1
|
de Miranda GS, Kulkarni SS, Tagliatela J, Baker CM, Giupponi APL, Labarque FM, Gavish-Regev E, Rix MG, Carvalho LS, Fusari LM, Harvey MS, Wood HM, Sharma PP. The Rediscovery of a Relict Unlocks the First Global Phylogeny of Whip Spiders (Amblypygi). Syst Biol 2024; 73:495-505. [PMID: 38733598 DOI: 10.1093/sysbio/syae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/20/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
Asymmetrical rates of cladogenesis and extinction abound in the tree of life, resulting in numerous minute clades that are dwarfed by larger sister groups. Such taxa are commonly regarded as phylogenetic relicts or "living fossils" when they exhibit an ancient first appearance in the fossil record and prolonged external morphological stasis, particularly in comparison to their more diversified sister groups. Due to their special status, various phylogenetic relicts tend to be well-studied and prioritized for conservation. A notable exception to this trend is found within Amblypygi ("whip spiders"), a visually striking order of functionally hexapodous arachnids that are notable for their antenniform first walking leg pair (the eponymous "whips"). Paleoamblypygi, the putative sister group to the remaining Amblypygi, is known from Late Carboniferous and Eocene deposits but is survived by a single living species, Paracharon caecusHansen (1921), that was last collected in 1899. Due to the absence of genomic sequence-grade tissue for this vital taxon, there is no global molecular phylogeny for Amblypygi to date, nor a fossil-calibrated estimation of divergences within the group. Here, we report a previously unknown species of Paleoamblypygi from a cave site in Colombia. Capitalizing upon this discovery, we generated the first molecular phylogeny of Amblypygi, integrating ultraconserved element sequencing with legacy Sanger datasets and including described extant genera. To quantify the impact of sampling Paleoamblypygi on divergence time estimation, we performed in silico experiments with pruning of Paracharon. We demonstrate that the omission of relicts has a significant impact on the accuracy of node dating approaches that outweighs the impact of excluding ingroup fossils, which bears upon the ancestral range reconstruction for the group. Our results underscore the imperative for biodiversity discovery efforts in elucidating the phylogenetic relationships of "dark taxa," and especially phylogenetic relicts in tropical and subtropical habitats. The lack of reciprocal monophyly for Charontidae and Charinidae leads us to subsume them into one family, Charontidae, new synonymy.
Collapse
Affiliation(s)
- Gustavo S de Miranda
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave. NW, Washington, DC 20560, USA
| | - Siddharth S Kulkarni
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Jéssica Tagliatela
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, Campus São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Paulo, Brazil
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Alessandro P L Giupponi
- Lab. de Carrapatos e outros Vetores Ápteros LAC - CAVAISC; IOC - FIOCRUZ, Rio de Janeiro, Brazil
| | - Facundo M Labarque
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, Campus São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Paulo, Brazil
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Michael G Rix
- Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, QLD 4101, Australia
| | - Leonardo S Carvalho
- Campus Amílcar Ferreira Sobral, Universidade Federal do Piauí, 64808-605 Floriano, PI, Brazil
| | - Lívia Maria Fusari
- Departamento de Hidrobiologia, Universidade Federal de São Carlos, campus São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Paulo, Brazil
| | - Mark S Harvey
- Collections and Research Centre, Western Australian Museum, Welshpool, WA 6106, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Hannah M Wood
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave. NW, Washington, DC 20560, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
2
|
Nicolini F, Martelossi J, Forni G, Savojardo C, Mantovani B, Luchetti A. Comparative genomics of Hox and ParaHox genes among major lineages of Branchiopoda with emphasis on tadpole shrimps. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1046960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hox and ParaHox genes (HPHGs) are key developmental genes that pattern regional identity along the anterior–posterior body axis of most animals. Here, we identified HPHGs in tadpole shrimps (Pancrustacea, Branchiopoda, Notostraca), an iconic example of the so-called “living fossils” and performed a comparative genomics analysis of HPHGs and the Hox cluster among major branchiopod lineages. Notostraca possess the entire Hox complement, and the Hox cluster seems to be split into two different subclusters, although we were not able to support this finding with chromosome-level assemblies. However, the genomic structure of Hox genes in Notostraca appears more derived than that of Daphnia spp., which instead retains the plesiomorphic condition of a single compact cluster. Spinicaudata and Artemia franciscana show instead a Hox cluster subdivided across two or more genomic scaffolds with some orthologs either duplicated or missing. Yet, branchiopod HPHGs are similar among the various clades in terms of both intron length and number, as well as in their pattern of molecular evolution. Sequence substitution rates are in fact generally similar for most of the branchiopod Hox genes and the few differences we found cannot be traced back to natural selection, as they are not associated with any signals of diversifying selection or substantial switches in selective modes. Altogether, these findings do not support a significant stasis in the Notostraca Hox cluster and further confirm how morphological evolution is not tightly associated with genome dynamics.
Collapse
|
3
|
Ozernyuk N, Schepetov D. HOX-Gene Cluster Organization and Genome Duplications in Fishes and Mammals: Transcript Variant Distribution along the Anterior–Posterior Axis. Int J Mol Sci 2022; 23:ijms23179990. [PMID: 36077385 PMCID: PMC9456325 DOI: 10.3390/ijms23179990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Hox genes play a crucial role in morphogenesis, especially in anterior–posterior body axis patterning. The organization of Hox clusters in vertebrates is a result of several genome duplications: two rounds of duplication in the ancestors of all vertebrates and a third round that was specific for teleost fishes. Teleostei cluster structure has been significantly modified in the evolutionary processes by Hox gene losses and co-options, while mammals show no such tendency. In mammals, the Hox gene number in a single cluster is stable and generally large, and the numbers are similar to those in the Chondrichthyes. Hox gene alternative splicing activity slightly differs between fishes and mammals. Fishes and mammals have differences in their known alternative splicing activity for Hox gene distribution along the anterior–posterior body axis. The analyzed fish groups—the Coelacanthiformes, Chondrichthyes, and Teleostei—all have higher known alternative mRNA numbers from the anterior and posterior regions, whereas mammals have a more uniform Hox transcript distribution along this axis. In fishes, most Hox transcripts produce functioning proteins, whereas mammals have significantly more known transcripts that do not produce functioning proteins.
Collapse
Affiliation(s)
- Nikolay Ozernyuk
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
- Correspondence:
| | - Dimitry Schepetov
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
4
|
Cavin L, Alvarez N. Why Coelacanths Are Almost “Living Fossils”? Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.896111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Labes S, Stupp D, Wagner N, Bloch I, Lotem M, L Lahad E, Polak P, Pupko T, Tabach Y. Machine-learning of complex evolutionary signals improves classification of SNVs. NAR Genom Bioinform 2022; 4:lqac025. [PMID: 35402908 PMCID: PMC8988715 DOI: 10.1093/nargab/lqac025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/08/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Conservation is a strong predictor for the pathogenicity of single-nucleotide variants (SNVs). However, some positions that present complex conservation patterns across vertebrates stray from this paradigm. Here, we analyzed the association between complex conservation patterns and the pathogenicity of SNVs in the 115 disease-genes that had sufficient variant data. We show that conservation is not a one-rule-fits-all solution since its accuracy highly depends on the analyzed set of species and genes. For example, pairwise comparisons between the human and 99 vertebrate species showed that species differ in their ability to predict the clinical outcomes of variants among different genes using conservation. Furthermore, certain genes were less amenable for conservation-based variant prediction, while others demonstrated species that optimize prediction. These insights led to developing EvoDiagnostics, which uses the conservation against each species as a feature within a random-forest machine-learning classification algorithm. EvoDiagnostics outperformed traditional conservation algorithms, deep-learning based methods and most ensemble tools in every prediction-task, highlighting the strength of optimizing conservation analysis per-species and per-gene. Overall, we suggest a new and a more biologically relevant approach for analyzing conservation, which improves prediction of variant pathogenicity.
