1
|
Su Z, Chen T, Liu X, Kang X. Size-tunable transmembrane nanopores assembled from decomposable molecular templates. Biosens Bioelectron 2025; 267:116780. [PMID: 39277918 DOI: 10.1016/j.bios.2024.116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Transmembrane nanopores, as key elements in molecular transport and single-molecule sensors, are assembled naturally from multiple monomers in the presence of lipid bilayers. The nanopore size, especially the precise diameter of the inner space, determines its sensing targets and further biological application. In this paper, we introduce a template molecule-aided assembly strategy for constructing size-tunable transmembrane nanopores. Inspired by the barrel-like structure, similar to many transmembrane proteins, cyclodextrin molecules of different sizes are utilized as templates and modulators to assemble the α-helical barreled peptide of polysaccharide transporters (Wza). The functional nanopores assembled by this strategy possess high biological and chemical activity and can be inserted into lipid bilayers, forming stable single channels for single-molecule sensing. After enzyme digestion, the cyclodextrins on protein nanopores can be degraded, and the remaining nontemplate transmembrane protein nanopores can also preserve the integrity of their structure and function. The template molecule-aided assembly strategy employed a simple and convenient method for fully artificially synthesizing transmembrane protein nanopores; the pore size is completely dependent on the size of the template molecule and controllable, ranging from 1.1 to 1.8 nm. Furthermore, by chemically synthesized peptides and modifications, the pore function is easily modulated and does not involve the cumbersome genetic mutations of other biological techniques.
Collapse
Affiliation(s)
- Zhuoqun Su
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Northwest University, Xi'an, 710127, China; School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Tingting Chen
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Northwest University, Xi'an, 710127, China
| | - Xingtong Liu
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Northwest University, Xi'an, 710127, China
| | - Xiaofeng Kang
- College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
2
|
Satheesan R, Janeena A, Mahendran KR. Hetero-Oligomeric Protein Pores for Single-Molecule Sensing. J Membr Biol 2024:10.1007/s00232-024-00331-2. [PMID: 39699641 DOI: 10.1007/s00232-024-00331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Protein nanopores are emerging as versatile single-molecule sensors with broad applications in DNA and protein sequencing. However, their narrow size restricts the range of detectable analytes, necessitating the development of advanced nanopores to broaden their applications in biotechnology. This review highlights a natural hetero-oligomeric porin, Nocardia farcinica porin AB (NfpAB), based on the Gram-positive mycolata, Nocardia farcinica. The pore comprises two subunits, NfpA and NfpB, that combine to form a stable structure with a unique pore geometry, asymmetrical shape, and charge distribution. Single-channel electrical recordings demonstrate that NfpAB forms stable, high-conductance channels suitable for sensing charged molecules, particularly cationic polypeptides and cyclic sugars. This pore offers advantages such as enhanced control over molecular interactions due to densely crowded charged residues, thus allowing the quantification of voltage-dependent translocation kinetics. Notably, NfpAB contains intrinsic cysteines in the pore lumen, providing an accessible site for thiol-based reactions and attachment of molecular adapters. We propose that such hetero-oligomeric pores will be effective for several applications in nanopore technology for biomolecular detection and sequencing.
Collapse
Affiliation(s)
- Remya Satheesan
- Membrane Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Research Program, Thiruvananthapuram, 695014, India
| | - Asuma Janeena
- Membrane Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Research Program, Thiruvananthapuram, 695014, India
| | - Kozhinjampara R Mahendran
- Membrane Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Research Program, Thiruvananthapuram, 695014, India.
| |
Collapse
|
3
|
da Costa RHS, Pessoa RT, Silva EDS, Araujo IM, Gonçalves SA, Rocha JE, Pereira Junior FN, Oliveira NC, de Oliveira VM, da Rocha MN, Marinho ES, Kelly Gomes de Carvalho N, Galberto Martins da Costa J, dos Santos HS, de Menezes IRA. Antibacterial and Inhibitory Activity of Nora and Mepa Efflux Pumps of Estragole Complexed to β-Cyclodextrin (ES/β-CD) In Vitro Against Staphylococcus aureus Bacteria, Molecular Docking and MPO-Based Pharmacokinetics Prediction. Pharmaceutics 2024; 16:1469. [PMID: 39598592 PMCID: PMC11597315 DOI: 10.3390/pharmaceutics16111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The work investigates the effect of the estragole complex encapsulated in beta-cyclodextrin (ES/β-CD) in modulating bacterial resistance, specifically in Staphylococcus aureus strains expressing NorA and MepA efflux pumps. Efflux pumps are mechanisms that bacteria use to resist antibiotics by expelling them from the cell. Methodology: Several compounds and antibiotics, such as ciprofloxacin and norfloxacin, were used to evaluate the antimicrobial activity and the ability of the ES/β-CD complex to reverse resistance. Methods: The study included scanning electron microscopy assays, minimum inhibitory concentration (MIC) determination, and efflux pump inhibition tests. Results: The ES/β-CD complex did not show significant direct antibacterial activity. However, it modulated the action of norfloxacin, decreasing the MIC when combined with this antibiotic in the 1199B (NorA) strain. These results suggest a potential for synergy but not a direct inhibition of efflux pumps. Conclusion: ES/β-CD can potentiate the efficacy of some antibiotics but does not directly act as an efflux pump inhibitor; it is more of an antibiotic potentiator than a direct solution to bacterial resistance. The molecular docking simulation data suggest its high affinity for forming the ES/β-CD complex. The pharmacokinetic predictions based on MPO suggest that the compound has moderate lipophilicity, highly effective cellular permeability, and low incidence of organic toxicity, pointing to a promising pharmacological principle with controlled daily oral dosing. Conclusions: These results indicate this complex's possible and relevant association as an adjuvant in antibiotic therapy to reduce multidrug-resistant bacteria; however, new in vivo assays are necessary to confirm this effect.
Collapse
Affiliation(s)
- Roger Henrique Sousa da Costa
- Veterinary Medicine Course, Maurício de Nassau University Center, Juazeiro do Norte 63010-475, CE, Brazil;
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil; (R.T.P.); (E.d.S.S.)
| | - Renata Torres Pessoa
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil; (R.T.P.); (E.d.S.S.)
| | - Eduardo dos Santos Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil; (R.T.P.); (E.d.S.S.)
| | - Isaac Moura Araujo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil; (I.M.A.); (S.A.G.); (J.E.R.)
| | - Sheila Alves Gonçalves
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil; (I.M.A.); (S.A.G.); (J.E.R.)
| | - Janaína Esmeraldo Rocha
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil; (I.M.A.); (S.A.G.); (J.E.R.)
| | | | | | - Victor Moreira de Oliveira
- Program in Natural Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (V.M.d.O.); (M.N.d.R.); (E.S.M.)
| | - Matheus Nunes da Rocha
- Program in Natural Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (V.M.d.O.); (M.N.d.R.); (E.S.M.)
| | - Emmanuel Silva Marinho
- Program in Natural Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (V.M.d.O.); (M.N.d.R.); (E.S.M.)
| | - Natália Kelly Gomes de Carvalho
- Laboratory of Research and Natural Product (LPPN), Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil; (N.K.G.d.C.); (J.G.M.d.C.)
| | - José Galberto Martins da Costa
- Laboratory of Research and Natural Product (LPPN), Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil; (N.K.G.d.C.); (J.G.M.d.C.)
| | - Hélcio Silva dos Santos
- Center for Exact Sciences and Technology, Vale do Acaraú University, Sobral 62040-370, CE, Brazil
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil; (R.T.P.); (E.d.S.S.)
| |
Collapse
|
4
|
Wei X, Choudhary A, Wang LY, Yang L, Uline MJ, Tagliazucchi M, Wang Q, Bedrov D, Liu C. Single-molecule profiling of per- and polyfluoroalkyl substances by cyclodextrin mediated host-guest interactions within a biological nanopore. SCIENCE ADVANCES 2024; 10:eadp8134. [PMID: 39504365 PMCID: PMC11540018 DOI: 10.1126/sciadv.adp8134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Biological nanopores are increasingly used in molecular sensing due to their single-molecule sensitivity. The detection of per- and polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid and perfluorooctane sulfonic acid is critical due to their environmental prevalence and toxicity. Here, we investigate selective interactions between PFAS and four cyclodextrin (CD) variants (α-, β-, γ-, and 2-hydroxypropyl-γ-CD) within an α-hemolysin nanopore. We demonstrate that PFAS molecules can be electrochemically sensed by interacting with a γ-CD in a nanopore. Using HP-γ-CDs with increased steric resistance, we can identify homologs of the perfluoroalkyl carboxylic acid and the perfluoroalkyl sulfonic acid families and detect common PFAS in drinking water at 0.4 to 2 parts per million levels, which are further lowered to 400 parts per trillion by sample preconcentration. Molecular dynamics simulations reveal the underlying chemical mechanism of PFAS-CD interactions. These insights pave the way toward nanopore-based in situ detection with promises in environmental protection against PFAS pollution.
