1
|
Diepold A. Defining Assembly Pathways by Fluorescence Microscopy. Methods Mol Biol 2024; 2715:383-394. [PMID: 37930541 DOI: 10.1007/978-1-0716-3445-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Bacterial secretion systems are among the largest protein complexes in prokaryotes and display remarkably complex architectures. Their assembly often follows clearly defined pathways. Deciphering these pathways not only reveals how bacteria accomplish to build these large functional complexes but can provide crucial information on the interactions and subcomplexes within secretion systems, their distribution within the bacterium, and even functional insights. Fluorescence microscopy provides a powerful tool for biological imaging, which presents an interesting method to accurately define the biogenesis of macromolecular complexes using fluorescently labeled components. Here, I describe the use of this method to decipher the assembly pathway of bacterial secretion systems.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
2
|
Wangthaisong P, Piromyou P, Songwattana P, Wongdee J, Teamtaisong K, Tittabutr P, Boonkerd N, Teaumroong N. The Type IV Secretion System (T4SS) Mediates Symbiosis between Bradyrhizobium sp. SUTN9-2 and Legumes. Appl Environ Microbiol 2023; 89:e0004023. [PMID: 37255432 PMCID: PMC10304904 DOI: 10.1128/aem.00040-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/22/2023] [Indexed: 06/01/2023] Open
Abstract
There has been little study of the type IV secretion system (T4SS) of bradyrhizobia and its role in legume symbiosis. Therefore, broad host range Bradyrhizobium sp. SUTN9-2 was selected for study. The chromosome of Bradyrhizobium sp. SUTN9-2 contains two copies of the T4SS gene, homologous with the tra/trb operons. A phylogenetic tree of the T4SS gene traG was constructed, which exemplified its horizontal transfer among Bradyrhizobium and Mesorhizobium genera. They also showed similar gene arrangements for the tra/trb operons. However, the virD2 gene was not observed in Mesorhizobium, except M. oppotunistum WSM2075. Interestingly, the orientation of copG, traG, and virD2 cluster was unique to the Bradyrhizobium genus. The phylogenetic tree of copG, traG, and virD2 demonstrated that copies 1 and 2 of these genes were grouped in different clades. In addition, the derived mutant and complementation strains of T4SS were investigated in representative legumes Genistoids, Dalbergioids, and Millettiods. When T4SS copy 1 (T4SS1) was deleted, the nodule number and nitrogenase activity decreased. This supports a positive effect of T4SS1 on symbiosis. In addition, delayed nodulation was observed 7 dpi, which was restored by the complementation of T4SS1. Therefore, T4SS plays an important role in the symbiotic interaction between Bradyrhizobium sp. SUTN9-2 and its leguminous hosts. IMPORTANCE SUTN9-2 is a broad host range strain capable of symbiosis with several legumes. Two copies of T4SS clusters belonging to the tra/trb operon are observed on chromosomes with different gene arrangements. We use phylogenetic tree and gene annotation analysis to predict the evolution of the tra/trb operon of rhizobia. Our finding suggests that the gene encoding the T4SS gene among Bradyrhizobium and Mesorhizobium may have coevolution. In addition, Bradyrhizobium has a uniquely arranged copG, traG, and virD2 gene cluster. The results of T4SS1 gene deletion and complementation revealed its positive effect on nodulation. Therefore, T4SS seems to be another determinant for symbiosis. This is the first report on the role of T4SS in Bradyrhizobium symbiosis.
Collapse
Affiliation(s)
- Praneet Wangthaisong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pongdet Piromyou
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pongpan Songwattana
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jenjira Wongdee
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Kamonluck Teamtaisong
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
3
|
Daveri A, Benigno V, van der Meer JR. Characterization of an atypical but widespread type IV secretion system for transfer of the integrative and conjugative element (ICEclc) in Pseudomonas putida. Nucleic Acids Res 2023; 51:2345-2362. [PMID: 36727472 PMCID: PMC10018362 DOI: 10.1093/nar/gkad024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Conjugation of DNA relies on multicomponent protein complexes bridging two bacterial cytoplasmic compartments. Whereas plasmid conjugation systems have been well documented, those of integrative and conjugative elements (ICEs) have remained poorly studied. We characterize here the conjugation system of the ICEclc element in Pseudomonas putida UWC1 that is a model for a widely distributed family of ICEs. By in frame deletion and complementation, we show the importance on ICE transfer of 22 genes in a 20-kb conserved ICE region. Protein comparisons recognized seven homologs to plasmid type IV secretion system components, another six homologs to frequent accessory proteins, and the rest without detectable counterparts. Stationary phase imaging of P. putida ICEclc with in-frame fluorescent protein fusions to predicted type IV components showed transfer-competent cell subpopulations with multiple fluorescent foci, largely overlapping in dual-labeled subcomponents, which is suggestive for multiple conjugation complexes per cell. Cross-dependencies between subcomponents in ICE-type IV secretion system assembly were revealed by quantitative foci image analysis in a variety of ICEclc mutant backgrounds. In conclusion, the ICEclc family presents an evolutionary distinct type IV conjugative system with transfer competent cells specialized in efficient transfer.
Collapse
Affiliation(s)
- Andrea Daveri
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valentina Benigno
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
4
|
Xiao Y, Yan F, Cui Y, Du J, Hu G, Zhai W, Liu R, Zhang Z, Fang J, Chen L, Yu X. A symbiotic bacterium of Antarctic fish reveals environmental adaptability mechanisms and biosynthetic potential towards antibacterial and cytotoxic activities. Front Microbiol 2023; 13:1085063. [PMID: 36713225 PMCID: PMC9882997 DOI: 10.3389/fmicb.2022.1085063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023] Open
Abstract
Antarctic microbes are important agents for evolutionary adaptation and natural resource of bioactive compounds, harboring the particular metabolic pathways to biosynthesize natural products. However, not much is known on symbiotic microbiomes of fish in the Antarctic zone. In the present study, the culture method and whole-genome sequencing were performed. Natural product analyses were carried out to determine the biosynthetic potential. We report the isolation and identification of a symbiotic bacterium Serratia myotis L7-1, that is highly adaptive and resides within Antarctic fish, Trematomus bernacchii. As revealed by genomic analyses, Antarctic strain S. myotis L7-1 possesses carbohydrate-active enzymes (CAZymes), biosynthetic gene clusters (BGCs), stress response genes, antibiotic resistant genes (ARGs), and a complete type IV secretion system which could facilitate competition and colonization in the extreme Antarctic environment. The identification of microbiome gene clusters indicates the biosynthetic potential of bioactive compounds. Based on bioactivity-guided fractionation, serranticin was purified and identified as the bioactive compound, showing significant antibacterial and antitumor activity. The serranticin gene cluster was identified and located on the chrome. Furthermore, the multidrug resistance and strong bacterial antagonism contribute competitive advantages in ecological niches. Our results highlight the existence of a symbiotic bacterium in Antarctic fish largely represented by bioactive natural products and the adaptability to survive in the fish living in Antarctic oceans.
Collapse
Affiliation(s)
- Yu Xiao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Fangfang Yan
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yukun Cui
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jiangtao Du
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Guangzhao Hu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Wanying Zhai
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China,*Correspondence: Liangbiao Chen, ✉
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China,Xi Yu, ✉
| |
Collapse
|
5
|
Cryo-EM structure of the Agrobacteriumtumefaciens T-pilus reveals the importance of positive charges in the lumen. Structure 2022; 31:375-384.e4. [PMID: 36513067 DOI: 10.1016/j.str.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
Agrobacterium tumefaciens is a natural genetic engineer that transfers DNA into plants, which is the most applied process for generation of genetically modified plants. DNA transfer is mediated by a type IV secretion system in the cell envelope and extracellular T-pili. We here report the cryo-electron microscopic structures of the T-pilus at 3.2-Å resolution and of the plasmid pKM101-determined N-pilus at 3-Å resolution. Both pili contain a main pilus protein (VirB2 in A. tumefaciens, TraM in pKM101) and phospholipids arranged in a five-start helical assembly. They contain positively charged amino acids in the lumen, and the lipids are positively charged in the T-pilus (phosphatidylcholine) conferring overall positive charge. Mutagenesis of the lumen-exposed Arg91 in VirB2 results in protein destabilization and loss of pilus formation. Our results reveal that different phospholipids can be incorporated into type IV secretion pili and that the charge of the lumen may be of functional importance.