Collapse
Affiliation(s)
- Sapir Labes
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, and Hadassah University Medical School, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Doron Stupp
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, and Hadassah University Medical School, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Idit Bloch
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, and Hadassah University Medical School, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah University Medical Center, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Ephrat L Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem9103102, Israel
| | - Paz Polak
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, NY10029, USA
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, and Hadassah University Medical School, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| |
Collapse
|
6
|
Cavin L, Toriño P, Van Vranken N, Carter B, Polcyn MJ, Winkler D. The first late cretaceous mawsoniid coelacanth (Sarcopterygii: Actinistia) from North America: Evidence of a lineage of extinct 'living fossils'. PLoS One 2021; 16:e0259292. [PMID: 34762682 PMCID: PMC8584698 DOI: 10.1371/journal.pone.0259292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Today, the only living genus of coelacanth, Latimeria is represented by two species along the eastern coast of Africa and in Indonesia. This sarcopterygian fish is nicknamed a "living fossil", in particular because of its slow evolution. The large geographical distribution of Latimeria may be a reason for the great resilience to extinction of this lineage, but the lack of fossil records for this genus prevents us from testing this hypothesis. Here we describe isolated bones (right angular, incomplete basisphenoid, fragments of parasphenoid and pterygoid) found in the Cenomanian Woodbine Formation in northeast Texas that are referred to the mawsoniid coelacanth Mawsonia sp. In order to assess the impact of this discovery on the alleged characteristic of "living fossils" in general and of coelacanths in particular: 1) we compared the average time duration of genera of ray-finned fish and coelacanth in the fossil record; 2) we compared the biogeographic signal from Mawsonia with the signal from the rest of the vertebrate assemblage of the Woodbine formation; and 3) we compared these life traits with those of Latimeria. The stratigraphical range of Mawsonia is at least 50 million years. Since Mawsonia was a fresh, brackish water fish with probably a low ability to cross large sea barriers and because most of the continental components of the Woodbine Fm vertebrate assemblage exhibit Laurasian affinities, it is proposed that the Mawsonia's occurrence in North America is more likely the result of a vicariant event linked to the break-up of Pangea rather than the result of a dispersal from Gondwana. The link between a wide geographic distribution and the resilience to extinction demonstrated here for Mawsonia is a clue that a similar situation existed for Latimeria, which allowed this genus to live for tens of millions of years.
Collapse
Affiliation(s)
- Lionel Cavin
- Department of Geology and Palaeontology, Natural History Museum, Geneva, Switzerland
| | - Pablo Toriño
- Instituto de Ciencias Geológicas, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Nathan Van Vranken
- STEM Division, Potomac State College, Keyser, West Virginia, United States of America
| | - Bradley Carter
- 4 Independent Researcher, 420 Kennedy Drive, Crowley, TX, United States of America
| | - Michael J. Polcyn
- Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX, United States of America
| | - Dale Winkler
- Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX, United States of America
| |
Collapse
|
7
|
Mondéjar‐Fernández J, Meunier FJ, Cloutier R, Clément G, Laurin M. A microanatomical and histological study of the scales of the Devonian sarcopterygian Miguashaia bureaui and the evolution of the squamation in coelacanths. J Anat 2021; 239:451-478. [PMID: 33748974 PMCID: PMC8273612 DOI: 10.1111/joa.13428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/31/2023] Open
Abstract
Coelacanths have traditionally been described as morphologically conservative throughout their long evolutionary history, which spans more than 400 million years. After an initial burst during the Devonian, a morphological stasis was long thought to have prevailed since the Carboniferous, as shown by the extant Latimeria. New fossil discoveries have challenged this view, with punctual and sometimes unusual departures from the general coelacanth Bauplan. The dermal skeleton is considered to represent one, if not the main, example of morphological stasis in coelacanth evolution and as a consequence, has remained poorly surveyed. The lack of palaeohistological data on the dermoskeleton has resulted in a poor understanding of the early establishment and evolution of the coelacanth squamation. Here we describe the scales of Miguashaia bureaui from the Upper Devonian of Miguasha, Québec (Canada), revealing histological data for a Palaeozoic coelacanth in great detail and adding to our knowledge on the dermal skeleton of sarcopterygians. Miguashaia displays rounded scales ornamented by tubercules and narrow ridges made of dentine and capped with enamel. At least two generations of superimposed odontodes occur, which is reminiscent of the primitive condition of stem osteichthyans like Andreolepis or Lophosteus, and onychodonts like Selenodus. The middle vascular layer is well developed and shows traces of osteonal remodelling. The basal plate consists of a fully mineralised lamellar bone with a repetitive rotation pattern every five layers indicating a twisted plywood-like arrangement of the collagen plies. Comparisons with the extant Latimeria and other extinct taxa show that these features are consistently conserved across coelacanth evolution with only minute changes in certain taxa. The morphological and histological features displayed in the scales of Miguashaia enable us to draw a comprehensive picture of the onset of the coelacanth squamation and to propose and discuss evolutionary scenarios for the coelacanth dermoskeleton.
Collapse
Affiliation(s)
- Jorge Mondéjar‐Fernández
- Département Origines & ÉvolutionUMR 7207 (MNHN–Sorbonne Université–CNRS), CR2P, Centre de Recherche en Paléontologie—ParisMuséum national d’Histoire naturelleParisFrance
- Senckenberg Forschungsinstitut und Naturmuseum FrankfurtFrankfurt am MainGermany
| | - François J. Meunier
- Département Adaptations du VivantFRE BOREA 2030, (MNHN–Sorbonne Université–Univ. Caen Normandie–Univ. Antilles–CNRS–IRD)Muséum national d'Histoire naturelleParisFrance
| | | | - Gaël Clément
- Département Origines & ÉvolutionUMR 7207 (MNHN–Sorbonne Université–CNRS), CR2P, Centre de Recherche en Paléontologie—ParisMuséum national d’Histoire naturelleParisFrance
| | - Michel Laurin
- Département Origines & ÉvolutionUMR 7207 (MNHN–Sorbonne Université–CNRS), CR2P, Centre de Recherche en Paléontologie—ParisMuséum national d’Histoire naturelleParisFrance
| |
Collapse
|
8
|
Aase-Remedios ME, Ferrier DEK. Improved Understanding of the Role of Gene and Genome Duplications in Chordate Evolution With New Genome and Transcriptome Sequences. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.703163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Comparative approaches to understanding chordate genomes have uncovered a significant role for gene duplications, including whole genome duplications (WGDs), giving rise to and expanding gene families. In developmental biology, gene families created and expanded by both tandem and WGDs are paramount. These genes, often involved in transcription and signalling, are candidates for underpinning major evolutionary transitions because they are particularly prone to retention and subfunctionalisation, neofunctionalisation, or specialisation following duplication. Under the subfunctionalisation model, duplication lays the foundation for the diversification of paralogues, especially in the context of gene regulation. Tandemly duplicated paralogues reside in the same regulatory environment, which may constrain them and result in a gene cluster with closely linked but subtly different expression patterns and functions. Ohnologues (WGD paralogues) often diversify by partitioning their expression domains between retained paralogues, amidst the many changes in the genome during rediploidisation, including chromosomal rearrangements and extensive gene losses. The patterns of these retentions and losses are still not fully understood, nor is the full extent of the impact of gene duplication on chordate evolution. The growing number of sequencing projects, genomic resources, transcriptomics, and improvements to genome assemblies for diverse chordates from non-model and under-sampled lineages like the coelacanth, as well as key lineages, such as amphioxus and lamprey, has allowed more informative comparisons within developmental gene families as well as revealing the extent of conserved synteny across whole genomes. This influx of data provides the tools necessary for phylogenetically informed comparative genomics, which will bring us closer to understanding the evolution of chordate body plan diversity and the changes underpinning the origin and diversification of vertebrates.