Collapse
Affiliation(s)
- Xiaojun Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Aditya Choudhary
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Leon Y. Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Lixing Yang
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark J. Uline
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Mario Tagliazucchi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Quimica de los Materiales, Ambiente y Energia (INQUIMAE), C1428 Ciudad Autonoma de Buenos Aires, Argentina
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Chang Liu
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
5
|
Reany O, Romero-Ruiz M, Khurana R, Mondal P, Keinan E, Bayley H. Stochastic Sensing of Chloride Anions Using an α-Hemolysin Pore with a semiaza-Bambusuril Adapter. Angew Chem Int Ed Engl 2024; 63:e202406719. [PMID: 38850111 DOI: 10.1002/anie.202406719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Pores containing molecular adapters provide internal selective binding sites, thereby allowing the stochastic sensing of analytes. Herein, we demonstrate that semiaza-bambusuril (BU) acts as a non-covalent molecular adapter when lodged within the lumen of the wild-type α-hemolysin (WT-αHL) protein pore. Because the bambusurils are recognized as anion receptors, the anion binding site within the adapter-nanopore complex allows the detection of chloride anions, thus converting a non-selective pore into an anion sensor.
Collapse
Affiliation(s)
- Ofer Reany
- Department of Natural Sciences, The Open University of Israel, 1 University Road, Ra'anana, 4353701, Israel
| | - Mercedes Romero-Ruiz
- Department of Natural Sciences, The Open University of Israel, 1 University Road, Ra'anana, 4353701, Israel
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Raman Khurana
- Department of Natural Sciences, The Open University of Israel, 1 University Road, Ra'anana, 4353701, Israel
| | - Pravat Mondal
- Department of Natural Sciences, The Open University of Israel, 1 University Road, Ra'anana, 4353701, Israel
| | - Ehud Keinan
- The Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200001, Israel
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
6
|
Li X, Jin Z, Bai Y, Svensson B. Progress in cyclodextrins as important molecules regulating catalytic processes of glycoside hydrolases. Biotechnol Adv 2024; 72:108326. [PMID: 38382582 DOI: 10.1016/j.biotechadv.2024.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Cyclodextrins (CDs) are important starch derivatives and commonly comprise α-, β-, and γ-CDs. Their hydrophilic surface and hydrophobic inner cavity enable regulation of enzyme catalysis through direct or indirect interactions. Clarifying interactions between CDs and enzyme is of great value for enzyme screening, mechanism exploration, regulation of catalysis, and applications. We summarize the interactions between CDs and glycoside hydrolases (GHs) according to two aspects: 1) CD as products, substrates, inhibitors and activators of enzymes, directly affecting the reaction process; 2) CDs indirectly affecting the enzymatic reaction by solubilizing substrates, relieving substrate/product inhibition, increasing recombinant enzyme production and storage stability, isolating and purifying enzymes, and serving as ligands in crystal structure to identify functional amino acid residues. Additionally, CD enzyme mimetics are developed and used as catalysts in traditional artificial enzymes as well as nanozymes, making the application of CDs no longer limited to GHs. This review concerns the regulation of GHs catalysis by CDs, and gives insights into research on interactions between enzymes and ligands.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
7
|
Satheesan R, Vikraman D, Jayan P, Vijayan V, Chimerel C, Mahendran KR. Sensing PEGylated Peptide Conformations Using a Protein Nanopore. NANO LETTERS 2024; 24:3566-3574. [PMID: 38316144 DOI: 10.1021/acs.nanolett.3c03247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Membrane pores are exploited for the stochastic sensing of various analytes, and here, we use electrical recordings to explore the interaction of PEGylated peptides of different sizes with a protein pore, CymA. This wide-diameter natural pore comprises densely filled charged residues, facilitating electrophoretic binding of polyethylene glycol (PEG) tagged with a nonaarginine peptide. The small PEG 200 peptide conjugates produced monodisperse blockages and exhibited voltage-dependent translocation across the pores. Notably, the larger PEG 1000 and 2000 peptide conjugates yielded heterogeneous blockages, indicating a multitude of PEG conformations hindering their translocation through the pore. Furthermore, a much larger PEG 5000 peptide occludes the pore entrance, resulting in complete closure. The competitive binding of different PEGylated peptides with the same pore produced specific blockage signals reflecting their identity, size, and conformation. Our proposed model of sensing distinct polypeptide conformations corresponds to disordered protein unfolding, suggesting that this pore can find applications in proteomics.
Collapse
Affiliation(s)
- Remya Satheesan
- Membrane Biology Laboratory, Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Devika Vikraman
- Membrane Biology Laboratory, Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Parvathy Jayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Kerala 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Kerala 695551, India
| | - Catalin Chimerel
- Automation Department, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, Brasov 500036, Romania
| | - Kozhinjampara R Mahendran
- Membrane Biology Laboratory, Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| |
Collapse
|
8
|
Zhao Y, Su Z, Zhang X, Wu D, Wu Y, Li G. Recent advances in nanopore-based analysis for carbohydrates and glycoconjugates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1454-1467. [PMID: 38415741 DOI: 10.1039/d3ay02040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Saccharides are not only the basic constituents and nutrients of living organisms, but also participate in various life activities, and play important roles in cell recognition, immune regulation, development, cancer, etc. The analysis of carbohydrates and glycoconjugates is a necessary means to study their transformations and physiological roles in living organisms. Existing detection techniques can hardly meet the requirements for the analysis of carbohydrates and glycoconjugates in complex matrices as they are expensive, involve complex derivatization, and are time-consuming. Nanopore sensing technology, which is amplification-free and label-free, and is a high-throughput process, provides a new solution for the identification and sequencing of carbohydrates and glycoconjugates. This review highlights recent advances in novel nanopore-based single-molecule sensing technologies for the detection of carbohydrates and glycoconjugates and discusses the advantages and challenges of nanopore sensing technologies. Finally, current issues and future perspectives are discussed with the aim of improving the performance of nanopores in complex media diagnostic applications, as well as providing a new direction for the quantification of glycan chains and the study of glycan chain properties and functions.
Collapse
Affiliation(s)
- Yan Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Zhuoqun Su
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xue Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
9
|
Xia B, Fang J, Ma S, Ma M, Yao G, Li T, Cheng X, Wen L, Gao Z. Mapping the Acetylamino and Carboxyl Groups on Glycans by Engineered α-Hemolysin Nanopores. J Am Chem Soc 2023; 145:18812-18824. [PMID: 37527445 DOI: 10.1021/jacs.3c03563] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Glycan is a crucial class of biological macromolecules with important biological functions. Functional groups determine the chemical properties of glycans, which further affect their biological activities. However, the structural complexity of glycans has set a technical hurdle for their direct identification. Nanopores have emerged as highly sensitive biosensors that are capable of detecting and characterizing various analytes. Here, we identified the functional groups on glycans with a designed α-hemolysin nanopore containing arginine mutations (M113R), which is specifically sensitive to glycans with acetamido and carboxyl groups. Molecular dynamics simulations indicated that the acetamido and carboxyl groups of the glycans produce unique electrical signatures by forming polar and electrostatic interactions with the M113R nanopores. Using these electrical features as the fingerprints, we mapped the length of the glycans containing acetamido and carboxyl groups at the monosaccharide, disaccharide, and trisaccharide levels. This proof-of-concept study provides a promising foundation for developing single-molecule glycan fingerprinting libraries and demonstrates the capability of biological nanopores in glycan sequencing.