Collapse
|
6
|
Geddes-McAlister J, Prudhomme N, Gutierrez Gongora D, Cossar D, McLean MD. The emerging role of mass spectrometry-based proteomics in molecular pharming practices. Curr Opin Chem Biol 2022; 68:102133. [DOI: 10.1016/j.cbpa.2022.102133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
|
7
|
Czolkoss S, Safronov X, Rexroth S, Knoke LR, Aktas M, Narberhaus F. Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes. Front Microbiol 2021; 12:754486. [PMID: 34899640 PMCID: PMC8656257 DOI: 10.3389/fmicb.2021.754486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cell membranes are not homogenous but compartmentalized into lateral microdomains, which are considered as biochemical reaction centers for various physiological processes in eukaryotes and prokaryotes. Due to their special lipid and protein composition, some of these microdomains are resistant to treatment with non-ionic detergents and can be purified as detergent-resistant membranes (DRMs). Here we report the proteome of DRMs from the Gram-negative phytopathogen Agrobacterium tumefaciens. Using label-free liquid chromatography-tandem mass spectrometry, we identified proteins enriched in DRMs isolated under normal and virulence-mimicking growth conditions. Prominent microdomain marker proteins such as the SPFH (stomatin/prohibitin/flotillin/HflKC) proteins HflK, HflC and Atu3772, along with the protease FtsH were highly enriched in DRMs isolated under any given condition. Moreover, proteins involved in cell envelope biogenesis, transport and secretion, as well as motility- and chemotaxis-associated proteins were overrepresented in DRMs. Most strikingly, we found virulence-associated proteins such as the VirA/VirG two-component system, and the membrane-spanning type IV and type VI secretion systems enriched in DRMs. Fluorescence microscopy of the cellular localization of both secretion systems and of marker proteins was in agreement with the results from the proteomics approach. These findings suggest that virulence traits are micro-compartmentalized into functional microdomains in A. tumefaciens.
Collapse
Affiliation(s)
- Simon Czolkoss
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Xenia Safronov
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Sascha Rexroth
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Lisa R Knoke
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Meriyem Aktas
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
8
|
De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, Van Montagu M, Depuydt S. Agrobacterium strains and strain improvement: Present and outlook. Biotechnol Adv 2020; 53:107677. [PMID: 33290822 DOI: 10.1016/j.biotechadv.2020.107677] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Almost 40 years ago the first transgenic plant was generated through Agrobacterium tumefaciens-mediated transformation, which, until now, remains the method of choice for gene delivery into plants. Ever since, optimized Agrobacterium strains have been developed with additional (genetic) modifications that were mostly aimed at enhancing the transformation efficiency, although an optimized strain also exists that reduces unwanted plasmid recombination. As a result, a collection of very useful strains has been created to transform a wide variety of plant species, but has also led to a confusing Agrobacterium strain nomenclature. The latter is often misleading for choosing the best-suited strain for one's transformation purposes. To overcome this issue, we provide a complete overview of the strain classification. We also indicate different strain modifications and their purposes, as well as the obtained results with regard to the transformation process sensu largo. Furthermore, we propose additional improvements of the Agrobacterium-mediated transformation process and consider several worthwhile modifications, for instance, by circumventing a defense response in planta. In this regard, we will discuss pattern-triggered immunity, pathogen-associated molecular pattern detection, hormone homeostasis and signaling, and reactive oxygen species in relationship to Agrobacterium transformation. We will also explore alterations that increase agrobacterial transformation efficiency, reduce plasmid recombination, and improve biocontainment. Finally, we recommend the use of a modular system to best utilize the available knowledge for successful plant transformation.
Collapse
Affiliation(s)
- Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jihae Park
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Marine Sciences, Incheon National University, Incheon 406-840, South Korea
| | - Hoo Sun Chung
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
9
|
Prudhomme N, Gianetto-Hill C, Pastora R, Cheung WF, Allen-Vercoe E, McLean MD, Cossar D, Geddes-McAlister J. Quantitative proteomic profiling of shake flask versus bioreactor growth reveals distinct responses of Agrobacterium tumefaciens for preparation in molecular pharming. Can J Microbiol 2020; 67:75-84. [PMID: 32846104 DOI: 10.1139/cjm-2020-0238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The preparation of Agrobacterium tumefaciens cultures with strains encoding proteins intended for therapeutic or industrial purposes is an important activity prior to treatment of plants for transient expression of valuable protein products. The rising demand for biologic products such as these underscores the expansion of molecular pharming and warrants the need to produce transformed plants at an industrial scale. This requires large quantities of A. tumefaciens culture, which is challenging using traditional growth methods (e.g., shake flask). To overcome this limitation, we investigate the use of bioreactors as an alternative to shake flasks to meet production demands. Here, we observe differences in bacterial growth among the tested parameters and define conditions for consistent bacterial culturing between shake flask and bioreactor. Quantitative proteomic profiling of cultures from each growth condition defines unique growth-specific responses in bacterial protein abundance and highlights the functional roles of these proteins, which may influence bacterial processes important for effective agroinfiltration and transformation. Overall, our study establishes and optimizes comparable growth conditions for shake flask versus bioreactors and provides novel insights into fundamental biological processes of A. tumefaciens influenced by such growth conditions.
Collapse
Affiliation(s)
- N Prudhomme
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - C Gianetto-Hill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - R Pastora
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - W-F Cheung
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - E Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - M D McLean
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - D Cossar
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - J Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
10
|
Prudhomme N, Pastora R, Muselius B, McLean MD, Cossar D, Geddes-McAlister J. Exposure of Agrobacterium tumefaciens to agroinfiltration medium demonstrates cellular remodelling and may promote enhanced adaptability for molecular pharming. Can J Microbiol 2020; 67:85-97. [PMID: 32721220 DOI: 10.1139/cjm-2020-0239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agroinfiltration is used to treat plants with modified strains of Agrobacterium tumefaciens for the purpose of transient in planta expression of genes transferred from the bacterium. These genes encode valuable recombinant proteins for therapeutic or industrial applications. Treatment of large quantities of plants for industrial-scale protein production exposes bacteria (harboring genes of interest) to agroinfiltration medium that is devoid of nutrients and carbon sources for prolonged periods of time (possibly upwards of 24 h). Such conditions may negatively influence bacterial viability, infectivity of plant cells, and target protein production. Here, we explored the role of timing in bacterial culture preparation for agroinfiltration using mass spectrometry-based proteomics to define changes in cellular processes. We observed distinct profiles associated with bacterial treatment conditions and exposure timing, including significant changes in proteins involved in pathogenesis, motility, and nutrient acquisition systems as the bacteria adapt to the new environment. These data suggest a progression towards increased cellular remodelling over time. In addition, we described changes in growth- and environment-specific processes over time, underscoring the interconnectivity of pathogenesis and chemotaxis-associated proteins with transport and metabolism. Overall, our results have important implications for the production of transiently expressed target protein products, as prolonged exposure to agroinfiltration medium suggests remodelling of the bacterial proteins towards enhanced infection of plant cells.
Collapse
Affiliation(s)
- N Prudhomme
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - R Pastora
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - B Muselius
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - M D McLean
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - D Cossar
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - J Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
11
|
Harris MO, Pitzschke A. Plants make galls to accommodate foreigners: some are friends, most are foes. THE NEW PHYTOLOGIST 2020; 225:1852-1872. [PMID: 31774564 DOI: 10.1111/nph.16340] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
At the colonization site of a foreign entity, plant cells alter their trajectory of growth and development. The resulting structure - a plant gall - accommodates various needs of the foreigner, which are phylogenetically diverse: viruses, bacteria, protozoa, oomycetes, true fungi, parasitic plants, and many types of animals, including rotifers, nematodes, insects, and mites. The plant species that make galls also are diverse. We assume gall production costs the plant. All is well if the foreigner provides a gift that makes up for the cost. Nitrogen-fixing nodule-inducing bacteria provide nutritional services. Gall wasps pollinate fig trees. Unfortunately for plants, most galls are made for foes, some of which are deeply studied pathogens and pests: Agrobacterium tumefaciens, Rhodococcus fascians, Xanthomonas citri, Pseudomonas savastanoi, Pantoea agglomerans, 'Candidatus' phytoplasma, rust fungi, Ustilago smuts, root knot and cyst nematodes, and gall midges. Galls are an understudied phenomenon in plant developmental biology. We propose gall inception for discovering unifying features of the galls that plants make for friends and foes, talk about molecules that plants and gall-inducers use to get what they want from each other, raise the question of whether plants colonized by arbuscular mycorrhizal fungi respond in a gall-like manner, and present a research agenda.
