1
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Hirao K, Speciale I, Notaro A, Manabe Y, Teramoto Y, Sato T, Atomi H, Molinaro A, Ueda Y, De Castro C, Fukase K. Structural Determination and Chemical Synthesis of the N-Glycan from the Hyperthermophilic Archaeon Thermococcus kodakarensis. Angew Chem Int Ed Engl 2023; 62:e202218655. [PMID: 36719065 DOI: 10.1002/anie.202218655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Asparagine-linked protein glycosylations (N-glycosylations) are one of the most abundant post-translational modifications and are essential for various biological phenomena. Herein, we describe the isolation, structural determination, and chemical synthesis of the N-glycan from the hyperthermophilic archaeon Thermococcus kodakarensis. The N-glycan from the organism possesses a unique structure including myo-inositol, which has not been found in previously characterized N-glycans. In this structure, myo-inositol is highly glycosylated and linked with a disaccharide unit through a phosphodiester. The straightforward synthesis of this glycan was accomplished through diastereoselective phosphorylation and phosphodiester construction by SN 2 coupling. Considering the early divergence of hyperthermophilic organisms in evolution, this study can be expected to open the door to approaching the primitive function of glycan modification at the molecular level.
Collapse
Affiliation(s)
- Kohtaro Hirao
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Immacolata Speciale
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 96, 80055, Portici, Naples, Italy
| | - Anna Notaro
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 96, 80055, Portici, Naples, Italy
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiaki Teramoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Takaaki Sato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Yoshihiro Ueda
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 96, 80055, Portici, Naples, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
3
|
Cu-catalysed enantioselective radical heteroatomic S-O cross-coupling. Nat Chem 2023; 15:395-404. [PMID: 36575341 DOI: 10.1038/s41557-022-01102-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/27/2022] [Indexed: 12/29/2022]
Abstract
The transition-metal-catalysed cross-coupling reaction has established itself as one of the most reliable and practical synthetic tools for the efficient construction of carbon-carbon/heteroatom (p-block elements other than carbon) bonds in both racemic and enantioselective manners. In contrast, development of the corresponding heteroatom-heteroatom cross-couplings has so far remained elusive, probably due to the under-investigated and often challenging heteroatom-heteroatom reductive elimination. Here we demonstrate the use of single-electron reductive elimination as a strategy for developing enantioselective S-O coupling under Cu catalysis, based on both experimental and theoretical results. The reaction manifests its synthetic potential by the ready preparation of challenging chiral alcohols featuring congested stereocentres, the expedient valorization of the biomass-derived feedstock glycerol, and the remarkable catalytic 4,6-desymmetrization of inositol. These results demonstrate the potential of enantioselective radical heteroatomic cross-coupling as a general chiral heteroatom-heteroatom formation strategy.
Collapse
|
4
|
Seitz A, Wende RC, Schreiner PR. Site-Selective Acylation of Pyranosides with Immobilized Oligopeptide Catalysts in Flow. Chemistry 2022; 29:e202203002. [PMID: 36538197 DOI: 10.1002/chem.202203002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
We report the site-selective acetylation of partially protected monosaccharides using immobilized oligopeptide catalysts, which are readily accessible via solid-phase peptide synthesis. The catalysts are able to invert the intrinsic selectivity, which was determined using N-methylimidazole, for a variety of pyranosides. We demonstrate that the catalysts are stable for multiple reaction cycles and can be easily reused after separation from the reaction solution. The catalysts can also be used in flow without loss of reactivity and selectivity.
Collapse
Affiliation(s)
- Alexander Seitz
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Raffael C Wende
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
5
|
Xie MS, Shan M, Li N, Chen YG, Wang XB, Cheng X, Tian Y, Wu XX, Deng Y, Qu GR, Guo HM. Chiral 4-Aryl-pyridine-N-oxide Nucleophilic Catalysts: Design, Synthesis, and Application in Acylative Dynamic Kinetic Resolution. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ming-Sheng Xie
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Meng Shan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ning Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yang-Guang Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xiao-Bing Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuan Cheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Xia Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
6
|
Ociepa M, Knouse KW, He D, Vantourout JC, Flood DT, Padial NM, Chen JS, Sanchez BB, Sturgell EJ, Zheng B, Qiu S, Schmidt MA, Eastgate MD, Baran PS. Mild and Chemoselective Phosphorylation of Alcohols Using a Ψ-Reagent. Org Lett 2021; 23:9337-9342. [PMID: 34499517 PMCID: PMC8733960 DOI: 10.1021/acs.orglett.1c02736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An operationally simple, scalable, and chemoselective method for the direct phosphorylation of alcohols using a P(V)-approach based on the Ψ-reagent platform is disclosed. The method features a broad substrate scope of utility in both simple and complex settings and provides access to valuable phosphorylated alcohols that would be otherwise difficult to obtain.
