1
|
Sigvardsson M. Early B-Cell Factor 1: An Archetype for a Lineage-Restricted Transcription Factor Linking Development to Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:143-156. [PMID: 39017843 DOI: 10.1007/978-3-031-62731-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of highly specialized blood cells from hematopoietic stem cells (HSCs) in the bone marrow (BM) is dependent upon a stringently orchestrated network of stage- and lineage-restricted transcription factors (TFs). Thus, the same stem cell can give rise to various types of differentiated blood cells. One of the key regulators of B-lymphocyte development is early B-cell factor 1 (EBF1). This TF belongs to a small, but evolutionary conserved, family of proteins that harbor a Zn-coordinating motif and an IPT/TIG (immunoglobulin-like, plexins, transcription factors/transcription factor immunoglobulin) domain, creating a unique DNA-binding domain (DBD). EBF proteins play critical roles in diverse developmental processes, including body segmentation in the Drosophila melanogaster embryo, and retina formation in mice. While several EBF family members are expressed in neuronal cells, adipocytes, and BM stroma cells, only B-lymphoid cells express EBF1. In the absence of EBF1, hematopoietic progenitor cells (HPCs) fail to activate the B-lineage program. This has been attributed to the ability of EBF1 to act as a pioneering factor with the ability to remodel chromatin, thereby creating a B-lymphoid-specific epigenetic landscape. Conditional inactivation of the Ebf1 gene in B-lineage cells has revealed additional functions of this protein in relation to the control of proliferation and apoptosis. This may explain why EBF1 is frequently targeted by mutations in human leukemia cases. This chapter provides an overview of the biochemical and functional properties of the EBF family proteins, with a focus on the roles of EBF1 in normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Division of Molecular Hematology, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Sigvardsson M. Transcription factor networks link B-lymphocyte development and malignant transformation in leukemia. Genes Dev 2023; 37:703-723. [PMID: 37673459 PMCID: PMC10546977 DOI: 10.1101/gad.349879.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Rapid advances in genomics have opened unprecedented possibilities to explore the mutational landscapes in malignant diseases, such as B-cell acute lymphoblastic leukemia (B-ALL). This disease is manifested as a severe defect in the production of normal blood cells due to the uncontrolled expansion of transformed B-lymphocyte progenitors in the bone marrow. Even though classical genetics identified translocations of transcription factor-coding genes in B-ALL, the extent of the targeting of regulatory networks in malignant transformation was not evident until the emergence of large-scale genomic analyses. There is now evidence that many B-ALL cases present with mutations in genes that encode transcription factors with critical roles in normal B-lymphocyte development. These include PAX5, IKZF1, EBF1, and TCF3, all of which are targeted by translocations or, more commonly, partial inactivation in cases of B-ALL. Even though there is support for the notion that germline polymorphisms in the PAX5 and IKZF1 genes predispose for B-ALL, the majority of leukemias present with somatic mutations in transcription factor-encoding genes. These genetic aberrations are often found in combination with mutations in genes that encode components of the pre-B-cell receptor or the IL-7/TSLP signaling pathways, all of which are important for early B-cell development. This review provides an overview of our current understanding of the molecular interplay that occurs between transcription factors and signaling events during normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| |
Collapse
|
3
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
4
|
Hosokawa H, Masuhara K, Koizumi M. Transcription factors regulate early T cell development via redeployment of other factors: Functional dynamics of constitutively required factors in cell fate decisions. Bioessays 2021; 43:e2000345. [PMID: 33624856 DOI: 10.1002/bies.202000345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
Abstract
