1
|
Heo S, Li L, Son JY, Koutrakis P, Bell ML. Associations Between Gestational Residential Radon Exposure and Term Low Birthweight in Connecticut, USA. Epidemiology 2024; 35:834-843. [PMID: 39042464 PMCID: PMC11560713 DOI: 10.1097/ede.0000000000001771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
BACKGROUND Studies suggest biologic mechanisms for gestational exposure to radiation and impaired fetal development. We explored associations between gestational radon exposure and term low birthweight, for which evidence is limited. METHODS We examined data for 68,159 singleton full-term births in Connecticut, United States, 2016-2018. Using a radon spatiotemporal model, we estimated ZIP code-level basement and ground-level exposures during pregnancy and trimesters for each participant's address at birth or delivery. We used logistic regression models, including confounders, to estimate odds ratios (ORs) for term low birth weight in four exposure quartiles (Q1-Q4) with the lowest exposure group (Q1) as the reference. RESULTS Exposure levels to basement radon throughout pregnancy (0.27-3.02 pCi/L) were below the guideline level set by the US Environmental Protection Agency (4 pCi/L). The ORs for term low birth weight in the second-highest (Q3; 1.01-1.33 pCi/L) exposure group compared with the reference (<0.79 pCi/L) group for basement radon during the first trimester was 1.22 (95% confidence interval [CI] = 1.02, 1.45). The OR in the highest (Q4; 1.34-4.43 pCi/L) quartile group compared with the reference group during the first trimester was 1.26 (95% CI = 1.05, 1.50). Risks from basement radon were higher for participants with lower income, lower maternal education levels, or living in urban regions. CONCLUSION This study found increased term low birth weight risks for increases in basement radon. Results have implications for infants' health for exposure to radon at levels below the current national guideline for indoor radon concentrations and building remediations.
Collapse
Affiliation(s)
- Seulkee Heo
- School of the Environment, Yale University, 195 Prospect St, New Haven, CT, USA
| | - Longxiang Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center, Boston, MA, USA
| | - Ji-Young Son
- School of the Environment, Yale University, 195 Prospect St, New Haven, CT, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center, Boston, MA, USA
| | - Michelle L. Bell
- School of the Environment, Yale University, 195 Prospect St, New Haven, CT, USA
- Interdisciplinary Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, 145 Anam-ro, Anam-dong 3-ga, Seongbuk-gu, Seoul, South Korea
| |
Collapse
|
2
|
Osipov A, Chigasova A, Yashkina E, Ignatov M, Vorobyeva N, Zyuzikov N, Osipov AN. Early and Late Effects of Low-Dose X-ray Exposure in Human Fibroblasts: DNA Repair Foci, Proliferation, Autophagy, and Senescence. Int J Mol Sci 2024; 25:8253. [PMID: 39125823 PMCID: PMC11311499 DOI: 10.3390/ijms25158253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The effects of low-dose radiation exposure remain a controversial topic in radiation biology. This study compares early (0.5, 4, 24, 48, and 72 h) and late (5, 10, and 15 cell passages) post-irradiation changes in γH2AX, 53BP1, pATM, and p-p53 (Ser-15) foci, proliferation, autophagy, and senescence in primary fibroblasts exposed to 100 and 2000 mGy X-ray radiation. The results show that exposure to 100 mGy significantly increased γH2AX, 53BP1, and pATM foci only at 0.5 and 4 h post irradiation. There were no changes in p-p53 (Ser-15) foci, proliferation, autophagy, or senescence up to 15 passages post irradiation at the low dose.
Collapse
Affiliation(s)
- Andrey Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.O.); (A.C.); (E.Y.); (M.I.)
| | - Anna Chigasova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.O.); (A.C.); (E.Y.); (M.I.)
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta Yashkina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.O.); (A.C.); (E.Y.); (M.I.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia
| | - Maxim Ignatov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.O.); (A.C.); (E.Y.); (M.I.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia
| | - Natalia Vorobyeva
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.O.); (A.C.); (E.Y.); (M.I.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia
| | - Nikolay Zyuzikov
- Department of Physics, Faculty of Science and Technology, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago;
| | - Andreyan N. Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.O.); (A.C.); (E.Y.); (M.I.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia
| |
Collapse
|
3
|
Jose SR, Timothy PB, Suganthy J, Backianathan S, Amirtham SM, Rani S, Singh R. Determination of dose-response calibration curves for gamma radiation using gamma-H2AX immunofluorescence based biodosimetry. Rep Pract Oncol Radiother 2024; 29:164-175. [PMID: 39143968 PMCID: PMC11321778 DOI: 10.5603/rpor.99678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/29/2024] [Indexed: 08/16/2024] Open
Abstract
Background Gamma-H2AX immunofluorescence assay has gained popularity as a DNA double strand break marker. In this work, we have investigated the potential use of gamma H2AX immunofluorescence assay as a biological dosimeter for estimation of dose in our institution. Materials and methods Seven healthy individuals were selected for the study and the blood samples collected from the first five individuals were irradiated to low doses (0-10 cGy) and high doses (50-500 cGy) in a telecobalt unit. All the samples were processed for gamma-H2AX immunofluorescence assay and the dose-response calibration curves for low and high doses were determined. In order to validate the determined dose-response calibration curves, the blood samples obtained from the sixth and seventh subjects were delivered a test dose of 7.5 cGy and 250 cGy. In addition, time and cost required to complete the assay were also reported. Results The goodness of fit (R2) values was found to be 0.9829 and 0.9766 for low and high dose-response calibration curves. The time required to perform the gamma-H2AX immunofluorescence assay was found to be 7 hours and 30 minutes and the estimated cost per sample was 5000 rupees (~ 60 USD). Conclusion Based on this study we conclude that the individual dose-response calibration curves determined with gamma-H2AX immunofluorescence assay for both low and high dose ranges of gamma radiation can be used for biological dosimetry. Further, the gamma-H2AX immunofluorescence assay can be used as a rapid cost-effective biodosimetric tool for institutions with an existing confocal microscope facility.
Collapse
Affiliation(s)
- Solomon Raj Jose
- Department of Radiotherapy, Christian Medical College Vellore, Vellore, India
| | | | - J Suganthy
- Department of Anatomy, Christian Medical College Vellore, CMC, Bagayam, Vellore, India
| | | | | | - Sandya Rani
- Centre for Stem Cell Research, Christian Medical College, Vellore, India
| | - Rabi Singh
- Department of Radiation Oncology, Christian Medical College Vellore, Vellore, India
| |
Collapse
|
4
|
Deng B, Quan Y, Chen Z, Wang H. Radiation Effects of Normal B-Lymphoblastoid Cells after Exposing Them to Low-Dose-Rate Irradiation from Tritium β-rays. BIOLOGY 2024; 13:418. [PMID: 38927298 PMCID: PMC11200481 DOI: 10.3390/biology13060418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The effects of tritium at low doses and low dose rates have received increasing attention due to recent developments in fusion energy and the associated risks of tritium releases into the environment. Mitochondria have been identified as a potential candidate for studying the effects of low-dose/low-dose-rate radiation, with extensive experimental results obtained using X-ray irradiation. In this study, irradiation experiments were conducted on normal B-lymphoblastoid cells using HTO at varying doses. When compared to X-ray irradiation, no significant differences in cell viability induced by different doses were observed. However, the results of ATP levels showed a significant difference between the irradiated sample at a dose of 500 mGy by tritium beta-rays and the sham-irradiated sample, while the levels obtained with X-ray irradiation were almost identical to the sham-irradiated sample. In contrast, ATP levels for both tritium beta-rays and X-rays at a dose of 1.0 Gy showed minimal differences compared to the sham-irradiated sample. Furthermore, distinct effects at 500 mGy were also confirmed in both ROS levels and apoptosis results obtained through tritium beta-ray irradiation. This suggests that mitochondria might be a potential sensitive target for investigating the effects of tritium beta-ray irradiation.
Collapse
Affiliation(s)
- Bing Deng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; (Y.Q.); (Z.C.); (H.W.)
| | | | | | | |
Collapse
|
5
|
Moledina M, Damato EM, Lee V. The changing landscape of thyroid eye disease: current clinical advances and future outlook. Eye (Lond) 2024; 38:1425-1437. [PMID: 38374366 PMCID: PMC11126416 DOI: 10.1038/s41433-024-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
AIMS This review aims to provide an overview of the current understanding of TED and its pathophysiology. To describe the evidence base for current consensus treatment recommendations and newer biological therapies available as well as to present future therapeutic research. METHODS We reviewed and assessed the peer-reviewed literature placing particular emphasis on recent studies evaluating the pathophysiology of TED, landmark trials forming the basis of current management and recent clinical trials informing future therapeutics. Searched were made in MEDLINE Ovid, Embase Ovid, US National Institutes of Health Ongoing Trials Register and EU Clinical Trials Register. Keywords included: "Thyroid Eye Disease", "Graves Orbitopathy", "Thyroid Orbitopathy" and "Graves' Ophthalmopathy". RESULTS AND CONCLUSIONS The pathophysiology of TED involves a complex array of cellular and humoral based autoimmune dysfunction. Previous therapies have been broad-based acting as a blunt instrument on this mechanism with varying efficacy but often accompanied with a significant side effect profile. The recent development of targeted therapy, spearheaded by Teprotumumab has led to an array of treatments focusing on specific components of the molecular pathway optimising their impact whilst possibly minimising their side effect profile. Future challenges involve identifying the most effective target for each patient rather than any single agent being a panacea. Long-term safety profiles will require clarification as unintended immunological consequence downstream may become manifest as seen in other diseases. Finally, future novel therapeutics will entail significant expenditure and may lead to a divergence of available treatment modalities between healthcare systems due to funding disparities.
Collapse
Affiliation(s)
- Malik Moledina
- Oculoplastics Service, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Erika M Damato
- Department of Ophthalmology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vickie Lee
- Oculoplastics Service, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
6
|
Miller CJ, Pickering E, Martelli S, Dall'Ara E, Delisser P, Pivonka P. Cortical bone adaptation response is region specific, but not peak load dependent: insights from μ CT image analysis and mechanostat simulations of the mouse tibia loading model. Biomech Model Mechanobiol 2024; 23:287-304. [PMID: 37851203 PMCID: PMC10901956 DOI: 10.1007/s10237-023-01775-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
The two major aims of the present study were: (i) quantify localised cortical bone adaptation at the surface level using contralateral endpoint imaging data and image analysis techniques, and (ii) investigate whether cortical bone adaptation responses are universal or region specific and dependent on the respective peak load. For this purpose, we re-analyse previously published μ CT data of the mouse tibia loading model that investigated bone adaptation in response to sciatic neurectomy and various peak load magnitudes (F = 0, 2, 4, 6, 8, 10, 12 N). A beam theory-based approach was developed to simulate cortical bone adaptation in different sections of the tibia, using longitudinal strains as the adaptive stimuli. We developed four mechanostat models: universal, surface-based, strain directional-based, and combined surface and strain direction-based. Rates of bone adaptation in these mechanostat models were computed using an optimisation procedure (131,606 total simulations), performed on a single load case (F = 10 N). Subsequently, the models were validated against the remaining six peak loads. Our findings indicate that local bone adaptation responses are quasi-linear and bone region specific. The mechanostat model which accounted for differences in endosteal and periosteal regions and strain directions (i.e. tensile versus compressive) produced the lowest root mean squared error between simulated and experimental data for all loads, with a combined prediction accuracy of 76.6, 55.0 and 80.7% for periosteal, endosteal, and cortical thickness measurements (in the midshaft of the tibia). The largest root mean squared errors were observed in the transitional loads, i.e. F = 2 to 6 N, where inter-animal variability was highest. Finally, while endpoint imaging studies provide great insights into organ level bone adaptation responses, the between animal and loaded versus control limb variability make simulations of local surface-based adaptation responses challenging.