Collapse
Affiliation(s)
- Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND, 58014, USA
| | - Andrea Pitzschke
- Department of Biosciences, Salzburg University, Hellbrunner Strasse 34, A-5020, Salzburg, Austria
| |
Collapse
|
12
|
Kowalczyk T, Wieczfinska J, Skała E, Śliwiński T, Sitarek P. Transgenesis as a Tool for the Efficient Production of Selected Secondary Metabolites from in Vitro Plant Cultures. PLANTS (BASEL, SWITZERLAND) 2020; 9:E132. [PMID: 31973076 PMCID: PMC7076688 DOI: 10.3390/plants9020132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 12/28/2022]
Abstract
The plant kingdom abounds in countless species with potential medical uses. Many of them contain valuable secondary metabolites belonging to different classes and demonstrating anticancer, anti-inflammatory, antioxidant, antimicrobial or antidiabetic properties. Many of these metabolites, e.g., paclitaxel, vinblastine, betulinic acid, chlorogenic acid or ferrulic acid, have potential applications in medicine. Additionally, these compounds have many therapeutic and health-promoting properties. The growing demand for these plant secondary metabolites forces the use of new green biotechnology tools to create new, more productive in vitro transgenic plant cultures. These procedures have yielded many promising results, and transgenic cultures have been found to be safe, efficient and cost-effective sources of valuable secondary metabolites for medicine and industry. This review focuses on the use of various in vitro plant culture systems for the production of secondary metabolites.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Joanna Wieczfinska
- Department of Immunopathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (E.S.); (P.S.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (E.S.); (P.S.)
| |
Collapse
|
13
|
PhiA, a Peptidoglycan Hydrolase Inhibitor of Brucella Involved in the Virulence Process. Infect Immun 2019; 87:IAI.00352-19. [PMID: 31182616 DOI: 10.1128/iai.00352-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/30/2019] [Indexed: 11/20/2022] Open
Abstract
The peptidoglycan in Gram-negative bacteria is a dynamic structure in constant remodeling. This dynamism, achieved through synthesis and degradation, is essential because the peptidoglycan is necessary to maintain the structure of the cell but has to have enough plasticity to allow the transport and assembly of macromolecular complexes in the periplasm and outer membrane. In addition, this remodeling has to be coordinated with the division process. Among the multiple mechanisms bacteria have to degrade the peptidoglycan are the lytic transglycosidases, enzymes of the lysozyme family that cleave the glycan chains generating gaps in the mesh structure increasing its permeability. Because these enzymes can act as autolysins, their activity has to be tightly regulated, and one of the mechanisms bacteria have evolved is the synthesis of membrane bound or periplasmic inhibitors. In the present study, we identify a periplasmic lytic transglycosidase inhibitor (PhiA) in Brucella abortus and demonstrate that it inhibits the activity of SagA, a lytic transglycosidase we have previously shown is involved in the assembly of the type IV secretion system. A phiA deletion mutant results in a strain with the incapacity to synthesize a complete lipopolysaccharide but with a higher replication rate than the wild-type parental strain, suggesting a link between peptidoglycan remodeling and speed of multiplication.
Collapse
|
14
|
Wu X, Zhao Y, Sun L, Jiang M, Wang Q, Wang Q, Yang W, Wu Y. Crystal structure of CagV, the Helicobacter pylori homologue of the T4SS protein VirB8. FEBS J 2019; 286:4294-4309. [PMID: 31230405 DOI: 10.1111/febs.14971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/13/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
The VirB/D type IV secretion system (T4SS) plays an essential role in materials transport between host cells and pathogenic Helicobacter pylori and is considered the major pathogenic mediator of H. pylori-associated gastric disease. VirB8, an inner membrane protein that interacts with many other proteins, is a crucial component for secretory function. Here, we present a crystal structure of the periplasmic domain of CagV, the VirB8 counterpart in the H. pylori Cag-T4SS. The structure reveals a fold similar to that of other VirB8 members except for the absence of the α5 helix, a discontinuous β1 strand, a larger angle between the α2 and α3 helices, a more hydrophobic surface groove, but exhibits a different dimer interface. Whether the dimerization occurs in solution was proved by mutagenesis, size-exclusion chromatography and cross-linking assays. Unlike the classical dimerization mode, the interface of the CagV dimer is principally formed by several hydrogen bonds, which indicates instability of dimerization. The structure here demonstrates the difference in dimerization among VirB8 homologues and indicates the considerable compositional and functional diversity of them in T4SS. DATABASE: Coordinates and structure factors have been deposited in the Protein Data Bank under accession codes 6IQT.
Collapse
Affiliation(s)
- Xiuling Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yanhe Zhao
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lifang Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Meiqin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qin Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - QianChao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wendi Yang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
15
|
Waksman G. From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective. EMBO Rep 2019; 20:embr.201847012. [PMID: 30602585 PMCID: PMC6362355 DOI: 10.15252/embr.201847012] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022] Open
Abstract
Conjugation is the process by which bacteria exchange genetic materials in a unidirectional manner from a donor cell to a recipient cell. The discovery of conjugation signalled the dawn of genetics and molecular biology. In Gram-negative bacteria, the process of conjugation is mediated by a large membrane-embedded machinery termed "conjugative type IV secretion (T4S) system", a large injection nanomachine, which together with a DNA-processing machinery termed "the relaxosome" and a large extracellular tube termed "pilus" orchestrates directional DNA transfer. Here, the focus is on past and latest research in the field of conjugation and T4S systems in Gram-negative bacteria, with an emphasis on the various questions and debates that permeate the field from a mechanistic perspective.
Collapse
Affiliation(s)
- Gabriel Waksman
- Institute of Structural and Molecular Biology, UCL and Birkbeck, London, UK
| |
Collapse
|
16
|
Tan H, Yu Z, Wang C, Zhang Q, Zhao J, Zhang H, Zhai Q, Chen W. Pilot Safety Evaluation of a Novel Strain of Bacteroides ovatus. Front Genet 2018; 9:539. [PMID: 30459813 PMCID: PMC6232662 DOI: 10.3389/fgene.2018.00539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
Bacteroides ovatus ELH-B2 is considered as a potential next-generation probiotic due to its preventive effects on lipopolysaccharides-associated inflammation and intestinal microbiota disorders in mice. To study safety issues associated with B. ovatus ELH-B2, we conducted comprehensive and systematic experiments, including in vitro genetic assessments of potential virulence and antimicrobial resistance genes, and an in vivo acute toxicity study of both immunocompetent and immunosuppressed mice via cyclophosphamide treatment. The results indicated that this novel strain is non-toxigenic, fragilysin is not expressed, and most of potential virulence genes are correlated with cellular structures such as capsular polysaccharide and polysaccharide utilizations. The antibiotic resistance features are unlikely be transferred to other intestinal microorganisms as no plasmids nor related genomic islands were identified. Side effects were not observed in mice. B. ovatus ELH-B2 also alleviated the damages caused by cyclophosphamide injection.
Collapse
Affiliation(s)
- Huizi Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhiming Yu
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Chen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
17
|
VirB8 homolog TraE from plasmid pKM101 forms a hexameric ring structure and interacts with the VirB6 homolog TraD. Proc Natl Acad Sci U S A 2018; 115:5950-5955. [PMID: 29784815 PMCID: PMC6003364 DOI: 10.1073/pnas.1802501115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The overproduction and purification of membrane proteins are intrinsically difficult, making their analysis challenging. We purified the TraE membrane protein from a bacterial conjugation system that is involved in plasmid transfer. Our results suggest that this protein forms hexamers with a central pore, and we also show that it binds to the TraD protein. The structure of TraE is completely different from that of the previously characterized periplasmic domain. This has intriguing implications for the role of TraE and of its interaction partner TraD in substrate translocation across the bacterial cell envelope. This work makes an important contribution to understanding of the mechanism of plasmid transfer, contributing to the design of approaches to inhibit the spread of antibiotic resistance genes. Type IV secretion systems (T4SSs) are multiprotein assemblies that translocate macromolecules across the cell envelope of bacteria. X-ray crystallographic and electron microscopy (EM) analyses have increasingly provided structural information on individual T4SS components and on the entire complex. As of now, relatively little information has been available on the exact localization of the inner membrane-bound T4SS components, notably the mostly periplasmic VirB8 protein and the very hydrophobic VirB6 protein. We show here that the membrane-bound, full-length version of the VirB8 homolog TraE from the plasmid pKM101 secretion system forms a high-molecular-mass complex that is distinct from the previously characterized periplasmic portion of the protein that forms dimers. Full-length TraE was extracted from the membranes with detergents, and analysis by size-exclusion chromatography, cross-linking, and size exclusion chromatography (SEC) multiangle light scattering (MALS) shows that it forms a high-molecular-mass complex. EM and small-angle X-ray scattering (SAXS) analysis demonstrate that full-length TraE forms a hexameric complex with a central pore. We also overproduced and purified the VirB6 homolog TraD and show by cross-linking, SEC, and EM that it binds to TraE. Our results suggest that TraE and TraD interact at the substrate translocation pore of the secretion system.
Collapse
|
18
|
Tu H, Li X, Yang Q, Peng L, Pan SQ. Real-Time Trafficking of Agrobacterium Virulence Protein VirE2 Inside Host Cells. Curr Top Microbiol Immunol 2018; 418:261-286. [PMID: 30182197 DOI: 10.1007/82_2018_131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A. tumefaciens delivers T-DNA and virulence proteins, including VirE2, into host plant cells, where T-DNA is proposed to be protected by VirE2 molecules as a nucleoprotein complex (T-complex) and trafficked into the nucleus. VirE2 is a protein that can self-aggregate and contains targeting sequences so that it can efficiently move from outside of a cell to the nucleus. We adopted a split-GFP approach and generated a VirE2-GFP fusion which retains the self-aggregating property and the targeting sequences. The fusion protein is fully functional and can move inside cells in real time in a readily detectable format: fluorescent and unique filamentous aggregates. Upon delivery mediated by the bacterial type IV secretion system (T4SS), VirE2-GFP is internalized into the plant cells via clathrin adaptor complex AP2-mediated endocytosis. Subsequently, VirE2-GFP binds to membrane structures such as the endoplasmic reticulum (ER) and is trafficked within the cell. This enables us to observe the highly dynamic activities of the cell. If a compound, a gene, or a condition affects the cell, the cellular dynamics shown by the VirE2-GFP will be affected and thus readily observed by confocal microscopy. This represents an excellent model to study the delivery and trafficking of an exogenously produced and delivered protein inside a cell in a natural setting in real time. The model may be used to explore the theoretical and applied aspects of natural protein delivery and targeting.
