The Department of Anatomy and Cell Biology and the Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Cortisol Promotes Surface Translocation of Porphyromonas gingivalis. Pathogens 2022; 11:pathogens11090982. [PMID: 36145414 PMCID: PMC9505793 DOI: 10.3390/pathogens11090982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Studies are showing that the stress hormone cortisol can reach high levels in the gingival sulcus and induce shifts in the metatranscriptome of the oral microbiome. Interestingly, it has also been shown that cortisol can influence expression levels of Type IX Secretion System (T9SS) genes involved in gliding motility in bacteria belonging to the phylum Bacteroidota. The objective of this study was to determine if cortisol impacts gene expression and surface translocation of Porphyromonas gingivalis strain W50. To conduct these experiments, P. gingivalis was stabbed to the bottom of soft agar plates containing varying cortisol concentrations (0 μM, 0.13 μM, 1.3 μM, and 13 μM), and surface translocation on the subsurface was observed after 48 h of incubation. The results show that when grown with certain nutrients, i.e., in rich medium with the addition of sheep blood, lactate, or pyruvate, cortisol promotes migration of P. gingivalis in a concentration-dependent manner. To begin to examine the underlying mechanisms, quantitative PCR was used to evaluate differential expression of genes when P. gingivalis was exposed to cortisol. In particular, we focused on differential expression of T9SS-associated genes, including mfa5, since it was previously shown that Mfa5 is required for cell movement and cell-to-cell interactions. The data show that mfa5 is significantly up-regulated in the presence of cortisol. Moreover, an mfa5 deletion mutant showed less surface translocation compared to the wild-type P. gingivalis in the presence of cortisol, and the defects of the mfa5 deletion mutant were restored by complementation. Overall, cortisol can stimulate P. gingivalis surface translocation and this coincides with higher expression levels of T9SS-associated genes, which are known to be essential to gliding motility. Our findings support a high possibility that the stress hormone cortisol from the host can promote surface translocation and potentially virulence of P. gingivalis.
Collapse
|
35
|
Insertional Inactivation and Gene Complementation of Prevotella intermedia Type IX Secretion System Reveals Its Indispensable Roles in Black Pigmentation, Hemagglutination, Protease Activity of Interpain A, and Biofilm Formation. J Bacteriol 2022; 204:e0020322. [PMID: 35862729 PMCID: PMC9380532 DOI: 10.1128/jb.00203-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prevotella intermedia, a Gram-negative oral anaerobic bacterium, is frequently isolated from the periodontal pockets of patients with chronic periodontitis. In recent years, the involvement of the bacterium in respiratory tract infections as well as in oral infections has been revealed. P. intermedia possesses several potent virulence factors, such as cysteine proteinase interpain A encoded by the inpA gene. The genome of P. intermedia carries genes of the type IX secretion system (T9SS), which enables the translocation of virulence factors across the outer membrane in several pathogens belonging to the phylum Bacteroidetes; however, it is still unclear whether the T9SS is functional in this microorganism. Recently, we performed targeted mutagenesis in the strain OMA14 of P. intermedia. Here, we successfully obtained mutants deficient in inpA and the T9SS component genes porK and porT. None of the mutants exhibited protease activity of interpain A. The porK and porT mutants, but not the inpA mutant, showed defects in colony pigmentation, hemagglutination, and biofilm formation. We also obtained a complemented strain for the porK gene that recovered all the above abilities. These results indicate that T9SS functions in P. intermedia and that interpain A is one of the T9SS cargo proteins. IMPORTANCE The virulence factors of periodontal pathogens such as Prevotella intermedia have not been elucidated. Using our established procedure, we succeeded in generating type IX secretion system mutants and gene complementation strains that might transfer virulence factors to the bacterial surface. The generated strains clearly indicate that T9SS in P. intermedia is essential for colonial pigmentation, hemagglutination, and biofilm formation. These results indicated that interpain A is a T9SS cargo protein.