Establishment of cell lineage identity from multipotent progenitors is controlled by cooperative actions of lineage-specific and stably expressed transcription factors, combined with input from environmental signals. Lineage-specific master transcription factors activate and repress gene expression by recruiting consistently expressed transcription factors and chromatin modifiers to their target loci. Recent technical advances in genome-wide and multi-omics analysis have shed light on unexpected mechanisms that underlie more complicated actions of transcription factors in cell fate decisions. In this review, we discuss functional dynamics of stably expressed and continuously required factors, Notch and Runx family members, throughout developmental stages of early T cell development in the thymus. Pre- and post-commitment stage-specific transcription factors induce dynamic redeployment of Notch and Runx binding genomic regions. Thus, together with stage-specific transcription factors, shared transcription factors across distinct developmental stages regulate acquisition of T lineage identity.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Kaori Masuhara
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
5
|
Søndergaard E, Rauch A, Michaut M, Rapin N, Rehn M, Wilhelmson AS, Camponeschi A, Hasemann MS, Bagger FO, Jendholm J, Knudsen KJ, Mandrup S, Mårtensson IL, Porse BT. ERG Controls B Cell Development by Promoting Igh V-to-DJ Recombination. Cell Rep 2020; 29:2756-2769.e6. [PMID: 31775043 DOI: 10.1016/j.celrep.2019.10.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022] Open
Abstract
B cell development depends on the coordinated expression and cooperation of several transcription factors. Here we show that the transcription factor ETS-related gene (ERG) is crucial for normal B cell development and that its deletion results in a substantial loss of bone marrow B cell progenitors and peripheral B cells, as well as a skewing of splenic B cell populations. We find that ERG-deficient B lineage cells exhibit an early developmental block at the pre-B cell stage and proliferate less. The cells fail to express the immunoglobulin heavy chain due to inefficient V-to-DJ recombination, and cells that undergo recombination display a strong bias against incorporation of distal V gene segments. Furthermore, antisense transcription at PAX5-activated intergenic repeat (PAIR) elements, located in the distal region of the Igh locus, depends on ERG. These findings show that ERG serves as a critical regulator of B cell development by ensuring efficient and balanced V-to-DJ recombination.
Collapse
Affiliation(s)
- Elisabeth Søndergaard
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Alexander Rauch
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Magali Michaut
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Matilda Rehn
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anna S Wilhelmson
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Marie S Hasemann
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Frederik O Bagger
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Johan Jendholm
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kasper J Knudsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
6
|
Ramamoorthy S, Kometani K, Herman JS, Bayer M, Boller S, Edwards-Hicks J, Ramachandran H, Li R, Klein-Geltink R, Pearce EL, Grün D, Grosschedl R. EBF1 and Pax5 safeguard leukemic transformation by limiting IL-7 signaling, Myc expression, and folate metabolism. Genes Dev 2020; 34:1503-1519. [PMID: 33004416 PMCID: PMC7608749 DOI: 10.1101/gad.340216.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
In this study, Ramamoorthy et al. investigate EBF1 and PAX5 combined haploinsufficiency in the development of a B-ALL phenotype in mice. Using transcriptional and metabolomic profiling, the authors report that EBF1 and Pax5 may safeguard early stage B cells from transformation to B-ALL by limiting IL-7 signaling, folate metabolism, and Myc expression. EBF1 and PAX5 mutations are associated with the development of B progenitor acute lymphoblastic leukemia (B-ALL) in humans. To understand the molecular networks driving leukemia in the Ebf1+/−Pax5+/− (dHet) mouse model for B-ALL, we interrogated the transcriptional profiles and chromatin status of leukemic cells, preleukemic dHet pro-B, and wild-type pro-B cells with the corresponding EBF1 and Pax5 cistromes. In dHet B-ALL cells, many EBF1 and Pax5 target genes encoding pre-BCR signaling components and transcription factors were down-regulated, whereas Myc and genes downstream from IL-7 signaling or associated with the folate pathway were up-regulated. We show that blockade of IL-7 signaling in vivo and methotrexate treatment of leukemic cells in vitro attenuate the expansion of leukemic cells. Single-cell RNA-sequencing revealed heterogeneity of leukemic cells and identified a subset of wild-type pro-B cells with reduced Ebf1 and enhanced Myc expression that show hallmarks of dHet B-ALL cells. Thus, EBF1 and Pax5 may safeguard early stage B cells from transformation to B-ALL by limiting IL-7 signaling, folate metabolism and Myc expression.