Collapse
Affiliation(s)
- Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jie Fang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Shengzhou Ma
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengyao Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Guangda Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Lingang Laboratory, School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China
| | - Tiehai Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, China
| | - Liuqing Wen
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| |
Collapse
|
10
|
Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022; 14:pharmaceutics14122559. [PMID: 36559052 PMCID: PMC9788615 DOI: 10.3390/pharmaceutics14122559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.
Collapse
Affiliation(s)
- Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
11
|
Vikraman D, Satheesan R, Rajendran M, Kumar NA, Johnson JB, R SK, Mahendran KR. Selective Translocation of Cyclic Sugars through Dynamic Bacterial Transporter. ACS Sens 2022; 7:1766-1776. [PMID: 35671512 DOI: 10.1021/acssensors.2c00943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The selective translocation of molecules through membrane pores is an integral process in cells. We present a bacterial sugar transporter, CymA of unusual structural conformation due to a dynamic N terminus segment in the pore, reducing its diameter. We quantified the translocation kinetics of various cyclic sugars of different charge, size, and symmetry across native and truncated CymA devoid of the N terminus using single-channel recordings. The chemically divergent cyclic hexasaccharides bind to the native and truncated pore with high affinity and translocate effectively. Specifically, these sugars bind and translocate rapidly through truncated CymA compared to native CymA. In contrast, larger cyclic heptasaccharides and octasaccharides do not translocate but bind to native and truncated CymA with distinct binding kinetics highlighting the importance of molecular charge, size and symmetry in translocation consistent with liposome assays. Based on the sugar-binding kinetics, we suggest that the N terminus most likely resides inside the native CymA barrel, regulating the transport rate of cyclic sugars. Finally, we present native CymA as a large nanopore sensor for the simultaneous single-molecule detection of various sugars at high resolution, establishing its functional versatility. This natural pore is expected to have several applications in nanobiotechnology and will help further our understanding of the fundamental mechanism of molecular transport.
Collapse
Affiliation(s)
- Devika Vikraman
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Remya Satheesan
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Mangaiyarkarasi Rajendran
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Nisha Asok Kumar
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.,Pathogen Biology, Virology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
| | - John Bernet Johnson
- Pathogen Biology, Virology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
| | - Smrithi Krishnan R
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kozhinjampara R Mahendran
- Membrane Biology Laboratory, Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| |
Collapse
|
12
|
PCA-MutPred: Prediction of binding free energy change upon missense mutation in protein-carbohydrate complexes. J Mol Biol 2022; 434:167526. [DOI: 10.1016/j.jmb.2022.167526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
|
13
|
Cairns-Gibson DF, Cockroft SL. Functionalised nanopores: chemical and biological modifications. Chem Sci 2022; 13:1869-1882. [PMID: 35308845 PMCID: PMC8848921 DOI: 10.1039/d1sc05766a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Nanopore technology has established itself as a powerful tool for single-molecule studies. By analysing changes in the ion current flowing through a single transmembrane channel, a wealth of molecular information can be elucidated. Early studies utilised nanopore technology for sensing applications, and subsequent developments have diversified its remit. Nanopores can be synthetic, solid-state, or biological in origin, but recent work has seen these boundaries blurred as hybrid functionalised pores emerge. The modification of existing pores and the construction of novel synthetic pores has been an enticing goal for creating systems with tailored properties and functionality. Here, we explore chemically functionalised biological pores and the bio-inspired functionalisation of solid-state pores, highlighting how the convergence of these domains provides enhanced functionality. The convergence of chemistry, biology, and solid-state approaches enables the construction hybrid nanopores with enhanced single-molecule applications.![]()
Collapse
Affiliation(s)
- Dominic F. Cairns-Gibson
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
14
|
Leptidis S, Papakonstantinou E, Diakou KI, Pierouli K, Mitsis T, Dragoumani K, Bacopoulou F, Sanoudou D, Chrousos GP, Vlachakis D. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med 2022; 49:9. [PMID: 34791505 PMCID: PMC8651226 DOI: 10.3892/ijmm.2021.5064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
RNA modifications have recently become the focus of attention due to their extensive regulatory effects in a vast array of cellular networks and signaling pathways. Just as epigenetics is responsible for the imprinting of environmental conditions on a genetic level, epitranscriptomics follows the same principle at the RNA level, but in a more dynamic and sensitive manner. Nevertheless, its impact in the field of cardiovascular disease (CVD) remains largely unexplored. CVD and its associated pathologies remain the leading cause of death in Western populations due to the limited regenerative capacity of the heart. As such, maintenance of cardiac homeostasis is paramount for its physiological function and its capacity to respond to environmental stimuli. In this context, epitranscriptomic modifications offer a novel and promising therapeutic avenue, based on the fine‑tuning of regulatory cascades, necessary for cardiac function. This review aimed to provide an overview of the most recent findings of key epitranscriptomic modifications in both coding and non‑coding RNAs. Additionally, the methods used for their detection and important associations with genetic variations in the context of CVD were summarized. Current knowledge on cardiac epitranscriptomics, albeit limited still, indicates that the impact of epitranscriptomic editing in the heart, in both physiological and pathological conditions, holds untapped potential for the development of novel targeted therapeutic approaches in a dynamic manner.
Collapse
Affiliation(s)
- Stefanos Leptidis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Kalliopi Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Flora Bacopoulou
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Fourth Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, 'Attikon' Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P. Chrousos
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- Laboratory of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, Medical School, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
15
|
Kovacs T, Sohajda T, Szente L, Nagy P, Panyi G, Varga Z, Zakany F. Cyclodextrins Exert a Ligand-like Current Inhibitory Effect on the K V1.3 Ion Channel Independent of Membrane Cholesterol Extraction. Front Mol Biosci 2021; 8:735357. [PMID: 34805269 PMCID: PMC8599428 DOI: 10.3389/fmolb.2021.735357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides capable of forming water-soluble complexes with a variety of otherwise poorly soluble molecules including cholesterol and different drugs. Consistently, CDs are widely used in research and clinical practice to deplete cholesterol from cellular membranes or to increase solubility and bioavailability of different pharmaceuticals at local concentrations in the millimolar range. Effects of CDs exerted on cellular functions are generally thought to originate from reductions in cholesterol levels. Potential direct, ligand-like CD effects are largely neglected in spite of several recent studies reporting direct interaction between CDs and proteins including AMP-activated protein kinase, β-amyloid peptides, and α-synuclein. In this study, by using patch-clamp technique, time-resolved quantitation of cholesterol levels and biophysical parameters and applying cholesterol-extracting and non-cholesterol-extracting CDs at 1 and 5 mM concentrations, we provide evidence for a previously unexplored ligand-like, cholesterol-independent current inhibitory effect of CDs on KV1.3, a prototypical voltage-gated potassium channel with pathophysiological relevance in various autoimmune and neurodegenerative disorders. Our findings propose that potential direct CD effects on KV channels should be taken into consideration when interpreting functional consequences of CD treatments in both research and clinical practice. Furthermore, current-blocking effects of CDs on KV channels at therapeutically relevant concentrations might contribute to additional beneficial or adverse effects during their therapeutic applications.