Collapse
Affiliation(s)
- Corey J Miller
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| | - Saulo Martelli
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism and Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
7
|
Wang S, Li G, Du H, Feng J. Low-dose radiation from CT examination induces DNA double-strand breaks and detectable changes of DNA methylation in peripheral blood cells. Int J Radiat Biol 2024; 100:197-208. [PMID: 37812067 DOI: 10.1080/09553002.2023.2267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Radiation burden from CT examinations increases rapidly with the increased clinical use frequency. Previous studies have disclosed the association between radiation exposure and increased double-strand breaks (DSBs) and changes in DNA methylation. However, whether the induced DSBs by CT examination recover within 24h and whether a CT examination induces detectable gene-specific methylation changes are still unclear. The aim of the present study was to analyze γ-H2AX in the peripheral blood lymphocyte (PBL) of healthy adults before and after CT examination and to discover the differentially methylated positions (DMPs) along with an analysis of DNA methylation changes caused by CT examination. MATERIALS AND METHODS Peripheral blood samples of 4 ml were drawn from 20 healthy volunteers at three time points: before CT examination, after CT examination 1h, and after CT examination 24h. γ-H2AX immunofluorescence and Illumina Infinium Human Methylation EPIC BeadChip (850k BeadChip) were used respectively for the test of DSBs and the epigenome-wide DNA methylation analysis. Linear mixed-effect (LME) models were used to evaluate the impacts of doses represented by different parameters and foci on genome-wide DNA methylation. RESULTS The number of γ-H2AX foci per cell at 1h showed linear dose-responses for the radiation doses represented by CT index volume (CTDIvol), dose length product (DLP), and blood absorbed dose, respectively. Residual γ-H2AX foci was observed after CT examination at 24h (p < .001). DMPs and γ-H2AX foci changes could be found within 1h. One CpG site related to PAX5 was significantly changed by using most of the parameters in LME models and did not recover till 24h. CONCLUSIONS Residual γ-H2AX foci exist after CT examination at 24h. The DNA methylation changes induced by CT examination may not recover within 24h. The DNA methylation had been changed as early as at 1h. The PAX5-related CpG site may be a potential biomarker of low-dose radiation. CLINICAL RELEVANCE The biological effects and the cancer risks of CT examination are still unclear. The present study is an effort to document the CT scan-induced events in 24h in vivo. The CT scanning area should be strictly limited, and non-essential repeated operations shouldn't be performed within 24h.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Gang Li
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Han Du
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jiling Feng
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
8
|
Khazaei Monfared Y, Heidari P, Klempner SJ, Mahmood U, Parikh AR, Hong TS, Strickland MR, Esfahani SA. DNA Damage by Radiopharmaceuticals and Mechanisms of Cellular Repair. Pharmaceutics 2023; 15:2761. [PMID: 38140100 PMCID: PMC10748326 DOI: 10.3390/pharmaceutics15122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
DNA is an organic molecule that is highly vulnerable to chemical alterations and breaks caused by both internal and external factors. Cells possess complex and advanced mechanisms, including DNA repair, damage tolerance, cell cycle checkpoints, and cell death pathways, which together minimize the potentially harmful effects of DNA damage. However, in cancer cells, the normal DNA damage tolerance and response processes are disrupted or deregulated. This results in increased mutagenesis and genomic instability within the cancer cells, a known driver of cancer progression and therapeutic resistance. On the other hand, the inherent instability of the genome in rapidly dividing cancer cells can be exploited as a tool to kill by imposing DNA damage with radiopharmaceuticals. As the field of targeted radiopharmaceutical therapy (RPT) is rapidly growing in oncology, it is crucial to have a deep understanding of the impact of systemic radiation delivery by radiopharmaceuticals on the DNA of tumors and healthy tissues. The distribution and activation of DNA damage and repair pathways caused by RPT can be different based on the characteristics of the radioisotope and molecular target. Here we provide a comprehensive discussion of the biological effects of RPTs, with the main focus on the role of varying radioisotopes in inducing direct and indirect DNA damage and activating DNA repair pathways.
Collapse
Affiliation(s)
- Yousef Khazaei Monfared
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Pedram Heidari
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Samuel J. Klempner
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Umar Mahmood
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Aparna R. Parikh
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Theodore S. Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Matthew R. Strickland
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Shadi A. Esfahani
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| |
Collapse
|
9
|
Zhang J, Xie Y, Liu X, Gan L, Li P, Dou Z, Di C, Zhang H, Si J. Carbon ions trigger DNA damage response to overcome radioresistance by regulating β-catenin signaling in quiescent HeLa cells. J Cell Physiol 2023; 238:1836-1849. [PMID: 37334439 DOI: 10.1002/jcp.31052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 06/20/2023]
Abstract
Quiescent cancer cells are major impediments to effective radiotherapy (RT) and exhibit limited sensitivity to traditional photon therapy. Herein, the functional role and underlying mechanism of carbon ions in overcoming the radioresistance of quiescent cervical cancer HeLa cells were determined. Briefly, serum withdrawal was used to induce synchronized quiescence in HeLa cells. Quiescent HeLa cells displayed strong radioresistance and DNA repair potential. After irradiation with carbon ions, the DNA damage repair pathway may markedly rely on error-prone nonhomologous end-joining in proliferating cells, whereas the high-precision homologous recombination pathway is more relevant in quiescent cells. This phenomenon could be explained by the ionizing radiation (IR)-induced cell cycle re-entry of quiescent cancer cells. There are three strategies for eradicating quiescent cancer cells using high-linear energy transfer (LET) carbon ions: direct cell death through complex DNA damage; apoptosis via an enhanced mitochondria-mediated intrinsic pathway; forced re-entry of quiescent cancer cells into the cell cycle, thereby improving their susceptibility to IR. Silencing β-catenin signaling is essential for maintaining the dormant state in quiescent cells. Herein, carbon ions activated the β-catenin pathway in quiescent cells, and inhibition of this pathway improved the resistance of quiescent HeLa cells to carbon ions by alleviating DNA damage, improving DNA damage repair, maintaining quiescent depth, and inhibiting apoptosis. Collectively, carbon ions conquer the radioresistance of quiescent HeLa cells by activating β-catenin signaling, which provides a theoretical basis for improved therapeutic effects in patients with middle-advanced-stage cervical cancer with radioresistance.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Yi Xie
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Xiaoyi Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lu Gan
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Pingping Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Zhihui Dou
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| |
Collapse
|
10
|
Fardid R, Janipour S, Haddadi G, Mahdavi M, Sharifzadeh S, Lotfi M, Rostamyari M. Evaluation of the relationship between γ-H2AX biomarker levels and dose received after radiation exposure in abdominal-pelvic and chest CT scans. J Cancer Res Ther 2023; 19:1392-1397. [PMID: 37787314 DOI: 10.4103/jcrt.jcrt_950_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background As one of the most informative diagnostic radiation instruments, computed tomography (CT) has seen considerable improvement since its implementation in the 1970s; however, the possibility of low-dose radiation risk after CT procedures is still challenging and little is known about the biological effects of CT exposure on patients. As a result, this research aimed to look at the biological and cytogenetic effects of low-dose abdominal-pelvic and chest CT scans on adults, focusing on the number of γ-H2AX foci formation. Materials and Methods Blood tests were taken before and 10 min after CT exams on patients aged 25-55 who were undergoing abdominal-pelvic and chest CT exams with very low-ionizing radiation exposure (TLD doses of 15.67-63.45 mGy). Blood lymphocytes that had been isolated, fixed, and stained were dyed with γ-H2AX antibodies. Finally, the percentage of phosphorylation of histone H2AX as an indicator of double-strand breaks was determined using a cytometry technique. Results Our findings showed that after CT examination, the mean value of γ-H2AX foci in patients increased (P < 0.0001). A statistically significant correlation between dose radiation and the number of γ-H2AX foci was also found (P = 0.047, r = 0.4731). The current study also found a pattern of elevated γ-H2AX foci in patients over 40 years of age relative to younger patients. Conclusion A Significant activation of γ-H2AX foci was found in lymphocytes of peripheral blood samples of patients after CT compared to before CT scan. This increase in γ-H2AX foci levels in blood cells may be a useful quantitative biomarker of low-level radiation exposure in humans.
Collapse
Affiliation(s)
- Reza Fardid
- Department of Radiology, School of Paramedical Sciences; Ionizing and Non-Ionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Janipour
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Golamhassan Haddadi
- Department of Radiology, School of Paramedical Sciences; Ionizing and Non-Ionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maziyar Mahdavi
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Sharifzadeh
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrzad Lotfi
- Department of Radiology, Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maliheh Rostamyari
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Ma Y, Guo L, Fang L, Hou D, Chen R, Wang X, Mao X, Zhao Z, Chen Y. Assessment of radiation doses and DNA damage in pediatric patients undergoing interventional procedures for vascular anomalies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503653. [PMID: 37491112 DOI: 10.1016/j.mrgentox.2023.503653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
Interventional procedures (IPs) have been widely used to treat vascular anomalies (VA) in recent years. However, patients are exposed to low-dose X-ray ionizing radiation (IR) during these fluoroscopy-guided IPs. We collected clinical information and IR doses during IPs and measured biomarkers including γ-H2AX, chromosome aberrations (CA), and micronuclei (MN), which underpin radiation-induced DNA damage, from 74 pediatric patients before and after IPs. For the 74 children, the range of dose-area product (DAP) values was from 1.2 to 1754.6 Gy∙cm2, with a median value of 27.1 Gy∙cm2. DAP values were significantly higher in children with lesions in the head and neck than in the limbs and trunk; the age and weight of children revealed a strong positive correlation with DAP values. The treated patients as a group demonstrated an increase in all three endpoints relative to baseline following IPs. Children with vascular tumors have a higher risk of dicentric chromosome + centric ring (dic+r) and cytokinesis-block micronucleus (CBMN) after IPs than children with vascular malformations. The younger the patient, the greater the risk of CA after IPs. Moreover, rogue cells (RCs) were found in five children (approximately 10%) after IPs, and the rates of dic+r and CBMN were significantly higher than those of other children (Z = -3.576, p < 0.001). These results suggest that there may be some children with VA who are particularly sensitive to IR, but more data and more in-depth experiments will be needed to verify this in the future.