Collapse
|
9
|
Cavin L, Piuz A, Ferrante C, Guinot G. Giant Mesozoic coelacanths (Osteichthyes, Actinistia) reveal high body size disparity decoupled from taxic diversity. Sci Rep 2021; 11:11812. [PMID: 34083600 PMCID: PMC8175595 DOI: 10.1038/s41598-021-90962-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
The positive correlation between speciation rates and morphological evolution expressed by body size is a macroevolutionary trait of vertebrates. Although taxic diversification and morphological evolution are slow in coelacanths, their fossil record indicates that large and small species coexisted, which calls into question the link between morphological and body size disparities. Here, we describe and reassess fossils of giant coelacanths. Two genera reached up to 5 m long, placing them among the ten largest bony fish that ever lived. The disparity in body size adjusted to taxic diversity is much greater in coelacanths than in ray-finned fishes. Previous studies have shown that rates of speciation and rates of morphological evolution are overall low in this group, and our results indicate that these parameters are decoupled from the disparity in body size in coelacanths. Genomic and physiological characteristics of the extant Latimeria may reflect how the extinct relatives grew to such a large size. These characteristics highlight new evolutionary traits specific to these "living fossils".
Collapse
Affiliation(s)
- Lionel Cavin
- grid.466902.f0000 0001 2248 6951Department of Geology and Palaeontology, Natural History Museum of Geneva, Geneva, Switzerland
| | - André Piuz
- grid.466902.f0000 0001 2248 6951Department of Geology and Palaeontology, Natural History Museum of Geneva, Geneva, Switzerland
| | - Christophe Ferrante
- grid.466902.f0000 0001 2248 6951Department of Geology and Palaeontology, Natural History Museum of Geneva, Geneva, Switzerland ,grid.8591.50000 0001 2322 4988Department of Earth Sciences, University of Geneva, Rue des Maraîchais 13, 1205 Geneva, Switzerland
| | - Guillaume Guinot
- grid.462058.d0000 0001 2188 7059Institut des Sciences de L’Evolution de Montpellier (Université de Montpellier, CNRS, IRD, EPHE), Montpellier, France
| |
Collapse
|
10
|
Love AC. Evolution evolving? Reflections on big questions. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:315-320. [PMID: 31613422 DOI: 10.1002/jez.b.22907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
John Bonner managed a long and productive career that balanced specialized inquiry into cellular slime molds with general investigations of big questions in evolutionary biology, such as the origins of multicellular development and the evolution of complexity. This commentary engages with his final paper ("The evolution of evolution"), which argues that the evolutionary process has changed through the history of life. In particular, Bonner emphasizes the possibility that natural selection plays different roles at different size scales. I identify some underlying assumptions in his argument and evaluate its cogency to both foster future discussion and emulate the intellectual example set by Bonner over a lifetime. This endeavor is important beyond Bonner's own theoretical disposition because similar issues are visible in controversies about the possibility of an extended evolutionary synthesis.
Collapse
Affiliation(s)
- Alan C Love
- Department of Philosophy & Minnesota Center for Philosophy of Science, Minneapolis, Minnesota
| |
Collapse
|
11
|
Wang XS, Zhang S, Xu Z, Zheng SQ, Long J, Wang DS. Genome-wide identification, evolution of ATF/CREB family and their expression in Nile tilapia. Comp Biochem Physiol B Biochem Mol Biol 2019; 237:110324. [DOI: 10.1016/j.cbpb.2019.110324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023]
|
12
|
Makhrov AA. Decreased Evolutionary Plasticity as a Result of Phylogenetic Immobilization and Its Ecological Significance. CONTEMP PROBL ECOL+ 2019. [DOI: 10.1134/s199542551905007x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Cheng P, Huang Y, Du H, Li C, Lv Y, Ruan R, Ye H, Bian C, You X, Xu J, Liang X, Shi Q, Wei Q. Draft Genome and Complete Hox-Cluster Characterization of the Sterlet ( Acipenser ruthenus). Front Genet 2019; 10:776. [PMID: 31543900 PMCID: PMC6739705 DOI: 10.3389/fgene.2019.00776] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/23/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Sturgeons (Chondrostei: Acipenseridae) are a group of “living fossil” fishes at a basal position among Actinopteri. They have raised great public interest due to their special evolutionary position, species conservation challenges, as well as their highly-prized eggs (caviar). The sterlet, Acipenser ruthenus, is a relatively small-sized member of sturgeons and has been widely distributing in both Europe and Asia. In this study, we performed whole genome sequencing, de novo assembly and gene annotation of the tarlet to construct its draft genome. Findings: We finally obtained a 1.83-Gb genome assembly (BUSCO completeness of 81.6%) from a total of 316.8-Gb raw reads generated by an Illumina Hiseq 2500 platform. The scaffold N50 and contig N50 values reached 191.06 and 18.88 kb, respectively. The sterlet genome was predicted to be comprised of 42.84% repeated sequences and to contain 22,184 protein-coding genes, of which 21,112 (95.17%) have been functionally annotated with at least one hit in public databases. A genetic phylogeny demonstrated that the sterlet is situated in the basal position among ray-finned fishes and 4dTv analysis estimated that a recent whole genome duplication occurred 21.3 million years ago. Moreover, seven Hox clusters carrying 68 Hox genes were characterized in the sterlet. Phylogeny of HoxA clusters in the sterlet and American paddlefish divided these sturgeons into two groups, confirming the independence of each lineage-specific genome duplication in Acipenseridae and Polyodontidae. Conclusions: This draft genome makes up for the lack of genomic and molecular data of the sterlet and its Hox clusters. It also provides a genetic basis for further investigation of lineage-specific genome duplication and the early evolution of ray-finned fishes.
Collapse
Affiliation(s)
- Peilin Cheng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
| | - Yu Huang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Academy of Marine Sciences, BGI Marine, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Academy of Marine Sciences, BGI Marine, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Academy of Marine Sciences, BGI Marine, Shenzhen, China.,School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Xufang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Academy of Marine Sciences, BGI Marine, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
14
|
Voskarides K, Dweep H, Chrysostomou C. Evidence that DNA repair genes, a family of tumor suppressor genes, are associated with evolution rate and size of genomes. Hum Genomics 2019; 13:26. [PMID: 31174607 PMCID: PMC6555970 DOI: 10.1186/s40246-019-0210-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
Adaptive radiation and evolutionary stasis are characterized by very different evolution rates. The main aim of this study was to investigate if any genes have a special role to a high or low evolution rate. The availability of animal genomes permitted comparison of gene content of genomes of 24 vertebrate species that evolved through adaptive radiation (representing high evolutionary rate) and of 20 vertebrate species that are considered as living fossils (representing a slow evolutionary rate or evolutionary stasis). Mammals, birds, reptiles, and bony fishes were included in the analysis. Pathway analysis was performed for genes found to be specific in adaptive radiation or evolutionary stasis respectively. Pathway analysis revealed that DNA repair and cellular response to DNA damage are important (false discovery rate = 8.35 × 10−5; 7.15 × 10−6, respectively) for species evolved through adaptive radiation. This was confirmed by further genetic in silico analysis (p = 5.30 × 10−3). Nucleotide excision repair and base excision repair were the most significant pathways. Additionally, the number of DNA repair genes was found to be linearly related to the genome size and the protein number (proteome) of the 44 animals analyzed (p < 1.00 × 10−4), this being compatible with Drake’s rule. This is the first study where radiated and living fossil species have been genetically compared. Evidence has been found that cancer-related genes have a special role in radiated species. Linear association of the number of DNA repair genes with the species genome size has also been revealed. These comparative genetics results can support the idea of punctuated equilibrium evolution.
Collapse
|
15
|
Abstract
Biologists would be mistaken if they relegated living fossils to paleontological inquiry or assumed that the concept is dead. It is now used to describe entities ranging from viruses to higher taxa, despite recent warnings of misleading inferences. Current work on character evolution illustrates how analyzing living fossils and stasis in terms of parts (characters) and wholes (e.g., organisms and lineages) advances our understanding of prolonged stasis at many hierarchical levels. Instead of viewing the concept's task as categorizing living fossils, we show how its primary role is to mark out what is in need of explanation, accounting for the persistence of both molecular and morphological traits. Rethinking different conceptions of living fossils as specific hypotheses reveals novel avenues for research that integrate phylogenetics, ecological and evolutionary modeling, and evo-devo to produce a more unified theoretical outlook.