Collapse
Affiliation(s)
- Haitao Tu
- School of Stomatology and Medicine, Foshan Institute of Molecular Bio-Engineering, Foshan University, 528000, Foshan, China
| | - Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Qinghua Yang
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Ling Peng
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| | - Shen Q Pan
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore.
| |
Collapse
|
19
|
Schneider JP, Basler M. Shedding light on biology of bacterial cells. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0499. [PMID: 27672150 PMCID: PMC5052743 DOI: 10.1098/rstb.2015.0499] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 12/11/2022] Open
Abstract
To understand basic principles of living organisms one has to know many different properties of all cellular components, their mutual interactions but also their amounts and spatial organization. Live-cell imaging is one possible approach to obtain such data. To get multiple snapshots of a cellular process, the imaging approach has to be gentle enough to not disrupt basic functions of the cell but also have high temporal and spatial resolution to detect and describe the changes. Light microscopy has become a method of choice and since its early development over 300 years ago revolutionized our understanding of living organisms. As most cellular components are indistinguishable from the rest of the cellular contents, the second revolution came from a discovery of specific labelling techniques, such as fusions to fluorescent proteins that allowed specific tracking of a component of interest. Currently, several different tags can be tracked independently and this allows us to simultaneously monitor the dynamics of several cellular components and from the correlation of their dynamics to infer their respective functions. It is, therefore, not surprising that live-cell fluorescence microscopy significantly advanced our understanding of basic cellular processes. Current cameras are fast enough to detect changes with millisecond time resolution and are sensitive enough to detect even a few photons per pixel. Together with constant improvement of properties of fluorescent tags, it is now possible to track single molecules in living cells over an extended period of time with a great temporal resolution. The parallel development of new illumination and detection techniques allowed breaking the diffraction barrier and thus further pushed the resolution limit of light microscopy. In this review, we would like to cover recent advances in live-cell imaging technology relevant to bacterial cells and provide a few examples of research that has been possible due to imaging. This article is part of the themed issue ‘The new bacteriology’.
Collapse
Affiliation(s)
- Johannes P Schneider
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marek Basler
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
20
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
21
|
Zhang D, Zhou Y, Zhao D, Zhu J, Yang Z, Zhu M. Complete genome sequence and pathogenic genes analysis of Pectobacterium atroseptica JG10-08. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0559-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Polar delivery of Legionella type IV secretion system substrates is essential for virulence. Proc Natl Acad Sci U S A 2017; 114:8077-8082. [PMID: 28696299 DOI: 10.1073/pnas.1621438114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A recurrent emerging theme is the targeting of proteins to subcellular microdomains within bacterial cells, particularly to the poles. In most cases, it has been assumed that this localization is critical to the protein's function. Legionella pneumophila uses a type IVB secretion system (T4BSS) to export a large number of protein substrates into the cytoplasm of host cells. Here we show that the Legionella export apparatus is localized to the bacterial poles, as is consistent with many T4SS substrates being retained on the phagosomal membrane adjacent to the poles of the bacterium. More significantly, we were able to demonstrate that polar secretion of substrates is critically required for Legionella's alteration of the host endocytic pathway, an activity required for this pathogen's virulence.
Collapse
|
23
|
Li X, Pan SQ. Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. SCIENCE ADVANCES 2017; 3:e1601528. [PMID: 28345032 PMCID: PMC5362186 DOI: 10.1126/sciadv.1601528] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/09/2017] [Indexed: 05/20/2023]
Abstract
Agrobacterium tumefaciens can cause crown gall tumors on a wide range of host plants. As a natural genetic engineer, the bacterium can transfer both single-stranded DNA (ssDNA) [transferred DNA (T-DNA)] molecules and bacterial virulence proteins into various recipient cells. Among Agrobacterium-delivered proteins, VirE2 is an ssDNA binding protein that is involved in various steps of the transformation process. However, it is not clear how plant cells receive the T-DNA or protein molecules. Using a split-green fluorescent protein approach, we monitored the VirE2 delivery process inside plant cells in real time. We observed that A. tumefaciens delivered VirE2 from the bacterial lateral sides that were in close contact with plant membranes. VirE2 initially accumulated on plant cytoplasmic membranes at the entry points. VirE2-containing membranes were internalized through clathrin-mediated endocytosis to form endomembrane compartments. VirE2 colocalized with the early endosome marker SYP61 but not with the late endosome marker ARA6, suggesting that VirE2 escaped from early endosomes for subsequent trafficking inside the cells. Dual endocytic motifs at the carboxyl-terminal tail of VirE2 were involved in VirE2 internalization and could interact with the μ subunit of the plant clathrin-associated adaptor AP2 complex (AP2M). Both the VirE2 cargo motifs and AP2M were important for the transformation process. Because AP2-mediated endocytosis is well conserved, our data suggest that the A. tumefaciens pathogen hijacks conserved endocytic pathways to facilitate the delivery of virulence factors. This might be important for Agrobacterium to achieve both a wide host range and a high transformation efficiency.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Shen Q. Pan
- Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
24
|
Sharifahmadian M, Baron C. Type IV Secretion in Agrobacterium tumefaciens and Development of Specific Inhibitors. Curr Top Microbiol Immunol 2017. [PMID: 29536359 DOI: 10.1007/978-3-319-75241-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) comprises 12 membrane-bound proteins, and it assembles a surface-exposed T-pilus. It is considered to be the archetypical system that is generally used to orient the nomenclature of other T4SS. Whereas the sequence similarities between T4SSs from different organisms are often limited, the general mechanism of action appears to be conserved, and the evolutionary relationship to bacterial conjugation systems and to T4SSs from animal pathogens is well established. Agrobacterium is a natural genetic engineer that is extensively used for the generation of transgenic plants for research and for agro-biotechnological applications. It also served as an early model for the understanding of pathogen-host interactions and for the transfer of macromolecular virulence factors into host cells. The knowledge on the mechanism of its T4SS inspired the search for small molecules that inhibit the virulence of bacterial pathogens and of bacterial conjugation. Inhibitors of bacterial virulence and of conjugation have interesting potential as alternatives to antibiotics and as inhibitors of antimicrobial resistance gene transfer. Mechanistic work on the Agrobacterium T4SS will continue to inspire the search for inhibitor target sites and drug design.
Collapse
Affiliation(s)
- Mahzad Sharifahmadian
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
25
|
Dhar BR, Ryu H, Domingo JWS, Lee HS. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell. JOURNAL OF POWER SOURCES 2016; 331:315-321. [PMID: 32704200 PMCID: PMC7376749 DOI: 10.1016/j.jpowsour.2016.09.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multi-anode microbial electrochemical cells (MxCs) are considered as one of the most promising configurations for scale-up of MxCs, but understanding of anode kinetics in multiple anodes is limited in the MxCs. In this study we assessed microbial community and electrochemical kinetic parameters for biofilms on individual anodes in a multi-anode MxC to better comprehend anode fundamentals. Microbial community analysis targeting 16S rRNA Illumina sequencing showed that Geobacter genus was abundant (87%) only on the biofilm anode closest to a reference electrode (low ohmic energy loss) in which current density was the highest among three anodes. In comparison, Geobacter populations were less than 1% for biofilms on other two anodes distant from the reference electrode (high ohmic energy loss), generating small current density. Half-saturation anode potential (EKA) was the lowest at -0.251 to -0.242 V (vs. standard hydrogen electrode) for the closest biofilm anode to the reference electrode, while EKA was as high as -0.134 V for the farthest anode. Our study proves that electric potential of individual anodes changed by ohmic energy loss shifts biofilm communities on individual anodes and consequently influences electron transfer kinetics on each anode in the multi-anode MxC.
Collapse
Affiliation(s)
- Bipro Ranjan Dhar
- Department of Civil & Environmental Engineering, University of Waterloo, 200 University Ave. West, ON N2L 3G1, Canada
| | - Hodon Ryu
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Jorge W. Santo Domingo
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - Hyung-Sool Lee
- Department of Civil & Environmental Engineering, University of Waterloo, 200 University Ave. West, ON N2L 3G1, Canada
| |
Collapse
|
26
|
Casu B, Smart J, Hancock MA, Smith M, Sygusch J, Baron C. Structural Analysis and Inhibition of TraE from the pKM101 Type IV Secretion System. J Biol Chem 2016; 291:23817-23829. [PMID: 27634044 DOI: 10.1074/jbc.m116.753327] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/06/2022] Open
Abstract
Gram-negative bacteria use type IV secretion systems (T4SSs) for a variety of macromolecular transport processes that include the exchange of genetic material. The pKM101 plasmid encodes a T4SS similar to the well-studied model systems from Agrobacterium tumefaciens and Brucella suis Here, we studied the structure and function of TraE, a homolog of VirB8 that is an essential component of all T4SSs. Analysis by X-ray crystallography revealed a structure that is similar to other VirB8 homologs but displayed an altered dimerization interface. The dimerization interface observed in the X-ray structure was corroborated using the bacterial two-hybrid assay, biochemical characterization of the purified protein, and in vivo complementation, demonstrating that there are different modes of dimerization among VirB8 homologs. Analysis of interactions using the bacterial two-hybrid and cross-linking assays showed that TraE and its homologs from Agrobacterium, Brucella, and Helicobacter pylori form heterodimers. They also interact with heterologous VirB10 proteins, indicating a significant degree of plasticity in the protein-protein interactions of VirB8-like proteins. To further assess common features of VirB8-like proteins, we tested a series of small molecules derived from inhibitors of Brucella VirB8 dimerization. These molecules bound to TraE in vitro, docking predicted that they bind to a structurally conserved surface groove of the protein, and some of them inhibited pKM101 plasmid transfer. VirB8-like proteins thus share functionally important sites, and these can be exploited for the design of specific inhibitors of T4SS function.