Collapse
Affiliation(s)
- Michał Ociepa
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Kyle W. Knouse
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - David He
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Julien C. Vantourout
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Dillon T. Flood
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Natalia M. Padial
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Jason S. Chen
- Automated Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Brittany B. Sanchez
- Automated Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Emily J. Sturgell
- Automated Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Bin Zheng
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey, 08901, United States
| | - Shenjie Qiu
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey, 08901, United States
| | - Michael A. Schmidt
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey, 08901, United States
| | - Martin D. Eastgate
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey, 08901, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| |
Collapse
|
7
|
Numan A, Brichacek M. Asymmetric Synthesis of Stereogenic Phosphorus P(V) Centers Using Chiral Nucleophilic Catalysis. Molecules 2021; 26:3661. [PMID: 34203996 PMCID: PMC8232703 DOI: 10.3390/molecules26123661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
Organophosphates have been widely used in agrochemistry, as reagents for organic synthesis, and in biochemistry. Phosphate mimics possessing four unique substituents, and thereby a chirality center, are useful in transition metal catalysis and as nucleotide therapeutics. The catalytic, stereocontrolled synthesis of phosphorus-stereogenic centers is challenging and traditionally depends on a resolution or use of stochiometric auxiliaries. Herein, enantioenriched phosphorus centers have been synthesized using chiral nucleophilic catalysis. Racemic H-phosphinate species were coupled with nucleophilic alcohols under halogenating conditions. Chiral phosphonate products were synthesized in acceptable yields (33-95%) and modest enantioselectivity (up to 62% ee) was observed after identification of an appropriate chiral catalyst and optimization of the solvent, base, and temperature. Nucleophilic catalysis has a tremendous potential to produce enantioenriched phosphate mimics that could be used as prodrugs or chemical biology probes.
Collapse
|
8
|
Featherston AL, Kwon Y, Pompeo MM, Engl OD, Leahy DK, Miller SJ. Catalytic asymmetric and stereodivergent oligonucleotide synthesis. Science 2021; 371:702-707. [PMID: 33574208 DOI: 10.1126/science.abf4359] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
We report the catalytic stereocontrolled synthesis of dinucleotides. We have demonstrated, for the first time to our knowledge, that chiral phosphoric acid (CPA) catalysts control the formation of stereogenic phosphorous centers during phosphoramidite transfer. Unprecedented levels of diastereodivergence have also been demonstrated, enabling access to either phosphite diastereomer. Two different CPA scaffolds have proven to be essential for achieving stereodivergence: peptide-embedded phosphothreonine-derived CPAs, which reinforce and amplify the inherent substrate preference, and C2-symmetric BINOL-derived CPAs, which completely overturn this stereochemical preference. The presently reported catalytic method does not require stoichiometric activators or chiral auxiliaries and enables asymmetric catalysis with readily available phosphoramidites. The method was applied to the stereocontrolled synthesis of diastereomeric dinucleotides as well as cyclic dinucleotides, which are of broad interest in immuno-oncology as agonists of the stimulator of interferon genes (STING) pathway.
Collapse
Affiliation(s)
| | - Yongseok Kwon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Matthew M Pompeo
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Oliver D Engl
- Process Chemistry Development, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - David K Leahy
- Process Chemistry Development, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA.