Collapse
Affiliation(s)
- Senthilkumar Ramamoorthy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Kohei Kometani
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Josip S Herman
- Laboratory of Single-Cell Biology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,International Max Planck Research School, University of Freiburg, 79104 Freiburg, Germany
| | - Marc Bayer
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,International Max Planck Research School, University of Freiburg, 79104 Freiburg, Germany
| | - Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Joy Edwards-Hicks
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Haribaskar Ramachandran
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rui Li
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Ramon Klein-Geltink
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Dominic Grün
- Laboratory of Single-Cell Biology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.,Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
7
|
Chi Y, Huang Z, Chen Q, Xiong X, Chen K, Xu J, Zhang Y, Zhang W. Loss of runx1 function results in B cell immunodeficiency but not T cell in adult zebrafish. Open Biol 2019; 8:rsob.180043. [PMID: 30045885 PMCID: PMC6070721 DOI: 10.1098/rsob.180043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
Transcription factor RUNX1 holds an integral role in multiple-lineage haematopoiesis and is implicated as a cofactor in V(D)J rearrangements during lymphocyte development. Runx1 deficiencies resulted in immaturity and reduction of lymphocytes in mice. In this study, we found that runx1W84X/W84X mutation led to the reduction and disordering of B cells, as well as the failure of V(D)J rearrangements in B cells but not T cells, resulting in antibody-inadequate-mediated immunodeficiency in adult zebrafish. By contrast, T cell development was not affected. The decreased number of B cells mainly results from excessive apoptosis in immature B cells. Disrupted B cell development results in runx1W84X/W84X mutants displaying a similar phenotype to common variable immunodeficiency—a primary immunodeficiency disease primarily characterized by frequent susceptibility to infection and deficient immune response, with marked reduction of antibody production of IgG, IgA and/or IgM. Our studies demonstrated an evolutionarily conserved function of runx1 in maturation and differentiation of B cells in adult zebrafish, which will serve as a valuable model for the study of immune deficiency diseases and their treatments.
Collapse
Affiliation(s)
- Yali Chi
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Qi Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xiaojie Xiong
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Kemin Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yiyue Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wenqing Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China .,Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
8
|
Hosokawa H, Ungerbäck J, Wang X, Matsumoto M, Nakayama KI, Cohen SM, Tanaka T, Rothenberg EV. Transcription Factor PU.1 Represses and Activates Gene Expression in Early T Cells by Redirecting Partner Transcription Factor Binding. Immunity 2019; 48:1119-1134.e7. [PMID: 29924977 DOI: 10.1016/j.immuni.2018.04.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/21/2018] [Accepted: 04/19/2018] [Indexed: 01/09/2023]
Abstract
Transcription factors normally regulate gene expression through their action at sites where they bind to DNA. However, the balance of activating and repressive functions that a transcription factor can mediate is not completely understood. Here, we showed that the transcription factor PU.1 regulated gene expression in early T cell development both by recruiting partner transcription factors to its own binding sites and by depleting them from the binding sites that they preferred when PU.1 was absent. The removal of partner factors Satb1 and Runx1 occurred primarily from sites where PU.1 itself did not bind. Genes linked to sites of partner factor "theft" were enriched for genes that PU.1 represses despite lack of binding, both in a model cell line system and in normal T cell development. Thus, system-level competitive recruitment dynamics permit PU.1 to affect gene expression both through its own target sites and through action at a distance.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonas Ungerbäck
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Division of Molecular Hematology, Lund University, Sweden
| | - Xun Wang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Sarah M Cohen
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Japan; AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
9
|
Sigvardsson M. Molecular Regulation of Differentiation in Early B-Lymphocyte Development. Int J Mol Sci 2018; 19:ijms19071928. [PMID: 29966360 PMCID: PMC6073616 DOI: 10.3390/ijms19071928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
B-lymphocyte differentiation is one of the best understood developmental pathways in the hematopoietic system. Our understanding of the developmental trajectories linking the multipotent hematopoietic stem cell to the mature functional B-lymphocyte is extensive as a result of efforts to identify and prospectively isolate progenitors at defined maturation stages. The identification of defined progenitor compartments has been instrumental for the resolution of the molecular features that defines given developmental stages as well as for our understanding of the mechanisms that drive the progressive maturation process. Over the last years it has become increasingly clear that the regulatory networks that control normal B-cell differentiation are targeted by mutations in human B-lineage malignancies. This generates a most interesting link between development and disease that can be explored to improve diagnosis and treatment protocols in lymphoid malignancies. The aim of this review is to provide an overview of our current understanding of molecular regulation in normal and malignant B-cell development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Division of Molecular Hematology, Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden.