Collapse
Affiliation(s)
- Bastien Casu
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| | - Jonathan Smart
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| | - Mark A Hancock
- the SPR-MS Facility, Faculty of Medicine, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Mark Smith
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| | - Jurgen Sygusch
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| | - Christian Baron
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| |
Collapse
|
27
|
Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens. mBio 2016; 7:e00221-16. [PMID: 27118587 PMCID: PMC4850256 DOI: 10.1128/mbio.00221-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bacteria utilize complex type IV secretion systems (T4SSs) to translocate diverse effector proteins or DNA into target cells. Despite the importance of T4SSs in bacterial pathogenesis, the mechanism by which these translocation machineries deliver cargo across the bacterial envelope remains poorly understood, and very few studies have investigated the use of synthetic molecules to disrupt T4SS-mediated transport. Here, we describe two synthetic small molecules (C10 and KSK85) that disrupt T4SS-dependent processes in multiple bacterial pathogens. Helicobacter pylori exploits a pilus appendage associated with the cag T4SS to inject an oncogenic effector protein (CagA) and peptidoglycan into gastric epithelial cells. In H. pylori, KSK85 impedes biogenesis of the pilus appendage associated with the cag T4SS, while C10 disrupts cag T4SS activity without perturbing pilus assembly. In addition to the effects in H. pylori, we demonstrate that these compounds disrupt interbacterial DNA transfer by conjugative T4SSs in Escherichia coli and impede vir T4SS-mediated DNA delivery by Agrobacterium tumefaciens in a plant model of infection. Of note, C10 effectively disarmed dissemination of a derepressed IncF plasmid into a recipient bacterial population, thus demonstrating the potential of these compounds in mitigating the spread of antibiotic resistance determinants driven by conjugation. To our knowledge, this study is the first report of synthetic small molecules that impair delivery of both effector protein and DNA cargos by diverse T4SSs. Many human and plant pathogens utilize complex nanomachines called type IV secretion systems (T4SSs) to transport proteins and DNA to target cells. In addition to delivery of harmful effector proteins into target cells, T4SSs can disseminate genetic determinants that confer antibiotic resistance among bacterial populations. In this study, we sought to identify compounds that disrupt T4SS-mediated processes. Using the human gastric pathogen H. pylori as a model system, we identified and characterized two small molecules that prevent transfer of an oncogenic effector protein to host cells. We discovered that these small molecules also prevented the spread of antibiotic resistance plasmids in E. coli populations and diminished the transfer of tumor-inducing DNA from the plant pathogen A. tumefaciens to target cells. Thus, these compounds are versatile molecular tools that can be used to study and disarm these important bacterial machines.
Collapse
|
28
|
Wang X, Ling F, Wang H, Yu M, Zhu H, Chen C, Qian J, Liu C, Zhang Y, Shao S. The Helicobacter pylori Cag Pathogenicity Island Protein Cag1 is Associated with the Function of T4SS. Curr Microbiol 2016; 73:22-30. [PMID: 26971262 DOI: 10.1007/s00284-016-1016-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/20/2016] [Indexed: 12/29/2022]
Abstract
The human pathogen Helicobacter pylori is involved in gastric diseases ranging from gastritis to gastric cancer. Virulent strains harboring the cag pathogenicity island (cag PAI) which encode a Type IV Secretion System (T4SS) can induce pro-inflammatory cytokines such as interleukin-8 and deliver their major effector proteins CagA into the gastric cells. While a subset of cag PAI genes have been identified to be the homologues of T4SS genes from Agrobacterium tumefaciens, a majority have unknown functions. We have identified one of such proteins, Cag1, which was predicted to be a non-classically secreted and virulent protein. Our results showed that Cag1 is a membrane-associated protein essential for the induction of multiple cytokine secretions, and cag1-deficient mutant has partial influence on CagA translocation; while the protein itself was not injected into host cells. Our data indicated that Cag1 is located in the bacterial membrane and is associated with the function of T4SS.
Collapse
Affiliation(s)
- Xiaochun Wang
- Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Feng Ling
- Department of Clinical Laboratory, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Hua Wang
- Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Min Yu
- Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hong Zhu
- Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Cheng Chen
- Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jingyi Qian
- Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Chang Liu
- Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuanyuan Zhang
- Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shihe Shao
- Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
29
|
Abstract
Type IV secretion systems (T4SSs) are large multisubunit translocons, found in both gram-negative and gram-positive bacteria and in some archaea. These systems transport a diverse array of substrates from DNA and protein-DNA complexes to proteins, and play fundamental roles in both bacterial pathogenesis and bacterial adaptation to the cellular milieu in which bacteria live. This review describes the various biochemical and structural advances made toward understanding the biogenesis, architecture, and function of T4SSs.
Collapse
Affiliation(s)
- Vidya Chandran Darbari
- Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
30
|
Molecular and structural analysis of Legionella DotI gives insights into an inner membrane complex essential for type IV secretion. Sci Rep 2015; 5:10912. [PMID: 26039110 PMCID: PMC4454188 DOI: 10.1038/srep10912] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 12/22/2022] Open
Abstract
The human pathogen Legionella pneumophila delivers a large array of the effector proteins into host cells using the Dot/Icm type IVB secretion system. Among the proteins composing the Dot/Icm system, an inner membrane protein DotI is known to be crucial for the secretion function but its structure and role in type IV secretion had not been elucidated. We report here the crystal structures of the periplasmic domains of DotI and its ortholog in the conjugation system of plasmid R64, TraM. These structures reveal a striking similarity to VirB8, a component of type IVA secretion systems, suggesting that DotI/TraM is the type IVB counterpart of VirB8. We further show that DotI and its partial paralog DotJ form a stable heterocomplex. R64 TraM, encoded by the conjugative plasmid lacking DotJ ortholog, forms a homo-hexamer. The DotI-DotJ complex is distinct from the core complex, which spans both inner and outer membranes to form a substrate conduit, and seems not to stably associate with the core complex. These results give insight into VirB8-family inner membrane proteins essential for type IV secretion and aid towards understanding the molecular basis of secretion systems essential for bacterial pathogenesis.
Collapse
|
31
|
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv 2015; 33:1024-42. [PMID: 25819757 DOI: 10.1016/j.biotechadv.2015.03.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 12/20/2022]
Abstract
Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations.
Collapse
Affiliation(s)
- Pavel Krenek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Olga Samajova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Ivan Luptovciak
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Anna Doskocilova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Jozef Samaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
32
|
Hwang HH, Liu YT, Huang SC, Tung CY, Huang FC, Tsai YL, Cheng TF, Lai EM. Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions. PHYTOPATHOLOGY 2015; 105:160-168. [PMID: 25163013 DOI: 10.1094/phyto-05-14-0133-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Agrobacterium tumefaciens transfers a specific DNA fragment from the resident tumor-inducing (Ti) plasmid and effector virulence (Vir) proteins to plant cells during infection. A. tumefaciens VirB1-11 and VirD4 proteins assemble as the type IV secretion system (T4SS), which mediates transfer of the T-DNA and effector Vir protein into plant cells, thus resulting in crown gall disease in plants. Previous studies revealed that an α-crystallin-type, small heat-shock protein (HspL) is a more effective VirB8 chaperone than three other small heat-shock proteins (HspC, HspAT1, and HspAT2). Additionally, HspL contributes to efficient T4SS-mediated DNA transfer and tumorigenesis under room-temperature growth. In this study, we aimed to characterize the impact of HspL on Agrobacterium-mediated transformation efficiency under heat-shock treatment. During heat shock, transient transformation efficiency and VirB8 protein accumulation were lower in the hspL deletion mutant than in the wild type. Overexpression of HspL in A. tumefaciens enhanced the transient transformation efficiency in root explants of both susceptible and recalcitrant Arabidopsis ecotypes. In addition, the reduced transient transformation efficiency during heat stress was recovered by overexpression of HspL in A. tumefaciens. HspL may help maintain VirB8 homeostasis and elevate Agrobacterium-mediated transformation efficiency under both heat-shock and nonheat-shock growth.