Collapse
|
36
|
Consuming fresh macroalgae induces specific catabolic pathways, stress reactions and Type IX secretion in marine flavobacterial pioneer degraders. THE ISME JOURNAL 2022; 16:2027-2039. [PMID: 35589967 PMCID: PMC9296495 DOI: 10.1038/s41396-022-01251-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022]
Abstract
Macroalgae represent huge amounts of biomass worldwide, largely recycled by marine heterotrophic bacteria. We investigated the strategies of bacteria within the flavobacterial genus Zobellia to initiate the degradation of whole algal tissues, which has received little attention compared to the degradation of isolated polysaccharides. Zobellia galactanivorans DsijT has the capacity to use fresh brown macroalgae as a sole carbon source and extensively degrades algal tissues via the secretion of extracellular enzymes, even in the absence of physical contact with the algae. Co-cultures experiments with the non-degrading strain Tenacibaculum aestuarii SMK-4T showed that Z. galactanivorans can act as a pioneer that initiates algal breakdown and shares public goods with other bacteria. A comparison of eight Zobellia strains, and strong transcriptomic shifts in Z. galactanivorans cells using fresh macroalgae vs. isolated polysaccharides, revealed potential overlooked traits of pioneer bacteria. Besides brown algal polysaccharide degradation, they notably include oxidative stress resistance proteins, type IX secretion system proteins and novel uncharacterized polysaccharide utilization loci. Overall, this work highlights the relevance of studying fresh macroalga degradation to fully understand the metabolic and ecological strategies of pioneer microbial degraders, key players in macroalgal biomass remineralization.
Collapse
|
37
|
Damas MSF, Ferreira RL, Campanini EB, Soares GG, Campos LC, Laprega PM, Soares da Costa A, Freire CCDM, Pitondo-Silva A, Cerdeira LT, da Cunha AF, Pranchevicius MCDS. Whole genome sequencing of the multidrug-resistant Chryseobacterium indologenes isolated from a patient in Brazil. Front Med (Lausanne) 2022; 9:931379. [PMID: 35966843 PMCID: PMC9366087 DOI: 10.3389/fmed.2022.931379] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Chryseobacterium indologenes is a non-glucose-fermenting Gram-negative bacillus. This emerging multidrug resistant opportunistic nosocomial pathogen can cause severe infections in neonates and immunocompromised patients. This study aimed to present the first detailed draft genome sequence of a multidrug-resistant C. indologenes strain isolated from the cerebrospinal fluid of an infant hospitalized at the Neonatal Intensive Care Unit of Brazilian Tertiary Hospital. We first analyzed the susceptibility of C. indologenes strain to different antibiotics using the VITEK 2 system. The strain demonstrated an outstanding resistance to all the antibiotic classes tested, including β-lactams, aminoglycosides, glycylcycline, and polymyxin. Next, C. indologenes was whole-genome-sequenced, annotated using Prokka and Rapid Annotation using Subsystems Technology (RAST), and screened for orthologous groups (EggNOG), gene ontology (GO), resistance genes, virulence genes, and mobile genetic elements using different software tools. The draft genome contained one circular chromosome of 4,836,765 bp with 37.32% GC content. The genomic features of the chromosome present numerous genes related to cellular processes that are essential to bacteria. The MDR C. indologenes revealed the presence of genes that corresponded to the resistance phenotypes, including genes to β-lactamases (blaIND–13, blaCIA–3, blaTEM–116, blaOXA–209, blaVEB–15), quinolone (mcbG), tigecycline (tet(X6)), and genes encoding efflux pumps which confer resistance to aminoglycosides (RanA/RanB), and colistin (HlyD/TolC). Amino acid substitutions related to quinolone resistance were observed in GyrA (S83Y) and GyrB (L425I and K473R). A mutation that may play a role in the development of colistin resistance was detected in lpxA (G68D). Chryseobacterium indologenes isolate harbored 19 virulence factors, most of which were involved in infection pathways. We identified 13 Genomic Islands (GIs) and some elements associated with one integrative and conjugative element (ICEs). Other elements linked to mobile genetic elements (MGEs), such as insertion sequence (ISEIsp1), transposon (Tn5393), and integron (In31), were also present in the C. indologenes genome. Although plasmids were not detected, a ColRNAI replicon type and the most resistance genes detected in singletons were identified in unaligned scaffolds. We provided a wide range of information toward the understanding of the genomic diversity of C. indologenes, which can contribute to controlling the evolution and dissemination of this pathogen in healthcare settings.