Collapse
Affiliation(s)
- Tamas Kovacs
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Sohajda
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Peter Nagy
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Ma Q, Cong W, Liu Y, Geng Z, Lin Y, Wang Z. Experimental and computational study on the enantioseparation of four chiral fluoroquinolones by capillary electrophoresis with sulfated-β-cyclodextrin as chiral selector. Chirality 2021; 33:549-557. [PMID: 34275169 DOI: 10.1002/chir.23340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/09/2021] [Accepted: 07/06/2021] [Indexed: 11/10/2022]
Abstract
In this work, enantioseparation of four chiral fluoroquinolones (FQs), namely, ofloxacin, gemifloxacin, lomefloxacin, and gatifloxacin, was achieved by capillary electrophoresis with sulfated-β-cyclodextrin (S-β-CD) as chiral selector. Factors affecting the enantiomeric resolution, such as the concentrations of S-β-CD, BGE pH conditions, and the buffer types and concentrations, were optimized and discussed. A BGE consisting of 30 g/L S-β-CD and 30-mM phosphate at pH 4.0 was found fit for enantiomeric resolution of ofloxacin and gemifloxacin, while the same BGE at pH 3.0 was suitable for enantioseparation of lomefloxacin and gatifloxacin. The pH-dependent experiments showed that separation resolutions of four FQs enantiomers were significantly affected by BGE pH, which was thought to be related with the varying electrostatic attraction between the enantiomers and chiral selector. To verify this speculation, molecular docking studies were used for further investigation of the enantiomeric recognition mechanism of S-β-CD. Molecular model indicated that hydrophobic effect and hydrogen bond were involved in host-guest inclusion, but the electrostatic attraction enhanced the chiral discrimination by increasing the difference in binding energy between individual enantiomers and S-β-CD. This work provided a further insight into the chiral recognition mechanisms of CD derivatives.
Collapse
Affiliation(s)
- Qianyun Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wei Cong
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ye Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zikai Geng
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ying Lin
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhaokun Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
17
|
Li Y, Li Y, Mengist HM, Shi C, Zhang C, Wang B, Li T, Huang Y, Xu Y, Jin T. Structural Basis of the Pore-Forming Toxin/Membrane Interaction. Toxins (Basel) 2021; 13:toxins13020128. [PMID: 33572271 PMCID: PMC7914777 DOI: 10.3390/toxins13020128] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
With the rapid growth of antibiotic-resistant bacteria, it is urgent to develop alternative therapeutic strategies. Pore-forming toxins (PFTs) belong to the largest family of virulence factors of many pathogenic bacteria and constitute the most characterized classes of pore-forming proteins (PFPs). Recent studies revealed the structural basis of several PFTs, both as soluble monomers, and transmembrane oligomers. Upon interacting with host cells, the soluble monomer of bacterial PFTs assembles into transmembrane oligomeric complexes that insert into membranes and affect target cell-membrane permeability, leading to diverse cellular responses and outcomes. Herein we have reviewed the structural basis of pore formation and interaction of PFTs with the host cell membrane, which could add valuable contributions in comprehensive understanding of PFTs and searching for novel therapeutic strategies targeting PFTs and interaction with host receptors in the fight of bacterial antibiotic-resistance.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Yuelong Li
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China; (Y.L.); (H.M.M.); (C.Z.)
| | - Hylemariam Mihiretie Mengist
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China; (Y.L.); (H.M.M.); (C.Z.)
| | - Cuixiao Shi
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Caiying Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China; (Y.L.); (H.M.M.); (C.Z.)
| | - Bo Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Tingting Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Ying Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Yuanhong Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
- Correspondence: (Y.X.); (T.J.); Tel.: +86-13505694447 (Y.X.); +86-17605607323 (T.J.)
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China; (Y.L.); (H.M.M.); (C.Z.)
- Correspondence: (Y.X.); (T.J.); Tel.: +86-13505694447 (Y.X.); +86-17605607323 (T.J.)
| |
Collapse
|
18
|
Crnković A, Srnko M, Anderluh G. Biological Nanopores: Engineering on Demand. Life (Basel) 2021; 11:life11010027. [PMID: 33466427 PMCID: PMC7824896 DOI: 10.3390/life11010027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Nanopore-based sensing is a powerful technique for the detection of diverse organic and inorganic molecules, long-read sequencing of nucleic acids, and single-molecule analyses of enzymatic reactions. Selected from natural sources, protein-based nanopores enable rapid, label-free detection of analytes. Furthermore, these proteins are easy to produce, form pores with defined sizes, and can be easily manipulated with standard molecular biology techniques. The range of possible analytes can be extended by using externally added adapter molecules. Here, we provide an overview of current nanopore applications with a focus on engineering strategies and solutions.
Collapse
|
19
|
Anreiter I, Mir Q, Simpson JT, Janga SC, Soller M. New Twists in Detecting mRNA Modification Dynamics. Trends Biotechnol 2021; 39:72-89. [PMID: 32620324 PMCID: PMC7326690 DOI: 10.1016/j.tibtech.2020.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
Modified nucleotides in mRNA are an essential addition to the standard genetic code of four nucleotides in animals, plants, and their viruses. The emerging field of epitranscriptomics examines nucleotide modifications in mRNA and their impact on gene expression. The low abundance of nucleotide modifications and technical limitations, however, have hampered systematic analysis of their occurrence and functions. Selective chemical and immunological identification of modified nucleotides has revealed global candidate topology maps for many modifications in mRNA, but further technical advances to increase confidence will be necessary. Single-molecule sequencing introduced by Oxford Nanopore now promises to overcome such limitations, and we summarize current progress with a particular focus on the bioinformatic challenges of this novel sequencing technology.
Collapse
Affiliation(s)
- Ina Anreiter
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Quoseena Mir
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jared T Simpson
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Sarath C Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Medical Research and Library Building, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, 5021 Health Information and Translational Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
20
|
Wang Y, Zhang Y, Chen X, Guan X, Wang L. Analysis with biological nanopore: On-pore, off-pore strategies and application in biological fluids. Talanta 2020; 223:121684. [PMID: 33303138 DOI: 10.1016/j.talanta.2020.121684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Inspired from ion channels in biology, nanopores have been developed as promising analytical tools. In principle, nanopores provide crucial information from the observation and analysis of ionic current modulations caused by the interaction between target analytes and fluidic pores. In this respect, the biological, chemical and physical parameters of the nanopore regime need to be well-understood and regulated for intermolecular interaction. Because of well-defined molecular structures, biological nanopores consequently are of a focal point, allowing precise interaction analysis at single-molecule level. In this overview, two analytical strategies are summarized and discussed accordingly, upon the challenges arising in case-dependent analysis using biological nanopores. One kind of strategies relies on modification, functionalization and engineering on nanopore confined interface to improve molecular recognition sites (on-pore strategies); The other kind of highlighted strategies concerns to measurement of various chemistry/biochemistry based interactions triggered by employed molecular agents or probes (off-pore strategies). In particularly, a few recent paradigms using these strategies for practical application of accurate analysis of biomarkers in biological fluids are illustrated. To end, the challenging and future outlook of using analytical tools by means of biological nanopores are depicted.
Collapse
Affiliation(s)
- Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
21
|
Li M, Rauf A, Guo Y, Kang X. Real-Time Label-Free Kinetics Monitoring of Trypsin-Catalyzed Ester Hydrolysis by a Nanopore Sensor. ACS Sens 2019; 4:2854-2857. [PMID: 31684727 DOI: 10.1021/acssensors.9b01783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Trypsin is an important proteolytic enzyme in the digestive system and its activity is a major indicator for evaluating diseases such as chronic pancreatitis. Here, we present a novel label-free method to detect trypsin kinetics using a nanopore technique. A mutant α-hemolysin (M113R)7 protein nanopore equipped with a polyamine decorated β-cyclodextrin (am7β-CD) was employed as a sensing platform for the real-time monitoring of the process of trypsin enzymatic cleavage of a substrate Nα-benzoyl-l-arginine ethyl ester (BAEE) at the single molecule level. Significantly, this sensor can exclusively respond to the current modulation caused by the product and prevent interference from the substrate, thus improving detection sensitivity, and it provides a new scheme to detect enzyme activity for cleaving small molecules.
