1
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
2
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
3
|
Gong X, Zhang H, Shen Y, Fu X. Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pyl Pair and Derivatives for Genetic Code Expansion. J Bacteriol 2023; 205:e0038522. [PMID: 36695595 PMCID: PMC9945579 DOI: 10.1128/jb.00385-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cotranslational incorporation of pyrrolysine (Pyl), the 22nd proteinogenic amino acid, into proteins in response to the UAG stop codon represents an outstanding example of natural genetic code expansion. Genetic encoding of Pyl is conducted by the pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA, tRNAPyl. Owing to the high tolerance of PylRS toward diverse amino acid substrates and great orthogonality in various model organisms, the PylRS/tRNAPyl-derived pairs are ideal for genetic code expansion to insert noncanonical amino acids (ncAAs) into proteins of interest. Since the discovery of cellular components involved in the biosynthesis and genetic encoding of Pyl, synthetic biologists have been enthusiastic about engineering PylRS/tRNAPyl-derived pairs to rewrite the genetic code of living cells. Recently, considerable progress has been made in understanding the molecular phylogeny, biochemical properties, and structural features of the PylRS/tRNAPyl pair, guiding its further engineering and optimization. In this review, we cover the basic and updated knowledge of the PylRS/tRNAPyl pair's unique characteristics that make it an outstanding tool for reprogramming the genetic code. In addition, we summarize the recent efforts to create efficient and (mutually) orthogonal PylRS/tRNAPyl-derived pairs for incorporation of diverse ncAAs by genome mining, rational design, and advanced directed evolution methods.
Collapse
Affiliation(s)
- Xuemei Gong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Haolin Zhang
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Yue Shen
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| | - Xian Fu
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| |
Collapse
|
4
|
Towards a Cure for HARS Disease. Genes (Basel) 2023; 14:genes14020254. [PMID: 36833180 PMCID: PMC9956352 DOI: 10.3390/genes14020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Histidyl-tRNA synthetase (HARS) ligates histidine to its cognate transfer RNA (tRNAHis). Mutations in HARS cause the human genetic disorders Usher syndrome type 3B (USH3B) and Charcot-Marie-Tooth syndrome type 2W (CMT2W). Treatment for these diseases remains symptomatic, and no disease specific treatments are currently available. Mutations in HARS can lead to destabilization of the enzyme, reduced aminoacylation, and decreased histidine incorporation into the proteome. Other mutations lead to a toxic gain-of-function and mistranslation of non-cognate amino acids in response to histidine codons, which can be rescued by histidine supplementation in vitro. We discuss recent advances in characterizing HARS mutations and potential applications of amino acid and tRNA therapy for future gene and allele specific therapy.
Collapse
|
5
|
Antika TR, Nazilah KR, Lee YH, Lo YT, Yeh CS, Yeh FL, Chang TH, Wang TL, Wang CC. Human Thg1 displays tRNA-inducible GTPase activity. Nucleic Acids Res 2022; 50:10015-10025. [PMID: 36107775 PMCID: PMC9508852 DOI: 10.1093/nar/gkac768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
tRNAHis guanylyltransferase (Thg1) catalyzes the 3′-5′ incorporation of guanosine into position -1 (G-1) of tRNAHis. G-1 is unique to tRNAHis and is crucial for recognition by histidyl-tRNA synthetase (HisRS). Yeast Thg1 requires ATP for G-1 addition to tRNAHis opposite A73, whereas archaeal Thg1 requires either ATP or GTP for G-1 addition to tRNAHis opposite C73. Paradoxically, human Thg1 (HsThg1) can add G-1 to tRNAsHis with A73 (cytoplasmic) and C73 (mitochondrial). As N73 is immediately followed by a CCA end (positions 74–76), how HsThg1 prevents successive 3′-5′ incorporation of G-1/G-2/G-3 into mitochondrial tRNAHis (tRNAmHis) through a template-dependent mechanism remains a puzzle. We showed herein that mature native human tRNAmHis indeed contains only G-1. ATP was absolutely required for G-1 addition to tRNAmHis by HsThg1. Although HsThg1 could incorporate more than one GTP into tRNAmHisin vitro, a single-GTP incorporation prevailed when the relative GTP level was low. Surprisingly, HsThg1 possessed a tRNA-inducible GTPase activity, which could be inhibited by ATP. Similar activity was found in other high-eukaryotic dual-functional Thg1 enzymes, but not in yeast Thg1. This study suggests that HsThg1 may downregulate the level of GTP through its GTPase activity to prevent multiple-GTP incorporation into tRNAmHis.
Collapse
Affiliation(s)
- Titi Rindi Antika
- Department of Life Sciences, National Central University , Zhongli District, Taoyuan 320317, Taiwan
| | - Kun Rohmatan Nazilah
- Department of Life Sciences, National Central University , Zhongli District, Taoyuan 320317, Taiwan
| | - Yi-Hsueh Lee
- Department of Life Sciences, National Central University , Zhongli District, Taoyuan 320317, Taiwan
| | - Ya-Ting Lo
- Department of Life Sciences, National Central University , Zhongli District, Taoyuan 320317, Taiwan
| | - Chung-Shu Yeh
- Genomics Research Center , Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Fu-Lung Yeh
- Genomics Research Center , Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Tien-Hsien Chang
- Genomics Research Center , Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Tzu-Ling Wang
- Graduate Institute of Mathematics and Science Education, National Tsing Hua University , Hsinchu City 30014, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University , Zhongli District, Taoyuan 320317, Taiwan
| |
Collapse
|
6
|
Boswinkle K, McKinney J, Allen KD. Highlighting the Unique Roles of Radical S-Adenosylmethionine Enzymes in Methanogenic Archaea. J Bacteriol 2022; 204:e0019722. [PMID: 35880875 PMCID: PMC9380564 DOI: 10.1128/jb.00197-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Radical S-adenosylmethionine (SAM) enzymes catalyze an impressive variety of difficult biochemical reactions in various pathways across all domains of life. These metalloenzymes employ a reduced [4Fe-4S] cluster and SAM to generate a highly reactive 5'-deoxyadenosyl radical that is capable of initiating catalysis on otherwise unreactive substrates. Interestingly, the genomes of methanogenic archaea encode many unique radical SAM enzymes with underexplored or completely unknown functions. These organisms are responsible for the yearly production of nearly 1 billion tons of methane, a potent greenhouse gas as well as a valuable energy source. Thus, understanding the details of methanogenic metabolism and elucidating the functions of essential enzymes in these organisms can provide insights into strategies to decrease greenhouse gas emissions as well as inform advances in bioenergy production processes. This minireview provides an overview of the current state of the field regarding the functions of radical SAM enzymes in methanogens and discusses gaps in knowledge that should be addressed.
Collapse
Affiliation(s)
- Kaleb Boswinkle
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Justin McKinney
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
7
|
Cremers G, Jetten MSM, Op den Camp HJM, Lücker S. Metascan: METabolic Analysis, SCreening and ANnotation of Metagenomes. FRONTIERS IN BIOINFORMATICS 2022; 2:861505. [PMID: 36304333 PMCID: PMC9580885 DOI: 10.3389/fbinf.2022.861505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Large scale next generation metagenomic sequencing of complex environmental samples paves the way for detailed analysis of nutrient cycles in ecosystems. For such an analysis, large scale unequivocal annotation is a prerequisite, which however is increasingly hampered by growing databases and analysis time. Hereto, we created a hidden Markov model (HMM) database by clustering proteins according to their KEGG indexing. HMM profiles for key genes of specific metabolic pathways and nutrient cycles were organized in subsets to be able to analyze each important elemental cycle separately. An important motivation behind the clustered database was to enable a high degree of resolution for annotation, while decreasing database size and analysis time. Here, we present Metascan, a new tool that can fully annotate and analyze deeply sequenced samples with an average analysis time of 11 min per genome for a publicly available dataset containing 2,537 genomes, and 1.1 min per genome for nutrient cycle analysis of the same sample. Metascan easily detected general proteins like cytochromes and ferredoxins, and additional pmoCAB operons were identified that were overlooked in previous analyses. For a mock community, the BEACON (F1) score was 0.72–0.93 compared to the information in NCBI GenBank. In combination with the accompanying database, Metascan provides a fast and useful annotation and analysis tool, as demonstrated by our proof-of-principle analysis of a complex mock community metagenome.