Collapse
Affiliation(s)
- Ya Ma
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China
| | - Lei Guo
- Jinan Children's Hospital, No. 23976 Jingshi Road, Jinan 250022, PR China
| | - Lianying Fang
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China
| | - Dianjun Hou
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China
| | - Rui Chen
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China
| | - Xiaoshan Wang
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China
| | - Xuesong Mao
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China
| | - Zihan Zhao
- High School Attached to Shandong Normal University, No. 3 Shanshi North Street, Jinan 250014, PR China
| | - Yingmin Chen
- School of Preventive Medicine Sciences (Institute of Radiation Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), No. 6699 Qingdao Road, Jinan 250117, PR China.
| |
Collapse
|
12
|
Ghantous L, Volman Y, Hefez R, Wald O, Stern E, Friehmann T, Chajut A, Bremer E, Elhalel MD, Rachmilewitz J. The DNA damage response pathway regulates the expression of the immune checkpoint CD47. Commun Biol 2023; 6:245. [PMID: 36882648 PMCID: PMC9992352 DOI: 10.1038/s42003-023-04615-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
CD47 is a cell surface ligand expressed on all nucleated cells. It is a unique immune checkpoint protein acting as "don't eat me" signal to prevent phagocytosis and is constitutively overexpressed in many tumors. However, the underlying mechanism(s) for CD47 overexpression is not clear. Here, we show that irradiation (IR) as well as various other genotoxic agents induce elevated expression of CD47. This upregulation correlates with the extent of residual double-strand breaks (DSBs) as determined by γH2AX staining. Interestingly, cells lacking mre-11, a component of the MRE11-RAD50-NBS1 (MRN) complex that plays a central role in DSB repair, or cells treated with the mre-11 inhibitor, mirin, fail to elevate the expression of CD47 upon DNA damage. On the other hand, both p53 and NF-κB pathways or cell-cycle arrest do not play a role in CD47 upregualtion upon DNA damage. We further show that CD47 expression is upregulated in livers harvested from mice treated with the DNA-damage inducing agent Diethylnitrosamine (DEN) and in cisplatin-treated mesothelioma tumors. Hence, our results indicate that CD47 is upregulated following DNA damage in a mre-11-dependent manner. Chronic DNA damage response in cancer cells might contribute to constitutive elevated expression of CD47 and promote immune evasion.
Collapse
Affiliation(s)
- Lucy Ghantous
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Nephrology and Hypertension, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Volman
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Hefez
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Wald
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cardiothoracic Surgery, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Stern
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tomer Friehmann
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - Michal Dranitzki Elhalel
- Department of Nephrology and Hypertension, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Jacob Rachmilewitz
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
13
|
Pelewicz-Sowa M, Miśkiewicz P. Dysthyroid optic neuropathy: emerging treatment strategies. J Endocrinol Invest 2023:10.1007/s40618-023-02036-0. [PMID: 36802028 DOI: 10.1007/s40618-023-02036-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/06/2023] [Indexed: 02/21/2023]
Abstract
PURPOSE Dysthyroid optic neuropathy (DON) is a rare sight-threatening complication of Graves' disease. First-line treatment for DON consists of high-dose intravenous methylprednisolone (ivMP), followed by immediate orbital decompression (OD) if the response is poor or absent as recommended by the 2021 European Group on Graves' orbitopathy guidelines. The safety and efficacy of the proposed therapy have been proven. However, consensus regarding possible therapeutic options for patients with contraindications to ivMP/OD or resistant form of disease is missing. This paper aims to provide and summarize all available data regarding possible alternative treatment strategies for DON. METHODS A comprehensive literature search within an electronic database was performed including data published until December 2022. RESULTS Overall, 52 articles describing use of emerging therapeutic strategies for DON were identified. Collected evidence indicates that biologics, including teprotumumab and tocilizumab, may be considered as an important possible treatment option for DON patients. Rituximab should be avoided in DON due to conflicting data and risk of adverse events. Orbital radiotherapy could be beneficial for patients with restricted ocular motility classified as poor surgical candidates. CONCLUSION Only a limited number of studies have been dedicated to the therapy of DON, mostly retrospective with a small sample size. Clear criteria regarding diagnosis and resolution of DON do not exist, which restricts comparison of therapeutic outcomes. Randomized clinical trials and comparison studies with long-term follow-ups are necessary to verify the safety and efficacy of each therapeutic option for DON.
Collapse
Affiliation(s)
- M Pelewicz-Sowa
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - P Miśkiewicz
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, 02-091, Warsaw, Poland.
| |
Collapse
|
14
|
Huang CY, Lai ZY, Hsu TJ, Chou FI, Liu HM, Chuang YJ. Boron Neutron Capture Therapy Eliminates Radioresistant Liver Cancer Cells by Targeting DNA Damage and Repair Responses. J Hepatocell Carcinoma 2022; 9:1385-1401. [PMID: 36600987 PMCID: PMC9807134 DOI: 10.2147/jhc.s383959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction For advanced hepatocellular carcinoma (HCC), resistance to conservative treatments remains a challenge. In previous studies, the therapeutic effectiveness and DNA damage responses of boric acid-mediated boron neutron capture therapy (BA-BNCT) in HCC have been demonstrated in animal models and HCC cell line. On the other hand, numerous studies have shown that high linear energy transfer (LET) radiation can overcome tumor resistance. Since BNCT yields a mixture of high and low LET radiation, we aimed to explore whether and how BA-BNCT could eliminate radioresistant HCC cells. Methods Radioresistant human HCC (HepG2-R) cells were established from HepG2 cells via intermittent irradiation. HepG2 and HepG2-R cells were then irradiated with either γ-ray or neutron radiation of BA-BNCT. Colony formation assays were used to assess cell survival and the relative biological effectiveness (RBE). The expression of phosphorylated H2AX (γH2AX) was also examined by immunocytochemistry and Western blot assays to evaluate the extent of DNA double-strand breaks (DSBs). Finally, the expression levels of DNA damage response-associated proteins were determined, followed by cell cycle analysis and caspase-3 activity analysis. Results Our data demonstrated that under the same dose by γ-ray, BNCT effectively eliminated radioresistant HCC by increasing the number of DNA DSBs (p < 0.05) and impeding their repair (p < 0.05), which verified the high RBE of BNCT. We also found that BNCT resulted in delayed homologous recombination (HR) and inhibited the nonhomologous end-joining (NHEJ) pathway during DNA repair. Markedly, BNCT increased cell arrest (p < 0.05) in the G2/M phase by altering G2 checkpoint signaling and increased PUMA-mediated apoptosis (p < 0.05). Conclusion Our data suggest that DNA damage and repair responses could affect the anticancer efficiency of BNCT in radioresistant HepG2-R cells, which highlights the potential of BNCT as a viable treatment option for recurrent HCC.
Collapse
Affiliation(s)
- Chu-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan,Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Zih-Yin Lai
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan,Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Jung Hsu
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan,Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Fong-In Chou
- Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Ming Liu
- Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan,Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan,Correspondence: Yung-Jen Chuang, School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, Tel +886-3-5742764, Fax +886-3-5715934, Email
| |
Collapse
|
15
|
Tanaka IB, Nakahira R, Komura JI, Tanaka S. Life Span, Cause of Death and Neoplasia in B6C3F1 Mice Exposed In Utero to Low- and Medium-Dose-Rate Gamma Rays. Radiat Res 2022; 198:553-572. [PMID: 36223164 DOI: 10.1667/rade-22-00131.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
Abstract
Previously, we reported that while low-dose-rate (LDR) gamma-ray exposure to 20 mGy/day for the entire gestation period (gestation days 0-18) did not result in any significant effect in B6C3F1 pups up to 10 weeks of age when compared to the non-irradiated controls, exposure to medium-dose-rates (MDR, 200 and 400 mGy/day) resulted in growth retardation and gonadal hypoplasia, in addition to delayed ossification (only at 400 mGy/day). In the present work, we investigated the late effects of continuous in utero exposure to gamma rays at LDRs (0.05, 1.0 and 20 mGy/day) and at an MDR of 400 mGy/day, on life span, causes of death, neoplastic and non-neoplastic disease incidences in B6C3F1 mice. Reproductive parameters such as litter size and weaning rates was not significantly different among the LDR groups, but was significantly decreased in the MDR group, when compared to the non-irradiated controls. Mean life spans were not significantly different among the LDR exposed groups compared to the non-irradiated controls, whereas the life spans of those exposed to the MDR were significantly shorter than the non-irradiated controls. There was no significant difference in tumor spectra between the non-irradiated and LDR nor MDR irradiated groups. In mice exposed to MDR in utero, the over-all incidence rates shifted with increased incidences in the number of neoplasms of liver (both sexes) and endocrine (adrenals, pituitary and ovaries in females) origin with corresponding decreases in the incidence of malignant lymphomas (both sexes) and lung neoplasms (males). Multiple primary neoplasms were significantly increased only in females exposed to MDR. Results show that B6C3F1 mice exposed to gamma-rays in utero at LDRs of 0.05, 1 and 20 mGy/day for the entire gestation period (18 days) does not significantly alter lifespan, cause of death, neoplasm incidence rates and tumor spectra.
Collapse
Affiliation(s)
- Ignacia B Tanaka
- Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Rei Nakahira
- Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Jun-Ichiro Komura
- Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| |
Collapse
|
16
|
Farhadi S, Bahreyni-Toossi MT, Zafari-Ghadim N, Khademi S, Sadat-Darbandi M, Azimian H. DNA double-strand break repair and adaptive responses of low-dose radiation in normal and tumor lung cell lines. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503528. [PMID: 36031334 DOI: 10.1016/j.mrgentox.2022.503528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The adaptive response (AR), which can be induced by low-dose ionizing radiation (LD), may influence the therapeutic ratio of cancer treatment. We investigated the AR and the DNA double-strand break (DSB) repair pathway in human lung tumor cells and normal cells. We measured viability and proliferation of normal lung cells (MRC-5) and lung cancer cells (QU-DB) using the MTT and colony formation assays. Flow cytometric analysis of γ-H2AX was used to measure DNA-DSBs induction, repair, and residual damages. AR was seen in the normal cells but not in the cancer cells. Our findings suggest that LD stimulates DSB repair and that this may contribute to distinctive AR in normal vs. cancer cells.
Collapse
Affiliation(s)
- Sonia Farhadi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Navid Zafari-Ghadim
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahdi Sadat-Darbandi
- Department of Medical Physics, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Repair of α-particle-induced DNA damage in peripheral blood mononuclear cells after internal ex vivo irradiation with 223Ra. Eur J Nucl Med Mol Imaging 2022; 49:3981-3988. [PMID: 35759008 PMCID: PMC9525426 DOI: 10.1007/s00259-022-05860-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022]
Abstract
Purpose As α-emitters for radiopharmaceutical therapies are administered systemically by intravenous injection, blood will be irradiated by α-particles that induce clustered DNA double-strand breaks (DSBs). Here, we investigated the induction and repair of DSB damage in peripheral blood mononuclear cells (PBMCs) as a function of the absorbed dose to the blood following internal ex vivo irradiation with [223Ra]RaCl2. Methods Blood samples of ten volunteers were irradiated by adding [223Ra]RaCl2 solution with different activity concentrations resulting in absorbed doses to the blood of 3 mGy, 25 mGy, 50 mGy and 100 mGy. PBMCs were isolated, divided in three parts and either fixed directly (d-samples) or after 4 h or 24 h culture. After immunostaining, the induced γ-H2AX α-tracks were counted. The time-dependent decrease in α-track frequency was described with a model assuming a repair rate R and a fraction of non-repairable damage Q. Results For 25 mGy, 50 mGy and 100 mGy, the numbers of α-tracks were significantly increased compared to baseline at all time points. Compared to the corresponding d-samples, the α-track frequency decreased significantly after 4 h and after 24 h. The repair rates R were (0.24 ± 0.05) h−1 for 25 mGy, (0.16 ± 0.04) h−1 for 50 mGy and (0.13 ± 0.02) h−1 for 100 mGy, suggesting faster repair at lower absorbed doses, while Q-values were similar. Conclusion The results obtained suggest that induction and repair of the DSB damage depend on the absorbed dose to the blood. Repair rates were similar to what has been observed for irradiation with low linear energy transfer.