Collapse
|
33
|
Brunkard JO, Burch-Smith TM, Runkel AM, Zambryski P. Investigating plasmodesmata genetics with virus-induced gene silencing and an agrobacterium-mediated GFP movement assay. Methods Mol Biol 2015; 1217:185-98. [PMID: 25287205 DOI: 10.1007/978-1-4939-1523-1_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plasmodesmata (PD) are channels that connect the cytoplasm of adjacent plant cells, permitting intercellular transport and communication. PD function and formation are essential to plant growth and development, but we still know very little about the genetic pathways regulating PD transport. Here, we present a method for assaying changes in the rate of PD transport following genetic manipulation. Gene expression in leaves is modified by virus-induced gene silencing. Seven to ten days after infection with Tobacco rattle virus carrying a silencing trigger, the gene(s) of interest is silenced in newly arising leaves. In these new leaves, individual cells are then transformed with Agrobacterium to express GFP, and the rate of GFP diffusion via PD is measured. By measuring GFP diffusion both within the epidermis and between the epidermis and mesophyll, the assay can be used to study the effects of silencing a gene(s) on PD transport in general, or transport through secondary PD specifically. Plant biologists working in several fields will find this assay useful, since PD transport impacts plant physiology, development, and defense.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California, 281A Koshland Hall, Berkeley, CA, 94720, USA
| | | | | | | |
Collapse
|
34
|
Das A, Das A. Delineation of polar localization domains of Agrobacterium tumefaciens type IV secretion apparatus proteins VirB4 and VirB11. Microbiologyopen 2014; 3:793-802. [PMID: 25220247 PMCID: PMC4234268 DOI: 10.1002/mbo3.208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/12/2014] [Accepted: 07/22/2014] [Indexed: 11/16/2022] Open
Abstract
Agrobacterium tumefaciens transfers DNA and proteins to a plant cell through a type IV secretion apparatus assembled by the VirB proteins. All VirB proteins localized to a cell pole, although these conclusions are in dispute. To study subcellular location of the VirB proteins and to identify determinants of their subcellular location, we tagged two proteins, VirB4 and VirB11, with the visual marker green fluorescent protein (GFP) and studied localization of the fusion proteins by epifluorescence microscopy. Both GFP-VirB4 and GFP-VirB11 fusions localized to a single cell pole. GFP-VirB11 was also functional in DNA transfer. To identify the polar localization domains (PLDs) of VirB4 and VirB11, we analyzed fusions of GFP with smaller segments of the two proteins. Two noncontiguous regions in VirB4, residues 236–470 and 592–789, contain PLDs. The VirB11 PLD mapped to a 69 amino acid segment, residues 149–217, in the central region of the protein. These domains are probably involved in interactions that target the two proteins to a cell pole.
Collapse
Affiliation(s)
- Aditi Das
- Roseville Area High School, Roseville, Minnesota, 55113
| | | |
Collapse
|
35
|
Ramsey ME, Hackett KT, Bender T, Kotha C, van der Does C, Dillard JP. TraK and TraB are conserved outer membrane proteins of the Neisseria gonorrhoeae Type IV secretion system and are expressed at low levels in wild-type cells. J Bacteriol 2014; 196:2954-68. [PMID: 24914183 PMCID: PMC4135638 DOI: 10.1128/jb.01825-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022] Open
Abstract
Neisseria gonorrhoeae uses a type IV secretion system (T4SS) to secrete chromosomal DNA into the medium, and this DNA is effective in transforming other gonococci via natural transformation. In addition, the T4SS is important in the initial stages of biofilm development and mediates intracellular iron uptake in the absence of TonB. To better understand the mechanism of type IV secretion in N. gonorrhoeae, we examined the expression levels and localization of two predicted T4SS outer membrane proteins, TraK and TraB, in the wild-type strain as well as in overexpression strains and in a strain lacking all of the T4SS proteins. Despite very low sequence similarity to known homologues, TraB (VirB10 homolog) and TraK (VirB9 homolog) localized similarly to related proteins in other systems. Additionally, we found that TraV (a VirB7 homolog) interacts with TraK, as in other T4SSs. However, unlike in other systems, neither TraK nor TraB required the presence of other T4SS components for proper localization. Unlike other gonococcal T4SS proteins we have investigated, protein levels of the outer membrane proteins TraK and TraB were extremely low in wild-type cells and were undetectable by Western blotting unless overexpressed or tagged with a FLAG3 triple-epitope tag. Localization of TraK-FLAG3 in otherwise wild-type cells using immunogold electron microscopy of thin sections revealed a single gold particle on some cells. These results suggest that the gonococcal T4SS may be present in single copy per cell and that small amounts of T4SS proteins TraK and TraB are sufficient for DNA secretion.
Collapse
Affiliation(s)
- Meghan E Ramsey
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kathleen T Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tobias Bender
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Chaitra Kotha
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Chris van der Does
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
36
|
Expression and functional characterization of the Agrobacterium VirB2 amino acid substitution variants in T-pilus biogenesis, virulence, and transient transformation efficiency. PLoS One 2014; 9:e101142. [PMID: 24971727 PMCID: PMC4074166 DOI: 10.1371/journal.pone.0101142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/02/2014] [Indexed: 11/19/2022] Open
Abstract
Agrobacterium tumefaciens is a phytopathogenic bacterium that causes crown gall disease by transferring transferred DNA (T-DNA) into the plant genome. The translocation process is mediated by the type IV secretion system (T4SS) consisting of the VirD4 coupling protein and 11 VirB proteins (VirB1 to VirB11). All VirB proteins are required for the production of T-pilus, which consists of processed VirB2 (T-pilin) and VirB5 as major and minor subunits, respectively. VirB2 is an essential component of T4SS, but the roles of VirB2 and the assembled T-pilus in Agrobacterium virulence and the T-DNA transfer process remain unknown. Here, we generated 34 VirB2 amino acid substitution variants to study the functions of VirB2 involved in VirB2 stability, extracellular VirB2/T-pilus production and virulence of A. tumefaciens. From the capacity for extracellular VirB2 production (ExB2+ or ExB2−) and tumorigenesis on tomato stems (Vir+ or Vir−), the mutants could be classified into three groups: ExB2−/Vir−, ExB2−/Vir+, and ExB2+/Vir+. We also confirmed by electron microscopy that five ExB2−/Vir+ mutants exhibited a wild-type level of virulence with their deficiency in T-pilus formation. Interestingly, although the five T-pilus−/Vir+ uncoupling mutants retained a wild-type level of tumorigenesis efficiency on tomato stems and/or potato tuber discs, their transient transformation efficiency in Arabidopsis seedlings was highly attenuated. In conclusion, we have provided evidence for a role of T-pilus in Agrobacterium transformation process and have identified the domains and amino acid residues critical for VirB2 stability, T-pilus biogenesis, tumorigenesis, and transient transformation efficiency.