Collapse
|
8
|
Sun J, Evans PN, Gagen EJ, Woodcroft BJ, Hedlund BP, Woyke T, Hugenholtz P, Rinke C. Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages. ISME COMMUNICATIONS 2021; 1:30. [PMID: 36739331 PMCID: PMC9723677 DOI: 10.1038/s43705-021-00032-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Asgardarchaeota have been proposed as the closest living relatives to eukaryotes, and a total of 72 metagenome-assembled genomes (MAGs) representing six primary lineages in this archaeal phylum have thus far been described. These organisms are predicted to be fermentative heterotrophs contributing to carbon cycling in sediment ecosystems. Here, we double the genomic catalogue of Asgardarchaeota by obtaining 71 MAGs from a range of habitats around the globe, including the deep subsurface, brackish shallow lakes, and geothermal spring sediments. Phylogenomic inferences followed by taxonomic rank normalisation confirmed previously established Asgardarchaeota classes and revealed four additional lineages, two of which were consistently recovered as monophyletic classes. We therefore propose the names Candidatus Sifarchaeia class nov. and Ca. Jordarchaeia class nov., derived from the gods Sif and Jord in Norse mythology. Metabolic inference suggests that both classes represent hetero-organotrophic acetogens, which also have the ability to utilise methyl groups such as methylated amines, with acetate as the probable end product in remnants of a methanogen-derived core metabolism. This inferred mode of energy conservation is predicted to be enhanced by genetic code expansions, i.e., stop codon recoding, allowing the incorporation of the rare 21st and 22nd amino acids selenocysteine (Sec) and pyrrolysine (Pyl). We found Sec recoding in Jordarchaeia and all other Asgardarchaeota classes, which likely benefit from increased catalytic activities of Sec-containing enzymes. Pyl recoding, on the other hand, is restricted to Sifarchaeia in the Asgardarchaeota, making it the first reported non-methanogenic archaeal lineage with an inferred complete Pyl machinery, likely providing members of this class with an efficient mechanism for methylamine utilisation. Furthermore, we identified enzymes for the biosynthesis of ester-type lipids, characteristic of bacteria and eukaryotes, in both newly described classes, supporting the hypothesis that mixed ether-ester lipids are a shared feature among Asgardarchaeota.
Collapse
Affiliation(s)
- Jiarui Sun
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Paul N Evans
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Emma J Gagen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ben J Woodcroft
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Brian P Hedlund
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
9
|
Ho JML, Miller CA, Smith KA, Mattia JR, Bennett MR. Improved pyrrolysine biosynthesis through phage assisted non-continuous directed evolution of the complete pathway. Nat Commun 2021; 12:3914. [PMID: 34168131 PMCID: PMC8225853 DOI: 10.1038/s41467-021-24183-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/04/2021] [Indexed: 11/29/2022] Open
Abstract
Pyrrolysine (Pyl, O) exists in nature as the 22nd proteinogenic amino acid. Despite being a fundamental building block of proteins, studies of Pyl have been hindered by the difficulty and inefficiency of both its chemical and biological syntheses. Here, we improve Pyl biosynthesis via rational engineering and directed evolution of the entire biosynthetic pathway. To accommodate toxicity of Pyl biosynthetic genes in Escherichia coli, we also develop Alternating Phage Assisted Non-Continuous Evolution (Alt-PANCE) that alternates mutagenic and selective phage growths. The evolved pathway provides 32-fold improved yield of Pyl-containing reporter protein compared to the rationally engineered ancestor. Evolved PylB mutants are present at up to 4.5-fold elevated levels inside cells, and show up to 2.2-fold increased protease resistance. This study demonstrates that Alt-PANCE provides a general approach for evolving proteins exhibiting toxic side effects, and further provides an improved pathway capable of producing substantially greater quantities of Pyl-proteins in E. coli. Pyrrolysine (Pyl) exists in nature as the 22nd proteinogenic amino acid, but studies of Pyl have been hindered by the difficulty and inefficiency of both its chemical and biological syntheses. Here, the authors developed an improved PANCE approach to evolve the pylBCD pathway for increased production of Pyl proteins in E. coli.
Collapse
Affiliation(s)
- Joanne M L Ho
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Corwin A Miller
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Kathryn A Smith
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Jacob R Mattia
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, TX, USA. .,Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
10
|
De Lise F, Strazzulli A, Iacono R, Curci N, Di Fenza M, Maurelli L, Moracci M, Cobucci-Ponzano B. Programmed Deviations of Ribosomes From Standard Decoding in Archaea. Front Microbiol 2021; 12:688061. [PMID: 34149676 PMCID: PMC8211752 DOI: 10.3389/fmicb.2021.688061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic code decoding, initially considered to be universal and immutable, is now known to be flexible. In fact, in specific genes, ribosomes deviate from the standard translational rules in a programmed way, a phenomenon globally termed recoding. Translational recoding, which has been found in all domains of life, includes a group of events occurring during gene translation, namely stop codon readthrough, programmed ± 1 frameshifting, and ribosome bypassing. These events regulate protein expression at translational level and their mechanisms are well known and characterized in viruses, bacteria and eukaryotes. In this review we summarize the current state-of-the-art of recoding in the third domain of life. In Archaea, it was demonstrated and extensively studied that translational recoding regulates the decoding of the 21st and the 22nd amino acids selenocysteine and pyrrolysine, respectively, and only one case of programmed -1 frameshifting has been reported so far in Saccharolobus solfataricus P2. However, further putative events of translational recoding have been hypothesized in other archaeal species, but not extensively studied and confirmed yet. Although this phenomenon could have some implication for the physiology and adaptation of life in extreme environments, this field is still underexplored and genes whose expression could be regulated by recoding are still poorly characterized. The study of these recoding episodes in Archaea is urgently needed.
Collapse
Affiliation(s)
- Federica De Lise
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Andrea Strazzulli
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Roberta Iacono
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Nicola Curci
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Mauro Di Fenza
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Luisa Maurelli
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy
| | - Marco Moracci
- Institute of Biosciences and BioResources - National Research Council of Italy, Naples, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
11
|
Did Amino Acid Side Chain Reactivity Dictate the Composition and Timing of Aminoacyl-tRNA Synthetase Evolution? Genes (Basel) 2021; 12:genes12030409. [PMID: 33809136 PMCID: PMC8001834 DOI: 10.3390/genes12030409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
The twenty amino acids in the standard genetic code were fixed prior to the last universal common ancestor (LUCA). Factors that guided this selection included establishment of pathways for their metabolic synthesis and the concomitant fixation of substrate specificities in the emerging aminoacyl-tRNA synthetases (aaRSs). In this conceptual paper, we propose that the chemical reactivity of some amino acid side chains (e.g., lysine, cysteine, homocysteine, ornithine, homoserine, and selenocysteine) delayed or prohibited the emergence of the corresponding aaRSs and helped define the amino acids in the standard genetic code. We also consider the possibility that amino acid chemistry delayed the emergence of the glutaminyl- and asparaginyl-tRNA synthetases, neither of which are ubiquitous in extant organisms. We argue that fundamental chemical principles played critical roles in fixation of some aspects of the genetic code pre- and post-LUCA.
Collapse
|
12
|
Abstract
Within the broad field of synthetic biology, genetic code expansion (GCE) techniques enable creation of proteins with an expanded set of amino acids. This may be invaluable for applications in therapeutics, bioremediation, and biocatalysis. Central to GCE are aminoacyl-tRNA synthetases (aaRSs) as they link a non-canonical amino acid (ncAA) to their cognate tRNA, allowing ncAA incorporation into proteins on the ribosome. The ncAA-acylating aaRSs and their tRNAs should not cross-react with 20 natural aaRSs and tRNAs in the host, i.e., they need to function as an orthogonal translating system. All current orthogonal aaRS•tRNA pairs have been engineered from naturally occurring molecules to change the aaRS's amino acid specificity or assign the tRNA to a liberated codon of choice. Here we discuss the importance of orthogonality in GCE, laboratory techniques employed to create designer aaRSs and tRNAs, and provide an overview of orthogonal aaRS•tRNA pairs for GCE purposes.