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden.
| |
Collapse
|
10
|
Giampaolo S, Wójcik G, Klein-Hessling S, Serfling E, Patra AK. B cell development is critically dependent on NFATc1 activity. Cell Mol Immunol 2018; 16:508-520. [PMID: 29907883 PMCID: PMC6474210 DOI: 10.1038/s41423-018-0052-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/23/2018] [Indexed: 01/17/2023] Open
Abstract
B cell development in bone marrow is a precisely regulated complex process. Through successive stages of differentiation, which are regulated by a multitude of signaling pathways and an array of lineage-specific transcription factors, the common lymphoid progenitors ultimately give rise to mature B cells. Similar to early thymocyte development in the thymus, early B cell development in bone marrow is critically dependent on IL-7 signaling. During this IL-7-dependent stage of differentiation, several transcription factors, such as E2A, EBF1, and Pax5, among others, play indispensable roles in B lineage specification and maintenance. Although recent studies have implicated several other transcription factors in B cell development, the role of NFATc1 in early B cell developmental stages is not known. Here, using multiple gene-manipulated mouse models and applying various experimental methods, we show that NFATc1 activity is vital for early B cell differentiation. Lack of NFATc1 activity in pro-B cells suppresses EBF1 expression, impairs immunoglobulin gene rearrangement, and thereby preBCR formation, resulting in defective B cell development. Overall, deficiency in NFATc1 activity arrested the pro-B cell transition to the pre-B cell stage, leading to severe B cell lymphopenia. Our findings suggest that, along with other transcription factors, NFATc1 is a critical component of the signaling mechanism that facilitates early B cell differentiation.
Collapse
Affiliation(s)
- Sabrina Giampaolo
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef Schneider-Str. 2, 97080, Würzburg, Germany
| | - Gabriela Wójcik
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL6 8BU, UK
| | - Stefan Klein-Hessling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef Schneider-Str. 2, 97080, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef Schneider-Str. 6, 97080, Würzburg, Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef Schneider-Str. 2, 97080, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef Schneider-Str. 6, 97080, Würzburg, Germany
| | - Amiya K Patra
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, PL6 8BU, UK.
| |
Collapse
|
11
|
Musa YR, Boller S, Puchalska M, Grosschedl R, Mittler G. Comprehensive Proteomic Investigation of Ebf1 Heterozygosity in Pro-B Lymphocytes Utilizing Data Independent Acquisition. J Proteome Res 2017; 17:76-85. [DOI: 10.1021/acs.jproteome.7b00369] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaarub R. Musa
- Proteomics
Facility, ‡Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Sören Boller
- Proteomics
Facility, ‡Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Monika Puchalska
- Proteomics
Facility, ‡Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Proteomics
Facility, ‡Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Gerhard Mittler
- Proteomics
Facility, ‡Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| |
Collapse
|
12
|
Spontaneous loss of B lineage transcription factors leads to pre-B leukemia in Ebf1 +/-Bcl-x LTg mice. Oncogenesis 2017; 6:e355. [PMID: 28692033 PMCID: PMC5541707 DOI: 10.1038/oncsis.2017.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/26/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022] Open
Abstract
Early B-cell factor 1 (EBF1) plays a central role in B-cell lineage specification and commitment. Loss of this critical transcription factor is strongly associated with high-risk, relapsed and therapy-resistant B–cell-acute lymphoblastic leukemia, especially in children. However, Ebf1 haploinsufficient mice exhibit a normal lifespan. To determine whether prolonged survival of B cells would enable tumorigenesis in Ebf1 haploinsufficient animals, we generated Ebf1+/–Bcl-xLTg mice, which express the anti-apoptotic factor Bcl-xL in B cells. Approximately half of Ebf1+/–Bcl-xLTg mice develop aggressive oligoclonal leukemia as they age, which engrafts in congenic wild-type recipients without prior conditioning. The neoplastic cells display a pre-B phenotype and express early developmental- and natural killer cell/myeloid-markers inappropriately. In addition, we found tumor cell-specific loss of several transcription factors critical for maintaining differentiation: EBF1, TCF3 and RUNX1. However, in the majority of tumors, loss of Ebf1 expression was not due to loss of heterozygosity. This is the first spontaneous mouse model of pre-B leukemia to demonstrate inappropriate expression of non-B-cell-specific genes associated with loss of Ebf1, Tcf3 and Runx1 expression.
