1
|
Osterburg C, Dötsch V. Structural diversity of p63 and p73 isoforms. Cell Death Differ 2022; 29:921-937. [PMID: 35314772 PMCID: PMC9091270 DOI: 10.1038/s41418-022-00975-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023] Open
Abstract
Abstract
The p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family.
Facts
Distinct physiological roles/functions are performed by specific isoforms.
The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
Mdm2 binds to all three family members but ubiquitinates only p53.
TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
What is the physiological function of the p63/p73 SAM domains?
Do the short isoforms of p63 and p73 have physiological functions?
What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Collapse
|
2
|
Jasti N, Sebagh D, Riaz M, Wang X, Koripella B, Palanisamy V, Mohammad N, Chen Q, Friedrich M. Towards reconstructing the dipteran demise of an ancient essential gene: E3 ubiquitin ligase Murine double minute. Dev Genes Evol 2020; 230:279-294. [PMID: 32623522 DOI: 10.1007/s00427-020-00663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Genome studies have uncovered many examples of essential gene loss, raising the question of how ancient genes transition from essentiality to dispensability. We explored this process for the deeply conserved E3 ubiquitin ligase Murine double minute (Mdm), which is lacking in Drosophila despite the conservation of its main regulatory target, the cellular stress response gene p53. Conducting gene expression and knockdown experiments in the red flour beetle Tribolium castaneum, we found evidence that Mdm has remained essential in insects where it is present. Using bioinformatics approaches, we confirm the absence of the Mdm gene family in Drosophila, mapping its loss to the stem lineage of schizophoran Diptera and Pipunculidae (big-headed flies), about 95-85 million years ago. Intriguingly, this gene loss event was preceded by the de novo origin of the gene Companion of reaper (Corp), a novel p53 regulatory factor that is characterized by functional similarities to vertebrate Mdm2 despite lacking E3 ubiquitin ligase protein domains. Speaking against a 1:1 compensatory gene gain/loss scenario, however, we found that hoverflies (Syrphidae) and pointed-wing flies (Lonchopteridae) possess both Mdm and Corp. This implies that the two p53 regulators have been coexisting for ~ 150 million years in select dipteran clades and for at least 50 million years in the lineage to Schizophora and Pipunculidae. Given these extensive time spans of Mdm/Corp coexistence, we speculate that the loss of Mdm in the lineage to Drosophila involved further acquisitions of compensatory gene activities besides the emergence of Corp. Combined with the previously noted reduction of an ancestral P53 contact domain in the Mdm homologs of crustaceans and insects, we conclude that the loss of the ancient Mdm gene family in flies was the outcome of incremental functional regression over long macroevolutionary time scales.
Collapse
Affiliation(s)
- Naveen Jasti
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA.,Institute for Protein Design, Washington University, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Dylan Sebagh
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Mohammed Riaz
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Xin Wang
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Bharat Koripella
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Vasanth Palanisamy
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Nabeel Mohammad
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Qing Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA. .,Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
3
|
Kim SY, Nair DM, Romero M, Serna VA, Koleske AJ, Woodruff TK, Kurita T. Transient inhibition of p53 homologs protects ovarian function from two distinct apoptotic pathways triggered by anticancer therapies. Cell Death Differ 2018; 26:502-515. [PMID: 29988075 DOI: 10.1038/s41418-018-0151-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022] Open
Abstract
Platinum-based chemotherapies can result in ovarian insufficiency by reducing the ovarian reserve, a reduction believed to result from apoptosis of immature oocytes via activation/phosphorylation of TAp63α by multiple kinases including CHEK2, CK1, and ABL1. Here we demonstrate that cisplatin (CDDP) induces oocyte apoptosis through a novel pathway and that temporary repression of this pathway fully preserves ovarian function in vivo. Although ABL kinase inhibitors effectively block CDDP-induced apoptosis of oocytes, oocytic ABL1, and ABL2 are dispensable for damage-induced apoptosis. Instead, CDDP activates TAp63α through the ATR > CHEK1 pathway independent of TAp63α hyper-phosphorylation, whereas X-irradiation activates the ATM > CHEK2 > TAp63α-hyper-phosphorylation pathway. Furthermore, oocyte-specific deletion of Trp73 partially protects oocytes from CDDP but not from X-ray, highlighting the fundamental differences of two pathways. Nevertheless, temporary repression of DNA damage response by a kinase inhibitor that attenuates phosphorylation of ATM, ATR, CHEK1, and CHEK2 fully preserves fertility in female mice against CDDP as well as X-ray. Our current study establishes the molecular basis and feasibility of adjuvant therapies to protect ovarian function against two distinctive gonadotoxic therapeutics, CDDP, and ionizing radiation.