Collapse
|
37
|
Heindl JE, Wang Y, Heckel BC, Mohari B, Feirer N, Fuqua C. Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium. FRONTIERS IN PLANT SCIENCE 2014; 5:176. [PMID: 24834068 PMCID: PMC4018554 DOI: 10.3389/fpls.2014.00176] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/12/2014] [Indexed: 05/05/2023]
Abstract
For many pathogenic bacteria surface attachment is a required first step during host interactions. Attachment can proceed to invasion of host tissue or cells or to establishment of a multicellular bacterial community known as a biofilm. The transition from a unicellular, often motile, state to a sessile, multicellular, biofilm-associated state is one of the most important developmental decisions for bacteria. Agrobacterium tumefaciens genetically transforms plant cells by transfer and integration of a segment of plasmid-encoded transferred DNA (T-DNA) into the host genome, and has also been a valuable tool for plant geneticists. A. tumefaciens attaches to and forms a complex biofilm on a variety of biotic and abiotic substrates in vitro. Although rarely studied in situ, it is hypothesized that the biofilm state plays an important functional role in the ecology of this organism. Surface attachment, motility, and cell division are coordinated through a complex regulatory network that imparts an unexpected asymmetry to the A. tumefaciens life cycle. In this review, we describe the mechanisms by which A. tumefaciens associates with surfaces, and regulation of this process. We focus on the transition between flagellar-based motility and surface attachment, and on the composition, production, and secretion of multiple extracellular components that contribute to the biofilm matrix. Biofilm formation by A. tumefaciens is linked with virulence both mechanistically and through shared regulatory molecules. We detail our current understanding of these and other regulatory schemes, as well as the internal and external (environmental) cues mediating development of the biofilm state, including the second messenger cyclic-di-GMP, nutrient levels, and the role of the plant host in influencing attachment and biofilm formation. A. tumefaciens is an important model system contributing to our understanding of developmental transitions, bacterial cell biology, and biofilm formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Clay Fuqua
- Department of Biology, Indiana University, BloomingtonIN, USA
| |
Collapse
|
38
|
Li X, Yang Q, Tu H, Lim Z, Pan SQ. Direct visualization of Agrobacterium-delivered VirE2 in recipient cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:487-95. [PMID: 24299048 PMCID: PMC4282531 DOI: 10.1111/tpj.12397] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/15/2013] [Accepted: 11/27/2013] [Indexed: 05/18/2023]
Abstract
Agrobacterium tumefaciens is a natural genetic engineer widely used to deliver DNA into various recipients, including plant, yeast and fungal cells. The bacterium can transfer single-stranded DNA molecules (T-DNAs) and bacterial virulence proteins, including VirE2. However, neither the DNA nor the protein molecules have ever been directly visualized after the delivery. In this report, we adopted a split-GFP approach: the small GFP fragment (GFP11) was inserted into VirE2 at a permissive site to create the VirE2-GFP11 fusion, which was expressed in A. tumefaciens; and the large fragment (GFP1-10) was expressed in recipient cells. Upon delivery of VirE2-GFP11 into the recipient cells, GFP fluorescence signals were visualized. VirE2-GFP11 was functional like VirE2; the GFP fusion movement could indicate the trafficking of Agrobacterium-delivered VirE2. As the natural host, all plant cells seen under a microscope received the VirE2 protein in a leaf-infiltration assay; most of VirE2 moved at a speed of 1.3-3.1 μm sec⁻¹ in a nearly linear direction, suggesting an active trafficking process. Inside plant cells, VirE2-GFP formed filamentous structures of different lengths, even in the absence of T-DNA. As a non-natural host recipient, 51% of yeast cells received VirE2, which did not move inside yeast. All plant cells seen under a microscope transiently expressed the Agrobacterium-delivered transgene, but only 0.2% yeast cells expressed the transgene. This indicates that Agrobacterium is a more efficient vector for protein delivery than T-DNA transformation for a non-natural host recipient: VirE2 trafficking is a limiting factor for the genetic transformation of a non-natural host recipient. The split-GFP approach could enable the real-time visualization of VirE2 trafficking inside recipient cells.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Biological Sciences, National University of SingaporeSingapore, 117543, Singapore
| | - Qinghua Yang
- Department of Biological Sciences, National University of SingaporeSingapore, 117543, Singapore
| | - Haitao Tu
- Department of Biological Sciences, National University of SingaporeSingapore, 117543, Singapore
| | - Zijie Lim
- Department of Biological Sciences, National University of SingaporeSingapore, 117543, Singapore
| | - Shen Q Pan
- Department of Biological Sciences, National University of SingaporeSingapore, 117543, Singapore
| |
Collapse
|
39
|
Kumar N, Shariq M, Kumari R, Tyagi RK, Mukhopadhyay G. Cag type IV secretion system: CagI independent bacterial surface localization of CagA. PLoS One 2013; 8:e74620. [PMID: 24040297 PMCID: PMC3769253 DOI: 10.1371/journal.pone.0074620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/05/2013] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori Cag type IV secretion system (Cag-T4SS) is a multi-component transporter of oncoprotein CagA across the bacterial membranes into the host epithelial cells. To understand the role of unique Cag-T4SS component CagI in CagA translocation, we have characterized it by biochemical and microscopic approaches. We observed that CagI is a predominantly membrane attached periplasmic protein partially exposed to the bacterial surface especially on the pili. The association of the protein with membrane appeared to be loose as it could be easily recovered in soluble fraction. We documented that the stability of the protein is dependent on several key components of the secretion system and it has multiple interacting partners including a non-cag-PAI protein HP1489. Translocation of CagA across the bacterial membranes to cell surface is CagI-independent process. The observations made herein are expected to assist in providing an insight into the substrate translocation by the Cag-T4SS system and Helicobacter pylori pathogenesis.
Collapse
Affiliation(s)
- Navin Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (GM); (NK)
| | - Mohd Shariq
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rajesh Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh K. Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Gauranga Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (GM); (NK)
| |
Collapse
|
40
|
Segura RL, Aguila-Arcos S, Ugarte-Uribe B, Vecino AJ, de la Cruz F, Goñi FM, Alkorta I. Subcellular location of the coupling protein TrwB and the role of its transmembrane domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:223-30. [PMID: 24016550 DOI: 10.1016/j.bbamem.2013.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/01/2022]
Abstract
Conjugation is the most important mechanism for horizontal gene transfer and it is the main responsible for the successful adaptation of bacteria to the environment. Conjugative plasmids are the DNA molecules transferred and a multiprotein system encoded by the conjugative plasmid itself is necessary. The high number of proteins involved in the process suggests that they should have a defined location in the cell and therefore, they should be recruited to that specific point. One of these proteins is the coupling protein that plays an essential role in bacterial conjugation. TrwB is the coupling protein of R388 plasmid that is divided in two domains: i) The N-terminal domain referred as transmembrane domain and ii) a large cytosolic domain that contains a nucleotide-binding motif similar to other ATPases. To investigate the role of these domains in the subcellular location of TrwB, we constructed two mutant proteins that comprised the transmembrane (TrwBTM) or the cytoplasmic (TrwBΔN70) domain of TrwB. By immunofluorescence and GFP-fusion proteins we demonstrate that TrwB and TrwBTM mutant protein were localized to the cell pole independently of the remaining R388 proteins. On the contrary, a soluble mutant protein (TrwBΔN70) was localized to the cytoplasm in the absence of R388 proteins. However, in the presence of other R388-encoded proteins, TrwBΔN70 localizes uniformly to the cell membrane, suggesting that interactions between the cytosolic domain of TrwB and other membrane proteins of R388 plasmid may happen. Our results suggest that the transmembrane domain of TrwB leads the protein to the cell pole.
Collapse
Affiliation(s)
- Rosa L Segura
- Unidad de Biofísica (CSIC, UPV/EHU), and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Dynamic FtsA and FtsZ localization and outer membrane alterations during polar growth and cell division in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 2013; 110:9060-5. [PMID: 23674672 DOI: 10.1073/pnas.1307241110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth and cell division in rod-shaped bacteria have been primarily studied in species that grow predominantly by peptidoglycan (PG) synthesis along the length of the cell. Rhizobiales species, however, predominantly grow by PG synthesis at a single pole. Here we characterize the dynamic localization of several Agrobacterium tumefaciens components during the cell cycle. First, the lipophilic dye FM 4-64 predominantly stains the outer membranes of old poles versus growing poles. In cells about to divide, however, both poles are equally labeled with FM 4-64, but the constriction site is not. Second, the cell-division protein FtsA alternates from unipolar foci in the shortest cells to unipolar and midcell localization in cells of intermediate length, to strictly midcell localization in the longest cells undergoing septation. Third, the cell division protein FtsZ localizes in a cell-cycle pattern similar to, but more complex than, FtsA. Finally, because PG synthesis is spatially and temporally regulated during the cell cycle, we treated cells with sublethal concentrations of carbenicillin (Cb) to assess the role of penicillin-binding proteins in growth and cell division. Cb-treated cells formed midcell circumferential bulges, suggesting that interrupted PG synthesis destabilizes the septum. Midcell bulges contained bands or foci of FtsA-GFP and FtsZ-GFP and no FM 4-64 label, as in untreated cells. There were no abnormal morphologies at the growth poles in Cb-treated cells, suggesting unipolar growth uses Cb-insensitive PG synthesis enzymes.
Collapse
|
42
|
Cameron TA, Roper M, Zambryski PC. Quantitative image analysis and modeling indicate the Agrobacterium tumefaciens type IV secretion system is organized in a periodic pattern of foci. PLoS One 2012; 7:e42219. [PMID: 22860087 PMCID: PMC3408489 DOI: 10.1371/journal.pone.0042219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022] Open
Abstract
The Gram negative plant pathogen Agrobacterium tumefaciens is uniquely capable of genetically transforming eukaryotic host cells during the infection process. DNA and protein substrates are transferred into plant cells via a type IV secretion system (T4SS), which forms large cell-envelope spanning complexes at multiple sites around the bacterial circumference. To gain a detailed understanding of T4SS positioning, the spatial distribution of fluorescently labeled T4SS components was quantitatively assessed to distinguish between random and structured localization processes. Through deconvolution microscopy followed by Fourier analysis and modeling, T4SS foci were found to localize in a non-random periodic pattern. These results indicate that T4SS complexes are dependent on an underlying scaffold or assembly process to obtain an organized distribution suitable for effective delivery of substrates into host cells.
Collapse
Affiliation(s)
- Todd A. Cameron
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Marcus Roper
- Department of Mathematics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Patricia C. Zambryski
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Zechner EL, Lang S, Schildbach JF. Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci 2012; 367:1073-87. [PMID: 22411979 PMCID: PMC3297438 DOI: 10.1098/rstb.2011.0207] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type IV secretion occurs across a wide range of prokaryotic cell envelopes: Gram-negative, Gram-positive, cell wall-less bacteria and some archaea. This diversity is reflected in the heterogeneity of components that constitute the secretion machines. Macromolecules are secreted in an ATP-dependent process using an envelope-spanning multi-protein channel. Similar to the type III systems, this apparatus extends beyond the cell surface as a pilus structure important for direct contact and penetration of the recipient cell surface. Type IV systems are remarkably versatile in that they mobilize a broad range of substrates, including single proteins, protein complexes, DNA and nucleoprotein complexes, across the cell envelope. These machines have broad clinical significance not only for delivering bacterial toxins or effector proteins directly into targeted host cells, but also for direct involvement in phenomena such as biofilm formation and the rapid horizontal spread of antibiotic resistance genes among the microbial community.