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
10
|
Domon K, Puripat M, Fujiyoshi K, Hatanaka M, Kawashima SA, Yamatsugu K, Kanai M. Catalytic Chemoselective O-Phosphorylation of Alcohols. ACS CENTRAL SCIENCE 2020; 6:283-292. [PMID: 32123747 PMCID: PMC7047436 DOI: 10.1021/acscentsci.9b01272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 05/16/2023]
Abstract
Phosphorylation of alcohols is a fundamentally important reaction in both life science and physical science. Product phosphate monoesters play key roles in living organisms, natural products, pharmaceuticals, and organic materials. Most of the chemical methods to date for synthesizing phosphate monoesters, however, require multistep sequences or are limited to specific types of substrates possibly due to harsh conditions. An alternative way to enable the simple production of phosphate monoesters from highly functionalized precursor alcohols is, thus, highly desired. We report herein a catalytic phosphorylation of alcohols with high functional group tolerance using tetrabutylammonium hydrogen sulfate (TBAHS) and phosphoenolpyruvic acid monopotassium salt (PEP-K) as the catalyst and phosphoryl donor, respectively. This method enables the direct introduction of a nonprotected phosphate group to the hydroxy group of a diverse menu of alcohol substrates, including functionalized small molecules, carbohydrates, and unprotected peptides. Nuclear magnetic resonance, mass spectrometric, and density functional theory analyses suggest that an unprecedented mixed anhydride species, generated from PEP-K and TBAHS, acts as an active phosphoryl donor in this reaction. This operationally simple and chemoselective catalytic phosphorylation allows for the efficient production of densely functionalized O-phosphorylated compounds, which are useful in diverse fields including biology and medicine.
Collapse
Affiliation(s)
- K. Domon
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - M. Puripat
- Institute
for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - K. Fujiyoshi
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - M. Hatanaka
- Institute
for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
- Graduate
School of Science and Technology, Data Science Center, NAIST, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - S. A. Kawashima
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - K. Yamatsugu
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - M. Kanai
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Rapp PB, Murai K, Ichiishi N, Leahy DK, Miller SJ. Catalytic Sulfamoylation of Alcohols with Activated Aryl Sulfamates. Org Lett 2020; 22:168-174. [PMID: 31833780 DOI: 10.1021/acs.orglett.9b04119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a new catalytic method for alcohol sulfamoylation that deploys electron-deficient aryl sulfamates as activated group transfer reagents. The reaction utilizes the simple organic base N-methylimidazole, proceeds under mild conditions, and provides intrinsic selectivity for 1° over 2° alcohols (up to >40:1 for certain nucleosides). The requisite aryl sulfamate donors are stable crystalline solids that can be readily prepared on a large scale. Mechanistic considerations support the intermediacy of HNSO2 "aza-sulfene" in the transfer reaction.
Collapse
Affiliation(s)
- Peter B Rapp
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States
| | - Koichi Murai
- Process Chemistry Development , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Naoko Ichiishi
- Process Chemistry Development , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - David K Leahy
- Process Chemistry Development , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Scott J Miller
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States
| |
Collapse
|
12
|
Abstract
The multitudinous inositol phosphate family elicits a wide range of molecular effects that regulate countless biological responses. In this review, I provide a methodological viewpoint of the manner in which key advances in the field of inositol phosphate research were made. I also note some of the considerable challenges that still lie ahead.
Collapse
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
13
|
Metabolism and metabolomics of opiates: A long way of forensic implications to unravel. J Forensic Leg Med 2019; 61:128-140. [DOI: 10.1016/j.jflm.2018.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022]
|
14
|
Dimakos V, Taylor MS. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem Rev 2018; 118:11457-11517. [DOI: 10.1021/acs.chemrev.8b00442] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
15
|
Poláčková V, Čmelová P, Górová R, Šebesta R. Peptide-catalyzed stereoselective Michael addition of aldehydes and ketones to heterocyclic nitroalkenes. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2126-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Padiyar LT, Zulueta MML, Sabbavarapu NM, Hung SC. Yb(OTf) 3-Catalyzed Desymmetrization of myo-Inositol 1,3,5-Orthoformate and Its Application in the Synthesis of Chiral Inositol Phosphates. J Org Chem 2017; 82:11418-11430. [PMID: 29019688 DOI: 10.1021/acs.joc.7b01919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A variety of inositol phosphates including myo-inositol 1,4,5-trisphosphate, which is a secondary messenger in transmembrane signaling, were selectively synthesized via Yb(OTf)3-catalyzed desymmetrization of myo-inositol 1,3,5-orthoformate using a proline-based chiral anhydride as an acylation precursor. The investigated catalytic system could regioselectively differentiate the enantiotopic hydroxy groups of myo-inositol 1,3,5-orthoformate in the presence of a chiral auxiliary. This key step to generate a suitably protected chiral myo-inositol derivatives is described here as a unified approach to access inositol phosphates.