Collapse
Affiliation(s)
| | - Roumayne Lopes Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | - Pedro Mendes Laprega
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Andrea Soares da Costa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | - André Pitondo-Silva
- Programa de Pós-graduação em Odontologia e Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | | | - Maria-Cristina da Silva Pranchevicius
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- Centro de Ciências Biológicas e da Saúde, Biodiversidade Tropical - BIOTROP, Universidade Federal de São Carlos, São Carlos, Brazil
- *Correspondence: Maria-Cristina da Silva Pranchevicius,
| |
Collapse
|
38
|
Sharma G, Garg N, Hasan S, Shirodkar S. Prevotella: An insight into its characteristics and associated virulence factors. Microb Pathog 2022; 169:105673. [PMID: 35843443 DOI: 10.1016/j.micpath.2022.105673] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Prevotella species, a gram-negative obligate anaerobe, is commonly associated with human infections such as dental caries and periodontitis, as well as other conditions such as chronic osteomyelitis, bite-related infections, rheumatoid arthritis and intestinal diseases like ulcerative colitis. This generally harmless commensal possesses virulence factors such as adhesins, hemolysins, secretion systems exopolysaccharide, LPS, proteases, quorum sensing molecules and antibiotic resistance to evolve into a well-adapted pathogen capable of causing successful infection and proliferation in the host tissue. This review describes several of these virulence factors and their advantage to Prevotella spp. in causing inflammatory diseases like periodontitis. In addition, using genome analysis of Prevotella reference strains, we examined other putative virulence determinants which can provide insights as biomarkers and be the targets for effective interventions in Prevotella related diseases like periodontitis.
Collapse
Affiliation(s)
- Geetika Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Nancy Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sheetal Shirodkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India.
| |
Collapse
|
39
|
Genome-Wide Analysis and Characterization of the Riemerella anatipestifer Putative T9SS Secretory Proteins with a Conserved C-Terminal Domain. J Bacteriol 2022; 204:e0007322. [PMID: 35670588 DOI: 10.1128/jb.00073-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) acts as a crucial virulence factor. We previously identified two T9SS component proteins, GldK and GldM, and one T9SS effector metallophosphoesterase, which play important roles in bacterial virulence. In this study, 19 T9SS-secreted proteins that contained a conserved T9SS C-terminal domain (CTD) were predicted in R. anatipestifer strain Yb2 by searching for CTD-encoding sequences in the whole genome. The proteins were confirmed with a liquid chromatography-tandem mass spectrometry analysis of the bacterial culture supernatant. Nine of them were reported in our previous study. We generated recombinant proteins and mouse antisera for the 19 predicted proteins to confirm their expression in the bacterial culture supernatant and in bacterial cells. Western blotting indicated that the levels of 14 proteins were significantly reduced in the T9SS mutant Yb2ΔgldM culture medium but were increased in the bacterial cells. RT-qPCR indicated that the expression of these genes did not differ between the wild-type strain Yb2 and the T9SS mutant Yb2ΔgldM. Nineteen mutant strains were successfully constructed to determine their virulence and proteolytic activity, which indicated that seven proteins are associated with bacterial virulence, and two proteins, AS87_RS04190 and AS87_RS07295, are protease-activity-associated virulence factors. In summary, we have identified at least 19 genes encoding T9SS-secreted proteins in the R. anatipestifer strain Yb2 genome, which encode multiple functions associated with the bacterium's virulence and proteolytic activity. IMPORTANCE Riemerella anatipestifer T9SS plays an important role in bacterial virulence. We have previously reported nine R. anatipestifer T9SS-secreted proteins and clarified the function of the metallophosphoesterase. In this study, we identified 10 more secreted proteins associated with the R. anatipestifer T9SS, in addition to the nine previously reported. Of these, 14 proteins showed significantly reduced secretion into the bacterial culture medium but increased expression in the bacterial cells of the T9SS mutant Yb2ΔgldM; seven proteins were shown to be associated with bacterial virulence; and two proteins, AS87_RS04190 and AS87_RS07295, were shown to be protease-activity-associated virulence factors. Thus, we have demonstrated that multiple R. anatipestifer T9SS-secreted proteins function in virulence and proteolytic activity.