Collapse
|
18
|
Unlaid Eggs: Ovarian Damage after Low-Dose Radiation. Cells 2022; 11:cells11071219. [PMID: 35406783 PMCID: PMC8997758 DOI: 10.3390/cells11071219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
The total body irradiation of lymphomas and co-irradiation in the treatment of adjacent solid tumors can lead to a reduced ovarian function, premature ovarian insufficiency, and menopause. A small number of studies has assessed the radiation-induced damage of primordial follicles in animal models and humans. Studies are emerging that evaluate radiation-induced damage to the surrounding ovarian tissue including stromal and immune cells. We reviewed basic laboratory work to assess the current state of knowledge and to establish an experimental setting for further studies in animals and humans. The experimental approaches were mostly performed using mouse models. Most studies relied on single doses as high as 1 Gy, which is considered to cause severe damage to the ovary. Changes in the ovarian reserve were related to the primordial follicle count, providing reproducible evidence that radiation with 1 Gy leads to a significant depletion. Radiation with 0.1 Gy mostly did not show an effect on the primordial follicles. Fewer data exist on the effects of radiation on the ovarian microenvironment including theca-interstitial, immune, endothelial, and smooth muscle cells. We concluded that a mouse model would provide the most reliable model to study the effects of low-dose radiation. Furthermore, both immunohistochemistry and fluorescence-activated cell sorting (FACS) analyses were valuable to analyze not only the germ cells but also the ovarian microenvironment.
Collapse
|
19
|
Increased Frequency of Copy Number Variations Revealed by Array Comparative Genomic Hybridization in the Offspring of Male Mice Exposed to Low Dose-Rate Ionizing Radiation. Int J Mol Sci 2021; 22:ijms222212437. [PMID: 34830319 PMCID: PMC8621608 DOI: 10.3390/ijms222212437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
There is very little information on the transgenerational or genetic effects of low dose-rate ionizing radiation. We report the detection of the transgenerational effects of chronic low dose-rate irradiation in mice, at the molecular level in the whole genome, using array comparative genomic hybridization technology. We observed that the number of the mice with de novo copy number variations (specifically, deletions) was significantly increased in the offspring of C57BL/6J male mice exposed to 20 mGy/day gamma-rays for 400 days (total dose: 8000 mGy), as compared to non-irradiated controls. We did not detect any difference in the size of the de novo deletions between the irradiated and the non-irradiated groups. An analysis of the life span of the offspring suggested a possibility that de novo copy-number variations may be associated with shorter life spans.
Collapse
|
20
|
Schumann S, Scherthan H, Pfestroff K, Schoof S, Pfestroff A, Hartrampf P, Hasenauer N, Buck AK, Luster M, Port M, Lassmann M, Eberlein U. DNA damage and repair in peripheral blood mononuclear cells after internal ex vivo irradiation of patient blood with 131I. Eur J Nucl Med Mol Imaging 2021; 49:1447-1455. [PMID: 34773472 PMCID: PMC8940852 DOI: 10.1007/s00259-021-05605-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023]
Abstract
Aim The aim of this study was to provide a systematic approach to characterize DNA damage induction and repair in isolated peripheral blood mononuclear cells (PBMCs) after internal ex vivo irradiation with [131I]NaI. In this approach, we tried to mimic ex vivo the irradiation of patient blood in the first hours after radioiodine therapy. Material and methods Blood of 33 patients of two centres was collected immediately before radioiodine therapy of differentiated thyroid cancer (DTC) and split into two samples. One sample served as non-irradiated control. The second sample was exposed to ionizing radiation by adding 1 ml of [131I]NaI solution to 7 ml of blood, followed by incubation at 37 °C for 1 h. PBMCs of both samples were isolated, split in three parts each and (i) fixed in 70% ethanol and stored at − 20 °C directly (0 h) after irradiation, (ii) after 4 h and (iii) 24 h after irradiation and culture in RPMI medium. After immunofluorescence staining microscopically visible co-localizing γ-H2AX + 53BP1 foci were scored in 100 cells per sample as biomarkers for radiation-induced double-strand breaks (DSBs). Results Thirty-two of 33 blood samples could be analysed. The mean absorbed dose to the blood in all irradiated samples was 50.1 ± 2.3 mGy. For all time points (0 h, 4 h, 24 h), the average number of γ-H2AX + 53BP1 foci per cell was significantly different when compared to baseline and the other time points. The average number of radiation-induced foci (RIF) per cell after irradiation was 0.72 ± 0.16 at t = 0 h, 0.26 ± 0.09 at t = 4 h and 0.04 ± 0.09 at t = 24 h. A monoexponential fit of the mean values of the three time points provided a decay rate of 0.25 ± 0.05 h−1, which is in good agreement with data obtained from external irradiation with γ- or X-rays. Conclusion This study provides novel data about the ex vivo DSB repair in internally irradiated PBMCs of patients before radionuclide therapy. Our findings show, in a large patient sample, that efficient repair occurs after internal irradiation with 50 mGy absorbed dose, and that the induction and repair rate after 131I exposure is comparable to that of external irradiation with γ- or X-rays.
Collapse
Affiliation(s)
- S Schumann
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - H Scherthan
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - K Pfestroff
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| | - S Schoof
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - A Pfestroff
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| | - P Hartrampf
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - N Hasenauer
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - A K Buck
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - M Luster
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - M Lassmann
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - U Eberlein
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
21
|
Habibi M, Karyofyllis PK, Nikolakopoulou A, Papagiannis P, Karaiskos P, Georgakilas AG, Hatzi VI, Malakos I, Kollaros N, Mastorakou I, Voudris V, Terzoudi GI. The Use of Genotoxicity Endpoints as Biomarkers of Low Dose Radiation Exposure in Interventional Cardiology. Front Public Health 2021; 9:701878. [PMID: 34368064 PMCID: PMC8342993 DOI: 10.3389/fpubh.2021.701878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effect of the reportedly low ionizing radiation doses, such as those very often delivered to patients in interventional cardiology, remains ambiguous. As interventional cardiac procedures may have a significant impact on total collective effective dose, there are radiation protection concerns for patients and physicians regarding potential late health effects. Given that very low doses (<100 mSv) are expected to be delivered during these procedures, the purpose of this study was to assess the potency and suitability of current genotoxicity biomarkers to detect and quantitate biological effects essential for risk estimation in interventional cardiology. Specifically, the biomarkers γ-H2AX foci, dicentric chromosomes, and micronuclei, which underpin radiation-induced DNA damage, were studied in blood lymphocytes of 25 adult patients before and after interventional cardiac procedures. Even though the mean values of all patients as a group for all three endpoints tested show increased yields relative to baseline following medical exposure, our results demonstrate that only the γ-H2AX biomarker enables detection of statistically significant differences at the individual level (p < 0.001) for almost all patients (91%). Furthermore, 24 h after exposure, residual γ-H2AX foci were still detectable in irradiated lymphocytes. Their decline was found to vary significantly among the individuals and the repair kinetics of γ-H2AX foci was found to range from 25 to 95.6% of their maximum values obtained.
Collapse
Affiliation(s)
- Martha Habibi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece.,Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Aggeliki Nikolakopoulou
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece.,Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Papagiannis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Vasiliki I Hatzi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Ioannis Malakos
- Division of Interventional Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | | | - Irene Mastorakou
- Imaging Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Vassilis Voudris
- Division of Interventional Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Georgia I Terzoudi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
22
|
Matsuno Y, Hyodo M, Suzuki M, Tanaka Y, Horikoshi Y, Murakami Y, Torigoe H, Mano H, Tashiro S, Yoshioka KI. Replication-stress-associated DSBs induced by ionizing radiation risk genomic destabilization and associated clonal evolution. iScience 2021; 24:102313. [PMID: 33870130 PMCID: PMC8042347 DOI: 10.1016/j.isci.2021.102313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/11/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Exposure to ionizing radiation is associated with cancer risk. Although multiple types of DNA damage are caused by radiation, it remains unknown how this damage is associated with cancer risk. Here, we show that after repair of double-strand breaks (DSBs) directly caused by radiation (dir-DSBs), irradiated cells enter a state at higher risk of genomic destabilization due to accumulation of replication-stress-associated DSBs (rs-DSBs), ultimately resulting in clonal evolution of cells with abrogated defense systems. These effects were observed over broad ranges of radiation doses (0.25-2 Gy) and dose rates (1.39-909 mGy/min), but not upon high-dose irradiation, which caused permanent cell-cycle arrest. The resultant genomic destabilization also increased the risk of induction of single-nucleotide variants (SNVs), including radiation-associated SNVs, as well as structural alterations in chromosomes. Thus, the radiation-associated risk can be attributed to rs-DSB accumulation and resultant genomic destabilization.
Collapse
Affiliation(s)
- Yusuke Matsuno
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Mai Hyodo
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Mafuka Suzuki
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yosuke Tanaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasufumi Murakami
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hidetaka Torigoe
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ken-ichi Yoshioka
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
23
|
Bogdanova NV, Jguburia N, Ramachandran D, Nischik N, Stemwedel K, Stamm G, Werncke T, Wacker F, Dörk T, Christiansen H. Persistent DNA Double-Strand Breaks After Repeated Diagnostic CT Scans in Breast Epithelial Cells and Lymphocytes. Front Oncol 2021; 11:634389. [PMID: 33968734 PMCID: PMC8103218 DOI: 10.3389/fonc.2021.634389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand break (DSB) induction and repair have been widely studied in radiation therapy (RT); however little is known about the impact of very low exposures from repeated computed tomography (CT) scans for the efficiency of repair. In our current study, DSB repair and kinetics were investigated in side-by-side comparison of RT treatment (2 Gy) with repeated diagnostic CT scans (≤20 mGy) in human breast epithelial cell lines and lymphoblastoid cells harboring different mutations in known DNA damage repair proteins. Immunocytochemical analysis of well known DSB markers γH2AX and 53BP1, within 48 h after each treatment, revealed highly correlated numbers of foci and similar appearance/disappearance profiles. The levels of γH2AX and 53BP1 foci after CT scans were up to 30% of those occurring 0.5 h after 2 Gy irradiation. The DNA damage repair after diagnostic CT scans was monitored and quantitatively assessed by both γH2AX and 53BP1 foci in different cell types. Subsequent diagnostic CT scans in 6 and/or 12 weeks intervals resulted in elevated background levels of repair foci, more pronounced in cells that were prone to genomic instability due to mutations in known regulators of DNA damage response (DDR). The levels of persistent foci remained enhanced for up to 6 months. This “memory effect” may reflect a radiation-induced long-term response of cells after low-dose x-ray exposure.