Collapse
|
13
|
Deregulation of kinase signaling and lymphoid development in EBF1-PDGFRB ALL leukemogenesis. Leukemia 2017; 32:38-48. [PMID: 28555080 PMCID: PMC5709252 DOI: 10.1038/leu.2017.166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 01/06/2023]
Abstract
The chimeric fusion oncogene early B-cell factor 1-platelet-derived growth factor receptor-β (EBF1-PDGFRB) is a recurrent lesion observed in Philadelphia-like B-acute lymphoblastic leukemia (B-ALL) and is associated with particularly poor prognosis. While it is understood that this fusion activates tyrosine kinase signaling, the mechanisms of transformation and importance of perturbation of EBF1 activity remain unknown. EBF1 is a nuclear transcription factor required for normal B-lineage specification, commitment and development. Conversely, PDGFRB is a receptor tyrosine kinase that is normally repressed in lymphocytes, yet PDGFRB remains a common fusion partner in leukemias. Here, we demonstrate that the EBF1-PDGFRB fusion results in loss of EBF1 function, multimerization and autophosphorylation of the fusion protein, activation of signal transducer and activator of transcription 5 (STAT5) signaling and gain of interleukin-7 (IL-7)-independent cell proliferation. Deregulation and loss of EBF1 function is critically dependent on the nuclear export activity of the transmembrane (TM) domain of PDGFRB. Deletion of the TM domain partially rescues EBF1 function and restores IL-7 dependence, without requiring kinase inhibition. Moreover, we demonstrate that EBF1-PDGFRB synergizes with loss of IKAROS function in a fully penetrant B-ALL in vivo. Thus, we establish that EBF1-PDGFRB is sufficient to drive leukemogenesis through TM-dependent loss of transcription factor function, increased proliferation and synergy with additional genetic insults including loss of IKAROS function.
Collapse
|
14
|
Sleven H, Welsh SJ, Yu J, Churchill ME, Wright CF, Henderson A, Horvath R, Rankin J, Vogt J, Magee A, McConnell V, Green A, King MD, Cox H, Armstrong L, Lehman A, Nelson TN, Williams J, Clouston P, Hagman J, Németh AH, Hagman J, Németh AH. De Novo Mutations in EBF3 Cause a Neurodevelopmental Syndrome. Am J Hum Genet 2017; 100:138-150. [PMID: 28017370 DOI: 10.1016/j.ajhg.2016.11.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/22/2016] [Indexed: 11/29/2022] Open
Abstract
Early B cell factor 3 (EBF3) is an atypical transcription factor that is thought to influence the laminar formation of the cerebral cortex. Here, we report that de novo mutations in EBF3 cause a complex neurodevelopmental syndrome. The mutations were identified in two large-scale sequencing projects: the UK Deciphering Developmental Disorders (DDD) study and the Canadian Clinical Assessment of the Utility of Sequencing and Evaluation as a Service (CAUSES) study. The core phenotype includes moderate to severe intellectual disability, and many individuals exhibit cerebellar ataxia, subtle facial dysmorphism, strabismus, and vesicoureteric reflux, suggesting that EBF3 has a widespread developmental role. Pathogenic de novo variants identified in EBF3 include multiple loss-of-function and missense mutations. Structural modeling suggested that the missense mutations affect DNA binding. Functional analysis of mutant proteins with missense substitutions revealed reduced transcriptional activities and abilities to form heterodimers with wild-type EBF3. We conclude that EBF3, a transcription factor previously unknown to be associated with human disease, is important for brain and other organ development and warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - James Hagman
- Program in Molecular Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Oxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Windmill Road, Headington, Oxford OX3 7HE, UK.