Collapse
|
40
|
Khare D, Chandwadkar P, Acharya C. Gliding motility of a uranium-tolerant Bacteroidetes bacterium Chryseobacterium sp. strain PMSZPI: insights into the architecture of spreading colonies. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:453-463. [PMID: 34907658 DOI: 10.1111/1758-2229.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Uranium-tolerant soil bacterium Chryseobacterium sp. strain PMSZPI moved over solid agar surfaces by gliding motility thereby forming spreading colonies which is a hallmark of members of Bacteroidetes phylum. PMSZPI genome harboured orthologs of all the gld and spr genes considered as core bacteroidetes gliding motility genes of which gldK, gldL, gldM and gldN were co-transcribed. Here, we present the intriguing interplay between gliding motility and cellular organization in PMSZPI spreading colonies. While nutrient deficiency enhanced colony spreading, high agar concentrations and presence of motility inhibitor like 5-hydroxyindole reduced the spreading. A detailed in situ structural analysis of spreading colonies revealed closely packed cells forming multiple layers at centre of colony while the edges showed clusters of cells periodically arranged in hexagonal lattices interconnected with each other. The cell migration within colony was visualized as branched structures wherein the cells were buried within extracellular matrix. PMSZPI colonies exhibited strong iridescence possibly as a result of periodicity within the cell population achieved through gliding motility. Presence of uranium reduced motility and iridescence and induced biofilm formation. The coordinated study of gliding motility and iridescence apparently influenced by uranium provides unique insights into the lifestyle of PMSZPI residing in uranium enriched environment.
Collapse
Affiliation(s)
- Devanshi Khare
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pallavi Chandwadkar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
41
|
Type B CTD Proteins Secreted by the Type IX Secretion System Associate with PorP-like Proteins for Cell Surface Anchorage. Int J Mol Sci 2022; 23:ijms23105681. [PMID: 35628493 PMCID: PMC9143113 DOI: 10.3390/ijms23105681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
The Bacteroidetes type IX secretion system (T9SS) consists of at least 20 components that translocate proteins with type A or type B C-terminal domain (CTD) signals across the outer membrane (OM). While type A CTD proteins are anchored to the cell surface via covalent linkage to the anionic lipopolysaccharide, it is still unclear how type B CTD proteins are anchored to the cell surface. Moreover, very little is known about the PorE and PorP components of the T9SS. In this study, for the first time, we identified a complex comprising the OM β-barrel protein PorP, the OM-associated periplasmic protein PorE and the type B CTD protein PG1035. Cross-linking studies supported direct interactions between PorE-PorP and PorP-PG1035. Furthermore, we show that the formation of the PorE-PorP-PG1035 complex was independent of PorU and PorV. Additionally, the Flavobacterium johnsoniae PorP-like protein, SprF, was found bound to the major gliding motility adhesin, SprB, which is also a type B CTD protein. Together, these results suggest that type B-CTD proteins may anchor to the cell surface by binding to their respective PorP-like proteins.