Collapse
Affiliation(s)
- Mingjuan Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Ayesha Rauf
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Yanli Guo
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Xiaofeng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| |
Collapse
|
22
|
Wilson JW, Rolland AD, Klausen GM, Prell JS. Ion Mobility-Mass Spectrometry Reveals That α-Hemolysin from Staphylococcus aureus Simultaneously Forms Hexameric and Heptameric Complexes in Detergent Micelle Solutions. Anal Chem 2019; 91:10204-10211. [PMID: 31282652 DOI: 10.1021/acs.analchem.9b02243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many soluble and membrane proteins form symmetrical homooligomeric complexes. However, determining the oligomeric state of protein complexes can be difficult. Alpha-hemolysin (αHL) from Staphylococcus aureus is a symmetrical homooligomeric protein toxin that forms transmembrane β-barrel pores in host cell membranes. The stable pore structure of αHL has also been exploited in vitro as a nanopore tool. Early structural experiments suggested αHL forms a hexameric pore, while more recent X-ray crystal structure and solution studies have identified a heptameric pore structure. Here, using native ion mobility-mass spectrometry (IM-MS) we find that αHL simultaneously forms hexameric and heptameric oligomers in both tetraethylene glycol monooctyl ether (C8E4) and tetradecylphosphocholine (FOS-14) detergent solutions. We also analyze intact detergent micelle-embedded αHL porelike complexes by native IM-MS without the need to fully strip the detergent micelle, which can cause significant gas-phase unfolding. The highly congested native mass spectra are deconvolved using Fourier- and Gábor-transform (FT and GT) methods to determine charge states and detergent stoichiometry distributions. The intact αHL micelle complexes are found to contain oligomeric state-proportional numbers of detergent molecules. This evidence, combined with IM data and results from vacuum molecular dynamics simulations, is consistent with both the hexamer and the heptamer forming porelike complexes. The ability of αHL to form both oligomeric states simultaneously has implications for its use as a nanopore tool and its pore formation mechanism in vivo. This study also demonstrates more generally the power of FT and GT to deconvolve the charge state and stoichiometry distributions of polydisperse ions.
Collapse
Affiliation(s)
- Jesse W Wilson
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403-1253 , United States
| | - Amber D Rolland
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403-1253 , United States
| | - Grant M Klausen
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403-1253 , United States
| | - James S Prell
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403-1253 , United States.,Materials Science Institute , University of Oregon , 1252 University of Oregon , Eugene , Oregon 97403-1252 , United States
| |
Collapse
|
23
|
Borsley S, Haugland MM, Oldknow S, Cooper JA, Burke MJ, Scott A, Grantham W, Vallejo J, Brechin EK, Lusby PJ, Cockroft SL. Electrostatic Forces in Field-Perturbed Equilibria: Nanopore Analysis of Cage Complexes. Chem 2019. [DOI: 10.1016/j.chempr.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Wang J, Bafna JA, Bhamidimarri SP, Winterhalter M. Permeation von kleinen Molekülen durch Membrankanäle: Chemische Modifikation zur Quantifizierung des Transports über OmpF. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiajun Wang
- Department of Life Sciences und Chemistry Jacobs University Campus Ring 1 28759 Bremen Deutschland
| | - Jayesh Arun Bafna
- Department of Life Sciences und Chemistry Jacobs University Campus Ring 1 28759 Bremen Deutschland
| | | | - Mathias Winterhalter
- Department of Life Sciences und Chemistry Jacobs University Campus Ring 1 28759 Bremen Deutschland
| |
Collapse
|
25
|
Wang J, Bafna JA, Bhamidimarri SP, Winterhalter M. Small‐Molecule Permeation across Membrane Channels: Chemical Modification to Quantify Transport across OmpF. Angew Chem Int Ed Engl 2019; 58:4737-4741. [DOI: 10.1002/anie.201814489] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Jiajun Wang
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Jayesh Arun Bafna
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| |
Collapse
|
26
|
Cova TF, Milne BF, Pais AA. Host flexibility and space filling in supramolecular complexation of cyclodextrins: A free-energy-oriented approach. Carbohydr Polym 2019; 205:42-54. [DOI: 10.1016/j.carbpol.2018.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022]
|
27
|
Wang J, Yang J, Ying YL, Long YT. Nanopore-Based Confined Spaces for Single-Molecular Analysis. Chem Asian J 2019; 14:389-397. [PMID: 30548206 DOI: 10.1002/asia.201801648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/09/2018] [Indexed: 11/07/2022]
Abstract
The field of nanopore sensing at the single-molecular level is in a "boom" period. Such nanopores, which are either composed of biological materials or are fabricated from solid-state substrates, offer a unique confined space that is compatible with the single-molecular scale. Under the influence of an electrical field, such single-biomolecular interfaces can read single-molecular information and, if appropriately fine-tuned, each molecule plays its individual ionic rhythm to compose a "molecular symphony". Over the past few decades, many research groups have worked on nanopore-based single-molecular sensors for a range of thrilling chemical and clinical applications. Furthermore, for the past decade, we have also focused on nanopore-based sensors. In this Minireview, we summarize the recent developments in fundamental research and applications in this area, along with data algorithms and advances in hardware, which act as infrastructure for the electrochemical analysis.
Collapse
Affiliation(s)
- Jiajun Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jie Yang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
28
|
Chen X, Zhang Y, Roozbahani GM, Guan X. Salt-Mediated Nanopore Detection of ADAM-17. ACS APPLIED BIO MATERIALS 2018; 2:504-509. [PMID: 32529174 DOI: 10.1021/acsabm.8b00689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ADAM-17 (a disintegrin and metalloproteinase 17) plays an important role in various physiological and pathophysiological processes. Overexpression/underexpression of ADAM-17 could lead to various diseases. In this work, by taking advantage of ionic strength and salt gradient, and monitoring the cleavage of a substrate peptide by ADAM-17 in a nanopore, we developed a label-free sensor for the rapid detection of ADAM-17. The sensor was highly sensitive and selective: picomolar concentrations of ADAM-17 could be detected within minutes, while structure similar proteases such as ADAM-9 and MMP-9 did not interfere with its detection. Our developed nanopore sensing strategy should find useful applications in the development of nanopore sensors for other proteases of biological, pharmaceutical, and medical importance.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | | | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
29
|
Eskandani Z, Le Gall T, Montier T, Lehn P, Montel F, Auvray L, Huin C, Guégan P. Polynucleotide transport through lipid membrane in the presence of starburst cyclodextrin-based poly(ethylene glycol)s. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:132. [PMID: 30426391 DOI: 10.1140/epje/i2018-11743-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
Symmetrical cyclodextrin-based 14-arm star polymers with poly(ethylene glycol) PEG branches were synthesized and characterized. Interactions of the star polymers with lipid bilayers were studied by the "black lipid membrane" technique in order to demonstrate the formation of monomolecular artificial channels. The conditions for the insertion are mainly based on dimensions and amphiphilic properties of the star polymers, in particular the molar mass of the water-soluble polymer branches. Translocation of single-strand DNA (ssDNA) through those synthetic nanopores was investigated, and the close dimension between the cross-section of ssDNA and the cyclodextrin cavity led to an energy barrier that slowed down the translocation process.
Collapse
Affiliation(s)
- Zahra Eskandani
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025, Evry, France
- LAMBE, Université Cergy-Pontoise, Université Paris-Seine, 91025, Evry, France
| | - Tony Le Gall
- INSERM UMR 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
- Plateforme SynNanoVect, Biogenouest, SFR 148 ScInBioS, Université de Bretagne Occidentale, Faculté de Médecine, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
| | - Tristan Montier
- INSERM UMR 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
- Plateforme SynNanoVect, Biogenouest, SFR 148 ScInBioS, Université de Bretagne Occidentale, Faculté de Médecine, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
- Laboratoire de génétique moléculaire et d'histocompatibilité, CHRU de Brest, 5 avenue du Maréchal Foch, 29609, Brest Cedex 3, France
- DUMG, Université de Bretagne Occidentale, Faculté de Médecine, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
| | - Pierre Lehn
- INSERM UMR 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
| | - Fabien Montel
- Matière et Systèmes Complexes, CNRS-UMR 7057, Université Paris-Diderot, 10 rue Alice Domon et Léonie Duquet, 75205, Paris cedex 13, France
| | - Loïc Auvray
- Matière et Systèmes Complexes, CNRS-UMR 7057, Université Paris-Diderot, 10 rue Alice Domon et Léonie Duquet, 75205, Paris cedex 13, France
| | - Cécile Huin
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025, Evry, France
- LAMBE, Université Cergy-Pontoise, Université Paris-Seine, 91025, Evry, France
| | - Philippe Guégan
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005, Paris, France.
| |
Collapse
|
30
|
Guo Y, Niu A, Jian F, Wang Y, Yao F, Wei Y, Tian L, Kang X. Metal-organic complex-functionalized protein nanopore sensor for aromatic amino acids chiral recognition. Analyst 2018; 142:1048-1053. [PMID: 28280809 DOI: 10.1039/c7an00097a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chiral recognition at single-molecule level for small active molecules is important, as exhibited by many nanostructures and molecular assemblies in biological systems, but it presents a significant challenge. We report a simple and rapid sensing strategy to discriminate all enantiomers of natural aromatic amino acids (AAA) using a metal-organic complex-functionalized protein nanopore, in which a chiral recognition element and a chiral recognition valve were equipped. A trifunctional molecule, heptakis-(6-deoxy-6-amino)-β-cyclodextrin (am7βCD), was non-covalently lodged within the nanopore of an α-hemolysin (αHL) mutant, (M113R)7-αHL. Copper(ii) ion reversibly bonds to the amino group of am7βCD to form an am7βCD-CuII complex, which allowed chiral recognition for each enantiomer in the mixture of AAA by distinct current signals. The CuII plugging valve plays a crucial rule that holds chiral molecules in the nanocavity for a sufficient registering time. Importantly, six enantiomers of all nature AAA could be simultaneously recognized at one time. Enantiomeric excess (ee) could also be accurately detected by this approach. It should be possible to generalize this approach for sensing of other chiral molecules.