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Jeffery M Tharp
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.
| |
Collapse
|
13
|
The Role of 3' to 5' Reverse RNA Polymerization in tRNA Fidelity and Repair. Genes (Basel) 2019; 10:genes10030250. [PMID: 30917604 PMCID: PMC6471195 DOI: 10.3390/genes10030250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
The tRNAHis guanylyltransferase (Thg1) superfamily includes enzymes that are found in all three domains of life that all share the common ability to catalyze the 3′ to 5′ synthesis of nucleic acids. This catalytic activity, which is the reverse of all other known DNA and RNA polymerases, makes this enzyme family a subject of biological and mechanistic interest. Previous biochemical, structural, and genetic investigations of multiple members of this family have revealed that Thg1 enzymes use the 3′ to 5′ chemistry for multiple reactions in biology. Here, we describe the current state of knowledge regarding the catalytic features and biological functions that have been so far associated with Thg1 and its homologs. Progress toward the exciting possibility of utilizing this unusual protein activity for applications in biotechnology is also discussed.
Collapse
|
14
|
Pyrrolysine in archaea: a 22nd amino acid encoded through a genetic code expansion. Emerg Top Life Sci 2018; 2:607-618. [PMID: 33525836 DOI: 10.1042/etls20180094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022]
Abstract
The 22nd amino acid discovered to be directly encoded, pyrrolysine, is specified by UAG. Until recently, pyrrolysine was only known to be present in archaea from a methanogenic lineage (Methanosarcinales), where it is important in enzymes catalysing anoxic methylamines metabolism, and a few anaerobic bacteria. Relatively new discoveries have revealed wider presence in archaea, deepened functional understanding, shown remarkable carbon source-dependent expression of expanded decoding and extended exploitation of the pyrrolysine machinery for synthetic code expansion. At the same time, other studies have shown the presence of pyrrolysine-containing archaea in the human gut and this has prompted health considerations. The article reviews our knowledge of this fascinating exception to the 'standard' genetic code.
Collapse
|
15
|
Desai R, Kim K, Büchsenschütz HC, Chen AW, Bi Y, Mann MR, Turk MA, Chung CZ, Heinemann IU. Minimal requirements for reverse polymerization and tRNA repair by tRNA His guanylyltransferase. RNA Biol 2017; 15:614-622. [PMID: 28901837 DOI: 10.1080/15476286.2017.1372076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
tRNAHis guanylyltransferase (Thg1) has unique reverse (3'-5') polymerase activity occurring in all three domains of life. Most eukaryotic Thg1 homologs are essential genes involved in tRNAHis maturation. These enzymes normally catalyze a single 5' guanylation of tRNAHis lacking the essential G-1 identity element required for aminoacylation. Recent studies suggest that archaeal type Thg1, which includes most archaeal and bacterial Thg1 enzymes is phylogenetically distant from eukaryotic Thg1. Thg1 is evolutionarily related to canonical 5'-3' forward polymerases but catalyzes reverse 3'-5'polymerization. Similar to its forward polymerase counterparts, Thg1 encodes the conserved catalytic palm domain and fingers domain. Here we investigate the minimal requirements for reverse polymerization. We show that the naturally occurring minimal Thg1 enzyme from Ignicoccus hospitalis (IhThg1), which lacks parts of the conserved fingers domain, is catalytically active. And adds all four natural nucleotides to RNA substrates, we further show that the entire fingers domain of Methanosarcina acetivorans Thg1 and Pyrobaculum aerophilum Thg1 (PaThg1) is dispensable for enzymatic activity. In addition, we identified residues in yeast Thg1 that play a part in preventing extended polymerization. Mutation of these residues with alanine resulted in extended reverse polymerization. PaThg1 was found to catalyze extended, template dependent tRNA repair, adding up to 13 nucleotides to a truncated tRNAHis substrate. Sequencing results suggest that PaThg1 fully restored the near correct sequence of the D- and acceptor stem, but also produced incompletely and incorrectly repaired tRNA products. This research forms the basis for future engineering efforts towards a high fidelity, template dependent reverse polymerase.
Collapse
Affiliation(s)
- Riddhi Desai
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Kunmo Kim
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | | | - Allan W Chen
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Yumin Bi
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Mitchell R Mann
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Matthew A Turk
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Christina Z Chung
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Ilka U Heinemann
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| |
Collapse
|
16
|
Guan Y, Haroon MF, Alam I, Ferry JG, Stingl U. Single-cell genomics reveals pyrrolysine-encoding potential in members of uncultivated archaeal candidate division MSBL1. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:404-410. [PMID: 28493460 DOI: 10.1111/1758-2229.12545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
Pyrrolysine (Pyl), the 22nd canonical amino acid, is only decoded and synthesized by a limited number of organisms in the domains Archaea and Bacteria. Pyl is encoded by the amber codon UAG, typically a stop codon. To date, all known Pyl-decoding archaea are able to carry out methylotrophic methanogenesis. The functionality of methylamine methyltransferases, an important component of corrinoid-dependent methyltransfer reactions, depends on the presence of Pyl. Here, we present a putative pyl gene cluster obtained from single-cell genomes of the archaeal Mediterranean Sea Brine Lakes group 1 (MSBL1) from the Red Sea. Functional annotation of the MSBL1 single cell amplified genomes (SAGs) also revealed a complete corrinoid-dependent methyl-transfer pathway suggesting that members of MSBL1 may possibly be capable of synthesizing Pyl and metabolizing methylated amines.
Collapse
Affiliation(s)
- Yue Guan
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed F Haroon
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Intikhab Alam
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ulrich Stingl
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
- Department for Microbiology & Cell Science, Fort Lauderdale Research and Education Center, University of Florida/IFAS, Davie, FL, 33314, USA
| |
Collapse
|
17
|
Mistranslation: from adaptations to applications. Biochim Biophys Acta Gen Subj 2017; 1861:3070-3080. [PMID: 28153753 DOI: 10.1016/j.bbagen.2017.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The conservation of the genetic code indicates that there was a single origin, but like all genetic material, the cell's interpretation of the code is subject to evolutionary pressure. Single nucleotide variations in tRNA sequences can modulate codon assignments by altering codon-anticodon pairing or tRNA charging. Either can increase translation errors and even change the code. The frozen accident hypothesis argued that changes to the code would destabilize the proteome and reduce fitness. In studies of model organisms, mistranslation often acts as an adaptive response. These studies reveal evolutionary conserved mechanisms to maintain proteostasis even during high rates of mistranslation. SCOPE OF REVIEW This review discusses the evolutionary basis of altered genetic codes, how mistranslation is identified, and how deviations to the genetic code are exploited. We revisit early discoveries of genetic code deviations and provide examples of adaptive mistranslation events in nature. Lastly, we highlight innovations in synthetic biology to expand the genetic code. MAJOR CONCLUSIONS The genetic code is still evolving. Mistranslation increases proteomic diversity that enables cells to survive stress conditions or suppress a deleterious allele. Genetic code variants have been identified by genome and metagenome sequence analyses, suppressor genetics, and biochemical characterization. GENERAL SIGNIFICANCE Understanding the mechanisms of translation and genetic code deviations enables the design of new codes to produce novel proteins. Engineering the translation machinery and expanding the genetic code to incorporate non-canonical amino acids are valuable tools in synthetic biology that are impacting biomedical research. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
18
|