Collapse
Affiliation(s)
- So-Youn Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Devi M Nair
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Megan Romero
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vanida A Serna
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Teresa K Woodruff
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Zhang B, Rotelli M, Dixon M, Calvi BR. The function of Drosophila p53 isoforms in apoptosis. Cell Death Differ 2015; 22:2058-67. [PMID: 25882045 PMCID: PMC4816103 DOI: 10.1038/cdd.2015.40] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
The p53 protein is a major mediator of the cellular response to genotoxic stress and is a crucial suppressor of tumor formation. In a variety of organisms, p53 and its paralogs, p63 and p73, each encode multiple protein isoforms through alternative splicing, promoters, and translation start sites. The function of these isoforms in development and disease are still being defined. Here, we evaluate the apoptotic potential of multiple isoforms of the single p53 gene in the genetic model Drosophila melanogaster. Most previous studies have focused on the p53A isoform, but it has been recently shown that a larger p53B isoform can induce apoptosis when overexpressed. It has remained unclear, however, whether one or both isoforms are required for the apoptotic response to genotoxic stress. We show that p53B is a much more potent inducer of apoptosis than p53A when overexpressed. Overexpression of two newly identified short isoforms perturbed development and inhibited the apoptotic response to ionizing radiation. Analysis of physiological protein expression indicated that p53A is the most abundant isoform, and that both p53A and p53B can form a complex and co-localize to sub-nuclear compartments. In contrast to the overexpression results, new isoform-specific loss-of-function mutants indicated that it is the shorter p53A isoform, not full-length p53B, that is the primary mediator of pro-apoptotic gene transcription and apoptosis after ionizing radiation. Together, our data show that it is the shorter p53A isoform that mediates the apoptotic response to DNA damage, and further suggest that p53B and shorter isoforms have specialized functions.
Collapse
Affiliation(s)
- B Zhang
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - M Rotelli
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - M Dixon
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - B R Calvi
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
5
|
Heering J, Jonker HRA, Löhr F, Schwalbe H, Dötsch V. Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain. Protein Sci 2015; 25:410-22. [PMID: 26473758 DOI: 10.1002/pro.2830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 11/09/2022]
Abstract
Most members of the p53 family of transcription factors form tetramers. Responsible for determining the oligomeric state is a short oligomerization domain consisting of one β-strand and one α-helix. With the exception of human p53 all other family members investigated so far contain a second α-helix as part of their tetramerization domain. Here we have used nuclear magnetic resonance spectroscopy to characterize the oligomerization domains of the two p53-like proteins from the tunicate Ciona intestinalis, representing the closest living relative of vertebrates. Structure determination reveals for one of the two proteins a new type of packing of this second α-helix on the core domain that was not predicted based on the sequence, while the other protein does not form a second helix despite the presence of crucial residues that are conserved in all other family members that form a second helix. By mutational analysis, we identify a proline as well as large hydrophobic residues in the hinge region between both helices as the crucial determinant for the formation of a second helix.