Collapse
Affiliation(s)
- Yanli Guo
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Aihua Niu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Feifei Jian
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Ying Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Yongfeng Wei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Lei Tian
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Xiaofeng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| |
Collapse
|
31
|
Al-Shar’i NA, Obaidat RM. Experimental and Computational Comparative Study of the Supercritical Fluid Technology (SFT) and Kneading Method in Preparing β-Cyclodextrin Complexes with Two Essential Oils (Linalool and Carvacrol). AAPS PharmSciTech 2018; 19:1037-1047. [PMID: 29134578 DOI: 10.1208/s12249-017-0915-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/23/2017] [Indexed: 01/24/2023] Open
Abstract
Supercritical fluid technology (SFT) offers many advantages as a potential complexation method compared to the conventional kneading technique. Its applicability to processess in which solvents are not required is a significant benefit. The main aim of this study was to evaluate, experimentally and computationally, the applicability of SFT in the preparation of β-cyclodextrin complexes with two selected essential oils, namely, carvacrol and linalool. Preparation of the complexes was performed using kneading and SFT method. Several methods were used in the solid-state characterization. These include thermal analysis, powder X-ray diffraction, Fourier transform infrared spectroscopy, and solid-state nuclear magnetic resonance. Besides, molecular dynamics simulations of all studied systems were conducted in order to have a deeper and a detailed insight, at the atomic level, of the nature of the two used techniques. Despite all the advantages of SFT, better results of guest molecule entrapment inside β-cyclodextrin were obtained with the kneading method. The percentages of oil content for linalool samples were 70 ± 14 and 84 ± 9% for SFT and kneading method, respectively, while the drug content values for carvacrol samples were 67 ± 15 and 81 ± 13% for SFT and kneading method, respectively. Interestingly, simulation results were in perfect agreement with the experimental ones and, moreover, they provided a plausible explanation for the obtained results. In conclusion, our results showed that the SFT was unsuccessful in enhancing the stability of the studied complexes contrary to that of the conventational kneading method, and in both cases, molecular dynamics simulations correctly predicted the expected outcomes.
Collapse
|
32
|
Wang H, Ettedgui J, Forstater J, Robertson JWF, Reiner JE, Zhang H, Chen S, Kasianowicz JJ. Determining the Physical Properties of Molecules with Nanometer-Scale Pores. ACS Sens 2018; 3:251-263. [PMID: 29381331 DOI: 10.1021/acssensors.7b00680] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nanometer-scale pores have been developed for the detection, characterization, and quantification of a wide range of analytes (e.g., ions, polymers, proteins, anthrax toxins, neurotransmitters, and synthetic nanoparticles) and for DNA sequencing. We describe the key requirements that made this method possible and how the technique evolved. Finally, we show that, despite sound theoretical work, which advanced both the conceptual framework and quantitative capability of the method, there are still unresolved questions that need to be addressed to further improve the technique.
Collapse
Affiliation(s)
- Haiyan Wang
- National Institute
of Standards and Technology Physical Measurement Laboratory, Gaithersburg, Maryland 20899, United States
- Shenzhen
Key Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, 3688 Nanhai Road, Shenzhen 508060, China
| | - Jessica Ettedgui
- National Institute
of Standards and Technology Physical Measurement Laboratory, Gaithersburg, Maryland 20899, United States
- Department
of Chemical Engineering, Columbia University New York, New York 10027, United States
| | - Jacob Forstater
- National Institute
of Standards and Technology Physical Measurement Laboratory, Gaithersburg, Maryland 20899, United States
- Department
of Chemical Engineering, Columbia University New York, New York 10027, United States
| | - Joseph W. F. Robertson
- National Institute
of Standards and Technology Physical Measurement Laboratory, Gaithersburg, Maryland 20899, United States
| | - Joseph E. Reiner
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Huisheng Zhang
- Shenzhen
Key Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, 3688 Nanhai Road, Shenzhen 508060, China
| | - Siping Chen
- Shenzhen
Key Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, 3688 Nanhai Road, Shenzhen 508060, China
| | - John J. Kasianowicz
- National Institute
of Standards and Technology Physical Measurement Laboratory, Gaithersburg, Maryland 20899, United States
- Department
of Applied Physics Applied Mathematics, Columbia University New York, New York 10027, United States
| |
Collapse
|
33
|
Borsley S, Cockroft SL. In Situ Synthetic Functionalization of a Transmembrane Protein Nanopore. ACS NANO 2018; 12:786-794. [PMID: 29244946 DOI: 10.1021/acsnano.7b08105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Monitoring current flow through a single nanopore has proved to be a powerful technique for the in situ detection of molecular structure, binding, and reactivity. Transmembrane proteins, such as α-hemolysin, provide particularly attractive platforms for nanopore sensing applications due to their atomically precise structures. However, many nanopore applications require the introduction of functional groups to tune selectivity. To date, such modifications have required genetic modification of the protein prior to functionalization. Here we demonstrate the in situ synthetic modification of a wild-type α-hemolysin nanopore embedded in a membrane. We show that reversible dynamic covalent iminoboronate formation and the resulting changes in the ion current flowing through an individual nanopore can be used to map the reactive behavior of lysine residues within the nanopore channel. Crucially, the modification of lysine residues located outside the nanopore channel was found not to affect the stability or utility of the nanopore. Finally, knowledge of the reactivity patterns enabled the irreversible functionalization of a single, assignable lysine residue within the nanopore channel. The approach constitutes a simple, generic tool for the rapid, in situ synthetic modification of protein nanopores that circumvents the need for prior genetic modification.
Collapse
Affiliation(s)
- Stefan Borsley
- EaStCHEM School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
34
|
Roy P, Dinda AK, Chaudhury S, Dasgupta S. β-cyclodextrin encapsulated polyphenols as effective antioxidants. Biopolymers 2017; 109. [DOI: 10.1002/bip.23084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Pritam Roy
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Amit Kumar Dinda
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | | | - Swagata Dasgupta
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| |
Collapse
|
35
|
Campos EJ, Campos A, Martins J, Ambrósio AF. Opening eyes to nanomedicine: Where we are, challenges and expectations on nanotherapy for diabetic retinopathy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2101-2113. [PMID: 28428052 DOI: 10.1016/j.nano.2017.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 01/20/2023]
Abstract
People affected with ocular diseases will significantly increase over the next decades, and, consequently, a substantial increase in health costs is expected. Diabetic retinopathy is the most common chronic complication of diabetes. The treatment of eye diseases affecting the posterior segment, such as diabetic retinopathy, is quite challenging due to the anatomy, physiology and biochemistry of the eye. Therefore, the development of new therapeutics for posterior eye diseases has been a major focus of pharmaceutical research in the area of vision sciences. Several nanosystems already offer efficient solutions for ophthalmological conditions, targeting internal eye tissues, as the retina, and many novel products are expected to appear hereafter. This review provides an insight on nanoparticle-based solutions for therapies directed to posterior segment of the eye diseases, particularly diabetic retinopathy, the present scenario, and the demands and expectations for the future.