Collapse
|
42
|
Yoshino N, Ikeda T, Nakao R. Dual Inhibitory Activity of Petroselinic Acid Enriched in Fennel Against Porphyromonas gingivalis. Front Microbiol 2022; 13:816047. [PMID: 35663901 PMCID: PMC9161081 DOI: 10.3389/fmicb.2022.816047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
Increasing evidence has shown that a major periodontal pathobiont, Porphyromonas gingivalis, triggers oral dysbiosis leading to deterioration not only of periodontal health, but also of several systemic conditions. In the present study we identified remarkable anti-P. gingivalis activity of Foeniculum vulgare (fennel), an herbal plant used in Asian cuisine as well as in traditional medicine, by screening of 92 extracts prepared from 23 edible plants. The n-hexane-extracted fennel (HEF) showed a rapid lethal action toward P. gingivalis, while it was rather ineffective with a wide range of other oral commensal bacterial species. Morphological analysis using both high-speed atomic force microscopy and field emission scanning electron microscopy revealed that a low concentration of HEF (8 μg/mL) resulted in formation of protruding nanostructures composed of outer membrane vesicle (OMV)-like particles, while a high concentration of HEF (64 μg/mL) induced bacteriolysis with overproduction of OMVs with unusual surface properties. Interestingly, HEF treatment resulted in deprivation of two outer membrane transporter proteins, RagA and RagB, which is essential for nutrient acquisition in P. gingivalis, by extracellularly releasing RagA/RagB-enriched OMVs. Furthermore, HEF showed gingipain-inhibitory activity toward both arginine-specific (Rgps) and lysine-specific (Kgp) gingipains, resulting in blocking oral epithelial cell rounding and the subsequent detachment from culture dishes. Finally, we isolated petroselinic acid as a major bactericide as well as a gingipain inhibitor through a bioassay-guided fractionation of HEF. Taken together, our findings suggest clinical applicability of HEF and petroselinic acid for periodontitis therapy to eliminate P. gingivalis and its major virulence factors on the basis of the dual anti-P. gingivalis activity, i.e., rapid bacteriolysis and gingipain inhibition.
Collapse
Affiliation(s)
- Nanami Yoshino
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
- Research and Analysis Center, S&B Foods Inc., Tokyo, Japan
| | - Tsuyoshi Ikeda
- Department of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Ryoma Nakao
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
- *Correspondence: Ryoma Nakao,
| |
Collapse
|
43
|
Riemerella anatipestifer T9SS Effector SspA Functions in Bacterial Virulence and Defending Natural Host Immunity. Appl Environ Microbiol 2022; 88:e0240921. [PMID: 35575548 DOI: 10.1128/aem.02409-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) is a crucial factor in bacterial virulence. The AS87_RS04190 protein was obviously missing from the secreted proteins of the T9SS mutant strain Yb2ΔgldM. A bioinformatic analysis indicated that the AS87_RS04190 protein contains a T9SS C-terminal domain sequence and encodes a putative subtilisin-like serine protease (SspA). To determine the role of the putative SspA protein in R. anatipestifer pathogenesis and proteolysis, we constructed two strains with an sspA mutation and complementation, respectively, and determined their median lethal doses, their bacterial loads in infected duck blood, and their adherence to and invasion of cells. Our results demonstrate that the SspA protein functions in bacterial virulence. It is also associated with the bacterial protease activity and has a conserved catalytic triad structure (Asp126, His158, and Ser410), which is necessary for protein function. The optimal reactive pH and temperature were determined to be 7.0 and 50°C, respectively, and Km and Vmax were determined to be 10.15 mM and 246.96 U/mg, respectively. The enzymatic activity of SspA is activated by Ca2+, Mg2+, and Mn2+ and inhibited by Cu2+ and EDTA. SspA degrades gelatin, fibrinogen, and bacitracin LL-37. These results demonstrate that SspA is an effector protein of T9SS and functions in R. anatipestifer virulence and its proteolysis of gelatin, fibrinogen, and bacitracin LL-37. IMPORTANCE In recent years, Riemerella anatipestifer T9SS has been reported to act as a virulence factor. However, the functions of the proteins secreted by R. anatipestifer T9SS are not entirely clear. In this study, a secreted subtilisin-like serine protease SspA was shown to be associated with R. anatipestifer virulence, host complement evasion, and degradation of gelatin, fibrinogen, and LL-37. The enzymatic activity of recombinant SspA was determined, and its Km and Vmax were 10.15 mM and 246.96 U/mg, respectively. Three conserved sites (Asp126, His158, and Ser410) are necessary for the protein's function. The median lethal dose of the sspA-deleted mutant strain was reduced >10,000-fold, indicating that SspA is an important virulence factor. In summary, we demonstrate that the R. anatipestifer AS87_RS04190 gene encodes an important T9SS effector, SspA, which plays an important role in bacterial virulence.