Collapse
Affiliation(s)
- Natalia V Bogdanova
- Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany
| | - Nina Jguburia
- Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany
| | | | - Nora Nischik
- Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany.,Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Katharina Stemwedel
- Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany
| | - Georg Stamm
- Department of Radiology, Hannover Medical School, Hannover, Germany.,Department of Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
| | - Thomas Werncke
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Hans Christiansen
- Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Lumniczky K, Impens N, Armengol G, Candéias S, Georgakilas AG, Hornhardt S, Martin OA, Rödel F, Schaue D. Low dose ionizing radiation effects on the immune system. ENVIRONMENT INTERNATIONAL 2021; 149:106212. [PMID: 33293042 PMCID: PMC8784945 DOI: 10.1016/j.envint.2020.106212] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
Ionizing radiation interacts with the immune system in many ways with a multiplicity that mirrors the complexity of the immune system itself: namely the need to maintain a delicate balance between different compartments, cells and soluble factors that work collectively to protect, maintain, and restore tissue function in the face of severe challenges including radiation damage. The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where subtle quantitative and functional effects predominate that may go unnoticed until late after exposure or after a second challenge reveals or exacerbates the effects. For example, low doses may permanently alter immune fitness and therefore accelerate immune senescence and pave the way for a wide spectrum of possible pathophysiological events, including early-onset of age-related degenerative disorders and cancer. By contrast, the so called low dose radiation therapy displays beneficial, anti-inflammatory and pain relieving properties in chronic inflammatory and degenerative diseases. In this review, epidemiological, clinical and experimental data regarding the effects of low-dose radiation on the homeostasis and functional integrity of immune cells will be discussed, as will be the role of immune-mediated mechanisms in the systemic manifestation of localized exposures such as inflammatory reactions. The central conclusion is that ionizing radiation fundamentally and durably reshapes the immune system. Further, the importance of discovery of immunological pathways for modifying radiation resilience amongst other research directions in this field is implied.
Collapse
Affiliation(s)
- Katalin Lumniczky
- National Public Health Centre, Department of Radiation Medicine, Budapest, Albert Florian u. 2-6, 1097, Hungary.
| | - Nathalie Impens
- Belgian Nuclear Research Centre, Biosciences Expert Group, Boeretang 200, 2400 Mol, Belgium.
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Catalonia, Spain.
| | - Serge Candéias
- Université Grenoble-Alpes, CEA, CNRS, IRIG-LCBM, 38000 Grenoble, France.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou 15780, Athens, Greece.
| | - Sabine Hornhardt
- Federal Office for Radiation Protection (BfS), Ingolstaedter Landstr.1, 85764 Oberschleissheim, Germany.
| | - Olga A Martin
- Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne 3052, Victoria, Australia.
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA.
| |
Collapse
|
25
|
Baumann G, Meckel T, Böhm K, Shih YH, Dickhaut M, Reichardt T, Pilakowski J, Pehl U, Schmidt B. Illuminating a Dark Kinase: Structure-Guided Design, Synthesis, and Evaluation of a Potent Nek1 Inhibitor and Its Effects on the Embryonic Zebrafish Pronephros. J Med Chem 2021; 65:1265-1282. [DOI: 10.1021/acs.jmedchem.0c02118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Georg Baumann
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Tobias Meckel
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Kevin Böhm
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Yung-Hsin Shih
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Mirco Dickhaut
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Torben Reichardt
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Johannes Pilakowski
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ulrich Pehl
- Merck Healthcare KGaA, Biopharma R&D, Discovery and Development Technologies, 64293 Darmstadt, Germany
| | - Boris Schmidt
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
26
|
Yu W, Long H, Gao J, Wang Y, Tu Y, Sun L, Chen N. Study on Caenorhabditis Elegans as a Combined Model of Microdosimetry and Biology. Dose Response 2021; 19:1559325821990125. [PMID: 33628153 PMCID: PMC7883169 DOI: 10.1177/1559325821990125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/16/2022] Open
Abstract
Microdosimetry is a tool for the investigation of microscopic energy deposition of ionizing radiation. This work used Caenorhabditis elegans as a model to estimate the microdosimetric deposition level at the 60Co gamma radiation. Monte Carlo software PHITS was employed to establish irradiated nematodes model. The dose deposition of the entire body and gonad irradiated to 100 Gy was calculated. The injury levels of radiation were evaluated by the detection of biological indicators. The result of microdosimetric experiment suggested that the dose of whole body of nematodes was estimated to be 99.9 ± 57.8 Gy, ranging from 19.6 to 332.2 Gy. The dose of gonad was predicted to be 129.4 ± 558.8 Gy (9.5-6597 Gy). The result of biological experiment suggested that there were little changes in the length of nematodes after irradiation. However, times of head thrash per minute and the spawning yield in 3 consecutive days decreased 27.1% and 94.7%, respectively. Nematodes in the irradiated group displayed heterogeneity. Through contour analysis, trends of behavior kinematics and reproductive capacity of irradiated nematodes proved to be consistent with the dose distribution levels estimated by microdosimetric model. Finally, C. elegans presented a suitable combined model of microdosimetry and biology for studying radiation.
Collapse
Affiliation(s)
- Wentao Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Huiqiang Long
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jin Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yidi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
27
|
Belli M, Indovina L. The Response of Living Organisms to Low Radiation Environment and Its Implications in Radiation Protection. Front Public Health 2020; 8:601711. [PMID: 33384980 PMCID: PMC7770185 DOI: 10.3389/fpubh.2020.601711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Life has evolved on Earth for about 4 billion years in the presence of the natural background of ionizing radiation. It is extremely likely that it contributed, and still contributes, to shaping present form of life. Today the natural background radiation is extremely small (few mSv/y), however it may be significant enough for living organisms to respond to it, perhaps keeping memory of this exposure. A better understanding of this response is relevant not only for improving our knowledge on life evolution, but also for assessing the robustness of the present radiation protection system at low doses, such as those typically encountered in everyday life. Given the large uncertainties in epidemiological data below 100 mSv, quantitative evaluation of these health risk is currently obtained with the aid of radiobiological models. These predict a health detriment, caused by radiation-induced genetic mutations, linearly related to the dose. However a number of studies challenged this paradigm by demonstrating the occurrence of non-linear responses at low doses, and of radioinduced epigenetic effects, i.e., heritable changes in genes expression not related to changes in DNA sequence. This review is focused on the role that epigenetic mechanisms, besides the genetic ones, can have in the responses to low dose and protracted exposures, particularly to natural background radiation. Many lines of evidence show that epigenetic modifications are involved in non-linear responses relevant to low doses, such as non-targeted effects and adaptive response, and that genetic and epigenetic effects share, in part, a common origin: the reactive oxygen species generated by ionizing radiation. Cell response to low doses of ionizing radiation appears more complex than that assumed for radiation protection purposes and that it is not always detrimental. Experiments conducted in underground laboratories with very low background radiation have even suggested positive effects of this background. Studying the changes occurring in various living organisms at reduced radiation background, besides giving information on the life evolution, have opened a new avenue to answer whether low doses are detrimental or beneficial, and to understand the relevance of radiobiological results to radiation protection.
Collapse
Affiliation(s)
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
28
|
Nikitaki Z, Pariset E, Sudar D, Costes SV, Georgakilas AG. In Situ Detection of Complex DNA Damage Using Microscopy: A Rough Road Ahead. Cancers (Basel) 2020; 12:E3288. [PMID: 33172046 PMCID: PMC7694657 DOI: 10.3390/cancers12113288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Complexity of DNA damage is considered currently one if not the primary instigator of biological responses and determinant of short and long-term effects in organisms and their offspring. In this review, we focus on the detection of complex (clustered) DNA damage (CDD) induced for example by ionizing radiation (IR) and in some cases by high oxidative stress. We perform a short historical perspective in the field, emphasizing the microscopy-based techniques and methodologies for the detection of CDD at the cellular level. We extend this analysis on the pertaining methodology of surrogate protein markers of CDD (foci) colocalization and provide a unique synthesis of imaging parameters, software, and different types of microscopy used. Last but not least, we critically discuss the main advances and necessary future direction for the better detection of CDD, with important outcomes in biological and clinical setups.
Collapse
Affiliation(s)
- Zacharenia Nikitaki
- Physics Department, School of Applied Mathematical and Physical Sciences, DNA Damage Laboratory, National Technical University of Athens (NTUA), 15780 Zografou, Athens, Greece
| | - Eloise Pariset
- Space Biosciences Division, Radiation Biophysics Laboratory, NASA Ames Research Center, Moffett Field, CA 94035, USA; (E.P.); (S.V.C.)
- Universities Space Research Association (USRA), Mountain View, CA 94043, USA
| | - Damir Sudar
- Life Sciences Department, Quantitative Imaging Systems LLC, Portland, OR 97209, USA;
| | - Sylvain V. Costes
- Space Biosciences Division, Radiation Biophysics Laboratory, NASA Ames Research Center, Moffett Field, CA 94035, USA; (E.P.); (S.V.C.)
| | - Alexandros G. Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, DNA Damage Laboratory, National Technical University of Athens (NTUA), 15780 Zografou, Athens, Greece
| |
Collapse
|
29
|
Shin E, Lee S, Kang H, Kim J, Kim K, Youn H, Jin YW, Seo S, Youn B. Organ-Specific Effects of Low Dose Radiation Exposure: A Comprehensive Review. Front Genet 2020; 11:566244. [PMID: 33133150 PMCID: PMC7565684 DOI: 10.3389/fgene.2020.566244] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation (IR) is a high-energy radiation whose biological effects depend on the irradiation doses. Low-dose radiation (LDR) is delivered during medical diagnoses or by an exposure to radioactive elements and has been linked to the occurrence of chronic diseases, such as leukemia and cardiovascular diseases. Though epidemiological research is indispensable for predicting and dealing with LDR-induced abnormalities in individuals exposed to LDR, little is known about epidemiological markers of LDR exposure. Moreover, difference in the LDR-induced molecular events in each organ has been an obstacle to a thorough investigation of the LDR effects and a validation of the experimental results in in vivo models. In this review, we summarized the recent reports on LDR-induced risk of organ-specifically arranged the alterations for a comprehensive understanding of the biological effects of LDR. We suggested that LDR basically caused the accumulation of DNA damages, controlled systemic immune systems, induced oxidative damages on peripheral organs, and even benefited the viability in some organs. Furthermore, we concluded that understanding of organ-specific responses and the biological markers involved in the responses is needed to investigate the precise biological effects of LDR.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeongha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Kyeongmin Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - Songwon Seo
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea.,Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
30
|
Stainforth R, Schuemann J, McNamara AL, Wilkins RC, Chauhan V. Challenges in the quantification approach to a radiation relevant adverse outcome pathway for lung cancer. Int J Radiat Biol 2020; 97:85-101. [PMID: 32909875 DOI: 10.1080/09553002.2020.1820096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Adverse outcome pathways (AOPs) provide a modular framework for describing sequences of biological key events (KEs) and key event relationships (KERs) across levels of biological organization. Empirical evidence across KERs can support construction of quantified AOPs (qAOPs). Using an example AOP of energy deposition from ionizing radiation onto DNA leading to lung cancer incidence, we investigate the feasibility of quantifying data from KERs supported by all types of stressors. The merits and challenges of this process in the context of AOP construction are discussed. MATERIALS AND METHODS Empirical evidence across studies of dose-response from four KERs of the AOP were compiled independently for quantification. Three upstream KERs comprised of evidence from various radiation types in line with AOP guidelines. For these three KERs, a focused analysis of data from alpha-particle studies was undertaken to better characterize the process to the adverse outcome (AO) for a radon gas stressor. Numerical information was extracted from tables and graphs to plot and tabulate the response of KEs. To complement areas of the AOP quantification process, Monte Carlo (MC) simulations in TOPAS-nBio were performed to model exposure conditions relevant to the AO for an example bronchial compartment of the lung with secretory cell nuclei targets. RESULTS Quantification of AOP KERs highlighted the relevance of radiation types under the stressor-agnostic intent of AOP design, motivating a focus on specific types. For a given type, significant differences of KE response indicate meaningful data to derive linkages from the MIE to the AO is lacking and that better response-response focused studies are required. The MC study estimates the linear energy transfer (LET) of alpha-particles emitted by radon-222 and its progeny in the secretory cell nuclei of the example lung compartment to range from 94 - 5 + 5 to 192 - 18 + 15 keV/µm. CONCLUSION Quantifying AOP components provides a means to assemble empirical evidence across different studies. This highlights challenges in the context of studies examining similar endpoints using different radiation types. Data linking KERs to a MIE of 'deposition of energy' is shown to be non-compatible with the stressor-agnostic principles of AOP design. Limiting data to that describing response-response relationships between adjacent KERs may better delineate studies relevant to the damage that drives a pathway to the next KE and still support an 'all hazards' approach. Such data remains limited and future investigations in the radiation field may consider this approach when designing experiments and reporting their results and outcomes.