Long Y, Abad MG, Olson ED, Carrillo EY, Jackman JE. Identification of distinct biological functions for four 3'-5' RNA polymerases. Nucleic Acids Res 2016; 44:8395-406. [PMID: 27484477 PMCID: PMC5041481 DOI: 10.1093/nar/gkw681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022] Open
Abstract
The superfamily of 3'-5' polymerases synthesize RNA in the opposite direction to all other DNA/RNA polymerases, and its members include eukaryotic tRNA(His) guanylyltransferase (Thg1), as well as Thg1-like proteins (TLPs) of unknown function that are broadly distributed, with family members in all three domains of life. Dictyostelium discoideum encodes one Thg1 and three TLPs (DdiTLP2, DdiTLP3 and DdiTLP4). Here, we demonstrate that depletion of each of the genes results in a significant growth defect, and that each protein catalyzes a unique biological reaction, taking advantage of specialized biochemical properties. DdiTLP2 catalyzes a mitochondria-specific tRNA(His) maturation reaction, which is distinct from the tRNA(His) maturation reaction typically catalyzed by Thg1 enzymes on cytosolic tRNA. DdiTLP3 catalyzes tRNA repair during mitochondrial tRNA 5'-editing in vivo and in vitro, establishing template-dependent 3'-5' polymerase activity of TLPs as a bona fide biological activity for the first time since its unexpected discovery more than a decade ago. DdiTLP4 is cytosolic and, surprisingly, catalyzes robust 3'-5' polymerase activity on non-tRNA substrates, strongly implying further roles for TLP 3'-5' polymerases in eukaryotes.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Maria G Abad
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Erik D Olson
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Elisabeth Y Carrillo
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Crnković A, Suzuki T, Söll D, Reynolds NM. Pyrrolysyl-tRNA synthetase, an aminoacyl-tRNA synthetase for genetic code expansion. CROAT CHEM ACTA 2016; 89:163-174. [PMID: 28239189 PMCID: PMC5321558 DOI: 10.5562/cca2825] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic code expansion (GCE) has become a central topic of synthetic biology. GCE relies on engineered aminoacyl-tRNA synthetases (aaRSs) and a cognate tRNA species to allow codon reassignment by co-translational insertion of non-canonical amino acids (ncAAs) into proteins. Introduction of such amino acids increases the chemical diversity of recombinant proteins endowing them with novel properties. Such proteins serve in sophisticated biochemical and biophysical studies both in vitro and in vivo, they may become unique biomaterials or therapeutic agents, and they afford metabolic dependence of genetically modified organisms for biocontainment purposes. In the Methanosarcinaceae the incorporation of the 22nd genetically encoded amino acid, pyrrolysine (Pyl), is facilitated by pyrrolysyl-tRNA synthetase (PylRS) and the cognate UAG-recognizing tRNAPyl. This unique aaRS•tRNA pair functions as an orthogonal translation system (OTS) in most model organisms. The facile directed evolution of the large PylRS active site to accommodate many ncAAs, and the enzyme's anticodon-blind specific recognition of the cognate tRNAPyl make this system highly amenable for GCE purposes. The remarkable polyspecificity of PylRS has been exploited to incorporate >100 different ncAAs into proteins. Here we review the Pyl-OT system and selected GCE applications to examine the properties of an effective OTS.
Collapse
Affiliation(s)
- Ana Crnković
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Tateki Suzuki
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Noah M. Reynolds
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
20
|
Kimura S, Suzuki T, Chen M, Kato K, Yu J, Nakamura A, Tanaka I, Yao M. Template-dependent nucleotide addition in the reverse (3'-5') direction by Thg1-like protein. SCIENCE ADVANCES 2016; 2:e1501397. [PMID: 27051866 PMCID: PMC4820378 DOI: 10.1126/sciadv.1501397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/04/2016] [Indexed: 05/23/2023]
Abstract
Thg1-like protein (TLP) catalyzes the addition of a nucleotide to the 5'-end of truncated transfer RNA (tRNA) species in a Watson-Crick template-dependent manner. The reaction proceeds in two steps: the activation of the 5'-end by adenosine 5'-triphosphate (ATP)/guanosine 5'-triphosphate (GTP), followed by nucleotide addition. Structural analyses of the TLP and its reaction intermediates have revealed the atomic detail of the template-dependent elongation reaction in the 3'-5' direction. The enzyme creates two substrate binding sites for the first- and second-step reactions in the vicinity of one reaction center consisting of two Mg(2+) ions, and the two reactions are executed at the same reaction center in a stepwise fashion. When the incoming nucleotide is bound to the second binding site with Watson-Crick hydrogen bonds, the 3'-OH of the incoming nucleotide and the 5'-triphosphate of the tRNA are moved to the reaction center where the first reaction has occurred. That the 3'-5' elongation enzyme performs this elaborate two-step reaction in one catalytic center suggests that these two reactions have been inseparable throughout the process of protein evolution. Although TLP and Thg1 have similar tetrameric organization, the tRNA binding mode of TLP is different from that of Thg1, a tRNA(His)-specific G-1 addition enzyme. Each tRNA(His) binds to three of the four Thg1 tetramer subunits, whereas in TLP, tRNA only binds to a dimer interface and the elongation reaction is terminated by measuring the accepter stem length through the flexible β-hairpin. Furthermore, mutational analyses show that tRNA(His) is bound to TLP in a similar manner as Thg1, thus indicating that TLP has a dual binding mode.
Collapse
Affiliation(s)
- Shoko Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tateki Suzuki
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Meirong Chen
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jian Yu
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
21
|
Nair N, Raff H, Islam MT, Feen M, Garofalo DM, Sheppard K. The Bacillus subtilis and Bacillus halodurans Aspartyl-tRNA Synthetases Retain Recognition of tRNA(Asn). J Mol Biol 2016; 428:618-630. [PMID: 26804570 DOI: 10.1016/j.jmb.2016.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/19/2022]
Abstract
Synthesis of asparaginyl-tRNA (Asn-tRNA(Asn)) in bacteria can be formed either by directly ligating Asn to tRNA(Asn) using an asparaginyl-tRNA synthetase (AsnRS) or by synthesizing Asn on the tRNA. In the latter two-step indirect pathway, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) attaches Asp to tRNA(Asn) and the amidotransferase GatCAB transamidates the Asp to Asn on the tRNA. GatCAB can be similarly used for Gln-tRNA(Gln) formation. Most bacteria are predicted to use only one route for Asn-tRNA(Asn) formation. Given that Bacillus halodurans and Bacillus subtilis encode AsnRS for Asn-tRNA(Asn) formation and Asn synthetases to synthesize Asn and GatCAB for Gln-tRNA(Gln) synthesis, their AspRS enzymes were thought to be specific for tRNA(Asp). However, we demonstrate that the AspRSs are non-discriminating and can be used with GatCAB to synthesize Asn. The results explain why B. subtilis with its Asn synthetase genes knocked out is still an Asn prototroph. Our phylogenetic analysis suggests that this may be common among Firmicutes and 30% of all bacteria. In addition, the phylogeny revealed that discrimination toward tRNA(Asp) by AspRS has evolved independently multiple times. The retention of the indirect pathway in B. subtilis and B. halodurans likely reflects the ancient link between Asn biosynthesis and its use in translation that enabled Asn to be added to the genetic code.
Collapse
Affiliation(s)
- Nilendra Nair
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Hannah Raff
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | | | - Melanie Feen
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Denise M Garofalo
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, NY 12866, USA.
| |
Collapse
|
22
|
Ling J, O'Donoghue P, Söll D. Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat Rev Microbiol 2015; 13:707-721. [PMID: 26411296 DOI: 10.1038/nrmicro3568] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genetic code, initially thought to be universal and immutable, is now known to contain many variations, including biased codon usage, codon reassignment, ambiguous decoding and recoding. As a result of recent advances in the areas of genome sequencing, biochemistry, bioinformatics and structural biology, our understanding of genetic code flexibility has advanced substantially in the past decade. In this Review, we highlight the prevalence, evolution and mechanistic basis of genetic code variations in microorganisms, and we discuss how this flexibility of the genetic code affects microbial physiology.