Collapse
Affiliation(s)
- Scott Lidgard
- Integrative Research Center, Field Museum, Chicago, Illinois
| | - Alan C Love
- Department of Philosophy and the Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis
| |
Collapse
|
16
|
You X, Sun M, Li J, Bian C, Chen J, Yi Y, Yu H, Shi Q. Mudskippers and Their Genetic Adaptations to an Amphibious Lifestyle. Animals (Basel) 2018; 8:E24. [PMID: 29414871 PMCID: PMC5836032 DOI: 10.3390/ani8020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/25/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mudskippers are the largest group of amphibious teleost fish that are uniquely adapted to live on mudflats. During their successful transition from aqueous life to terrestrial living, these fish have evolved morphological and physiological modifications of aerial vision and olfaction, higher ammonia tolerance, aerial respiration, improved immunological defense against terrestrial pathogens, and terrestrial locomotion using protruded pectoral fins. Comparative genomic and transcriptomic data have been accumulated and analyzed for understanding molecular mechanisms of the terrestrial adaptations. Our current review provides a general introduction to mudskippers and recent research advances of their genetic adaptations to the amphibious lifestyle, which will be helpful for understanding the evolutionary transition of vertebrates from water to land. Our insights into the genomes and transcriptomes will also support molecular breeding, functional identification, and natural compound screening.
Collapse
Affiliation(s)
- Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518063, China.
| | - Min Sun
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518063, China.
| | - Jieming Chen
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI-Zhenjiang Institute of Hydrobiology, BGI Marine, BGI, Zhenjiang 212000, China.
| | - Yunhai Yi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518063, China.
| | - Hui Yu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518063, China.
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
17
|
The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat Genet 2018; 50:270-277. [PMID: 29358652 PMCID: PMC5805609 DOI: 10.1038/s41588-017-0036-1] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022]
Abstract
The sea lamprey (Petromyzon marinus) serves as a comparative model for reconstructing vertebrate evolution. To enable more informed analyses, we developed a new assembly of the lamprey germline genome that integrates several complementary datasets. Analysis of this highly contiguous (chromosome-scale) assembly reveals that both chromosomal and whole-genome duplications have played significant roles in the evolution of ancestral vertebrate and lamprey genomes, including chromosomes that carry the six lamprey HOX clusters. The assembly also contains several hundred genes that are reproducibly eliminated from somatic cells during early development in lamprey. Comparative analyses show that gnathostome (mouse) homologs of these genes are frequently marked by Polycomb Repressive Complexes (PRCs) in embryonic stem cells, suggesting overlaps in the regulatory logic of somatic DNA elimination and repressive/bivalent states that are regulated by early embryonic PRCs. This new assembly will enhance diverse studies that are informed by lampreys’ unique biology and evolutionary/comparative perspective.
Collapse
|
18
|
Böhmer C, Werneburg I. Deep time perspective on turtle neck evolution: chasing the Hox code by vertebral morphology. Sci Rep 2017; 7:8939. [PMID: 28827543 PMCID: PMC5566328 DOI: 10.1038/s41598-017-09133-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/21/2017] [Indexed: 12/24/2022] Open
Abstract
The unparalleled ability of turtle neck retraction is possible in three different modes, which characterize stem turtles, living side-necked (Pleurodira), and hidden-necked (Cryptodira) turtles, respectively. Despite the conservatism in vertebral count among turtles, there is significant functional and morphological regionalization in the cervical vertebral column. Since Hox genes play a fundamental role in determining the differentiation in vertebra morphology and based on our reconstruction of evolutionary genetics in deep time, we hypothesize genetic differences among the turtle groups and between turtles and other land vertebrates. We correlated anterior Hox gene expression and the quantifiable shape of the vertebrae to investigate the morphological modularity in the neck across living and extinct turtles. This permitted the reconstruction of the hypothetical ancestral Hox code pattern of the whole turtle clade. The scenario of the evolution of axial patterning in turtles indicates shifts in the spatial expression of HoxA-5 in relation to the reduction of cervical ribs in modern turtles and of HoxB-5 linked with a lower morphological differentiation between the anterior cervical vertebrae observed in cryptodirans. By comparison with the mammalian pattern, we illustrate how the fixed count of eight cervical vertebrae in turtles resulted from the emergence of the unique turtle shell.
Collapse
Affiliation(s)
- Christine Böhmer
- UMR 7179 CNRS/MNHN, Muséum National d'Histoire Naturelle, 57 rue Cuvier CP-55, 75005, Paris, France.
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Palaeoenvironment at Eberhard Karls Universität, Sigwartstr, 10, 72076, Tübingen, Germany.
- Fachbereich Geowissenschaften, Eberhard Karls Universität, Hölderlinstraße 12, D-72074, Tübingen, Germany.
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115, Berlin, Germany.
| |
Collapse
|
19
|
Chen F, Luo M, Lai F, Yu C, Cheng H, Zhou R. Biased Duplications and Loss of Members in Tdrd Family in Teleost Fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:727-736. [DOI: 10.1002/jez.b.22757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Feng Chen
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Majing Luo
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Fengling Lai
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Chunlai Yu
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis; Laboratory of Molecular and Developmental Genetics; College of Life Sciences; Wuhan University; Wuhan P. R. China
| |
Collapse
|
20
|
Furlong M, Seong JY. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors. Biomol Ther (Seoul) 2017; 25:57-68. [PMID: 28035082 PMCID: PMC5207463 DOI: 10.4062/biomolther.2016.199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022] Open
Abstract
Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples.
Collapse
Affiliation(s)
- Michael Furlong
- Graduate School of Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jae Young Seong
- Graduate School of Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Davis A, Reubens MC, Stellwag EJ. Functional and Comparative Genomics of Hoxa2 Gene cis-Regulatory Elements: Evidence for Evolutionary Modification of Ancestral Core Element Activity. J Dev Biol 2016; 4:jdb4020015. [PMID: 29615583 PMCID: PMC5831782 DOI: 10.3390/jdb4020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
Abstract
Hoxa2 is an evolutionarily conserved developmental regulatory gene that functions to specify rhombomere (r) and pharyngeal arch (PA) identities throughout the Osteichthyes. Japanese medaka (Oryzias latipes) hoxa2a, like orthologous Hoxa2 genes from other osteichthyans, is expressed during embryogenesis in r2–7 and PA2-7, whereas the paralogous medaka pseudogene, ψhoxa2b, is expressed in noncanonical Hoxa2 domains, including the pectoral fin buds. To understand the evolution of cis-regulatory element (CRE) control of gene expression, we conducted eGFP reporter gene expression studies with extensive functional mapping of several conserved CREs upstream of medaka hoxa2a and ψhoxa2b in transient and stable-line transgenic medaka embryos. The CREs tested were previously shown to contribute to directing mouse Hoxa2 gene expression in r3, r5, and PA2-4. Our results reveal the presence of sequence elements embedded in the medaka hoxa2a and ψhoxa2b upstream enhancer regions (UERs) that mediate expression in r4 and the PAs (hoxa2a r4/CNCC element) or in r3–7 and the PAs ψhoxa2b r3–7/CNCC element), respectively. Further, these elements were shown to be highly conserved among osteichthyans, which suggests that the r4 specifying element embedded in the UER of Hoxa2 is a deeply rooted rhombomere specifying element and the activity of this element has been modified by the evolution of flanking sequences that redirect its activity to alternative developmental compartments.