Collapse
Affiliation(s)
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
31
|
Campos A, Pereira R, Vaz A, Caetano T, Malta M, Oliveira J, Carvalho FP, Mendo S, Lourenço J. Metals and low dose IR: Molecular effects of combined exposures using HepG2 cells as a biological model. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122634. [PMID: 32304850 DOI: 10.1016/j.jhazmat.2020.122634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Uranium mining sites produce residues rich in metals and radionuclides, that may contaminate all environmental matrices, exposing human and non-human biota to low doses of ionizing radiation (LDIR) and to the chemical toxicity of several metals. To date, experimental and radio-epidemiological studies do not provide conclusive evidence of LDIR induced cancer. However, co-exposures (LDIR plus other contaminants), may increase the risks. To determine the potential for genotoxic effects in human cells induced by the exposure to LDIR plus metals, HEPG2 cells were exposed to different concentrations of a uranium mine effluent for 96 h. DNA damage was evaluated using the comet assay and changes in the expression of tumor suppressor and oncogenes were determined using qPCR. Results show that effluent concentrations higher than 5%, induce significant DNA damage. Also, a significant under-expression of ATM and TP53 genes and a significant overexpression of GADD45a gene was observed. Results show that the exposure to complex mixtures cannot be disregarded, as effects were detected at very low doses. This study highlights the need for further studies to clarify the risks of exposure to LDIR along with other stressors, to fully review the IR exposure risk limits established for human and non-human biota.
Collapse
Affiliation(s)
- A Campos
- ICBAS & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - R Pereira
- ICBAS & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; GreenUPorto- Sustainable Agrifood Production Research Centre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - A Vaz
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - T Caetano
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - M Malta
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, Km 139, 2695-066 Bobadela LRS, Portugal.
| | - J Oliveira
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, Km 139, 2695-066 Bobadela LRS, Portugal.
| | - F P Carvalho
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, Km 139, 2695-066 Bobadela LRS, Portugal.
| | - S Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - J Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
32
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
33
|
Hacker BC, Rafat M. Organoids as Complex In Vitro Models for Studying Radiation-Induced Cell Recruitment. Cell Mol Bioeng 2020; 13:341-357. [PMID: 32952734 PMCID: PMC7479086 DOI: 10.1007/s12195-020-00625-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023] Open
Abstract
Patients with triple negative breast cancer (TNBC) typically receive chemotherapy, surgery, and radiation therapy. Although this treatment improves prognosis for most patients, some patients continue to experience recurrence within 5 years. Preclinical studies have shown that immune cell infiltration at the irradiated site may play a significant role in tumor cell recruitment; however, little is known about the mechanisms that govern this process. This lack of knowledge highlights the need to evaluate radiation-induced cell infiltration with models that have controllable variables and maintain biological integrity. Mammary organoids are multicellular three-dimensional (3D) in vitro models, and they have been used to examine many aspects of mammary development and tumorigenesis. Organoids are also emerging as a powerful tool to investigate normal tissue radiation damage. In this review, we evaluate recent advances in mammary organoid technology, consider the advantages of using organoids to study radiation response, and discuss future directions for the applications of this technique.
Collapse
Affiliation(s)
- Benjamin C. Hacker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
34
|
Boyer MJ, Kimura Y, Akiyama T, Baggett AY, Preston KJ, Scalia R, Eguchi S, Rizzo V. Endothelial cell-derived extracellular vesicles alter vascular smooth muscle cell phenotype through high-mobility group box proteins. J Extracell Vesicles 2020; 9:1781427. [PMID: 32944170 PMCID: PMC7480479 DOI: 10.1080/20013078.2020.1781427] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The vascular endothelium and smooth muscle form adjacent cellular layers that comprise part of the vascular wall. Each cell type can regulate the other’s structure and function through a variety of paracrine effectors. Extracellular vesicles (EVs) are released from and transit between cells constituting a novel means of cell–cell communication. Here, we characterized the proteome of EVs released from each vascular cell type and examined the extent to which these vesicles participate in endothelial-vascular smooth muscle cell (VSMC) communication. EVs were collected by ultracentrifugation from media of rat aortic endothelial and smooth muscle cells cultured under serum-free conditions. Vesicle morphology, size and concentration were evaluated by transmission electron microscopy and nanoparticle tracking analysis. Western blot as well as shot gun proteomic analyses revealed sets of proteins common to both endothelial- and smooth muscle-derived EVs as well as proteins unique to each vascular cell type. Functionally, endothelial-derived EVs stimulated vascular cell adhesion molecule-1 (VCAM-1) expression and enhanced leukocyte adhesion in VSMCs while smooth muscle EVs did not elicit similar effects in endothelial cells (ECs). EVs from ECs also induced protein synthesis and senescence in VSMCs. Proteomic analysis of VSMCs following exposure to EC-derived EVs revealed upregulation of several proteins including pro-inflammatory molecules, high-mobility group box (HMGB) 1 and HMGB2. Pharmacological blockade HMGB1 and HMGB2 and siRNA depletion of HMGB1 in smooth muscle cells attenuated VCAM-1 expression and leukocyte adhesion induced by EC EVs. These data suggest that EC-derived EVs can enhance signalling pathways which influence smooth muscle cell phenotype.
Collapse
Affiliation(s)
- Michael J Boyer
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Tomoko Akiyama
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Ariele Y Baggett
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kyle J Preston
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
35
|
Mirsch J, Hintz L, Maier A, Fournier C, Löbrich M. An Assessment of Radiation Doses From Radon Exposures Using a Mouse Model System. Int J Radiat Oncol Biol Phys 2020; 108:770-778. [PMID: 32473181 DOI: 10.1016/j.ijrobp.2020.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/08/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Radon and its progenies contribute significantly to the natural background radiation and cause several thousands of lung cancer cases per year worldwide. Moreover, patients with chronic inflammatory joint diseases are treated in radon galleries. Due to the complex nature of radon exposure, the doses associated with radon exposures are difficult to assess. Hence, there is a clear need to directly measure dose depositions from radon exposures to provide reliable risk estimates for radiation protection guidelines. OBJECTIVES We aimed to assess tissue-specific radiation doses associated with radon activity concentrations, that deposit similar dose levels as the annual natural radon exposure or radon gallery visits. METHODS We exposed mice to defined radon concentrations, quantified the number of 53BP1 foci as a measure of induced DNA damage, and compared it with the number of foci induced by known doses of reference-type radiations. An image-based analysis of the 3-dimensional foci pattern provided information about the radiation type inflicting the DNA damage. RESULTS A 1-hour exposure to 440 kBq/m3 radon-induced DNA damage corresponding to a dose of ∼10 mGy in the lung and ∼3.3 mGy in the kidney, heart, and liver. A 1-hour exposure to 44 kBq/m3 provided values consistent with a linear relationship between dose and radon concentration. Two-thirds of the dose in the lung was caused by α-particles. The dose in the kidney, heart, and liver and one-third of the dose in the lung likely resulted from β- and γ-rays. DISCUSSION We found that radon exposures mainly lead to α-particle-induced DNA damage in the lung, consistent with the lung cancer risk obtained in epidemiologic studies. Our presented biodosimetric approach can be used to benchmark risk model calculations for radiation protection guidelines and can help to understand the therapeutic success of radon gallery treatments.
Collapse
Affiliation(s)
- Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Lisa Hintz
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Andreas Maier
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
36
|
Fractionation-Dependent Radiosensitization by Molecular Targeting of Nek1. Cells 2020; 9:cells9051235. [PMID: 32429458 PMCID: PMC7291120 DOI: 10.3390/cells9051235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/13/2023] Open
Abstract
NIMA (never-in-mitosis gene A)-related kinase 1 (Nek1) is shown to impact on different cellular pathways such as DNA repair, checkpoint activation, and apoptosis. Its role as a molecular target for radiation sensitization of malignant cells, however, remains elusive. Stably transduced doxycycline (Dox)-inducible Nek1 shRNA HeLa cervix and siRNA-transfected HCT-15 colorectal carcinoma cells were irradiated in vitro and 3D clonogenic radiation survival, residual DNA damage, cell cycle distribution, and apoptosis were analyzed. Nek1 knockdown (KD) sensitized both cell lines to ionizing radiation following a single dose irradiation and more pronounced in combination with a 6 h fractionation (3 × 2 Gy) regime. For preclinical analyses we focused on cervical cancer. Nek1 shRNA HeLa cells were grafted into NOD/SCID/IL-2Rγc−/− (NSG) mice and Nek1 KD was induced by Dox-infused drinking water resulting in a significant cytostatic effect if combined with a 6 h fractionation (3 × 2 Gy) regime. In addition, we correlated Nek1 expression in biopsies of patients with cervical cancer with histopathological parameters and clinical follow-up. Our results indicate that elevated levels of Nek1 were associated with an increased rate of local or distant failure, as well as with impaired cancer-specific and overall survival in univariate analyses and for most endpoints in multivariable analyses. Finally, findings from The Cancer Genome Atlas (TCGA) validation cohort confirmed a significant association of high Nek1 expression with a reduced disease-free survival. In conclusion, we consider Nek1 to represent a novel biomarker and potential therapeutic target for drug development in the context of optimized fractionation intervals.
Collapse
|
37
|
Oocytes can efficiently repair DNA double-strand breaks to restore genetic integrity and protect offspring health. Proc Natl Acad Sci U S A 2020; 117:11513-11522. [PMID: 32381741 DOI: 10.1073/pnas.2001124117] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Female fertility and offspring health are critically dependent on an adequate supply of high-quality oocytes, the majority of which are maintained in the ovaries in a unique state of meiotic prophase arrest. While mechanisms of DNA repair during meiotic recombination are well characterized, the same is not true for prophase-arrested oocytes. Here we show that prophase-arrested oocytes rapidly respond to γ-irradiation-induced DNA double-strand breaks by activating Ataxia Telangiectasia Mutated, phosphorylating histone H2AX, and localizing RAD51 to the sites of DNA damage. Despite mobilizing the DNA repair response, even very low levels of DNA damage result in the apoptosis of prophase-arrested oocytes. However, we show that, when apoptosis is inhibited, severe DNA damage is corrected via homologous recombination repair. The repair is sufficient to support fertility and maintain health and genetic fidelity in offspring. Thus, despite the preferential induction of apoptosis following exogenously induced genotoxic stress, prophase-arrested oocytes are highly capable of functionally efficient DNA repair. These data implicate DNA repair as a key quality control mechanism in the female germ line and a critical determinant of fertility and genetic integrity.