| |
Collapse
|
15
|
Roles of RUNX Complexes in Immune Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:395-413. [DOI: 10.1007/978-981-10-3233-2_24] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Rothenberg EV, Kueh HY, Yui MA, Zhang JA. Hematopoiesis and T-cell specification as a model developmental system. Immunol Rev 2016; 271:72-97. [PMID: 27088908 DOI: 10.1111/imr.12417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway to generate T cells from hematopoietic stem cells guides progenitors through a succession of fate choices while balancing differentiation progression against proliferation, stage to stage. Many elements of the regulatory system that controls this process are known, but the requirement for multiple, functionally distinct transcription factors needs clarification in terms of gene network architecture. Here, we compare the features of the T-cell specification system with the rule sets underlying two other influential types of gene network models: first, the combinatorial, hierarchical regulatory systems that generate the orderly, synchronized increases in complexity in most invertebrate embryos; second, the dueling 'master regulator' systems that are commonly used to explain bistability in microbial systems and in many fate choices in terminal differentiation. The T-cell specification process shares certain features with each of these prevalent models but differs from both of them in central respects. The T-cell system is highly combinatorial but also highly dose-sensitive in its use of crucial regulatory factors. The roles of these factors are not always T-lineage-specific, but they balance and modulate each other's activities long before any mutually exclusive silencing occurs. T-cell specification may provide a new hybrid model for gene networks in vertebrate developmental systems.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hao Yuan Kueh
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mary A Yui
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jingli A Zhang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
17
|
Wang W, Org T, Montel-Hagen A, Pioli PD, Duan D, Israely E, Malkin D, Su T, Flach J, Kurdistani SK, Schiestl RH, Mikkola HKA. MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis. Nat Commun 2016; 7:12376. [PMID: 27507714 PMCID: PMC4987520 DOI: 10.1038/ncomms12376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 06/27/2016] [Indexed: 12/19/2022] Open
Abstract
DNA double strand break (DSB) repair is critical for generation of B-cell receptors, which are pre-requisite for B-cell progenitor survival. However, the transcription factors that promote DSB repair in B cells are not known. Here we show that MEF2C enhances the expression of DNA repair and recombination factors in B-cell progenitors, promoting DSB repair, V(D)J recombination and cell survival. Although Mef2c-deficient mice maintain relatively intact peripheral B-lymphoid cellularity during homeostasis, they exhibit poor B-lymphoid recovery after sub-lethal irradiation and 5-fluorouracil injection. MEF2C binds active regulatory regions with high-chromatin accessibility in DNA repair and V(D)J genes in both mouse B-cell progenitors and human B lymphoblasts. Loss of Mef2c in pre-B cells reduces chromatin accessibility in multiple regulatory regions of the MEF2C-activated genes. MEF2C therefore protects B lymphopoiesis during stress by ensuring proper expression of genes that encode DNA repair and B-cell factors.