Collapse
Affiliation(s)
- Jiqiang Ling
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
23
|
Long Y, Jackman JE. In vitro substrate specificities of 3'-5' polymerases correlate with biological outcomes of tRNA 5'-editing reactions. FEBS Lett 2015; 589:2124-30. [PMID: 26143376 DOI: 10.1016/j.febslet.2015.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Protozoan mitochondrial tRNAs (mt-tRNAs) are repaired by a process known as 5'-editing. Mt-tRNA sequencing revealed organism-specific patterns of editing G-U base pairs, wherein some species remove G-U base pairs during 5'-editing, while others retain G-U pairs in the edited tRNA. We tested whether 3'-5' polymerases that catalyze the repair step of 5'-editing exhibit organism-specific preferences that explain the treatment of G-U base pairs. Biochemical and kinetic approaches revealed that a 3'-5' polymerase from Acanthamoeba castellanii tolerates G-U wobble pairs in editing substrates much more readily than several other enzymes, consistent with its biological pattern of editing.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
24
|
Reducing the genetic code induces massive rearrangement of the proteome. Proc Natl Acad Sci U S A 2014; 111:17206-11. [PMID: 25404328 DOI: 10.1073/pnas.1420193111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expanding the genetic code is an important aim of synthetic biology, but some organisms developed naturally expanded genetic codes long ago over the course of evolution. Less than 1% of all sequenced genomes encode an operon that reassigns the stop codon UAG to pyrrolysine (Pyl), a genetic code variant that results from the biosynthesis of Pyl-tRNA(Pyl). To understand the selective advantage of genetically encoding more than 20 amino acids, we constructed a markerless tRNA(Pyl) deletion strain of Methanosarcina acetivorans (ΔpylT) that cannot decode UAG as Pyl or grow on trimethylamine. Phenotypic defects in the ΔpylT strain were evident in minimal medium containing methanol. Proteomic analyses of wild type (WT) M. acetivorans and ΔpylT cells identified 841 proteins from >7,000 significant peptides detected by MS/MS. Protein production from UAG-containing mRNAs was verified for 19 proteins. Translation of UAG codons was verified by MS/MS for eight proteins, including identification of a Pyl residue in PylB, which catalyzes the first step of Pyl biosynthesis. Deletion of tRNA(Pyl) globally altered the proteome, leading to >300 differentially abundant proteins. Reduction of the genetic code from 21 to 20 amino acids led to significant down-regulation in translation initiation factors, amino acid metabolism, and methanogenesis from methanol, which was offset by a compensatory (100-fold) up-regulation in dimethyl sulfide metabolic enzymes. The data show how a natural proteome adapts to genetic code reduction and indicate that the selective value of an expanded genetic code is related to carbon source range and metabolic efficiency.
Collapse
|
25
|
Borrel G, Parisot N, Harris HMB, Peyretaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P, O’Toole PW, Brugère JF. Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 2014; 15:679. [PMID: 25124552 PMCID: PMC4153887 DOI: 10.1186/1471-2164-15-679] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/18/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A seventh order of methanogens, the Methanomassiliicoccales, has been identified in diverse anaerobic environments including the gastrointestinal tracts (GIT) of humans and other animals and may contribute significantly to methane emission and global warming. Methanomassiliicoccales are phylogenetically distant from all other orders of methanogens and belong to a large evolutionary branch composed by lineages of non-methanogenic archaea such as Thermoplasmatales, the Deep Hydrothermal Vent Euryarchaeota-2 (DHVE-2, Aciduliprofundum boonei) and the Marine Group-II (MG-II). To better understand this new order and its relationship to other archaea, we manually curated and extensively compared the genome sequences of three Methanomassiliicoccales representatives derived from human GIT microbiota, "Candidatus Methanomethylophilus alvus", "Candidatus Methanomassiliicoccus intestinalis" and Methanomassiliicoccus luminyensis. RESULTS Comparative analyses revealed atypical features, such as the scattering of the ribosomal RNA genes in the genome and the absence of eukaryotic-like histone gene otherwise present in most of Euryarchaeota genomes. Previously identified in Thermoplasmatales genomes, these features are presently extended to several completely sequenced genomes of this large evolutionary branch, including MG-II and DHVE2. The three Methanomassiliicoccales genomes share a unique composition of genes involved in energy conservation suggesting an original combination of two main energy conservation processes previously described in other methanogens. They also display substantial differences with each other, such as their codon usage, the nature and origin of their CRISPRs systems and the genes possibly involved in particular environmental adaptations. The genome of M. luminyensis encodes several features to thrive in soil and sediment conditions suggesting its larger environmental distribution than GIT. Conversely, "Ca. M. alvus" and "Ca. M. intestinalis" do not present these features and could be more restricted and specialized on GIT. Prediction of the amber codon usage, either as a termination signal of translation or coding for pyrrolysine revealed contrasted patterns among the three genomes and suggests a different handling of the Pyl-encoding capacity. CONCLUSIONS This study represents the first insights into the genomic organization and metabolic traits of the seventh order of methanogens. It suggests contrasted evolutionary history among the three analyzed Methanomassiliicoccales representatives and provides information on conserved characteristics among the overall methanogens and among Thermoplasmata.
Collapse
Affiliation(s)
- Guillaume Borrel
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
- />School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Nicolas Parisot
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
- />CNRS, UMR 6023, Université Blaise Pascal, 63000 Clermont-Ferrand, France
| | - Hugh MB Harris
- />School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Eric Peyretaillade
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - Nadia Gaci
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - William Tottey
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - Olivier Bardot
- />GReD, CNRS, UMR 6293, Inserm, UMR 1103, Clermont Université, Université d’Auvergne 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - Kasie Raymann
- />Département de Microbiologie, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Paris Cedex 15, 75724 France
- />Cellule Pasteur UPMC, Université Pierre et Marie Curie, Paris Cedex 15, 75724 France
| | - Simonetta Gribaldo
- />Département de Microbiologie, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Paris Cedex 15, 75724 France
- />Cellule Pasteur UPMC, Université Pierre et Marie Curie, Paris Cedex 15, 75724 France
| | - Pierre Peyret
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - Paul W O’Toole
- />School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Jean-François Brugère
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| |
Collapse
|
26
|
Abstract
Nucleotide polymerization proceeds in the forward (5'-3') direction. This tenet of the central dogma of molecular biology is found in diverse processes including transcription, reverse transcription, DNA replication, and even in lagging strand synthesis where reverse polymerization (3'-5') would present a "simpler" solution. Interestingly, reverse (3'-5') nucleotide addition is catalyzed by the tRNA maturation enzyme tRNA(His) guanylyltransferase, a structural homolog of canonical forward polymerases. We present a Candida albicans tRNA(His) guanylyltransferase-tRNA(His) complex structure that reveals the structural basis of reverse polymerization. The directionality of nucleotide polymerization is determined by the orientation of approach of the nucleotide substrate. The tRNA substrate enters the enzyme's active site from the opposite direction (180° flip) compared with similar nucleotide substrates of canonical 5'-3' polymerases, and the finger domains are on opposing sides of the core palm domain. Structural, biochemical, and phylogenetic data indicate that reverse polymerization appeared early in evolution and resembles a mirror image of the forward process.
Collapse
|
27
|
Theil Have C, Zambach S, Christiansen H. Effects of using coding potential, sequence conservation and mRNA structure conservation for predicting pyrrolysine containing genes. BMC Bioinformatics 2013; 14:118. [PMID: 23557142 PMCID: PMC3639795 DOI: 10.1186/1471-2105-14-118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 03/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pyrrolysine (the 22nd amino acid) is in certain organisms and under certain circumstances encoded by the amber stop codon, UAG. The circumstances driving pyrrolysine translation are not well understood. The involvement of a predicted mRNA structure in the region downstream UAG has been suggested, but the structure does not seem to be present in all pyrrolysine incorporating genes. RESULTS We propose a strategy to predict pyrrolysine encoding genes in genomes of archaea and bacteria. We cluster open reading frames interrupted by the amber codon based on sequence similarity. We rank these clusters according to several features that may influence pyrrolysine translation. The ranking effects of different features are assessed and we propose a weighted combination of these features which best explains the currently known pyrrolysine incorporating genes. We devote special attention to the effect of structural conservation and provide further substantiation to support that structural conservation may be influential - but is not a necessary factor. Finally, from the weighted ranking, we identify a number of potentially pyrrolysine incorporating genes. CONCLUSIONS We propose a method for prediction of pyrrolysine incorporating genes in genomes of bacteria and archaea leading to insights about the factors driving pyrrolysine translation and identification of new gene candidates. The method predicts known conserved genes with high recall and predicts several other promising candidates for experimental verification. The method is implemented as a computational pipeline which is available on request.