Collapse
Affiliation(s)
- Adam Davis
- Department of Biology and Physical Sciences, Gordon State College, Barnesville, GA 30204, USA.
| | - Michael C Reubens
- The Scripps Research Institute, 10550 N, Torrey Pines Road, MB3, La Jolla, CA 92037, USA.
| | - Edmund J Stellwag
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
22
|
What Is the Meaning of Extreme Phylogenetic Diversity? The Case of Phylogenetic Relict Species. BIODIVERSITY CONSERVATION AND PHYLOGENETIC SYSTEMATICS 2016. [DOI: 10.1007/978-3-319-22461-9_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Yun S, Furlong M, Sim M, Cho M, Park S, Cho EB, Reyes-Alcaraz A, Hwang JI, Kim J, Seong JY. Prevertebrate Local Gene Duplication Facilitated Expansion of the Neuropeptide GPCR Superfamily. Mol Biol Evol 2015; 32:2803-17. [DOI: 10.1093/molbev/msv179] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
24
|
Wu R, Liu Q, Meng S, Zhang P, Liang D. Hox cluster characterization of Banna caecilian (Ichthyophis bannanicus) provides hints for slow evolution of its genome. BMC Genomics 2015; 16:468. [PMID: 26084764 PMCID: PMC4470032 DOI: 10.1186/s12864-015-1684-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Caecilians, with a discrete lifestyle, are the least explored group of amphibians. Though with distinct traits, many aspects of their biology are poorly investigated. Obtaining the caecilian genomic sequences will offer new perspectives and aid the fundamental studies in caecilian biology. The caecilian genomic sequences are also important and practical in the comparative genomics of amphibians. Currently, however, only sparse genomic sequences of caecilians are available. Hox genes, an old family of transcription factors playing central roles in the establishment of metazoan body plan. Understanding their structure and genomic organization may provide insights into the animal's genome, which is valuable for animals without a sequenced genome. RESULTS We sequenced and characterized the Hox clusters of Banna caecilian (Ichthyophis bannanicus) with a strategy combining long range PCR and genome walking. We obtained the majority of the four caecilian Hox clusters and identified 39 Hox genes, 5 microRNA genes and 1 pseudogene (ψHoxD12). There remained seven intergenic gaps we were unable to fill. From the obtained sequences, the caecilian Hox clusters contained less repetitive sequences and more conserved noncoding elements (CNEs) than the frog counterparts. We found that caecilian and coelacanth shared many more CNEs than frog and coelacanth did. Relative rate of sequence evolution showed that caecilian Hox genes evolved significantly more slowly than the other tetrapod species used in this study and were comparable to the slowly evolving coelacanth Hox genes. Phylogenetic tree of the four Hox clusters also revealed shorter branch length especially for the caecilian HoxA, HoxB and HoxD clusters. These features of the caecilian Hox clusters suggested a slowly evolving genome, which was supported by further analysis of a large orthologous protein dataset. CONCLUSIONS Our analyses greatly extended the knowledge about the caecilian Hox clusters from previous PCR surveys. From the obtained Hox sequences and the orthologous protein dataset, the caecilian Hox loci and its genome appear evolving comparatively slowly. As the basal lineage of amphibians and land vertebrate, this characteristic of the caecilian genome is valuable in the study concerning the genome biology and evolution of amphibians and early tetrapods.
Collapse
Affiliation(s)
- Riga Wu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Qingfeng Liu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Shaoquan Meng
- College of Life Science and Technology, Yulin Normal University, Yulin, 537000, People's Republic of China.
| | - Peng Zhang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Dan Liang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
25
|
Naville M, Chalopin D, Casane D, Laurenti P, Volff JN. The coelacanth: Can a "living fossil" have active transposable elements in its genome? Mob Genet Elements 2015; 5:55-59. [PMID: 26442185 DOI: 10.1080/2159256x.2015.1052184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/24/2023] Open
Abstract
The coelacanth has long been regarded as a "living fossil," with extant specimens looking very similar to fossils dating back to the Cretaceous period. The hypothesis of a slowly or even not evolving genome has been proposed to account for this apparent morphological stasis. While this assumption seems to be sustained by different evolutionary analyses on protein-coding genes, recent studies on transposable elements have provided more conflicting results. Indeed, the coelacanth genome contains many transposable elements and has been shaped by several major bursts of transposition during evolution. In addition, comparison of orthologous genomic regions from the genomes of the 2 extant coelacanth species L. chalumnae and L. menadoensis revealed multiple species-specific insertions, indicating transposable element recent activity and contribution to post-speciation genome divergence. These observations, which do not support the genome stasis hypothesis, challenge either the impact of transposable elements on organismal evolution or the status of the coelacanth as a "living fossil." Closer inspection of fossil and molecular data indicate that, even if coelacanths might evolve more slowly than some other lineages due to demographic and/or ecological factors, this variation is still in the range of a "non-fossil" vertebrate species.
Collapse
Affiliation(s)
- Magali Naville
- Equipe "Génomique des Poissons"; Institut de Génomique Fonctionnelle de Lyon (UMR5242); Ecole Normale Supérieure de Lyon ; Lyon, France
| | - Domitille Chalopin
- Equipe "Génomique des Poissons"; Institut de Génomique Fonctionnelle de Lyon (UMR5242); Ecole Normale Supérieure de Lyon ; Lyon, France
| | - Didier Casane
- Equipe "Réseaux de gènes, développement, évolution" Laboratoire Evolution, Génomes, Comportement, Ecologie (UMR9191); Université Paris-Diderot; UFR des Sciences du vivant ; Paris, France
| | - Patrick Laurenti
- Equipe "Réseaux de gènes, développement, évolution" Laboratoire Evolution, Génomes, Comportement, Ecologie (UMR9191); Université Paris-Diderot; UFR des Sciences du vivant ; Paris, France
| | - Jean-Nicolas Volff
- Equipe "Génomique des Poissons"; Institut de Génomique Fonctionnelle de Lyon (UMR5242); Ecole Normale Supérieure de Lyon ; Lyon, France
| |
Collapse
|
26
|
Naville M, Chalopin D, Volff JN. Interspecies insertion polymorphism analysis reveals recent activity of transposable elements in extant coelacanths. PLoS One 2014; 9:e114382. [PMID: 25470617 PMCID: PMC4255032 DOI: 10.1371/journal.pone.0114382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/10/2014] [Indexed: 01/29/2023] Open
Abstract
Coelacanths are lobe-finned fish represented by two extant species, Latimeria chalumnae in South Africa and Comoros and L. menadoensis in Indonesia. Due to their intermediate phylogenetic position between ray-finned fish and tetrapods in the vertebrate lineage, they are of great interest from an evolutionary point of view. In addition, extant specimens look similar to 300 million-year-old fossils; because of their apparent slowly evolving morphology, coelacanths have been often described as « living fossils ». As an underlying cause of such a morphological stasis, several authors have proposed a slow evolution of the coelacanth genome. Accordingly, sequencing of the L. chalumnae genome has revealed a globally low substitution rate for protein-coding regions compared to other vertebrates. However, genome and gene evolution can also be influenced by transposable elements, which form a major and dynamic part of vertebrate genomes through their ability to move, duplicate and recombine. In this work, we have searched for evidence of transposition activity in coelacanth genomes through the comparative analysis of orthologous genomic regions from both Latimeria species. Comparison of 5.7 Mb (0.2%) of the L. chalumnae genome with orthologous Bacterial Artificial Chromosome clones from L. menadoensis allowed the identification of 27 species-specific transposable element insertions, with a strong relative contribution of CR1 non-LTR retrotransposons. Species-specific homologous recombination between the long terminal repeats of a new coelacanth endogenous retrovirus was also detected. Our analysis suggests that transposon activity is responsible for at least 0.6% of genome divergence between both Latimeria species. Taken together, this study demonstrates that coelacanth genomes are not evolutionary inert: they contain recently active transposable elements, which have significantly contributed to post-speciation genome divergence in Latimeria.
Collapse
Affiliation(s)
- Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
27
|
The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation. PLoS One 2014; 9:e113686. [PMID: 25426855 PMCID: PMC4245216 DOI: 10.1371/journal.pone.0113686] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/27/2014] [Indexed: 01/02/2023] Open
Abstract
A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.