Collapse
Affiliation(s)
- Laxmansingh T Padiyar
- Genomics Research Center, Academia Sinica , 128 Section 2 Academia Road, Taipei 115, Taiwan
| | - Medel Manuel L Zulueta
- Genomics Research Center, Academia Sinica , 128 Section 2 Academia Road, Taipei 115, Taiwan
| | | | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica , 128 Section 2 Academia Road, Taipei 115, Taiwan
| |
Collapse
|
17
|
Tay JH, Argüelles AJ, DeMars MD, Zimmerman PM, Sherman DH, Nagorny P. Regiodivergent Glycosylations of 6-Deoxy-erythronolide B and Oleandomycin-Derived Macrolactones Enabled by Chiral Acid Catalysis. J Am Chem Soc 2017; 139:8570-8578. [PMID: 28627172 PMCID: PMC5553906 DOI: 10.1021/jacs.7b03198] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This work describes the first example of using chiral catalysts to control site-selectivity for the glycosylations of complex polyols such as 6-deoxyerythronolide B and oleandomycin-derived macrolactones. The regiodivergent introduction of sugars at the C3, C5, and C11 positions of macrolactones was achieved by selecting appropriate chiral acids as catalysts or through introduction of stoichiometric boronic acid-based additives. BINOL-based chiral phosphoric acids (CPAs) were used to catalyze highly selective glycosylations at the C5 positions of macrolactones (up to 99:1 rr), whereas the use of SPINOL-based CPAs resulted in selectivity switch and glycosylation of the C3 alcohol (up to 91:9 rr). Additionally, the C11 position of macrolactones was selectively functionalized through traceless protection of the C3/C5 diol with boronic acids prior to glycosylation. Investigation of the reaction mechanism for the CPA-controlled glycosylations revealed the involvement of covalently linked anomeric phosphates rather than oxocarbenium ion pairs as the reactive intermediates.
Collapse
Affiliation(s)
- Jia-Hui Tay
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
| | - Alonso J. Argüelles
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
| | - Matthew D. DeMars
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109 United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
| |
Collapse
|
18
|
Aiba T, Suehara S, Choy SL, Maekawa Y, Lotter H, Murai T, Inuki S, Fukase K, Fujimoto Y. Employing BINOL-Phosphoroselenoyl Chloride for Selective Inositol Phosphorylation and Synthesis of Glycosyl Inositol Phospholipid from Entamoeba histolytica. Chemistry 2017; 23:8304-8308. [DOI: 10.1002/chem.201701298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Toshihiko Aiba
- Department of Chemistry; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
- Department of Chemistry; Graduate school of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Sae Suehara
- Department of Chemistry; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Siew-Ling Choy
- Bernhard Nocht Institute for Tropical Medicine; Bernhard-Nocht-Str.74 Hamburg 20359 Germany
| | - Yuuki Maekawa
- Department of Chemistry and Biomolecular Science; Faculty of Engineering; Gifu University, Yanagido; Gifu 501-1193 Japan
| | - Hannelore Lotter
- Bernhard Nocht Institute for Tropical Medicine; Bernhard-Nocht-Str.74 Hamburg 20359 Germany
| | - Toshiaki Murai
- Department of Chemistry and Biomolecular Science; Faculty of Engineering; Gifu University, Yanagido; Gifu 501-1193 Japan
| | - Shinsuke Inuki
- Department of Chemistry; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Koichi Fukase
- Department of Chemistry; Graduate school of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yukari Fujimoto
- Department of Chemistry; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
19
|
Wohlgemuth R, Liese A, Streit W. Biocatalytic Phosphorylations of Metabolites: Past, Present, and Future. Trends Biotechnol 2017; 35:452-465. [DOI: 10.1016/j.tibtech.2017.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 01/08/2023]
|
20
|
Cortes-Clerget M, Jover J, Dussart J, Kolodziej E, Monteil M, Migianu-Griffoni E, Gager O, Deschamp J, Lecouvey M. Bifunctional Tripeptide with a Phosphonic Acid as a Brønsted Acid for Michael Addition: Mechanistic Insights. Chemistry 2017; 23:6654-6662. [DOI: 10.1002/chem.201700604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Margery Cortes-Clerget
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| | - Jesús Jover
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Avgda. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Inorgànica i Orgànica; Secció de Química Inorgànica; Universitat de Barcelona; Martí i Franquès 1-11 08028 Barcelona Spain
| | - Jade Dussart
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| | - Emilie Kolodziej
- Université Paris Sud, ICMMO, UMR 8182; 15 Rue Georges Clemenceau 91405 Orsay Cedex France
| | - Maelle Monteil
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| | - Evelyne Migianu-Griffoni
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| | - Olivier Gager
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| | - Julia Deschamp
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| | - Marc Lecouvey
- Sorbonne Paris Cité-Laboratoire CSPBAT-CNRS UMR 7244; Université Paris 13; 1 Rue de Chablis 93000 Bobigny France
| |
Collapse
|
21
|
Lee J, Borovika A, Khomutnyk Y, Nagorny P. Chiral phosphoric acid-catalyzed desymmetrizative glycosylation of 2-deoxystreptamine and its application to aminoglycoside synthesis. Chem Commun (Camb) 2017; 53:8976-8979. [DOI: 10.1039/c7cc05052f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This work describes chiral phosphoric acid (CPA)-catalyzed desymmetrizative glycosylation ofmeso-diol derived from 2-deoxystreptamine.