Collapse
Affiliation(s)
- Jan Heering
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt/Main, Germany
| | - Hendrik R A Jonker
- Institute of Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt/Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt/Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
6
|
Holembowski L, Kramer D, Riedel D, Sordella R, Nemajerova A, Dobbelstein M, Moll UM. TAp73 is essential for germ cell adhesion and maturation in testis. ACTA ACUST UNITED AC 2014; 204:1173-90. [PMID: 24662569 PMCID: PMC3971741 DOI: 10.1083/jcb.201306066] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The p53 family member TAp73 is required for sperm maturation through promotion of adhesion between developing germ cells and Sertoli nurse cells. A core evolutionary function of the p53 family is to protect the genomic integrity of gametes. However, the role of p73 in the male germ line is unknown. Here, we reveal that TAp73 unexpectedly functions as an adhesion and maturation factor of the seminiferous epithelium orchestrating spermiogenesis. TAp73 knockout (TAp73KO) and p73KO mice, but not ΔNp73KO mice, display a “near-empty seminiferous tubule” phenotype due to massive premature loss of immature germ cells. The cellular basis of this phenotype is defective cell–cell adhesions of developing germ cells to Sertoli nurse cells, with likely secondary degeneration of Sertoli cells, including the blood–testis barrier, which leads to disruption of the adhesive integrity and maturation of the germ epithelium. At the molecular level, TAp73, which is produced in germ cells, controls a coordinated transcriptional program of adhesion- and migration-related proteins including peptidase inhibitors, proteases, receptors, and integrins required for germ–Sertoli cell adhesion and dynamic junctional restructuring. Thus, we propose the testis as a unique organ with strict division of labor among all family members: p63 and p53 safeguard germ line fidelity, whereas TAp73 ensures fertility by enabling sperm maturation.
Collapse
Affiliation(s)
- Lena Holembowski
- Department of Molecular Oncology, University of Göttingen, 37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Kim SY, Cordeiro MH, Serna VA, Ebbert K, Butler LM, Sinha S, Mills AA, Woodruff TK, Kurita T. Rescue of platinum-damaged oocytes from programmed cell death through inactivation of the p53 family signaling network. Cell Death Differ 2013; 20:987-97. [PMID: 23598363 DOI: 10.1038/cdd.2013.31] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/12/2013] [Accepted: 03/20/2013] [Indexed: 12/24/2022] Open
Abstract
Non-proliferating oocytes within avascular regions of the ovary are exquisitely susceptible to chemotherapy. Early menopause and sterility are unintended consequences of chemotherapy, and efforts to understand the oocyte apoptotic pathway may provide new targets for mitigating this outcome. Recently, the c-Abl kinase inhibitor imatinib mesylate (imatinib) has become the focus of research as a fertoprotective drug against cisplatin. However, the mechanism by which imatinib protects oocytes is not fully understood, and reports of the drug's efficacy have been contradictory. Using in vitro culture and subrenal grafting of mouse ovaries, we demonstrated that imatinib inhibits the cisplatin-induced apoptosis of oocytes within primordial follicles. We found that, before apoptosis, cisplatin induces c-Abl and TAp73 expression in the oocyte. Oocytes undergoing apoptosis showed downregulation of TAp63 and upregulation of Bax. While imatinib was unable to block cisplatin-induced DNA damage and damage response, such as the upregulation of p53, imatinib inhibited the cisplatin-induced nuclear accumulation of c-Abl/TAp73 and the subsequent downregulation of TAp63 and upregulation of Bax, thereby abrogating oocyte cell death. Surprisingly, the conditional deletion of Trp63, but not ΔNp63, in oocytes inhibited apoptosis, as well as the accumulation of c-Abl and TAp73 caused by cisplatin. These data suggest that TAp63 is the master regulator of cisplatin-induced oocyte death. The expression kinetics of TAp63, c-Abl and TAp73 suggest that cisplatin activates TAp63-dependent expression of c-Abl and TAp73 and, in turn, the activation of TAp73 by c-Abl-induced BAX expression. Our findings indicate that imatinib protects oocytes from cisplatin-induced cell death by inhibiting c-Abl kinase, which would otherwise activate TAp73-BAX-mediated apoptosis. Thus, imatinib and other c-Abl kinase inhibitors provide an intriguing new way to halt cisplatin-induced oocyte death in early follicles and perhaps conserve the endocrine function of the ovary against chemotherapy.