Collapse
|
28
|
Relict species: a relict concept? Trends Ecol Evol 2014; 29:655-63. [PMID: 25454211 DOI: 10.1016/j.tree.2014.10.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/01/2014] [Accepted: 10/01/2014] [Indexed: 12/22/2022]
Abstract
Relict species have always beguiled evolutionary biologists and biogeographers, who often view them as fascinating 'living fossils' or remnants of old times. Consequently, they are believed to provide interesting and important information on a vanished past and are used to understand the evolution of clades and biotas. The information that relicts provide can, however, be misleading and overemphasised when it is not remembered that they belong to groups or biotas that are mostly extinct. For example, relict species imply regional extinctions and, for this reason, they cannot simultaneously provide evidence of local biota permanence. Here we consider carefully misconceptions about relict species and highlight more clearly their evolutionary and biogeographical significance.
Collapse
|
29
|
Mulley JF, Holland PW. Genomic organisation of the seven ParaHox genes of coelacanths. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B: MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:352-8. [PMID: 23775937 PMCID: PMC4471637 DOI: 10.1002/jez.b.22513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 11/30/2022]
Abstract
Human and mouse genomes contain six ParaHox genes implicated in gut and neural patterning. In coelacanths and cartilaginous fish, an additional ParaHox gene exists—Pdx2—that dates back to the genome duplications in early vertebrate evolution. Here we examine the genomic arrangement and flanking genes of all ParaHox genes in coelacanths, to determine the full complement of these genes. We find that coelacanths have seven ParaHox genes in total, in four chromosomal locations, revealing that five gene losses occurred soon after vertebrate genome duplication. Comparison of intergenic sequences reveals that some Pdx1 regulatory regions associated with development of pancreatic islets are older than tetrapods, that Pdx1 and Pdx2 share few if any conserved non-coding elements, and that there is very high sequence conservation between coelacanth species.
Collapse
Affiliation(s)
- John F. Mulley
- School of Biological SciencesBangor UniversityBangorGwynedd, United Kingdom
| | | |
Collapse
|
30
|
David B, Mooi R. How Hox genes can shed light on the place of echinoderms among the deuterostomes. EvoDevo 2014; 5:22. [PMID: 24959343 PMCID: PMC4066700 DOI: 10.1186/2041-9139-5-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/22/2014] [Indexed: 12/11/2022] Open
Abstract
Background The Hox gene cluster ranks among the greatest of biological discoveries of the past 30 years. Morphogenetic patterning genes are remarkable for the systems they regulate during major ontogenetic events, and for their expressions of molecular, temporal, and spatial colinearity. Recent descriptions of exceptions to these colinearities are suggesting deep phylogenetic signal that can be used to explore origins of entire deuterostome phyla. Among the most enigmatic of these deuterostomes in terms of unique body patterning are the echinoderms. However, there remains no overall synthesis of the correlation between this signal and the variations observable in the presence/absence and expression patterns of Hox genes. Results Recent data from Hox cluster analyses shed light on how the bizarre shift from bilateral larvae to radial adults during echinoderm ontogeny can be accomplished by equally radical modifications within the Hox cluster. In order to explore this more fully, a compilation of observations on the genetic patterns among deuterostomes is integrated with the body patterning trajectories seen across the deuterostome clade. Conclusions Synthesis of available data helps to explain morphogenesis along the anterior/posterior axis of echinoderms, delineating the origins and fate of that axis during ontogeny. From this, it is easy to distinguish between ‘seriality’ along echinoderm rays and true A/P axis phenomena such as colinearity within the somatocoels, and the ontogenetic outcomes of the unique translocation and inversion of the anterior Hox class found within the Echinodermata. An up-to-date summary and integration of the disparate lines of research so far produced on the relationship between Hox genes and pattern formation for all deuterostomes allows for development of a phylogeny and scenario for the evolution of deuterostomes in general, and the Echinodermata in particular.
Collapse
Affiliation(s)
- Bruno David
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne, 21000 Dijon, France
| | - Rich Mooi
- Department of Invertebrate Zoology and Geology, California Academy of Sciences, 94103 San Francisco, California, USA
| |
Collapse
|
31
|
|
32
|
Single-male paternity in coelacanths. Nat Commun 2013; 4:2488. [PMID: 24048316 DOI: 10.1038/ncomms3488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/22/2013] [Indexed: 11/08/2022] Open
Abstract
Latimeria chalumnae, a 'living fossil,' is of great scientific interest, as it is closely related to the aquatic ancestors of land-living tetrapods. Latimeria show internal fertilization and bear live young, but their reproductive behaviour is poorly known. Here we present for the first time a paternity analysis of the only available material from gravid females and their offspring. We genotype two L. chalumnae females and their unborn brood for 14 microsatellite loci. We find that the embryos are closely related to each other and never show more than three different alleles per locus, providing evidence for a single father siring all of the offspring. We reconstruct the father's genotype but cannot identify it in the population. These data suggest that coelacanths have a monogamous mating system and that individual relatedness is not important for mate choice.
Collapse
|
33
|
Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). Proc Natl Acad Sci U S A 2013; 110:16044-9. [PMID: 24043829 DOI: 10.1073/pnas.1315760110] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclostomes, comprising jawless vertebrates such as lampreys and hagfishes, are the sister group of living jawed vertebrates (gnathostomes) and hence an important group for understanding the origin and diversity of vertebrates. In vertebrates and other metazoans, Hox genes determine cell fate along the anteroposterior axis of embryos and are implicated in driving morphological diversity. Invertebrates contain a single Hox cluster (either intact or fragmented), whereas elephant shark, coelacanth, and tetrapods contain four Hox clusters owing to two rounds of whole-genome duplication ("1R" and "2R") during early vertebrate evolution. By contrast, most teleost fishes contain up to eight Hox clusters because of an additional "teleost-specific" genome duplication event. By sequencing bacterial artificial chromosome (BAC) clones and the whole genome, here we provide evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). This suggests that the lamprey lineage has experienced an additional genome duplication after 1R and 2R. The relative age of lamprey and human paralogs supports this hypothesis. Compared with gnathostome Hox clusters, lamprey Hox clusters are unusually large. Several conserved noncoding elements (CNEs) were predicted in the Hox clusters of lamprey, elephant shark, and human. Transgenic zebrafish assay indicated the potential of CNEs to function as enhancers. Interestingly, CNEs in individual lamprey Hox clusters are frequently conserved in multiple Hox clusters in elephant shark and human, implying a many-to-many orthology relationship between lamprey and gnathostome Hox clusters. Such a relationship suggests that the first two rounds of genome duplication may have occurred independently in the lamprey and gnathostome lineages.
Collapse
|
34
|
Pallavicini A, Canapa A, Barucca M, Alfőldi J, Biscotti MA, Buonocore F, De Moro G, Di Palma F, Fausto AM, Forconi M, Gerdol M, Makapedua DM, Turner-Meier J, Olmo E, Scapigliati G. Analysis of the transcriptome of the Indonesian coelacanth Latimeria menadoensis. BMC Genomics 2013; 14:538. [PMID: 23927401 PMCID: PMC3750513 DOI: 10.1186/1471-2164-14-538] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/26/2013] [Indexed: 02/01/2023] Open
Abstract
Background Latimeria menadoensis is a coelacanth species first identified in 1997 in Indonesia, at 10,000 Km of distance from its African congener. To date, only six specimens have been caught and just a very limited molecular data is available. In the present work we describe the de novo transcriptome assembly obtained from liver and testis samples collected from the fifth specimen ever caught of this species. Results The deep RNA sequencing performed with Illumina technologies generated 145,435,156 paired-end reads, accounting for ~14 GB of sequence data, which were de novo assembled using a Trinity/CLC combined strategy. The assembly output was processed and filtered producing a set of 66,308 contigs, whose quality was thoroughly assessed. The comparison with the recently sequenced genome of the African congener Latimeria chalumnae and with the available genomic resources of other vertebrates revealed a good reconstruction of full length transcripts and a high coverage of the predicted full coelacanth transcriptome. The RNA-seq analysis revealed remarkable differences in the expression profiles between the two tissues, allowing the identification of liver- and testis-specific transcripts which may play a fundamental role in important biological processes carried out by these two organs. Conclusion Given the high genomic affinity between the two coelacanth species, the here described de novo transcriptome assembly can be considered a valuable support tool for the improvement of gene prediction within the genome of L. chalumnae and a valuable resource for investigation of many aspects of tetrapod evolution.