Collapse
Affiliation(s)
- Jeonghyo Lee
- University of Michigan
- Chemistry Department
- Ann Arbor
- USA
| | - Alina Borovika
- Bristol-Myers-Squibb Co. 1 Squibb Dr. New Brunswick
- NJ 08901
- USA
| | | | - Pavel Nagorny
- University of Michigan
- Chemistry Department
- Ann Arbor
- USA
| |
Collapse
|
22
|
Durantie E, Huwiler S, Leroux JC, Castagner B. A Chiral Phosphoramidite Reagent for the Synthesis of Inositol Phosphates. Org Lett 2016; 18:3162-5. [DOI: 10.1021/acs.orglett.6b01374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Estelle Durantie
- Department of Chemistry and
Applied Biosciences, ETH-Zürich, 8093 Zürich, Switzerland
| | - Samuel Huwiler
- Department of Chemistry and
Applied Biosciences, ETH-Zürich, 8093 Zürich, Switzerland
| | | | - Bastien Castagner
- Department of Chemistry and
Applied Biosciences, ETH-Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
23
|
Aiba T, Sato M, Umegaki D, Iwasaki T, Kambe N, Fukase K, Fujimoto Y. Regioselective phosphorylation of myo-inositol with BINOL-derived phosphoramidites and its application for protozoan lysophosphatidylinositol. Org Biomol Chem 2016; 14:6672-5. [DOI: 10.1039/c6ob01062h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BINOL-derived phosphoramidites enabled a regioselective phosphorylation of myo-inositol. The method was applied for the first total synthesis of a protozoan lysophosphatidylinositol, EhPIa.
Collapse
Affiliation(s)
- Toshihiko Aiba
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Masaki Sato
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Daichi Umegaki
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Takanori Iwasaki
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Nobuaki Kambe
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Koichi Fukase
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Yukari Fujimoto
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
24
|
Cortes-Clerget M, Gager O, Monteil M, Pirat JL, Migianu-Griffoni E, Deschamp J, Lecouvey M. Novel Easily Recyclable Bifunctional Phosphonic Acid Carrying Tripeptides for the Stereoselective Michael Addition of Aldehydes with Nitroalkenes. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Rajendran KV, Nikitin KV, Gilheany DG. Hammond Postulate Mirroring Enables Enantiomeric Enrichment of Phosphorus Compounds via Two Thermodynamically Interconnected Sequential Stereoselective Processes. J Am Chem Soc 2015; 137:9375-81. [DOI: 10.1021/jacs.5b04415] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kamalraj V. Rajendran
- Centre for Synthesis and
Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kirill V. Nikitin
- Centre for Synthesis and
Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Declan G. Gilheany
- Centre for Synthesis and
Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
26
|
Murray JI, Woscholski R, Spivey AC. Highly efficient and selective phosphorylation of amino acid derivatives and polyols catalysed by 2-aryl-4-(dimethylamino)pyridine-N-oxides--towards kinase-like reactivity. Chem Commun (Camb) 2015; 50:13608-11. [PMID: 25248055 DOI: 10.1039/c4cc05388e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The chemoselective phosphorylation of hydroxyl containing amino acid derivatives and polyols by phosphoryl chlorides catalyzed by 2-aryl-4-(dimethylamino)pyridine-N-oxides is described.