Collapse
Affiliation(s)
- S-Y Kim
- Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Luh LM, Kehrloesser S, Deutsch GB, Gebel J, Coutandin D, Schäfer B, Agostini M, Melino G, Dötsch V. Analysis of the oligomeric state and transactivation potential of TAp73α. Cell Death Differ 2013; 20:1008-16. [PMID: 23538419 DOI: 10.1038/cdd.2013.23] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/21/2013] [Accepted: 02/21/2013] [Indexed: 11/09/2022] Open
Abstract
The proteins p73 and p63 are members of the p53 protein family and are involved in important developmental processes. Their high sequence identity with the tumor suppressor p53 has suggested that they act as tumor suppressors as well. While p63 has a crucial role in the maintenance of epithelial stem cells and in the quality control of oocytes without a clear role as a tumor suppressor, p73's tumor suppressor activity is well documented. In a recent study we have shown that the transcriptional activity of TAp63α, the isoform responsible for the quality control in oocytes, is regulated by its oligomeric state. The protein forms an inactive, dimeric and compact conformation in resting oocytes, while the detection of DNA damage leads to the formation of an active, tetrameric and open conformation. p73 shows a high sequence identity to p63, including those domains that are crucial in stabilizing its inactive state, thus suggesting that p73's activity might be regulated by its oligomeric state as well. Here, we have investigated the oligomeric state of TAp73α by size exclusion chromatography and detailed domain interaction mapping, and show that in contrast to p63, TAp73α is a constitutive open tetramer. However, its transactivation potential depends on the cellular background and the promoter context. These results imply that the regulation of p73's transcriptional activity might be more closely related to p53 than to p63.
Collapse
Affiliation(s)
- L M Luh
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jolliffe AK, Derry WB. The TP53 signaling network in mammals and worms. Brief Funct Genomics 2012; 12:129-41. [PMID: 23165352 DOI: 10.1093/bfgp/els047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nematode worm Caenorhabditis elegans has been an invaluable model organism for studying the molecular mechanisms that govern cell fate, from fundamental aspects of multicellular development to programmed cell death (apoptosis). The transparency of this organism permits visualization of cells in living animals at high resolution. The powerful genetics and functional genomics tools available in C. elegans allow for detailed analysis of gene function, including genes that are frequently deregulated in human diseases such as cancer. The TP53 protein is a critical suppressor of tumor formation in vertebrates, and the TP53 gene is mutated in over 50% of human cancers. TP53 suppresses malignancy by integrating a variety of cellular stresses that direct it to activate transcription of genes that help to repair the damage or trigger apoptotic death if the damage is beyond repair. The TP53 paralogs, TP63 and TP73, have distinct roles in development as well as overlapping functions with TP53 in apoptosis and repair, which complicates their analysis in vertebrates. C. elegans contains a single TP53 family member, cep-1, that shares properties of all three vertebrate genes and thus offers a simple system in which to study the biological functions of this important gene family. This review summarizes major advances in our understanding of the TP53 family using C. elegans as a model organism.
Collapse
|
10
|
Deutsch GB, Zielonka EM, Coutandin D, Weber TA, Schäfer B, Hannewald J, Luh LM, Durst FG, Ibrahim M, Hoffmann J, Niesen FH, Sentürk A, Kunkel H, Brutschy B, Schleiff E, Knapp S, Acker-Palmer A, Grez M, McKeon F, Dötsch V. DNA damage in oocytes induces a switch of the quality control factor TAp63α from dimer to tetramer. Cell 2011; 144:566-76. [PMID: 21335238 PMCID: PMC3087504 DOI: 10.1016/j.cell.2011.01.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 11/05/2010] [Accepted: 12/17/2010] [Indexed: 01/14/2023]
Abstract
TAp63α, a homolog of the p53 tumor suppressor, is a quality control factor in the female germline. Remarkably, already undamaged oocytes express high levels of the protein, suggesting that TAp63α's activity is under tight control of an inhibitory mechanism. Biochemical studies have proposed that inhibition requires the C-terminal transactivation inhibitory domain. However, the structural mechanism of TAp63α inhibition remains unknown. Here, we show that TAp63α is kept in an inactive dimeric state. We reveal that relief of inhibition leads to tetramer formation with ∼20-fold higher DNA affinity. In vivo, phosphorylation-triggered tetramerization of TAp63α is not reversible by dephosphorylation. Furthermore, we show that a helix in the oligomerization domain of p63 is crucial for tetramer stabilization and competes with the transactivation domain for the same binding site. Our results demonstrate how TAp63α is inhibited by complex domain-domain interactions that provide the basis for regulating quality control in oocytes.
Collapse
Affiliation(s)
- Gregor B Deutsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|