Collapse
|
44
|
Trivedi A, Gosai J, Nakane D, Shrivastava A. Design Principles of the Rotary Type 9 Secretion System. Front Microbiol 2022; 13:845563. [PMID: 35620107 PMCID: PMC9127263 DOI: 10.3389/fmicb.2022.845563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 01/05/2023] Open
Abstract
The Fo ATP synthase, the bacterial flagellar motor, and the bacterial type 9 secretion system (T9SS) are the three known proton motive force driven biological rotary motors. In this review, we summarize the current information on the nuts and bolts of T9SS. Torque generation by T9SS, its role in gliding motility of bacteria, and the mechanism via which a T9SS-driven swarm shapes the microbiota are discussed. The knowledge gaps in our current understanding of the T9SS machinery are outlined.
Collapse
Affiliation(s)
- Abhishek Trivedi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Jitendrapuri Gosai
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Daisuke Nakane
- Department of Engineering Science, The University of Electro-Communications, Tokyo, Japan
| | - Abhishek Shrivastava
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
45
|
Song L, Perpich JD, Wu C, Doan T, Nowakowska Z, Potempa J, Christie PJ, Cascales E, Lamont RJ, Hu B. A unique bacterial secretion machinery with multiple secretion centers. Proc Natl Acad Sci U S A 2022; 119:e2119907119. [PMID: 35471908 PMCID: PMC9170169 DOI: 10.1073/pnas.2119907119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
The Porphyromonas gingivalis type IX secretion system (T9SS) promotes periodontal disease by secreting gingipains and other virulence factors. By in situ cryoelectron tomography, we report that the P. gingivalis T9SS consists of 18 PorM dimers arranged as a large, caged ring in the periplasm. Near the outer membrane, PorM dimers interact with a PorKN ring complex of ∼52 nm in diameter. PorMKN translocation complexes of a given T9SS adopt distinct conformations energized by the proton motive force, suggestive of different activation states. At the inner membrane, PorM associates with a cytoplasmic complex that exhibits 12-fold symmetry and requires both PorM and PorL for assembly. Activated motors deliver substrates across the outer membrane via one of eight Sov translocons arranged in a ring. The T9SSs are unique among known secretion systems in bacteria and eukaryotes in their assembly as supramolecular machines composed of apparently independently functioning translocation motors and export pores.
Collapse
Affiliation(s)
- Liqiang Song
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX 77030
| | - John D. Perpich
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY 40292
| | - Chenggang Wu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX 77030
| | - Thierry Doan
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, CNRS UMR7255, Aix-Marseille Université, Marseille, 13402 France
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, 30-387 Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY 40292
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, 30-387 Poland
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX 77030
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, CNRS UMR7255, Aix-Marseille Université, Marseille, 13402 France
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY 40292
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX 77030
| |
Collapse
|
46
|
de Sandozequi A, Salazar-Cortés JJ, Tapia-Vázquez I, Martínez-Anaya C. Prevalent association with the bacterial cell envelope of prokaryotic expansins revealed by bioinformatics analysis. Protein Sci 2022; 31:e4315. [PMID: 35481628 PMCID: PMC9045087 DOI: 10.1002/pro.4315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Expansins are a group of proteins from diverse organisms from bacteria to plants. Although expansins show structural conservation, their biological roles seem to differ among kingdoms. In plants, these proteins remodel the cell wall during plant growth and other processes. Contrarily, determination of bacterial expansin activity has proven difficult, although genetic evidence of bacterial mutants indicates that expansins participate in bacteria-plant interactions. Nevertheless, a large proportion of expansin genes are found in the genomes of free-living bacteria, suggesting roles that are independent of the interaction with living plants. Here, we analyzed all available sequences of prokaryotic expansins for correlations between surface electric charge, extra protein modules, and sequence motifs for association with the bacteria exterior after export. Additionally, information on the fate of protein after translocation across the membrane also points to bacterial cell association of expansins through six different mechanisms, such as attachment of a lipid molecule for membrane anchoring in diderm species or covalent linking to the peptidoglycan layer in monoderms such as the Bacilliales. Our results have implications for expansin function in the context of bacteria-plant interactions and also for free-living species in which expansins might affect cell-cell or cell-substrate interaction properties and indicate the need to re-examine the roles currently considered for these proteins.