Collapse
Affiliation(s)
- James I Murray
- Department of Chemistry, South Kensington Campus, Imperial College London, SW7 2AZ, UK.
| | | | | |
Collapse
|
27
|
Desymmetrization of myo-inositol derivatives by lanthanide catalyzed phosphitylation with C2-symmetric phosphites. Bioorg Med Chem 2015; 23:2854-61. [DOI: 10.1016/j.bmc.2015.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 11/24/2022]
|
28
|
Applegate GA, Berkowitz DB. Exploiting Enzymatic Dynamic Reductive Kinetic Resolution (DYRKR) in Stereocontrolled Synthesis. Adv Synth Catal 2015; 357:1619-1632. [PMID: 26622223 PMCID: PMC4662550 DOI: 10.1002/adsc.201500316] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the past two decades, the domains of both frontline synthetic organic chemistry and process chemistry and have seen an increase in crosstalk between asymmetric organic/organometallic approaches and enzymatic approaches to stereocontrolled synthesis. This review highlights the particularly auspicious role for dehydrogenase enzymes in this endeavor, with a focus on dynamic reductive kinetic resolutions (DYRKR) to "deracemize" building blocks, often setting two stereocenters in so doing. The scope and limitations of such dehydrogenase-mediated processes are overviewed, as are future possibilities for the evolution of enzymatic DYRKR.
Collapse
Affiliation(s)
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304 USA
| |
Collapse
|
29
|
Durantie E, Leroux JC, Castagner B. New paradigms for the chiral synthesis of inositol phosphates. Chembiochem 2015; 16:1030-2. [PMID: 25766971 DOI: 10.1002/cbic.201500071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/12/2022]
Abstract
Paradigms found: Inositol phosphates are biomolecules found ubiquitously in eukaryotes, in which they play a number of vital biological roles. Their enantioselective synthesis has recently received a boost from two complementary phosphorylation methods that could change the way they are synthesised, and hopefully provide invaluable chemical biology tools to further our understanding of this large family.
Collapse
Affiliation(s)
- Estelle Durantie
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich (Switzerland)
| | | | | |
Collapse
|
30
|
Giuliano MW, Miller SJ. Site-Selective Reactions with Peptide-Based Catalysts. SITE-SELECTIVE CATALYSIS 2015; 372:157-201. [DOI: 10.1007/128_2015_653] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Zhang Z, Wang M, Xie F, Sun H, Zhang W. Chiral Bicyclic Imidazole Nucleophilic Catalysts: Design, Synthesis, and Application to the Kinetic Resolution of Arylalkylcarbinols. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400415] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Capolicchio S, Wang H, Thakor DT, Shears SB, Jessen HJ. Synthesis of densely phosphorylated bis-1,5-diphospho-myo-inositol tetrakisphosphate and its enantiomer by bidirectional P-anhydride formation. Angew Chem Int Ed Engl 2014; 53:9508-11. [PMID: 25044992 PMCID: PMC4153399 DOI: 10.1002/anie.201404398] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/23/2014] [Indexed: 11/06/2022]
Abstract
The ubiquitous mammalian signaling molecule bis-diphosphoinositol tetrakisphosphate (1,5-(PP)2 -myo-InsP4 , or InsP8 ) displays the most congested three-dimensional array of phosphate groups found in nature. The high charge density, the accumulation of unstable P-anhydrides and P-esters, the lack of UV absorbance, and low levels of optical rotation constitute severe obstacles to its synthesis, characterization, and purification. Herein, we describe the first procedure for the synthesis of enantiopure 1,5-(PP)2 -myo-InsP4 and 3,5-(PP)2 -myo-InsP4 utilizing a C2 -symmetric P-amidite for desymmetrization and concomitant phosphitylation followed by a one-pot bidirectional P-anhydride-forming reaction that combines sixteen chemical transformations with high efficiency. The configuration of these materials is unambiguously shown by subsequent X-ray analyses of both enantiomers after being individually soaked into crystals of the kinase domain of human diphosphoinositol pentakisphosphate kinase 2.