Collapse
Affiliation(s)
- Elisa J Campos
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.
| | - António Campos
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal; Department of Ophthalmology, Leiria Hospital, Leiria, Portugal
| | - João Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| |
Collapse
|
36
|
Zhang D, Liu J, Wang T, Sun L. Why does β-cyclodextrin prefer to bind nucleotides with an adenine base rather than other 2'-deoxyribonucleoside 5'-monophosphates? J Mol Model 2017; 23:149. [PMID: 28365823 DOI: 10.1007/s00894-017-3325-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/17/2017] [Indexed: 01/23/2023]
Abstract
β-Cyclodextrin (β-CD), which resides in the α-hemolysin (αHL) protein pore, can act as a molecular adapter in single-molecule exonuclease DNA sequencing approaches, where the different nucleotide binding behavior of β-CD is crucial for base discrimination. In the present contribution, the inclusion modes of β-CD towards four 2'-deoxyribonucleoside 5'-monophosphates (dNMPs) were investigated using quantum mechanics (QM) calculations. The calculated binding energy suggests that the binding affinity of dAMP to β-CD are highest among all the dNMPs in solution, in agreement with experimental results. Geometry analysis shows that β-CD in the dAMP complex undergoes a small conformational change, and weak interaction analysis indicates that there are small steric repulsion regions in β-CD. These results suggest that β-CD has lower geometric deformation energy in complexation with dAMP. Furthermore, topological analysis and weak interaction analysis suggest that the number and strength of intermolecular hydrogen bonds and van der Waals interactions are critical to dAMP binding, and they both make favorable contributions to the lower interaction energy. This work reveals the reason why β-CD prefers to bind dAMP rather than other dNMPs, while opening exciting perspectives for the design of novel β-CD-based molecular adapters in the single-molecule exonuclease method of sequencing DNA. Graphical Abstract The binding affinity of β-cyclodextrin towards four 2'-deoxyribonucleoside 5'-monophosphates was investigated using quantum mechanics calculations.
Collapse
Affiliation(s)
- Dongsheng Zhang
- College of Radiation, Taishan Medical University, Taian, 271016, People's Republic of China
| | - Jingjing Liu
- College of Chemistry and Chemical Engineering, Taishan University, Taian, 271021, People's Republic of China
| | - Teng Wang
- College of Chemistry and Pharmaceutical Engineering, Taishan Medical University, Taian, 271016, People's Republic of China.
| | - Liping Sun
- College of Chemistry and Pharmaceutical Engineering, Taishan Medical University, Taian, 271016, People's Republic of China
| |
Collapse
|
37
|
Luccarelli J, Jones IM, Thompson S, Hamilton AD. Unpicking the determinants of amide NH⋯OC hydrogen bond strength with diphenylacetylene molecular balances. Org Biomol Chem 2017; 15:9156-9163. [DOI: 10.1039/c7ob02026k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereoelectronic properties affecting hydrogen bond strength are investigated with a series of diphenylacetylene-based molecular balances.
Collapse
Affiliation(s)
| | - Ian M. Jones
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
- Department of Chemistry
| | - Sam Thompson
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
- Chemistry
| | - Andrew D. Hamilton
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
- Department of Chemistry
| |
Collapse
|
38
|
Mahendran KR, Niitsu A, Kong L, Thomson AR, Sessions RB, Woolfson DN, Bayley H. A monodisperse transmembrane α-helical peptide barrel. Nat Chem 2016; 9:411-419. [PMID: 28430192 DOI: 10.1038/nchem.2647] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Abstract
The fabrication of monodisperse transmembrane barrels formed from short synthetic peptides has not been demonstrated previously. This is in part because of the complexity of the interactions between peptides and lipids within the hydrophobic environment of a membrane. Here we report the formation of a transmembrane pore through the self-assembly of 35 amino acid α-helical peptides. The design of the peptides is based on the C-terminal D4 domain of the Escherichia coli polysaccharide transporter Wza. By using single-channel current recording, we define discrete assembly intermediates and show that the pore is most probably a helix barrel that contains eight D4 peptides arranged in parallel. We also show that the peptide pore is functional and capable of conducting ions and binding blockers. Such α-helix barrels engineered from peptides could find applications in nanopore technologies such as single-molecule sensing and nucleic-acid sequencing.
Collapse
Affiliation(s)
- Kozhinjampara R Mahendran
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA UK
| | - Ai Niitsu
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Lingbing Kong
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA UK
| | - Andrew R Thomson
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| | - Richard B Sessions
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| | - Derek N Woolfson
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK.,School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TQ, UK
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA UK
| |
Collapse
|
39
|
Obaidat R, Al-Shar'i N, Tashtoush B, Athamneh T. Enhancement of levodopa stability when complexed with β-cyclodextrin in transdermal patches. Pharm Dev Technol 2016; 23:986-997. [PMID: 27808002 DOI: 10.1080/10837450.2016.1245319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Levodopa is a promising candidate for administration via the transdermal route because it exhibits a short plasma half-life and has a small window of absorption in the upper section of the small intestine. The aim of this study was to prepare stable levodopa transdermal patches. Both xanthan gum and Carbopol 971 polymers were selected with ethylcellulose constituting the backing layer of the prepared patches. The effect of adding β-cyclodextrin on the prepared patches was investigated. The uniformity in thickness, weight and content of the studied patches was acceptable. Physicochemical characterization revealed that there was no interaction between levodopa and the applied polymer. The results proved that levodopa precipitated as an amorphous form in carbopol patches. Controlled drug release was achieved for all the tested patches over a 6 h period. However, increased permeation was achieved for the carbopol patches. Although cyclodextrin did not enhance levodopa permeation, the stability study confirmed that levodopa stability was enhanced when complexed with β-cyclodextrin. The cumulative amount of drug released from carbopol patches is slightly higher than that of xanthan patches. The optimal stability was achieved in the carbopol/levodopa:β-cyclodextrin patch. The levodopa-β-cyclodextrin complex was successfully characterized using X-ray diffraction, NMR analysis and molecular dynamics simulations. In conclusion, carbopol/levodopa:β-cyclodextrin patches can be considered as a promising stable and effective transdermal drug-delivery system.
Collapse
Affiliation(s)
- Rana Obaidat
- a Jordan University of Science and Technology , Irbid , Jordan
| | - Nizar Al-Shar'i
- a Jordan University of Science and Technology , Irbid , Jordan
| | | | - Tamara Athamneh
- a Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
40
|
Lee J, Boersma A, Boudreau MA, Cheley S, Daltrop O, Li J, Tamagaki H, Bayley H. Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry. ACS NANO 2016; 10:8843-50. [PMID: 27537396 PMCID: PMC5043417 DOI: 10.1021/acsnano.6b04663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/18/2016] [Indexed: 05/27/2023]
Abstract
Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been engineered to form a nanoreactor to study covalent chemistry at the single-molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different αHL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic αHL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single-molecule level.
Collapse
Affiliation(s)
- Joongoo Lee
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Arnold
J. Boersma
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Marc A. Boudreau
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Stephen Cheley
- Department
of Pharmacology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Oliver Daltrop
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Jianwei Li
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Hiroko Tamagaki
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Hagan Bayley
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
41
|
Ayub M, Bayley H. Engineered transmembrane pores. Curr Opin Chem Biol 2016; 34:117-126. [PMID: 27658267 DOI: 10.1016/j.cbpa.2016.08.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022]
Abstract
Today, hundreds of researchers are working on nanopores, making an impact in both basic science and biotechnology. Proteins remain the most versatile sources of nanopores, based on our ability to engineer them with sub-nanometer precision. Recent work aimed at the construction and discovery of novel pores has included unnatural amino acid mutagenesis and the application of selection techniques. The diversity of structures has now been increased through the development of helix-based pores as well as the better-known β barrels. New developments also include truncated pores, which pierce bilayers through lipid rearrangement, and hybrid pores, which do away with bilayers altogether. Pore dimers, which span two lipid bilayers, have been constructed and pores based on DNA nanostructures are gaining in importance. While nanopore DNA sequencing has received enthusiastic attention, protein pores have a wider range of potential applications, requiring specifications that will require engineering efforts to continue for years to come.