Collapse
Affiliation(s)
- Christian Theil Have
- Research group PLIS: Programming, Logic and Intelligent Systems, Department of Communication, Business and Information Technologies, Roskilde University, P.O. Box 260, Roskilde, DK-4000, Denmark.
| | | | | |
Collapse
|
28
|
Rao BS, Mohammad F, Gray MW, Jackman JE. Absence of a universal element for tRNAHis identity in Acanthamoeba castellanii. Nucleic Acids Res 2012; 41:1885-94. [PMID: 23241387 PMCID: PMC3561963 DOI: 10.1093/nar/gks1242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The additional G(-1) nucleotide on tRNA(His) is a nearly universal feature that specifies tRNA(His) identity in all three domains of life. In eukaryotes, the G(-1) identity element is obtained by a post-transcriptional pathway, through the unusual 3'-5' polymerase activity of the highly conserved tRNA(His) guanylyltransferase (Thg1) enzyme, and no examples of eukaryotic histidyl-tRNAs that lack this essential element have been identified. Here we report that the eukaryote Acanthamoeba castellanii lacks the G(-1) identity element on its tRNA(His), consistent with the lack of a gene encoding a bona fide Thg1 ortholog in the A. castellanii genome. Moreover, the cytosolic histidyl-tRNA synthetase in A. castellanii exhibits an unusual tRNA substrate specificity, efficiently aminoacylating tRNA(His) regardless of the presence of G(-1). A. castellanii does contain two Thg1-related genes (encoding Thg1-like proteins, TLPs), but the biochemical properties we associate here with these proteins are consistent with a function for these TLPs in separate pathways unrelated to tRNA(His) metabolism, such as mitochondrial tRNA repair during 5'-editing.
Collapse
Affiliation(s)
- Bhalchandra S Rao
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Despite the fact that the genetic code is known to vary between organisms in rare cases, it is believed that in the lifetime of a single cell the code is stable. We found Acetohalobium arabaticum cells grown on pyruvate genetically encode 20 amino acids, but in the presence of trimethylamine (TMA), A. arabaticum dynamically expands its genetic code to 21 amino acids including pyrrolysine (Pyl). A. arabaticum is the only known organism that modulates the size of its genetic code in response to its environment and energy source. The gene cassette pylTSBCD, required to biosynthesize and genetically encode UAG codons as Pyl, is present in the genomes of 24 anaerobic archaea and bacteria. Unlike archaeal Pyl-decoding organisms that constitutively encode Pyl, we observed that A. arabaticum controls Pyl encoding by down-regulating transcription of the entire Pyl operon under growth conditions lacking TMA, to the point where no detectable Pyl-tRNA(Pyl) is made in vivo. Pyl-decoding archaea adapted to an expanded genetic code by minimizing TAG codon frequency to typically ~5% of ORFs, whereas Pyl-decoding bacteria (~20% of ORFs contain in-frame TAGs) regulate Pyl-tRNA(Pyl) formation and translation of UAG by transcriptional deactivation of genes in the Pyl operon. We further demonstrate that Pyl encoding occurs in a bacterium that naturally encodes the Pyl operon, and identified Pyl residues by mass spectrometry in A. arabaticum proteins including two methylamine methyltransferases.
Collapse
|
30
|
O'Donoghue P, Prat L, Heinemann IU, Ling J, Odoi K, Liu WR, Söll D. Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion. FEBS Lett 2012; 586:3931-7. [PMID: 23036644 DOI: 10.1016/j.febslet.2012.09.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
Over 300 amino acids are found in proteins in nature, yet typically only 20 are genetically encoded. Reassigning stop codons and use of quadruplet codons emerged as the main avenues for genetically encoding non-canonical amino acids (NCAAs). Canonical aminoacyl-tRNAs with near-cognate anticodons also read these codons to some extent. This background suppression leads to 'statistical protein' that contains some natural amino acid(s) at a site intended for NCAA. We characterize near-cognate suppression of amber, opal and a quadruplet codon in common Escherichia coli laboratory strains and find that the PylRS/tRNA(Pyl) orthogonal pair cannot completely outcompete contamination by natural amino acids.
Collapse
Affiliation(s)
- Patrick O'Donoghue
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Translational recoding in archaea. Extremophiles 2012; 16:793-803. [DOI: 10.1007/s00792-012-0482-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/09/2012] [Indexed: 12/31/2022]
|
32
|
Jackman JE, Gott JM, Gray MW. Doing it in reverse: 3'-to-5' polymerization by the Thg1 superfamily. RNA (NEW YORK, N.Y.) 2012; 18:886-99. [PMID: 22456265 PMCID: PMC3334698 DOI: 10.1261/rna.032300.112] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The tRNA(His) guanylyltransferase (Thg1) family of enzymes comprises members from all three domains of life (Eucarya, Bacteria, Archaea). Although the initial activity associated with Thg1 enzymes was a single 3'-to-5' nucleotide addition reaction that specifies tRNA(His) identity in eukaryotes, the discovery of a generalized base pair-dependent 3'-to-5' polymerase reaction greatly expanded the scope of Thg1 family-catalyzed reactions to include tRNA repair and editing activities in bacteria, archaea, and organelles. While the identification of the 3'-to-5' polymerase activity associated with Thg1 enzymes is relatively recent, the roots of this discovery and its likely physiological relevance were described ≈ 30 yr ago. Here we review recent advances toward understanding diverse Thg1 family enzyme functions and mechanisms. We also discuss possible evolutionary origins of Thg1 family-catalyzed 3'-to-5' addition activities and their implications for the currently observed phylogenetic distribution of Thg1-related enzymes in biology.
Collapse
Affiliation(s)
- Jane E Jackman
- Department of Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
33
|
Heinemann IU, Nakamura A, O'Donoghue P, Eiler D, Söll D. tRNAHis-guanylyltransferase establishes tRNAHis identity. Nucleic Acids Res 2011; 40:333-44. [PMID: 21890903 PMCID: PMC3245924 DOI: 10.1093/nar/gkr696] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Histidine transfer RNA (tRNA) is unique among tRNA species as it carries an additional nucleotide at its 5' terminus. This unusual G(-1) residue is the major tRNA(His) identity element, and essential for recognition by the cognate histidyl-tRNA synthetase to allow efficient His-tRNA(His) formation. In many organisms G(-1) is added post-transcriptionally as part of the tRNA maturation process. tRNA(His) guanylyltransferase (Thg1) specifically adds the guanylyate residue by recognizing the tRNA(His) anticodon. Thg1 homologs from all three domains of life have been the subject of exciting research that gave rise to a detailed biochemical, structural and phylogenetic enzyme characterization. Thg1 homologs are phylogenetically classified into eukaryal- and archaeal-type enzymes differing characteristically in their cofactor requirements and specificity. Yeast Thg1 displays a unique but limited ability to add 2-3 G or C residues to mutant tRNA substrates, thus catalyzing a 3' → 5' RNA polymerization. Archaeal-type Thg1, which has been horizontally transferred to certain bacteria and few eukarya, displays a more relaxed substrate range and may play additional roles in tRNA editing and repair. The crystal structure of human Thg1 revealed a fascinating structural similarity to 5' → 3' polymerases, indicating that Thg1 derives from classical polymerases and evolved to assume its specific function in tRNA(His) processing.
Collapse
Affiliation(s)
- Ilka U Heinemann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
34
|
Gaston MA, Jiang R, Krzycki JA. Functional context, biosynthesis, and genetic encoding of pyrrolysine. Curr Opin Microbiol 2011; 14:342-9. [PMID: 21550296 DOI: 10.1016/j.mib.2011.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/01/2011] [Accepted: 04/06/2011] [Indexed: 01/14/2023]
Abstract
In Methanosarcina spp., amber codons in methylamine methyltransferase genes are translated as the 22nd amino acid, pyrrolysine. The responsible pyl genes plus amber-codon containing methyltransferase genes have been identified in four archaeal and five bacterial genera, including one human pathogen. In Escherichia coli, the recombinant pylBCD gene products biosynthesize pyrrolysine from two molecules of lysine and the pylTS gene products direct pyrrolysine incorporation into protein. In the proposed biosynthetic pathway, PylB forms methylornithine from lysine, which is joined to another lysine by PylC, and oxidized to pyrrolysine by PylD. Structures of the catalytic domain of pyrrolysyl-tRNA synthetase (archaeal PylS or bacterial PylSc) revealed binding sites for tRNAPyl and pyrrolysine. PylS and tRNAPyl are now being exploited as an orthogonal pair in recombinant systems for introduction of useful modified amino acids into proteins.