Collapse
Affiliation(s)
- Andrés de Sandozequi
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Juan José Salazar-Cortés
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Irán Tapia-Vázquez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| | - Claudia Martínez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
47
|
Structures of the Type IX Secretion/Gliding Motility Motor from across the Phylum Bacteroidetes. mBio 2022; 13:e0026722. [PMID: 35446127 PMCID: PMC9239094 DOI: 10.1128/mbio.00267-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Gliding motility using cell surface adhesins, and export of proteins by the type IX secretion system (T9SS) are two phylum-specific features of the Bacteroidetes. Both of these processes are energized by the GldLM motor complex, which transduces the proton motive force at the inner membrane into mechanical work at the outer membrane. We previously used cryo-electron microscopy to solve the structure of the GldLM motor core from Flavobacterium johnsoniae at 3.9-Å resolution (R. Hennell James, J. C. Deme, A. Kjaer, F. Alcock, et al., Nat Microbiol 6:221–233, 2021, https://dx.doi.org/10.1038/s41564-020-00823-6). Here, we present structures of homologous complexes from a range of pathogenic and environmental Bacteroidetes species at up to 3.0-Å resolution. These structures show that the architecture of the GldLM motor core is conserved across the Bacteroidetes phylum, although there are species-specific differences at the N terminus of GldL. The resolution improvements reveal a cage-like structure that ties together the membrane-proximal cytoplasmic region of GldL and influences gliding function. These findings add detail to our structural understanding of bacterial ion-driven motors that drive the T9SS and gliding motility.
Collapse
|
48
|
Vincent MS, Comas Hervada C, Sebban-Kreuzer C, Le Guenno H, Chabalier M, Kosta A, Guerlesquin F, Mignot T, McBride MJ, Cascales E, Doan T. Dynamic proton-dependent motors power type IX secretion and gliding motility in Flavobacterium. PLoS Biol 2022; 20:e3001443. [PMID: 35333857 PMCID: PMC8986121 DOI: 10.1371/journal.pbio.3001443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/06/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Motile bacteria usually rely on external apparatus like flagella for swimming or pili for twitching. By contrast, gliding bacteria do not rely on obvious surface appendages to move on solid surfaces. Flavobacterium johnsoniae and other bacteria in the Bacteroidetes phylum use adhesins whose movement on the cell surface supports motility. In F. johnsoniae, secretion and helicoidal motion of the main adhesin SprB are intimately linked and depend on the type IX secretion system (T9SS). Both processes necessitate the proton motive force (PMF), which is thought to fuel a molecular motor that comprises the GldL and GldM cytoplasmic membrane proteins. Here, we show that F. johnsoniae gliding motility is powered by the pH gradient component of the PMF. We further delineate the interaction network between the GldLM transmembrane helices (TMHs) and show that conserved glutamate residues in GldL TMH2 are essential for gliding motility, although having distinct roles in SprB secretion and motion. We then demonstrate that the PMF and GldL trigger conformational changes in the GldM periplasmic domain. We finally show that multiple GldLM complexes are distributed in the membrane, suggesting that a network of motors may be present to move SprB along a helical path on the cell surface. Altogether, our results provide evidence that GldL and GldM assemble dynamic membrane channels that use the proton gradient to power both T9SS-dependent secretion of SprB and its motion at the cell surface.