Collapse
|
35
|
Chalopin D, Fan S, Simakov O, Meyer A, Schartl M, Volff JN. Evolutionary active transposable elements in the genome of the coelacanth. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:322-33. [DOI: 10.1002/jez.b.22521] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/22/2013] [Accepted: 06/17/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon; Ecole Normale Supérieure de Lyon; CNRS UMR 5242; Université Lyon 1; Lyon France
| | - Shaohua Fan
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology; University of Konstanz; Konstanz Germany
- Konstanz Research School Chemical Biology; University of Konstanz; Konstanz Germany
| | - Oleg Simakov
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology; University of Konstanz; Konstanz Germany
- European Molecular Biology Laboratory; Heidelberg Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology; University of Konstanz; Konstanz Germany
- Konstanz Research School Chemical Biology; University of Konstanz; Konstanz Germany
| | - Manfred Schartl
- Department Physiological Chemistry, Biocenter; University of Wuerzburg; Wuerzburg Germany
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon; Ecole Normale Supérieure de Lyon; CNRS UMR 5242; Université Lyon 1; Lyon France
| |
Collapse
|
36
|
Nikaido M, Noguchi H, Nishihara H, Toyoda A, Suzuki Y, Kajitani R, Suzuki H, Okuno M, Aibara M, Ngatunga BP, Mzighani SI, Kalombo HWJ, Masengi KWA, Tuda J, Nogami S, Maeda R, Iwata M, Abe Y, Fujimura K, Okabe M, Amano T, Maeno A, Shiroishi T, Itoh T, Sugano S, Kohara Y, Fujiyama A, Okada N. Coelacanth genomes reveal signatures for evolutionary transition from water to land. Genome Res 2013; 23:1740-8. [PMID: 23878157 PMCID: PMC3787270 DOI: 10.1101/gr.158105.113] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coelacanths are known as “living fossils,” as they show remarkable morphological resemblance to the fossil record and belong to the most primitive lineage of living Sarcopterygii (lobe-finned fishes and tetrapods). Coelacanths may be key to elucidating the tempo and mode of evolution from fish to tetrapods. Here, we report the genome sequences of five coelacanths, including four Latimeria chalumnae individuals (three specimens from Tanzania and one from Comoros) and one L. menadoensis individual from Indonesia. These sequences cover two African breeding populations and two known extant coelacanth species. The genome is ∼2.74 Gbp and contains a high proportion (∼60%) of repetitive elements. The genetic diversity among the individuals was extremely low, suggesting a small population size and/or a slow rate of evolution. We found a substantial number of genes that encode olfactory and pheromone receptors with features characteristic of tetrapod receptors for the detection of airborne ligands. We also found that limb enhancers of bmp7 and gli3, both of which are essential for limb formation, are conserved between coelacanth and tetrapods, but not ray-finned fishes. We expect that some tetrapod-like genes may have existed early in the evolution of primitive Sarcopterygii and were later co-opted to adapt to terrestrial environments. These coelacanth genomes will provide a cornerstone for studies to elucidate how ancestral aquatic vertebrates evolved into terrestrial animals.
Collapse
Affiliation(s)
- Masato Nikaido
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pascual-Anaya J, D'Aniello S, Kuratani S, Garcia-Fernàndez J. Evolution of Hox gene clusters in deuterostomes. BMC DEVELOPMENTAL BIOLOGY 2013; 13:26. [PMID: 23819519 PMCID: PMC3707753 DOI: 10.1186/1471-213x-13-26] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/02/2013] [Indexed: 11/10/2022]
Abstract
Hox genes, with their similar roles in animals as evolutionarily distant as humans and flies, have fascinated biologists since their discovery nearly 30 years ago. During the last two decades, reports on Hox genes from a still growing number of eumetazoan species have increased our knowledge on the Hox gene contents of a wide range of animal groups. In this review, we summarize the current Hox inventory among deuterostomes, not only in the well-known teleosts and tetrapods, but also in the earlier vertebrate and invertebrate groups. We draw an updated picture of the ancestral repertoires of the different lineages, a sort of “genome Hox bar-code” for most clades. This scenario allows us to infer differential gene or cluster losses and gains that occurred during deuterostome evolution, which might be causally linked to the morphological changes that led to these widely diverse animal taxa. Finally, we focus on the challenging family of posterior Hox genes, which probably originated through independent tandem duplication events at the origin of each of the ambulacrarian, cephalochordate and vertebrate/urochordate lineages.
Collapse
|
38
|
Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T. Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective. Evol Dev 2013; 15:63-79. [PMID: 23331918 DOI: 10.1111/ede.12015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tetrapod auditory system transmits sound through the outer and middle ear to the organ of Corti or other sound pressure receivers of the inner ear where specialized hair cells translate vibrations of the basilar membrane into electrical potential changes that are conducted by the spiral ganglion neurons to the auditory nuclei. In other systems, notably the vertebrate limb, a detailed connection between the evolutionary variations in adaptive morphology and the underlying alterations in the genetic basis of development has been partially elucidated. In this review, we attempt to correlate evolutionary and partially characterized molecular data into a cohesive perspective of the evolution of the mammalian organ of Corti out of the tetrapod basilar papilla. We propose a stepwise, molecularly partially characterized transformation of the ancestral, vestibular developmental program of the vertebrate ear. This review provides a framework to decipher both discrete steps in development and the evolution of unique functional adaptations of the auditory system. The combined analysis of evolution and development establishes a powerful cross-correlation where conclusions derived from either approach become more meaningful in a larger context which is not possible through exclusively evolution or development centered perspectives. Selection may explain the survival of the fittest auditory system, but only developmental genetics can explain the arrival of the fittest auditory system. [Modified after (Wagner 2011)].
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, CLAS, 143 BB, Iowa City, IA, 52242, USA. bernd‐
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Renz AJ, Meyer A, Kuraku S. Revealing less derived nature of cartilaginous fish genomes with their evolutionary time scale inferred with nuclear genes. PLoS One 2013; 8:e66400. [PMID: 23825540 PMCID: PMC3692497 DOI: 10.1371/journal.pone.0066400] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/06/2013] [Indexed: 02/06/2023] Open
Abstract
Cartilaginous fishes, divided into Holocephali (chimaeras) and Elasmoblanchii (sharks, rays and skates), occupy a key phylogenetic position among extant vertebrates in reconstructing their evolutionary processes. Their accurate evolutionary time scale is indispensable for better understanding of the relationship between phenotypic and molecular evolution of cartilaginous fishes. However, our current knowledge on the time scale of cartilaginous fish evolution largely relies on estimates using mitochondrial DNA sequences. In this study, making the best use of the still partial, but large-scale sequencing data of cartilaginous fish species, we estimate the divergence times between the major cartilaginous fish lineages employing nuclear genes. By rigorous orthology assessment based on available genomic and transcriptomic sequence resources for cartilaginous fishes, we selected 20 protein-coding genes in the nuclear genome, spanning 2973 amino acid residues. Our analysis based on the Bayesian inference resulted in the mean divergence time of 421 Ma, the late Silurian, for the Holocephali-Elasmobranchii split, and 306 Ma, the late Carboniferous, for the split between sharks and rays/skates. By applying these results and other documented divergence times, we measured the relative evolutionary rate of the Hox A cluster sequences in the cartilaginous fish lineages, which resulted in a lower substitution rate with a factor of at least 2.4 in comparison to tetrapod lineages. The obtained time scale enables mapping phenotypic and molecular changes in a quantitative framework. It is of great interest to corroborate the less derived nature of cartilaginous fish at the molecular level as a genome-wide phenomenon.