Collapse
Affiliation(s)
- Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/I, Graz 8010, Austria.
| | | | | |
Collapse
|
44
|
Villamil Giraldo AM, Sivanesan D, Carle A, Paschos A, Smith MA, Plesa M, Coulton J, Baron C. Type IV secretion system core component VirB8 from Brucella binds to the globular domain of VirB5 and to a periplasmic domain of VirB6. Biochemistry 2012; 51:3881-90. [PMID: 22515661 DOI: 10.1021/bi300298v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type IV secretion systems are macromolecular assemblies in the cell envelopes of bacteria that function in macromolecular translocation. Structural biology approaches have provided insights into the interaction of core complex components, but information about proteins that undergo transient interactions with membrane components has not been forthcoming. We have pursued an unbiased approach using peptide arrays and phage display to identify interaction partners and interaction domains of type IV secretion system assembly factor VirB8. These approaches identified the globular domain from the VirB5 protein to interact with VirB8. This interaction was confirmed in cross-linking, pull-down, and fluorescence resonance energy transfer (FRET)-based interaction assays. In addition, using phage display analysis, we identified different regions of VirB6 as potential interaction partners of VirB8. Using a FRET-based interaction assay, we provide the first direct experimental evidence of the interaction of a VirB6 periplasmic domain with VirB8. These results will allow us to conduct directed structural biological work and structure-function analyses aimed at defining the molecular details and biological significance of these interactions with VirB8 in the future.
Collapse
Affiliation(s)
- Ana Maria Villamil Giraldo
- Department of Biochemistry, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Outer membrane targeting, ultrastructure, and single molecule localization of the enteropathogenic Escherichia coli type IV pilus secretin BfpB. J Bacteriol 2012; 194:1646-58. [PMID: 22247509 DOI: 10.1128/jb.06330-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (T4P) are filamentous surface appendages required for tissue adherence, motility, aggregation, and transformation in a wide array of bacteria and archaea. The bundle-forming pilus (BFP) of enteropathogenic Escherichia coli (EPEC) is a prototypical T4P and confirmed virulence factor. T4P fibers are assembled by a complex biogenesis machine that extrudes pili through an outer membrane (OM) pore formed by the secretin protein. Secretins constitute a superfamily of proteins that assemble into multimers and support the transport of macromolecules by four evolutionarily ancient secretion systems: T4P, type II secretion, type III secretion, and phage assembly. Here, we determine that the lipoprotein transport pathway is not required for targeting the BfpB secretin protein of the EPEC T4P to the OM and describe the ultrastructure of the single particle averaged structures of the assembled complex by transmission electron microscopy. Furthermore, we use photoactivated localization microscopy to determine the distribution of single BfpB molecules fused to photoactivated mCherry. In contrast to findings in other T4P systems, we found that BFP components predominantly have an uneven distribution through the cell envelope and are only found at one or both poles in a minority of cells. In addition, we report that concurrent mutation of both the T4bP secretin and the retraction ATPase can result in viable cells and found that these cells display paradoxically low levels of cell envelope stress response activity. These results imply that secretins can direct their own targeting, have complex distributions and provide feedback information on the state of pilus biogenesis.
Collapse
|
46
|
Su G, Park S, Lee S, Murai N. Low Co-Cultivation Temperature at 20°C Resulted in the Reproducible Maximum Increase in Both the Fresh Weight Yield and Stable Expression of GUS Activity after <i>Agrobacterium tumefaciens</i>-Mediated Transformation of Tobacco Leaf Disks. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ajps.2012.34064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Aguilar J, Cameron TA, Zupan J, Zambryski P. Membrane and core periplasmic Agrobacterium tumefaciens virulence Type IV secretion system components localize to multiple sites around the bacterial perimeter during lateral attachment to plant cells. mBio 2011; 2:e00218-11. [PMID: 22027007 PMCID: PMC3202754 DOI: 10.1128/mbio.00218-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/30/2011] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Type IV secretion systems (T4SS) transfer DNA and/or proteins into recipient cells. Here we performed immunofluorescence deconvolution microscopy to localize the assembled T4SS by detection of its native components VirB1, VirB2, VirB4, VirB5, VirB7, VirB8, VirB9, VirB10, and VirB11 in the C58 nopaline strain of Agrobacterium tumefaciens, following induction of virulence (vir) gene expression. These different proteins represent T4SS components spanning the inner membrane, periplasm, or outer membrane. Native VirB2, VirB5, VirB7, and VirB8 were also localized in the A. tumefaciens octopine strain A348. Quantitative analyses of the localization of all the above Vir proteins in nopaline and octopine strains revealed multiple foci in single optical sections in over 80% and 70% of the bacterial cells, respectively. Green fluorescent protein (GFP)-VirB8 expression following vir induction was used to monitor bacterial binding to live host plant cells; bacteria bind predominantly along their lengths, with few bacteria binding via their poles or subpoles. vir-induced attachment-defective bacteria or bacteria without the Ti plasmid do not bind to plant cells. These data support a model where multiple vir-T4SS around the perimeter of the bacterium maximize effective contact with the host to facilitate efficient transfer of DNA and protein substrates. IMPORTANCE Transfer of DNA and/or proteins to host cells through multiprotein type IV secretion system (T4SS) complexes that span the bacterial cell envelope is critical to bacterial pathogenesis. Early reports suggested that T4SS components localized at the cell poles. Now, higher-resolution deconvolution fluorescence microscopy reveals that all structural components of the Agrobacterium tumefaciens vir-T4SS, as well as its transported protein substrates, localize to multiple foci around the cell perimeter. These results lead to a new model of A. tumefaciens attachment to a plant cell, where A. tumefaciens takes advantage of the multiple vir-T4SS along its length to make intimate lateral contact with plant cells and thereby effectively transfer DNA and/or proteins through the vir-T4SS. The T4SS of A. tumefaciens is among the best-studied T4SS, and the majority of its components are highly conserved in different pathogenic bacterial species. Thus, the results presented can be applied to a broad range of pathogens that utilize T4SS.
Collapse
Affiliation(s)
- Julieta Aguilar
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Conjugation is an efficient way for transfer of genetic information between bacteria, even between highly diverged species, and a major cause for the spreading of resistance genes. We have investigated the subcellular localization of several conserved conjugation proteins carried on plasmid pLS20 found in Bacillus subtilis. We show that VirB1, VirB4, VirB11, VirD2, and VirD4 homologs assemble at a single cell pole, but also at other sites along the cell membrane, in cells during the lag phase of growth. Bimolecular fluorescence complementation analyses showed that VirB4 and VirD4 interact at the cell pole and, less frequently, at other sites along the membrane. VirB1 and VirB11 also colocalized at the cell pole. Total internal reflection fluorescence microscopy showed that pLS20 is largely membrane associated and is frequently found at the cell pole, indicating that transfer takes place at the pole, which is a preferred site for the assembly of the active conjugation apparatus, but not the sole site. VirD2, VirB4, and VirD4 started to localize to the pole or the membrane in stationary-phase cells, and VirB1 and VirB11 were observed as foci in cells resuspended in fresh medium but no longer in cells that had entered exponential growth, although at least VirB4 was still expressed. These data reveal an unusual assembly/disassembly timing for the pLS20 conjugation machinery and suggest that specific localization of conjugation proteins in lag-phase cells and delocalization during growth are the reasons why pLS20 conjugation occurs only during early exponential phase.
Collapse
|
49
|
Rosen R, Ron EZ. Proteomics of a plant pathogen: Agrobacterium tumefaciens. Proteomics 2011; 11:3134-42. [DOI: 10.1002/pmic.201100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 12/31/2022]
|
50
|
The dimer interface of Agrobacterium tumefaciens VirB8 is important for type IV secretion system function, stability, and association of VirB2 with the core complex. J Bacteriol 2011; 193:2097-106. [PMID: 21398549 DOI: 10.1128/jb.00907-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Type IV secretion systems are virulence factors used by many gram-negative bacteria to translocate macromolecules across the cell envelope. VirB8 is an essential inner membrane component of type IV secretion systems, and it is believed to form a homodimer. In the absence of VirB8, the levels of several other VirB proteins were reduced (VirB1, VirB3, VirB4, VirB5, VirB6, VirB7, and VirB11) in Agrobacterium tumefaciens, underlining its importance for complex stability. To assess the importance of dimerization, we changed residues at the predicted dimer interface (V97, A100, Q93, and E94) in order to strengthen or to abolish dimerization. We verified the impact of the changes on dimerization in vitro with purified V97 variants, followed by analysis of the in vivo consequences in a complemented virB8 deletion strain. Dimer formation was observed in vivo after the introduction of a cysteine residue at the predicted interface (V97C), and this variant supported DNA transfer, but the formation of elongated T pili was not detected by the standard pilus isolation technique. Variants with changes at V97 and A100 that weaken dimerization did not support type IV secretion system functions. The T-pilus component VirB2 cofractionated with high-molecular-mass core protein complexes extracted from the membranes, and the presence of VirB8 as well as its dimer interface were important for this association. We conclude that the VirB8 dimer interface is required for T4SS function, for the stabilization of many VirB proteins, and for targeting of VirB2 to the T-pilus assembly site.
Collapse
|