Collapse
Affiliation(s)
- Samanta Capolicchio
- Department of Chemistry, University of Zürich (UZH), Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Huanchen Wang
- Inositol Signaling Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (USA)
| | - Divyeshsinh T. Thakor
- Department of Chemistry University of Zürich (UZH) Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Stephen B. Shears
- Inositol Signaling Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (USA)
| | - Henning J. Jessen
- Department of Chemistry University of Zürich (UZH) Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| |
Collapse
|
33
|
Capolicchio S, Wang H, Thakor DT, Shears SB, Jessen HJ. Synthesis of Densely Phosphorylated Bis-1,5-Diphospho-myo-Inositol Tetrakisphosphate and its Enantiomer by Bidirectional P-Anhydride Formation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Vasconcelos MG, Briggs RH, Aguiar LC, Freire DM, Simas AB. Efficient desymmetrization of 4,6-di-O-benzyl-myo-inositol by Lipozyme TL-IM. Carbohydr Res 2014; 386:7-11. [DOI: 10.1016/j.carres.2013.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/27/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
|
35
|
Lauber MB, Daniliuc CG, Paradies J. Desymmetrization of 4,6-diprotected myo-inositol. Chem Commun (Camb) 2014; 49:7409-11. [PMID: 23860461 DOI: 10.1039/c3cc43663b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The asymmetric desymmetrization of 4,6-diprotected myo-inositol derivatives was achieved by using a bifunctional, readily available nucleophilic catalyst. The orthogonally protected products were obtained in 80-99% yield with 90-99% ee. Such structures serve as potential enantiopure building blocks for the synthesis of myo-inositol phosphates.
Collapse
Affiliation(s)
- Markus B Lauber
- Karlsruhe Institute of Technology, Institute for Organic Chemistry, Fritz-Haber Weg 6, Germany
| | | | | |
Collapse
|
36
|
Matsumi R, Hellriegel C, Schoenenberger B, Milesi T, van der Oost J, Wohlgemuth R. Biocatalytic asymmetric phosphorylation of mevalonate. RSC Adv 2014. [DOI: 10.1039/c4ra01299b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Mensah E, Camasso N, Kaplan W, Nagorny P. Chiral Phosphoric Acid Directed Regioselective Acetalization of Carbohydrate-Derived 1,2-Diols. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Mensah E, Camasso N, Kaplan W, Nagorny P. Chiral Phosphoric Acid Directed Regioselective Acetalization of Carbohydrate-Derived 1,2-Diols. Angew Chem Int Ed Engl 2013; 52:12932-6. [DOI: 10.1002/anie.201304298] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/29/2013] [Indexed: 01/21/2023]
|
39
|
Murray JI, Spivey AC, Woscholski R. Alternative synthetic tools to phospho-specific antibodies for phosphoproteome analysis: progress and prospects. J Chem Biol 2013; 6:175-84. [PMID: 24432133 DOI: 10.1007/s12154-013-0100-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/18/2013] [Indexed: 12/17/2022] Open
Abstract
Signal transduction cascades in living systems are often controlled via post-translational phosphorylation and dephosphorylation of proteins. These processes are catalyzed in vivo by kinase and phosphatase enzymes, which consequently play an important role in many disease states, including cancer and immune system disorders. Current techniques for studying the phosphoproteome (isotopic labeling, chromatographic techniques, and phosphospecific antibodies), although undoubtedly very powerful, have yet to provide a generic tool for phosphoproteomic analysis despite the widespread utility such a technique would have. The use of small molecule organic catalysts that can promote selective phosphate esterification could provide a useful alternative to current state-of-the-art techniques for use in, e.g., the labeling and pull-down of phosphorylated proteins. This report reviews current techniques used for phosphoproteomic analysis and the recent use of small molecule peptide-based catalysts in phosphorylation reactions, indicating possible future applications for this type of catalyst as synthetic alternatives to phosphospecific antibodies for phosphoproteome analysis.