Collapse
Affiliation(s)
- Maxence S. Vincent
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Caterina Comas Hervada
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Corinne Sebban-Kreuzer
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Hugo Le Guenno
- Microscopy Core Facility, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université, Marseille, France
| | - Maïalène Chabalier
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Artemis Kosta
- Microscopy Core Facility, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université, Marseille, France
| | - Françoise Guerlesquin
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7283, Marseille, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Eric Cascales
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Thierry Doan
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| |
Collapse
|
49
|
Protein Interactome Analysis of the Type IX Secretion System Identifies PorW as the Missing Link between the PorK/N Ring Complex and the Sov Translocon. Microbiol Spectr 2022; 10:e0160221. [PMID: 35019767 PMCID: PMC8754138 DOI: 10.1128/spectrum.01602-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type IX secretion system (T9SS) transports cargo proteins through the outer membrane of Bacteroidetes and attaches them to the cell surface for functions including pathogenesis, gliding motility, and degradation of carbon sources. The T9SS comprises at least 20 different proteins and includes several modules: the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, the outer membrane Sov translocon, and the cell attachment complex. However, the spatial organization of these modules is unknown. We have characterized the protein interactome of the Sov translocon in Porphyromonas gingivalis and identified Sov-PorV-PorA as well as Sov-PorW-PorN-PorK to be novel networks. PorW also interacted with PGN_1783 (PorD), which was required for maximum secretion efficiency. The identification of PorW as the missing link completes a continuous interaction network from the PorL/M motor to the Sov translocon, providing a pathway for cargo delivery and energy transduction from the inner membrane to the secretion pore. IMPORTANCE The T9SS is a newly identified protein secretion system of the Fibrobacteres-Chlorobi-Bacteroidetes superphylum used by pathogens associated with diseases of humans, fish, and poultry for the secretion and cell surface attachment of virulence factors. The T9SS comprises three known modules: (i) the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, (ii) the outer membrane Sov translocon, and (iii) the cell surface attachment complex. The spatial organization and interaction of these modules have been a mystery. Here, we describe the protein interactome of the Sov translocon in the human pathogen Porphyromonas gingivalis and have identified PorW as the missing link which bridges PorN with Sov and so completes a continuous interaction network from the PorL/M motor to the Sov translocon, providing, for the first time, a pathway for cargo delivery and energy transduction from the inner membrane to the secretion pore.
Collapse
|
50
|
Khare D, Chandwadkar P, Acharya C. Structural Analysis of Gliding Motility of a Bacteroidetes Bacterium by Correlative Light and Scanning Electron Microscopy (CLSEM). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-7. [PMID: 35105420 DOI: 10.1017/s1431927622000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The members of the Bacteroidetes phylum move on surfaces by gliding motility in the absence of external motility appendages, leading to the formation of spreading colonies. Here, the structural features of the spreading colony were assessed in a uranium-tolerant Bacteroidetes bacterium, Chryseobacterium sp. strain PMSZPI, by using correlative light and scanning electron microscopy (CLSEM). We developed a simple and convenient workflow for CLSEM using a shuttle and find software module and a correlative sample holding slide designed to transport samples between the light/fluorescence microscope (LM/FM) and the scanning electron microscope (SEM) to image spreading colony edges. The datasets from the CLSEM studies allowed convenient examination of the colonial organization by LM/FM followed by ultrastructural analysis by SEM. The regions of interest (ROIs) of the spreading colony edges that were observed in LM/FM in the absence and presence of uranium could be re-identified in the SEM quickly without prolonged searching. Perfect correlation between LM and SEM could be achieved with minimum preparation steps. Subsequently, imaging of the correlated regions was done at higher resolution in SEM to obtain more comprehensive information. We further showed the association of uranium with the gliding PMSZPI cells by energy-dispersive X-ray spectroscopy (EDS) attached to SEM.
Collapse
Affiliation(s)
- Devanshi Khare
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai400094, India
| | - Pallavi Chandwadkar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai400094, India
| |
Collapse
|