Collapse
|
38
|
Differences in the Response to DNA Double-Strand Breaks between Rod Photoreceptors of Rodents, Pigs, and Humans. Cells 2020; 9:cells9040947. [PMID: 32290532 PMCID: PMC7226979 DOI: 10.3390/cells9040947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/18/2023] Open
Abstract
Genome editing (GE) represents a powerful approach to fight inherited blinding diseases in which the underlying mutations cause the degeneration of the light sensing photoreceptor cells of the retina. Successful GE requires the efficient repair of DNA double-stranded breaks (DSBs) generated during the treatment. Rod photoreceptors of adult mice have a highly specialized chromatin organization, do not efficiently express a variety of DSB response genes and repair DSBs very inefficiently. The DSB repair efficiency in rods of other species including humans is unknown. Here, we used ionizing radiation to analyze the DSB response in rods of various nocturnal and diurnal species, including genetically modified mice, pigs, and humans. We show that the inefficient repair of DSBs in adult mouse rods does not result from their specialized chromatin organization. Instead, the DSB repair efficiency in rods correlates with the level of Kruppel-associated protein-1 (KAP1) expression and its ataxia-telangiectasia mutated (ATM)-dependent phosphorylation. Strikingly, we detected robust KAP1 expression and phosphorylation only in human rods but not in rods of other diurnal species including pigs. Hence, our study provides important information about the uniqueness of the DSB response in human rods which needs to be considered when choosing model systems for the development of GE strategies.
Collapse
|
39
|
Grekhova AK, Pustovalova MV, Eremin PS, Ozerov IV, Maksimova OA, Gordeev AV, Vorobyeva NY, Osipov AN. Evaluation of the Contribution of Homologous Recombination in DNA Double-Strand Break Repair in Human Fibroblasts after Exposure to Low and Intermediate Doses of X-ray Radiation. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019110037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
DNA Damage in Blood Leukocytes of Prostate Cancer Patients Undergoing PET/CT Examinations with [ 68Ga]Ga-PSMA I&T. Cancers (Basel) 2020; 12:cancers12020388. [PMID: 32046191 PMCID: PMC7072291 DOI: 10.3390/cancers12020388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 01/25/2023] Open
Abstract
The aim was to investigate the induction and repair of radiation-induced DNA double-strand breaks (DSBs) as a function of the absorbed dose to the blood of patients undergoing PET/CT examinations with [68Ga]Ga-PSMA. Blood samples were collected from 15 patients before and at four time points after [68Ga]Ga-PSMA administration, both before and after the PET/CT scan. Absorbed doses to the blood were calculated. In addition, blood samples with/without contrast agent from five volunteers were irradiated ex vivo by CT while measuring the absorbed dose. Leukocytes were isolated, fixed, and stained for co-localizing γ-H2AX+53BP1 DSB foci that were enumerated manually. In vivo, a significant increase in γ-H2AX+53BP1 foci compared to baseline was observed at all time points after administration, although the absorbed dose to the blood by 68Ga was below 4 mGy. Ex vivo, the increase in radiation-induced foci depended on the absorbed dose and the presence of contrast agent, which could have caused a dose enhancement. The CT-dose contribution for the patients was estimated at about 12 mGy using the ex vivo calibration. The additional number of DSB foci induced by CT, however, was comparable to the one induced by 68Ga. The significantly increased foci numbers after [68Ga]Ga-PSMA administration may suggest a possible low-dose hypersensitivity.
Collapse
|
41
|
Chauhan V, Sherman S, Said Z, Yauk CL, Stainforth R. A case example of a radiation-relevant adverse outcome pathway to lung cancer. Int J Radiat Biol 2020; 97:68-84. [PMID: 31846388 DOI: 10.1080/09553002.2019.1704913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Adverse outcome pathways (AOPs) describe how a measurable sequence of key events, beginning from a molecular initiator, can lead to an adverse outcome of relevance to risk assessment. An AOP is modular by design, comprised of four main components: (1) a Molecular Initiating Event (MIE), (2) Key Events (KEs), (3) Key Event Relationships (KERs) and (4) an Adverse Outcome (AO). PURPOSE Here, we illustrate the utility of the AOP concept through a case example in the field of ionizing radiation, using the Organisation for Economic Cooperation and Development (OECD) Users' Handbook. This AOP defines a classic targeted response to a radiation insult with an AO of lung cancer that is relevant to radon gas exposure. MATERIALS AND METHODS To build this AOP, over 500 papers were reviewed and categorized based on the modified Bradford-Hill Criteria. Data-rich key events from the MIE, to several measurable KEs and KERs related to DNA damage response/repair were identified. RESULTS The components for this AOP begin with direct deposition of energy as the MIE. Energy deposited into a cell can lead to multiple ionization events to targets such as DNA. This energy can damage DNA leading to double-strand breaks (DSBs) (KE1), this will initiate repair activation (KE2) in higher eukaryotes through mechanisms that are quick and efficient, but error-prone. If DSBs occur in regions of the DNA transcribing critical genes, then mutations (KE3) generated through faulty repair may alter the function of these genes or may cause chromosomal aberrations (KE4). This can impact cellular pathways such as cell growth, cell cycling and then cellular proliferation (KE5). This will form hyperplasia in lung cells, leading eventually to lung cancer (AO) induction and metastasis. The weight of evidence for the KERs was built using biological plausibility, incidence concordance, dose-response, time-response and essentiality studies. The uncertainties and inconsistencies surrounding this AOP are centered on dose-response relationships associated with dose, dose-rates and radiation quality. CONCLUSION Overall, the AOP framework provided an effective means to organize the scientific knowledge surrounding the KERs and identify those with strong dose-response relationships and those with inconsistencies. This case study is an example of how the AOP methodology can be applied to sources of radiation to help support areas of risk assessment.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Samantha Sherman
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Zakaria Said
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Robert Stainforth
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| |
Collapse
|
42
|
Jakl L, Marková E, Koláriková L, Belyaev I. Biodosimetry of Low Dose Ionizing Radiation Using DNA Repair Foci in Human Lymphocytes. Genes (Basel) 2020; 11:genes11010058. [PMID: 31947954 PMCID: PMC7016656 DOI: 10.3390/genes11010058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 02/04/2023] Open
Abstract
Purpose: Ionizing radiation induced foci (IRIF) known also as DNA repair foci represent most sensitive endpoint for assessing DNA double strand breaks (DSB). IRIF are usually visualized and enumerated with the aid of fluorescence microscopy using antibodies to γH2AX and 53BP1. This study analyzed effect of low dose ionizing radiation on residual IRIF in human lymphocytes to the aim of potential biodosimetry and possible extrapolation of high-dose γH2AX/53BP1 effects to low doses and compared kinetics of DSB and IRIF. We also analyzed whether DNaseI, which is used for reducing of clumps, affects the IRIF level. Materials and Methods: The cryopreserved human lymphocytes from umbilical cord blood (UCB) were thawed with/without DNaseI, γ-irradiated at doses of 0, 5, 10, and 50 cGy and γH2AX/53BP1 foci were analyzed 30 min, 2 h, and 22 h post-irradiation using appropriate antibodies. We also analyzed kinetics of DSB using PFGE. Results: No significant difference was observed between data obtained by γH2AX foci evaluation in cells that were irradiated by low doses and data obtained by extrapolation from higher doses. Residual 53BP1 foci induced by low doses significantly outreached the data extrapolated from irradiation by higher doses. 53BP1 foci induced by low dose-radiation remain longer at DSB loci than foci induced by higher doses. There was no significant effect of DNaseI on DNA repair foci. Conclusions: Primary γH2AX, 53BP1 foci and their co-localization represent valuable markers for biodosimetry of low doses, but their usefulness is limited by short time window. Residual γH2AX and 53BP1 foci are more useful markers for biodosimetry in vitro. Effects of low doses can be extrapolated from high dose using γH2AX residual foci while γH2AX/53BP1 foci are valuable markers for evaluation of initial DSB induced by ionizing radiation. Residual IRIF induced by low doses persist longer time than those induced by higher doses.
Collapse
Affiliation(s)
- Lukáš Jakl
- Correspondence: ; Tel.: +421-2-59327321; Fax: +421-2-59327305
| | | | | | | |
Collapse
|
43
|
Ulyanenko S, Pustovalova M, Koryakin S, Beketov E, Lychagin A, Ulyanenko L, Kaprin A, Grekhova A, M Ozerova A, V Ozerov I, Vorobyeva N, Shegay P, Ivanov S, Leonov S, Klokov D, Osipov AN. Formation of γH2AX and pATM Foci in Human Mesenchymal Stem Cells Exposed to Low Dose-Rate Gamma-Radiation. Int J Mol Sci 2019; 20:E2645. [PMID: 31146367 PMCID: PMC6600277 DOI: 10.3390/ijms20112645] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks (DSB) are among the most harmful DNA lesions induced by ionizing radiation (IR). Although the induction and repair of radiation-induced DSB is well studied for acute irradiation, responses to DSB produced by chronic IR exposures are poorly understood, especially in human stem cells. The aim of this study was to examine the formation of DSB markers (γH2AX and phosphorylated kinase ATM, pATM, foci) in human mesenchymal stem cells (MSCs) exposed to chronic gamma-radiation (0.1 mGy/min) in comparison with acute irradiation (30 mGy/min) at cumulative doses of 30, 100, 160, 240 and 300 mGy. A linear dose-dependent increase in the number of both γH2AX and pATM foci, as well as co-localized γH2AX/pATM foci ("true" DSB), were observed after an acute radiation exposure. In contrast, the response of MSCs to a chronic low dose-rate IR exposure deviated from linearity towards a threshold model, for γH2AX, pATM foci and γH2AX/pATM foci, with an indication of a "plateau". The state of equilibrium between newly formed DSB at a low rate during the protracted exposure time and the elimination of a fraction of DSB is proposed as a mechanistic explanation of the non-linear DSB responses following a low dose-rate irradiation. This notion is supported by the observation of the elimination of a substantial fraction of DSB 6 h after the cessation of the exposures. Our results demonstrate non-linear dose responses for γH2AX and pATM foci in human MSCs exposed to low dose-rate IR and showed the existence of a threshold, which may have implications for radiation protection in humans.
Collapse
Affiliation(s)
- Stepan Ulyanenko
- A. Tsyb Medical Radiological Research Centre-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Margarita Pustovalova
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.
| | - Sergey Koryakin
- A. Tsyb Medical Radiological Research Centre-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Evgenii Beketov
- A. Tsyb Medical Radiological Research Centre-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Anatolii Lychagin
- A. Tsyb Medical Radiological Research Centre-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Liliya Ulyanenko
- A. Tsyb Medical Radiological Research Centre-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Andrey Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Moscow 125284, Russia.
| | - Anna Grekhova
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Alexandra M Ozerova
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia.
| | - Ivan V Ozerov
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.
| | - Natalia Vorobyeva
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Peter Shegay
- Center for Innovative Radiological and Regenerative Technologies of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Sergey Ivanov
- A. Tsyb Medical Radiological Research Centre-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Sergey Leonov
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, Pushchino 142290, Russia.
| | - Dmitry Klokov
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Andreyan N Osipov
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.