Collapse
Affiliation(s)
- Adina J. Renz
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Shigehiro Kuraku
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
40
|
Amemiya CT, Wagner GP. Francis (Frank) Hugh Ruddle (1929-2013). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:273-5. [PMID: 23650107 DOI: 10.1002/jez.b.22509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/07/2013] [Accepted: 04/09/2013] [Indexed: 11/06/2022]
|
41
|
Amemiya CT, Alföldi J, Lee AP, Fan S, Philippe H, Maccallum I, Braasch I, Manousaki T, Schneider I, Rohner N, Organ C, Chalopin D, Smith JJ, Robinson M, Dorrington RA, Gerdol M, Aken B, Biscotti MA, Barucca M, Baurain D, Berlin AM, Blatch GL, Buonocore F, Burmester T, Campbell MS, Canapa A, Cannon JP, Christoffels A, De Moro G, Edkins AL, Fan L, Fausto AM, Feiner N, Forconi M, Gamieldien J, Gnerre S, Gnirke A, Goldstone JV, Haerty W, Hahn ME, Hesse U, Hoffmann S, Johnson J, Karchner SI, Kuraku S, Lara M, Levin JZ, Litman GW, Mauceli E, Miyake T, Mueller MG, Nelson DR, Nitsche A, Olmo E, Ota T, Pallavicini A, Panji S, Picone B, Ponting CP, Prohaska SJ, Przybylski D, Saha NR, Ravi V, Ribeiro FJ, Sauka-Spengler T, Scapigliati G, Searle SMJ, Sharpe T, Simakov O, Stadler PF, Stegeman JJ, Sumiyama K, Tabbaa D, Tafer H, Turner-Maier J, van Heusden P, White S, Williams L, Yandell M, Brinkmann H, Volff JN, Tabin CJ, Shubin N, Schartl M, Jaffe DB, Postlethwait JH, Venkatesh B, Di Palma F, Lander ES, Meyer A, Lindblad-Toh K. The African coelacanth genome provides insights into tetrapod evolution. Nature 2013; 496:311-6. [PMID: 23598338 PMCID: PMC3633110 DOI: 10.1038/nature12027] [Citation(s) in RCA: 478] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/20/2013] [Indexed: 01/28/2023]
Abstract
It was a zoological sensation when a living specimen of the coelacanth was first discovered in 1938, as this lineage of lobe-finned fish was thought to have gone extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features . Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain, and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues demonstrate the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.
Collapse
Affiliation(s)
- Chris T Amemiya
- Molecular Genetics Program, Benaroya Research Institute, Seattle, Washington 98101, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Extremely slow rate of evolution in the HOX cluster revealed by comparison between Tanzanian and Indonesian coelacanths. Gene 2012; 505:324-32. [DOI: 10.1016/j.gene.2012.05.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 11/20/2022]
|
44
|
Crow KD, Smith CD, Cheng JF, Wagner GP, Amemiya CT. An independent genome duplication inferred from Hox paralogs in the American paddlefish--a representative basal ray-finned fish and important comparative reference. Genome Biol Evol 2012; 4:937-53. [PMID: 22851613 PMCID: PMC3509897 DOI: 10.1093/gbe/evs067] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Vertebrates have experienced two rounds of whole-genome duplication (WGD) in the stem lineages of deep nodes within the group and a subsequent duplication event in the stem lineage of the teleosts—a highly diverse group of ray-finned fishes. Here, we present the first full Hox gene sequences for any member of the Acipenseriformes, the American paddlefish, and confirm that an independent WGD occurred in the paddlefish lineage, approximately 42 Ma based on sequences spanning the entire HoxA cluster and eight genes on the HoxD gene cluster. These clusters comprise different HOX loci and maintain conserved synteny relative to bichir, zebrafish, stickleback, and pufferfish, as well as human, mouse, and chick. We also provide a gene genealogy for the duplicated fzd8 gene in paddlefish and present evidence for the first Hox14 gene in any ray-finned fish. Taken together, these data demonstrate that the American paddlefish has an independently duplicated genome. Substitution patterns of the “alpha” paralogs on both the HoxA and HoxD gene clusters suggest transcriptional inactivation consistent with functional diploidization. Further, there are similarities in the pattern of sequence divergence among duplicated Hox genes in paddlefish and teleost lineages, even though they occurred independently approximately 200 Myr apart. We highlight implications on comparative analyses in the study of the “fin-limb transition” as well as gene and genome duplication in bony fishes, which includes all ray-finned fishes as well as the lobe-finned fishes and tetrapod vertebrates.
Collapse
Affiliation(s)
- Karen D Crow
- Department of Biology, San Francisco State University, CA, USA.
| | | | | | | | | |
Collapse
|
45
|
Han GZ, Worobey M. An endogenous foamy-like viral element in the coelacanth genome. PLoS Pathog 2012; 8:e1002790. [PMID: 22761578 PMCID: PMC3386198 DOI: 10.1371/journal.ppat.1002790] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/22/2012] [Indexed: 11/18/2022] Open
Abstract
Little is known about the origin and long-term evolutionary mode of retroviruses. Retroviruses can integrate into their hosts' genomes, providing a molecular fossil record for studying their deep history. Here we report the discovery of an endogenous foamy virus-like element, which we designate 'coelacanth endogenous foamy-like virus' (CoeEFV), within the genome of the coelacanth (Latimeria chalumnae). Phylogenetic analyses place CoeEFV basal to all known foamy viruses, strongly suggesting an ancient ocean origin of this major retroviral lineage, which had previously been known to infect only land mammals. The discovery of CoeEFV reveals the presence of foamy-like viruses in species outside the Mammalia. We show that foamy-like viruses have likely codiverged with their vertebrate hosts for more than 407 million years and underwent an evolutionary transition from water to land with their vertebrate hosts. These findings suggest an ancient marine origin of retroviruses and have important implications in understanding foamy virus biology.
Collapse
Affiliation(s)
- Guan-Zhu Han
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (GZH); (MW)
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (GZH); (MW)
| |
Collapse
|
46
|
Yu H, Lindsay J, Feng ZP, Frankenberg S, Hu Y, Carone D, Shaw G, Pask AJ, O'Neill R, Papenfuss AT, Renfree MB. Evolution of coding and non-coding genes in HOX clusters of a marsupial. BMC Genomics 2012; 13:251. [PMID: 22708672 PMCID: PMC3541083 DOI: 10.1186/1471-2164-13-251] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/22/2012] [Indexed: 12/13/2022] Open
Abstract
Background The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Results Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. Conclusions This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.
Collapse
Affiliation(s)
- Hongshi Yu
- ARC Centre of Excellence in Kangaroo Genomics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Earliest known coelacanth skull extends the range of anatomically modern coelacanths to the Early Devonian. Nat Commun 2012; 3:772. [DOI: 10.1038/ncomms1764] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/29/2012] [Indexed: 11/08/2022] Open
|
49
|
Abstract
The increase of bodyplan complexity in early bilaterian evolution is correlates with the advent and diversification of microRNAs. These small RNAs guide animal development by regulating temporal transitions in gene expression involved in cell fate choices and transitions between pluripotency and differentiation. One of the two known microRNAs whose origins date back before the bilaterian ancestor is mir-100. In Bilateria, it appears stably associated in polycistronic transcripts with let-7 and mir-125, two key regulators of development. In vertebrates, these three microRNA families have expanded to form a complex system of developmental regulators. In this contribution, we disentangle the evolutionary history of the let-7 locus, which was restructured independently in nematodes, platyhelminths, and deuterostomes. The foundation of a second let-7 locus in the common ancestor of vertebrates and urochordates predates the vertebrate-specific genome duplications, which then caused a rapid expansion of the let-7 family.
Collapse
Affiliation(s)
- Jana Hertel
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Mansfield JH, McGlinn E. Evolution, Expression, and Developmental Function of Hox-Embedded miRNAs. Curr Top Dev Biol 2012; 99:31-57. [DOI: 10.1016/b978-0-12-387038-4.00002-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|