Collapse
Affiliation(s)
- Marsha A Gaston
- Department of Microbiology, 484 West 12th Avenue, The Ohio State University, Columbus, OH 43210, United States
| | | | | |
Collapse
|
35
|
Abad MG, Long Y, Willcox A, Gott JM, Gray MW, Jackman JE. A role for tRNA(His) guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5'-tRNA editing. RNA (NEW YORK, N.Y.) 2011; 17:613-23. [PMID: 21307182 PMCID: PMC3062173 DOI: 10.1261/rna.2517111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Genes with sequence similarity to the yeast tRNA(His) guanylyltransferase (Thg1) gene have been identified in all three domains of life, and Thg1 family enzymes are implicated in diverse processes, ranging from tRNA(His) maturation to 5'-end repair of tRNAs. All of these activities take advantage of the ability of Thg1 family enzymes to catalyze 3'-5' nucleotide addition reactions. Although many Thg1-containing organisms have a single Thg1-related gene, certain eukaryotic microbes possess multiple genes with sequence similarity to Thg1. Here we investigate the activities of four Thg1-like proteins (TLPs) encoded by the genome of the slime mold, Dictyostelium discoideum (a member of the eukaryotic supergroup Amoebozoa). We show that one of the four TLPs is a bona fide Thg1 ortholog, a cytoplasmic G(-1) addition enzyme likely to be responsible for tRNA(His) maturation in D. discoideum. Two other D. discoideum TLPs exhibit biochemical activities consistent with a role for these enzymes in mitochondrial 5'-tRNA editing, based on their ability to efficiently repair the 5' ends of mitochondrial tRNA editing substrates. Although 5'-tRNA editing was discovered nearly two decades ago, the identity of the protein(s) that catalyze this activity has remained elusive. This article provides the first identification of any purified protein that appears to play a role in the 5'-tRNA editing reaction. Moreover, the presence of multiple Thg1 family members in D. discoideum suggests that gene duplication and divergence during evolution has resulted in paralogous proteins that use 3'-5' nucleotide addition reactions for diverse biological functions in the same organism.
Collapse
Affiliation(s)
- Maria G Abad
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
36
|
Archaeal 3'-phosphate RNA splicing ligase characterization identifies the missing component in tRNA maturation. Proc Natl Acad Sci U S A 2011; 108:1290-5. [PMID: 21209330 DOI: 10.1073/pnas.1018307108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intron removal from tRNA precursors involves cleavage by a tRNA splicing endonuclease to yield tRNA 3'-halves beginning with a 5'-hydroxyl, and 5'-halves ending in a 2',3'-cyclic phosphate. A tRNA ligase then incorporates this phosphate into the internucleotide bond that joins the two halves. Although this 3'-P RNA splicing ligase activity was detected almost three decades ago in extracts from animal and later archaeal cells, the protein responsible was not yet identified. Here we report the purification of this ligase from Methanopyrus kandleri cells, and its assignment to the still uncharacterized RtcB protein family. Studies with recombinant Pyrobaculum aerophilum RtcB showed that the enzyme is able to join spliced tRNA halves to mature-sized tRNAs where the joining phosphodiester linkage contains the phosphate originally present in the 2',3'-cyclic phosphate. The data confirm RtcB as the archaeal RNA 3'-P ligase. Structural genomics efforts previously yielded a crystal structure of the Pyrococcus horikoshii RtcB protein containing a new protein fold and a conserved putative Zn(2+) binding cleft. This structure guided our mutational analysis of the P. aerophilum enzyme. Mutations of highly conserved residues in the cleft (C100A, H205A, H236A) rendered the enzyme inactive suggesting these residues to be part of the active site of the P. aerophilum ligase. There is no significant sequence similarity between the active sites of P. aerophilum ligase and that of T4 RNA ligase, nor ligases from plants and fungi. RtcB sequence conservation in archaea and in eukaryotes implicates eukaryotic RtcB as the long-sought animal 3'-P RNA ligase.
Collapse
|
37
|
|
38
|
Yuan J, Gogakos T, Babina AM, Söll D, Randau L. Change of tRNA identity leads to a divergent orthogonal histidyl-tRNA synthetase/tRNAHis pair. Nucleic Acids Res 2010; 39:2286-93. [PMID: 21087993 PMCID: PMC3064791 DOI: 10.1093/nar/gkq1176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mature tRNAHis has at its 5′-terminus an extra guanylate, designated as G−1. This is the major recognition element for histidyl-tRNA synthetase (HisRS) to permit acylation of tRNAHis with histidine. However, it was reported that tRNAHis of a subgroup of α-proteobacteria, including Caulobacter crescentus, lacks the critical G−1 residue. Here we show that recombinant C. crescentus HisRS allowed complete histidylation of a C. crescentus tRNAHis transcript (lacking G−1). The addition of G−1 did not improve aminoacylation by C. crescentus HisRS. However, mutations in the tRNAHis anticodon caused a drastic loss of in vitro histidylation, and mutations of bases A73 and U72 also reduced charging. Thus, the major recognition elements in C. crescentus tRNAHis are the anticodon, the discriminator base and U72, which are recognized by the divergent (based on sequence similarity) C. crescentus HisRS. Transplantation of these recognition elements into an Escherichia coli tRNAHis template, together with addition of base U20a, created a competent substrate for C. crescentus HisRS. These results illustrate how a conserved tRNA recognition pattern changed during evolution. The data also uncovered a divergent orthogonal HisRS/tRNAHis pair.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
39
|
Lobanov AV, Turanov AA, Hatfield DL, Gladyshev VN. Dual functions of codons in the genetic code. Crit Rev Biochem Mol Biol 2010; 45:257-65. [PMID: 20446809 DOI: 10.3109/10409231003786094] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The discovery of the genetic code provided one of the basic foundations of modern molecular biology. Most organisms use the same genetic language, but there are also well-documented variations representing codon reassignments within specific groups of organisms (such as ciliates and yeast) or organelles (such as plastids and mitochondria). In addition, duality in codon function is known in the use of AUG in translation initiation and methionine insertion into internal protein positions as well as in the case of selenocysteine and pyrrolysine insertion (encoded by UGA and UAG, respectively) in competition with translation termination. Ambiguous meaning of CUG in coding for serine and leucine is also known. However, a recent study revealed that codons in any position within the open reading frame can serve a dual function and that a change in codon meaning can be achieved by availability of a specific type of RNA stem-loop structure in the 3'-untranslated region. Thus, duality of codon function is a more widely used feature of the genetic code than previously known, and this observation raises the possibility that additional recoding events and additional novel features have evolved in the genetic code.
Collapse
Affiliation(s)
- Alexey V Lobanov
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
40
|
Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20847933 PMCID: PMC2933860 DOI: 10.1155/2010/453642] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 01/21/2023]
Abstract
Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge into the context of their unique energy metabolism.