Collapse
Affiliation(s)
- James I Murray
- Department of Chemistry, Imperial College London, London, SW7 2AZ UK
| | - Alan C Spivey
- Department of Chemistry, Imperial College London, London, SW7 2AZ UK
| | | |
Collapse
|
40
|
Capolicchio S, Thakor DT, Linden A, Jessen HJ. Synthesis of unsymmetric diphospho-inositol polyphosphates. Angew Chem Int Ed Engl 2013; 52:6912-6. [PMID: 23712702 DOI: 10.1002/anie.201301092] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/29/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Samanta Capolicchio
- Organic Chemistry Institute, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
41
|
Capolicchio S, Thakor DT, Linden A, Jessen HJ. Synthesis of Unsymmetric Diphospho-Inositol Polyphosphates. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Du ZX, Zhang LY, Fan XY, Wu FC, Da CS. Highly enantioselective biomimetic intramolecular dehydration: kinetic resolution of β-hydroxy ketones catalyzed by β-turn tetrapeptides. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.03.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Vidyasagar A, Pathigoolla A, Sureshan KM. Chemoselective alcoholysis/acetolysis of trans-ketals over cis-ketals and its application in the total synthesis of the cellular second messenger, d-myo-inositol-1,4,5-trisphosphate. Org Biomol Chem 2013; 11:5443-53. [DOI: 10.1039/c3ob40789f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Adiyala Vidyasagar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, India
| | | | | |
Collapse
|
44
|
Lee D, Taylor MS. Regioselective silylation of pyranosides using a boronic acid/Lewis base co-catalyst system. Org Biomol Chem 2013; 11:5409-12. [DOI: 10.1039/c3ob40981c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Dimitrijević E, Taylor MS. 9-Hetero-10-boraanthracene-derived borinic acid catalysts for regioselective activation of polyols. Chem Sci 2013. [DOI: 10.1039/c3sc51172c] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Wilcock BC, Uno BE, Bromann GL, Clark MJ, Anderson TM, Burke MD. Electronic tuning of site-selectivity. Nat Chem 2012; 4:996-1003. [PMID: 23174979 PMCID: PMC3545056 DOI: 10.1038/nchem.1495] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 10/03/2012] [Indexed: 11/24/2022]
Abstract
Site-selective functionalizations of complex small molecules can generate targeted derivatives with exceptional step efficiency, but general strategies for maximizing selectivity in this context are rare. Here, we report that site-selectivity can be tuned by simply modifying the electronic nature of the reagents. A Hammett analysis is consistent with linking this phenomenon to the Hammond postulate: electronic tuning to a more product-like transition state amplifies site-discriminating interactions between a reagent and its substrate. This strategy transformed a minimally site-selective acylation reaction into a highly selective and thus preparatively useful one. Electronic tuning of both an acylpyridinium donor and its carboxylate counterion further promoted site-divergent functionalizations. With these advances, we achieve a range of modifications to just one of the many hydroxyl groups appended to the ion channel-forming natural product amphotericin B. Thus, electronic tuning of reagents represents an effective strategy for discovering and optimizing site-selective functionalization reactions.
Collapse
Affiliation(s)
- Brandon C Wilcock
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Sambasivan R, Ball ZT. Screening Rhodium Metallopeptide Libraries “On Bead”: Asymmetric Cyclopropanation and a Solution to the Enantiomer Problem. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ramya Sambasivan
- Department of Chemistry MS 60, Rice University, 6100 Main street, Houston, TX 77005 (USA) http://www.ztb.rice.edu
| | - Zachary T. Ball
- Department of Chemistry MS 60, Rice University, 6100 Main street, Houston, TX 77005 (USA) http://www.ztb.rice.edu
| |
Collapse
|
49
|
Sambasivan R, Ball ZT. Screening Rhodium Metallopeptide Libraries “On Bead”: Asymmetric Cyclopropanation and a Solution to the Enantiomer Problem. Angew Chem Int Ed Engl 2012; 51:8568-72. [DOI: 10.1002/anie.201202512] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/08/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Ramya Sambasivan
- Department of Chemistry MS 60, Rice University, 6100 Main street, Houston, TX 77005 (USA) http://www.ztb.rice.edu
| | - Zachary T. Ball
- Department of Chemistry MS 60, Rice University, 6100 Main street, Houston, TX 77005 (USA) http://www.ztb.rice.edu
| |
Collapse
|
50
|
Abstract
We report the site-selective bromination of vancomycin to produce, with substantial efficiency, previously unknown monobromovancomycins, a dibromovancomycin, and a tribromovancomycin. We document the inherent reactivity of native vancomycin toward N-bromophthalimide. We then demonstrate significant rate acceleration and perturbation of the inherent product distribution in the presence of a rationally designed peptide-based promoter. Alternative site selectivity is observed as a function of solvent and replacement of the peptide with guanidine.
Collapse
Affiliation(s)
- Tejas P. Pathak
- Department of Chemistry, 225 Prospect Street, Yale University, New Haven, CT 06520-8107
| | - Scott J. Miller
- Department of Chemistry, 225 Prospect Street, Yale University, New Haven, CT 06520-8107
| |
Collapse
|