Collapse
Affiliation(s)
- Mariam Ayub
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
42
|
Semisynthetic protein nanoreactor for single-molecule chemistry. Proc Natl Acad Sci U S A 2015; 112:13768-73. [PMID: 26504203 DOI: 10.1073/pnas.1510565112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The covalent chemistry of individual reactants bound within a protein pore can be monitored by observing the ionic current flow through the pore, which acts as a nanoreactor responding to bond-making and bond-breaking events. In the present work, we incorporated an unnatural amino acid into the α-hemolysin (αHL) pore by using solid-phase peptide synthesis to make the central segment of the polypeptide chain, which forms the transmembrane β-barrel of the assembled heptamer. The full-length αHL monomer was obtained by native chemical ligation of the central synthetic peptide to flanking recombinant polypeptides. αHL pores with one semisynthetic subunit were then used as nanoreactors for single-molecule chemistry. By introducing an amino acid with a terminal alkyne group, we were able to visualize click chemistry at the single-molecule level, which revealed a long-lived (4.5-s) reaction intermediate. Additional side chains might be introduced in a similar fashion, thereby greatly expanding the range of single-molecule covalent chemistry that can be investigated by the nanoreactor approach.
Collapse
|
43
|
Abstract
The α-hemolysin (αHL) protein nanopore has been investigated previously as a base detector for the strand sequencing of DNA and RNA. Recent findings have suggested that shorter pores might provide improved base discrimination. New work has also shown that truncated-barrel mutants (TBM) of αHL form functional pores in lipid bilayers. Therefore, we tested TBM pores for the ability to recognize bases in DNA strands immobilized within them. In the case of TBMΔ6, in which the barrel is shortened by ∼16 Å, one of the three recognition sites found in the wild-type pore, R1, was almost eliminated. With further mutagenesis (Met113 → Gly), R1 was completely removed, demonstrating that TBM pores can mediate sharpened recognition. Remarkably, a second mutant of TBMΔ6 (Met113 → Phe) was able to bind the positively charged β-cyclodextrin, am7βCD, unusually tightly, permitting the continuous recognition of individual nucleoside monophosphates, which would be required for exonuclease sequencing mediated by nanopore base identification.
Collapse
Affiliation(s)
- Mariam Ayub
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | | | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
- Corresponding Author:
| |
Collapse
|
44
|
Sampath G. Amino acid discrimination in a nanopore and the feasibility of sequencing peptides with a tandem cell and exopeptidase. RSC Adv 2015. [DOI: 10.1039/c5ra02118a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Peptide sequencing in an electrolytic cell with two nanopores in tandem and exopeptidase.
Collapse
|
45
|
Madan J, Gundala SR, Baruah B, Nagaraju M, Yates C, Turner T, Rangari V, Hamelberg D, Reid MD, Aneja R. Cyclodextrin complexes of reduced bromonoscapine in guar gum microspheres enhance colonic drug delivery. Mol Pharm 2014; 11:4339-49. [PMID: 25350222 PMCID: PMC4255741 DOI: 10.1021/mp500408n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Here, we report improved solubility
and enhanced colonic delivery
of reduced bromonoscapine (Red-Br-Nos), a cyclic ether brominated
analogue of noscapine, upon encapsulation of its cyclodextrin (CD)
complexes in bioresponsive guar gum microspheres (GGM). Phase–solubility
analysis suggested that Red-Br-Nos complexed with β-CD and methyl-β-CD
in a 1:1 stoichiometry, with a stability constant (Kc) of 2.29 × 103 M–1 and 4.27 × 103 M–1. Fourier transforms
infrared spectroscopy indicated entrance of an O–CH2 or OCH3–C6H4–OCH3 moiety of Red-Br-Nos in the β-CD or methyl-β-CD
cavity. Furthermore, the cage complex of Red-Br-Nos with β-CD
and methyl-β-CD was validated by several spectral techniques.
Rotating frame Overhauser enhancement spectroscopy revealed that the
Ha proton of the OCH3–C6H4–OCH3 moiety was closer to the H5 proton of β-CD and the H3 proton of the methyl-β-CD
cavity. The solubility of Red-Br-Nos in phosphate buffer saline (PBS,
pH ∼ 7.4) was improved by ∼10.7-fold and ∼21.2-fold
when mixed with β-CD and methyl-β-CD, respectively. This
increase in solubility led to a favorable decline in the IC50 by ∼2-fold and ∼3-fold for Red-Br-Nos−β-CD-GGM
and Red-Br-Nos–methyl-β-CD-GGM formulations respectively,
compared to free Red-Br-Nos−β-CD and Red-Br-Nos–methyl-β-CD
in human colon HT-29 cells. GGM-bearing drug complex formulations
were found to be highly cytotoxic to the HT-29 cell line and further
effective with simultaneous continuous release of Red-Br-Nos from
microspheres. This is the first study to showing the preparation of
drug-complex loaded GGMS for colon delivery of Red-Br-Nos that warrants
preclinical assessment for the effective management of colon cancer.
Collapse
Affiliation(s)
- Jitender Madan
- Department of Biology and §Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity. Proc Natl Acad Sci U S A 2014; 111:14325-31. [PMID: 25225404 DOI: 10.1073/pnas.1415944111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human telomeric DNA consists of tandem repeats of the sequence 5'-TTAGGG-3' that can fold into various G-quadruplexes, including the hybrid, basket, and propeller folds. In this report, we demonstrate use of the α-hemolysin ion channel to analyze these subtle topological changes at a nanometer scale by providing structure-dependent electrical signatures through DNA-protein interactions. Whereas the dimensions of hybrid and basket folds allowed them to enter the protein vestibule, the propeller fold exceeds the size of the latch region, producing only brief collisions. After attaching a 25-mer poly-2'-deoxyadenosine extension to these structures, unraveling kinetics also were evaluated. Both the locations where the unfolding processes occur and the molecular shapes of the G-quadruplexes play important roles in determining their unfolding profiles. These results provide insights into the application of α-hemolysin as a molecular sieve to differentiate nanostructures as well as the potential technical hurdles DNA secondary structures may present to nanopore technology.
Collapse
|
47
|
Bathinapatla A, Kanchi S, Singh P, Sabela MI, Bisetty K. Determination of Neotame by High-Performance Capillary Electrophoresis Using ß-cyclodextrin as a Chiral Selector. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.924008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 2014; 6:2483-540. [PMID: 25153255 PMCID: PMC4147595 DOI: 10.3390/toxins6082483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.
Collapse
Affiliation(s)
- Philip A Gurnev
- Physics Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
49
|
Grosse W, Psakis G, Mertins B, Reiss P, Windisch D, Brademann F, Bürck J, Ulrich A, Koert U, Essen LO. Structure-based engineering of a minimal porin reveals loop-independent channel closure. Biochemistry 2014; 53:4826-38. [PMID: 24988371 DOI: 10.1021/bi500660q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Porins, like outer membrane protein G (OmpG) of Escherichia coli, are ideal templates among ion channels for protein and chemical engineering because of their robustness and simple architecture. OmpG shows fast transitions between open and closed states, which were attributed to loop 6 (L6). As flickering limits single-channel-based applications, we pruned L6 by either 8 or 12 amino acids. While the open probabilities of both L6 variants resemble that of native OmpG, their gating frequencies were reduced by 63 and 81%, respectively. Using the 3.2 Å structure of the shorter L6 variant in the open state, we engineered a minimal porin (220 amino acids), where all remaining extramembranous loops were truncated. Unexpectedly, this minimized porin still exhibited gating, but it was 5-fold less frequent than in OmpG. The residual gating of the minimal pore is hence independent of L6 rearrangements and involves narrowing of the ion conductance pathway most probably driven by global stretching-flexing deformations of the membrane-embedded β-barrel.
Collapse
Affiliation(s)
- Wolfgang Grosse
- Department of Chemistry, Philipps-University Marburg , Hans-Meerwein-Straße, 35032 Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Analytical evaluation of steviol glycosides by capillary electrophoresis supported with molecular docking studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2014. [DOI: 10.1007/s13738-014-0465-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|