Collapse
|
41
|
Placido A, Sieber F, Gobert A, Gallerani R, Giegé P, Maréchal-Drouard L. Plant mitochondria use two pathways for the biogenesis of tRNAHis. Nucleic Acids Res 2010; 38:7711-7. [PMID: 20660484 PMCID: PMC2995067 DOI: 10.1093/nar/gkq646] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All tRNAHis possess an essential extra G–1 guanosine residue at their 5′ end. In eukaryotes after standard processing by RNase P, G–1 is added by a tRNAHis guanylyl transferase. In prokaryotes, G–1 is genome-encoded and retained during maturation. In plant mitochondria, although trnH genes possess a G–1 we find here that both maturation pathways can be used. Indeed, tRNAHis with or without a G–1 are found in a plant mitochondrial tRNA fraction. Furthermore, a recombinant Arabidopsis mitochondrial RNase P can cleave tRNAHis precursors at both positions G+1 and G–1. The G–1 is essential for recognition by plant mitochondrial histidyl-tRNA synthetase. Whether, as shown in prokaryotes and eukaryotes, the presence of uncharged tRNAHis without G–1 has a function or not in plant mitochondrial gene regulation is an open question. We find that when a mutated version of a plant mitochondrial trnH gene containing no encoded extra G is introduced and expressed into isolated potato mitochondria, mature tRNAHis with a G–1 are recovered. This shows that a previously unreported tRNAHis guanylyltransferase activity is present in plant mitochondria.
Collapse
Affiliation(s)
- Antonio Placido
- Dipartimento di Biochimica e Biologia Molecolare Ernesto Quagliariello, Universita' degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Heinemann IU, Randau L, Tomko RJ, Söll D. 3'-5' tRNAHis guanylyltransferase in bacteria. FEBS Lett 2010; 584:3567-72. [PMID: 20650272 DOI: 10.1016/j.febslet.2010.07.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 11/28/2022]
Abstract
The identity of the histidine specific transfer RNA (tRNA(His)) is largely determined by a unique guanosine residue at position -1. In eukaryotes and archaea, the tRNA(His) guanylyltransferase (Thg1) catalyzes 3'-5' addition of G to the 5'-terminus of tRNA(His). Here, we show that Thg1 also occurs in bacteria. We demonstrate in vitro Thg1 activity for recombinant enzymes from the two bacteria Bacillus thuringiensis and Myxococcus xanthus and provide a closer investigation of several archaeal Thg1. The reaction mechanism of prokaryotic Thg1 differs from eukaryotic enzymes, as it does not require ATP. Complementation of a yeast thg1 knockout strain with bacterial Thg1 verified in vivo activity and suggests a relaxed recognition of the discriminator base in bacteria.
Collapse
Affiliation(s)
- Ilka U Heinemann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | |
Collapse
|
43
|
Nureki O, O'Donoghue P, Watanabe N, Ohmori A, Oshikane H, Araiso Y, Sheppard K, Söll D, Ishitani R. Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation. Nucleic Acids Res 2010; 38:7286-97. [PMID: 20601684 PMCID: PMC2978374 DOI: 10.1093/nar/gkq605] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The molecular basis of the genetic code relies on the specific ligation of amino acids to their cognate tRNA molecules. However, two pathways exist for the formation of Gln-tRNAGln. The evolutionarily older indirect route utilizes a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) that can form both Glu-tRNAGlu and Glu-tRNAGln. The Glu-tRNAGln is then converted to Gln-tRNAGln by an amidotransferase. Since the well-characterized bacterial ND-GluRS enzymes recognize tRNAGlu and tRNAGln with an unrelated α-helical cage domain in contrast to the β-barrel anticodon-binding domain in archaeal and eukaryotic GluRSs, the mode of tRNAGlu/tRNAGln discrimination in archaea and eukaryotes was unknown. Here, we present the crystal structure of the Methanothermobacter thermautotrophicus ND-GluRS, which is the evolutionary predecessor of both the glutaminyl-tRNA synthetase (GlnRS) and the eukaryotic discriminating GluRS. Comparison with the previously solved structure of the Escherichia coli GlnRS-tRNAGln complex reveals the structural determinants responsible for specific tRNAGln recognition by GlnRS compared to promiscuous recognition of both tRNAs by the ND-GluRS. The structure also shows the amino acid recognition pocket of GluRS is more variable than that found in GlnRS. Phylogenetic analysis is used to reconstruct the key events in the evolution from indirect to direct genetic encoding of glutamine.
Collapse
Affiliation(s)
- Osamu Nureki
- Department of Basic Medical Sciences, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Preston MA, Phizicky EM. The requirement for the highly conserved G-1 residue of Saccharomyces cerevisiae tRNAHis can be circumvented by overexpression of tRNAHis and its synthetase. RNA (NEW YORK, N.Y.) 2010; 16:1068-77. [PMID: 20360392 PMCID: PMC2856879 DOI: 10.1261/rna.2087510] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 02/12/2010] [Indexed: 05/23/2023]
Abstract
Nearly all tRNA(His) species have an additional 5' guanine nucleotide (G(-1)). G(-1) is encoded opposite C(73) in nearly all prokaryotes and in some archaea, and is added post-transcriptionally by tRNA(His) guanylyltransferase (Thg1) opposite A(73) in eukaryotes, and opposite C(73) in other archaea. These divergent mechanisms of G(-1) conservation suggest that G(-1) might have an important cellular role, distinct from its role in tRNA(His) charging. Thg1 is also highly conserved and is essential in the yeast Saccharomyces cerevisiae. However, the essential roles of Thg1 are unclear since Thg1 also interacts with Orc2 of the origin recognition complex, is implicated in the cell cycle, and catalyzes an unusual template-dependent 3'-5' (reverse) polymerization in vitro at the 5' end of activated tRNAs. Here we show that thg1-Delta strains are viable, but only if histidyl-tRNA synthetase and tRNA(His) are overproduced, demonstrating that the only essential role of Thg1 is its G(-1) addition activity. Since these thg1-Delta strains have severe growth defects if cytoplasmic tRNA(His) A(73) is overexpressed, and distinct, but milder growth defects, if tRNA(His) C(73) is overexpressed, these results show that the tRNA(His) G(-1) residue is important, but not absolutely essential, despite its widespread conservation. We also show that Thg1 catalyzes 3'-5' polymerization in vivo on tRNA(His) C(73), but not on tRNA(His) A(73), demonstrating that the 3'-5' polymerase activity is pronounced enough to have a biological role, and suggesting that eukaryotes may have evolved to have cytoplasmic tRNA(His) with A(73), rather than C(73), to prevent the possibility of 3'-5' polymerization.
Collapse
MESH Headings
- Base Sequence
- Conserved Sequence
- Gene Expression
- Genes, Fungal
- Histidine-tRNA Ligase/genetics
- Histidine-tRNA Ligase/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleotidyltransferases/genetics
- Nucleotidyltransferases/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, His/chemistry
- RNA, Transfer, His/genetics
- RNA, Transfer, His/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Melanie A Preston
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
45
|
Yuan J, O'Donoghue P, Ambrogelly A, Gundllapalli S, Sherrer RL, Palioura S, Simonović M, Söll D. Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems. FEBS Lett 2009; 584:342-9. [PMID: 19903474 DOI: 10.1016/j.febslet.2009.11.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/26/2022]
Abstract
Selenocysteine and pyrrolysine, known as the 21st and 22nd amino acids, are directly inserted into growing polypeptides during translation. Selenocysteine is synthesized via a tRNA-dependent pathway and decodes UGA (opal) codons. The incorporation of selenocysteine requires the concerted action of specific RNA and protein elements. In contrast, pyrrolysine is ligated directly to tRNA(Pyl) and inserted into proteins in response to UAG (amber) codons without the need for complex re-coding machinery. Here we review the latest updates on the structure and mechanisms of molecules involved in Sec-tRNA(Sec) and Pyl-tRNA(Pyl) formation as well as the distribution of the Pyl-decoding trait.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Heinemann IU, Söll D, Randau L. Transfer RNA processing in archaea: unusual pathways and enzymes. FEBS Lett 2009; 584:303-9. [PMID: 19878676 DOI: 10.1016/j.febslet.2009.10.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/28/2022]
Abstract
Transfer RNA (tRNA) molecules are highly conserved in length, sequence and structure in order to be functional in the ribosome. However, mostly in archaea, the short genes encoding tRNAs can be found disrupted, fragmented, with permutations or with non-functional mutations of conserved nucleotides. Here, we give an overview of recently discovered tRNA maturation pathways that require intricate processing steps to finally generate the standard tRNA from these unusual tRNA genes.
Collapse
Affiliation(s)
- Ilka U Heinemann
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208114, 266 Whitney Avenue, New Haven, CT 06520-8114, USA.
| | | | | |
Collapse
|