- Center for Innovative Radiological and Regenerative Technologies of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| |
Collapse
|
44
|
Brooks AL. The impact of dose rate on the linear no threshold hypothesis. Chem Biol Interact 2019; 301:68-80. [PMID: 30763551 DOI: 10.1016/j.cbi.2018.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/17/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The goal of this manuscript is to define the role of dose rate and dose protraction on the induction of biological changes at all levels of biological organization. Both total dose and the time frame over which it is delivered are important as the body has great capacity to repair all types of biological damage. The importance of dose rate has been recognized almost from the time that radiation was discovered and has been included in radiation standards as a Dose, Dose Rate, Effectiveness Factor (DDREF) and a Dose Rate Effectiveness Factor (DREF). This manuscript will evaluate the role of dose rate at the molecular, cellular, tissue, experimental animals and humans to demonstrate that dose rate is an important variable in estimating radiation cancer risk and other biological effects. The impact of low-dose rates on the Linear-No-Threshold Hypothesis (LNTH) will be reviewed since if the LNTH is not valid it is not possible to calculate a single value for a DDREF or DREF. Finally, extensive human experience is briefly reviewed to show that the radiation risks are not underestimated and that radiation at environmental levels has limited impact on total human cancer risk.
Collapse
Affiliation(s)
- Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA.
| |
Collapse
|
45
|
Cho SJ, Kang H, Hong EH, Kim JY, Nam SY. Transcriptome analysis of low-dose ionizing radiation-impacted genes in CD4+ T-cells undergoing activation and regulation of their expression of select cytokines. J Immunotoxicol 2019; 15:137-146. [DOI: 10.1080/1547691x.2018.1521484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Seong-Jun Cho
- Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co., LTD, Seoul, South Korea
| | - Hana Kang
- Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co., LTD, Seoul, South Korea
| | - Eun-Hee Hong
- Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co., LTD, Seoul, South Korea
| | - Ji Young Kim
- Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co., LTD, Seoul, South Korea
| | - Seon Young Nam
- Low-Dose Radiation Research Team, KHNP Radiation Health Institute, Korea Hydro & Nuclear Power Co., LTD, Seoul, South Korea
| |
Collapse
|
46
|
Trajkova K, Dilevska I, Petkovska R, Trajkov D, Kroneis T, Schwinger W, Sorantin E. The influence of the iodinate contrast medium during CT: Single center experience - Development of two competitive in-house methods for automated quantification of DDSB. MAKEDONSKO FARMACEVTSKI BILTEN 2019. [DOI: 10.33320/maced.pharm.bull.2019.65.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage induced by ionizing radiation may ultimately lead to cell death or initiate cancer cells development. Today it is difficult to estimate what the actual damage to the human body will be, given the fact that today in the world the number of diagnostic procedures using radiation and iodine contrast media is increasing, and the existence of a number of factors that can affect the radiation dose in vivo. At the same time, development of new methods is required, which can determine in a much shorter time what will be the effect of diagnostic radiation on the DNA molecule. For these purposes we develop two competitive inhouse methods for automated quantification of DNA double strand brakes (DDSB) in peripheral blood lymphocytes: immunofluorescence determining of γH2AX with stained microscopic slides and determining the occurrence of DDSB with the flow cytometry. Our initial results shown that computed tomography (CT) can cause damage in the DNA molecule in the form of DDSB, the existence of linear dependence with the increase in low and high range of CTDI and the number of γH2AX, and that iodine contrast media can increase the occurrence of DNA double strand brakes.
Keywords: CT examinations, ICM, immunofluorescence, flow cytometry, DDSB
Collapse
Affiliation(s)
- Klimentina Trajkova
- Division of Pediatric Radiology, Department of Radiology, Medical University Graz, Auenbruggerplatz 34 A – 8036, 8010 Graz, Austria
| | - Ivana Dilevska
- Division of Pediatric Radiology, Department of Radiology, Medical University Graz, Auenbruggerplatz 34 A – 8036, 8010 Graz, Austria
| | - Rumenka Petkovska
- Institute of Applied Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Ss. Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, Republic of North Macedonia
| | - Dejan Trajkov
- Division of Pediatric Radiology, Department of Radiology, Medical University Graz, Auenbruggerplatz 34 A – 8036, 8010 Graz, Austria
| | - Thomas Kroneis
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Wolfgang Schwinger
- Division of pediatric hematology/oncology, Department of Paediatrics and Adolescent Medicine, Medical University Graz, Auenbruggerplatz 34/2 – 8036, 8010 Graz, Austria
| | - Erich Sorantin
- Division of Pediatric Radiology, Department of Radiology, Medical University Graz, Auenbruggerplatz 34 A – 8036, 8010 Graz, Austria
| |
Collapse
|
47
|
Lengert N, Mirsch J, Weimer RN, Schumann E, Haub P, Drossel B, Löbrich M. AutoFoci, an automated high-throughput foci detection approach for analyzing low-dose DNA double-strand break repair. Sci Rep 2018; 8:17282. [PMID: 30470760 PMCID: PMC6251879 DOI: 10.1038/s41598-018-35660-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022] Open
Abstract
Double-strand breaks (DSBs) are the most lethal DNA damages induced by ionising radiation (IR) and their efficient repair is crucial to limit genomic instability. The cellular DSB response after low IR doses is of particular interest but its examination requires the analysis of high cell numbers. Here, we present an automated DSB quantification method based on the analysis of γH2AX and 53BP1 foci as markers for DSBs. We establish a combination of object properties, combined in the object evaluation parameter (OEP), which correlates with manual object classification. Strikingly, OEP histograms show a bi-modal distribution with two maxima and a minimum in between, which correlates with the manually determined transition between background signals and foci. We used algorithms to detect the minimum, thus separating foci from background signals and automatically assessing DSB levels. To demonstrate the validity of this method, we analyzed over 600.000 cells to verify results of previous studies showing that DSBs induced by low doses are less efficiently repaired compared with DSBs induced by higher doses. Thus, the automated foci counting method, called AutoFoci, provides a valuable tool for high-throughput image analysis of thousands of cells which will prove useful for many biological screening approaches.
Collapse
Affiliation(s)
- Nicor Lengert
- Theory of Complex Systems, Darmstadt University of Technology, Hochschulstr. 6, 64289, Darmstadt, Germany.
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Schnittspahnstr. 13, 64287, Darmstadt, Germany
| | - Ratna N Weimer
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Schnittspahnstr. 13, 64287, Darmstadt, Germany
| | - Eik Schumann
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Schnittspahnstr. 13, 64287, Darmstadt, Germany
| | - Peter Haub
- Image Consulting, 68804, Altlußheim, Germany
| | - Barbara Drossel
- Theory of Complex Systems, Darmstadt University of Technology, Hochschulstr. 6, 64289, Darmstadt, Germany
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Schnittspahnstr. 13, 64287, Darmstadt, Germany.
| |
Collapse
|
48
|
Shi L, Fujioka K, Sakurai-Ozato N, Fukumoto W, Satoh K, Sun J, Awazu A, Tanaka K, Ishida M, Ishida T, Nakano Y, Kihara Y, Hayes CN, Aikata H, Chayama K, Ito T, Awai K, Tashiro S. Chromosomal Abnormalities in Human Lymphocytes after Computed Tomography Scan Procedure. Radiat Res 2018; 190:424-432. [PMID: 30040044 DOI: 10.1667/rr14976.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The incidence of chromosomal abnormalities and cancer risk correlates well with the radiation dose after exposure to moderate- to high-dose ionizing radiation. However, the biological effects and health risks at less than 100 mGy, e.g., from computed tomography (CT) have not been ascertained. To investigate the biological effects of low-dose exposure from a CT procedure, we examined chromosomal aberrations, dicentric and ring chromosomes (dic+ring), in peripheral blood lymphocytes (PBLs), using FISH assays with telomere and centromere PNA probes. In 60 non-cancer patients exposed to CT scans, the numbers of dicentric and ring chromosomes were significantly increased with individual variation. The individual variations in the increment of dicentric and ring chromosomes after CT procedures were confirmed using PNA-FISH analysis of PBLs from 15 healthy volunteers after in vitro low-dose exposure using a 137Cs radiation device. These findings strongly suggest that appropriate medical use of low-dose radiation should consider individual differences in radiation sensitivity.
Collapse
Affiliation(s)
- Lin Shi
- Departments of a Cellular Biology
| | | | | | - Wataru Fukumoto
- g Department of Diagnostic Radiology, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kenichi Satoh
- c Environmetrics and Biometrics, Research Institute for Radiation Biology Medicine
| | | | - Akinori Awazu
- h Department of Mathematics.,i Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi Hiroshima 739-8530, Japan
| | | | - Mari Ishida
- d Departments of Cardiovascular Physiology and Medicine
| | - Takafumi Ishida
- j Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | | | | | - C Nelson Hayes
- f Gastroenterology and Metabolism, Biomedical Sciences, Graduate School of Biomedical and Health Sciences
| | - Hiroshi Aikata
- f Gastroenterology and Metabolism, Biomedical Sciences, Graduate School of Biomedical and Health Sciences
| | - Kazuaki Chayama
- f Gastroenterology and Metabolism, Biomedical Sciences, Graduate School of Biomedical and Health Sciences
| | - Takashi Ito
- k Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Kazuo Awai
- g Department of Diagnostic Radiology, Hiroshima University, Hiroshima 734-8553, Japan
| | - Satoshi Tashiro
- Departments of a Cellular Biology.,i Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi Hiroshima 739-8530, Japan
| |
Collapse
|
49
|
Depuydt J, Viaene T, Blondeel P, Roche N, Van den Broecke R, Thierens H, Vral A. DNA double strand breaks induced by low dose mammography X-rays in breast tissue: A pilot study. Oncol Lett 2018; 16:3394-3400. [PMID: 30127940 DOI: 10.3892/ol.2018.9024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Breast tissue is very sensitive to ionizing radiation due to the presence of reproductive hormones, including estrogen. In the present pilot study, the efficiency of mammography X-rays to induce DNA double strand breaks (DSB) in mammary epithelial cells was investigated. For this, freshly resected healthy breast tissue was irradiated with 30 kV mammography X-rays in the dose range 0-500 mGy (2, 4, 10, 20, 40, 100 and 500 mGy). Breast specimens were also irradiated with identical doses of 60Co γ-rays as a radiation quality standard. With the γH2AX-foci assay, the number of DNA DSB induced by radiation were quantified in the mammary epithelial cells present in breast tissue. Results indicated that foci induced by 30 kV X-rays and γ-rays followed a biphasic linear dose-response. For 30 kV X-rays, the slope in the low dose region (0-20 mGy) was 8.71 times steeper compared with the slope in the higher dose region (20-500 mGy). Furthermore, compared with γ-rays, 30 kV X-rays were also more effective in inducing γH2AX-foci. This resulted in a relative biological effectiveness (RBE) value of 1.82 in the low dose range. In the higher dose range, an RBE close to 1 was obtained. In conclusion, the results indicated the existence of a low dose hypersensitive response for DSB induction in the dose range representative for mammography screening, which is probably caused by the bystander effect. This could affect the radiation risk calculations for women participating in mammography screening.
Collapse
Affiliation(s)
- Julie Depuydt
- Department of Basic Medical Sciences, University of Ghent, 9000 Ghent, Belgium
| | - Tanguy Viaene
- Department of Basic Medical Sciences, University of Ghent, 9000 Ghent, Belgium
| | | | - Nathalie Roche
- Plastic Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Hubert Thierens
- Department of Basic Medical Sciences, University of Ghent, 9000 Ghent, Belgium
| | - Anne Vral
- Department of Basic Medical Sciences, University of Ghent, 9000 Ghent, Belgium
| |
Collapse
|
50
|
Bourguignon M. Dépistage et rayons X : tous égaux ? IMAGERIE DE LA FEMME 2018. [DOI: 10.1016/j.femme.2018.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|