Collapse
Affiliation(s)
- Wenyuan Wang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | - Tonis Org
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA.,Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Amélie Montel-Hagen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA
| | - Peter D Pioli
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA
| | - Dan Duan
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA
| | - Edo Israely
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA
| | - Daniel Malkin
- Department of Molecular Toxicology, UCLA, Los Angeles, California 90095, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, USA
| | - Trent Su
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Johanna Flach
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Robert H Schiestl
- Department of Molecular Toxicology, UCLA, Los Angeles, California 90095, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
18
|
Jensen CT, Lang S, Somasundaram R, Soneji S, Sigvardsson M. Identification of Stage-Specific Surface Markers in Early B Cell Development Provides Novel Tools for Identification of Progenitor Populations. THE JOURNAL OF IMMUNOLOGY 2016; 197:1937-44. [PMID: 27456481 DOI: 10.4049/jimmunol.1600297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/22/2016] [Indexed: 11/19/2022]
Abstract
Whereas the characterization of B lymphoid progenitors has been facilitated by the identification of lineage- and stage-specific surface markers, the continued identification of differentially expressed proteins increases our capacity to explore normal and malignant B cell development. To identify novel surface markers with stage-specific expression patterns, we explored the reactivity of CD19(+) B cell progenitor cells to Abs targeted to 176 surface proteins. Markers with stage-specific expression were identified using a transgenic reporter gene system subdividing the B cell progenitors into four surface IgM(-) stages. This approach affirmed the utility of known stage-specific markers, as well as identifying additional proteins that selectively marked defined stages of B cell development. Among the stage-specific markers were the cell adhesion proteins CD49E, CD11A, and CD54 that are highly expressed selectively on the most immature progenitors. This work identifies a set of novel stage-specific surface markers that can be used as a complement to the classical staining protocols to explore B lymphocyte development.
Collapse
Affiliation(s)
- Christina T Jensen
- Department of Molecular Hematology, Lund University, 22184 Lund, Sweden; and
| | - Stefan Lang
- Department of Molecular Hematology, Lund University, 22184 Lund, Sweden; and
| | - Rajesh Somasundaram
- Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Shamit Soneji
- Department of Molecular Hematology, Lund University, 22184 Lund, Sweden; and
| | - Mikael Sigvardsson
- Department of Molecular Hematology, Lund University, 22184 Lund, Sweden; and Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
19
|
Al Dallal S, Wolton K, Hentges KE. Zfp521 promotes B-cell viability and cyclin D1 gene expression in a B cell culture system. Leuk Res 2016; 46:10-7. [PMID: 27107743 PMCID: PMC4910839 DOI: 10.1016/j.leukres.2016.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/13/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022]
Abstract
Knockdown of Zfp521 in BCL1 cell culture reduces viability and promotes apoptosis. Genes expressed in B cells are down-regulated in cells with Zfp521 knockdown. Cyclin D1 expression is increased in mouse tumors with Zfp521 over-expression.
Leukemia arises due to the dysregulated proliferation of hematopoietic progenitor cells. Errors in the multi-step commitment process result in excessive numbers of immature lymphocytes, causing malignant disease. Genes involved in the differentiation of lymphocytes are often associated with leukemia. One such gene, Zfp521, has been found to cause B-cell leukemia in mice when over-expressed. The role of Zfp521 in B-cell differentiation, and the mechanisms by which it leads to leukemic transformation, are unclear. In this study we report that Zfp521 knockdown causes apoptosis in a B-cell culture system and promotes down-regulation of genes acting at late stages of B-cell differentiation. We identify Pax5 and cyclin D1 as Zfp521 target genes, and suggest that excessive B-cell proliferation observed in mice with retroviral insertions near the Zfp521 gene is due to an up-regulation of cyclin D1 in B-cells. Overall, these results suggest links between dysregulated Zfp521 and B-cell survival.
Collapse
Affiliation(s)
- Salma Al Dallal
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Kathryn Wolton
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Kathryn E Hentges
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
20
|
Mendoza L, Méndez A. A dynamical model of the regulatory network controlling lymphopoiesis. Biosystems 2015; 137:26-33. [PMID: 26408858 DOI: 10.1016/j.biosystems.2015.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/22/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022]
Abstract
Due to the large number of diseases associated to a malfunction of the hematopoietic system, there is an interest in knowing the molecular mechanisms controlling the differentiation of blood cell lineages. However, the structure and dynamical properties of the underlying regulatory network controlling this process is not well understood. This manuscript presents a regulatory network of 81 nodes, representing several types of molecules that regulate each other during the process of lymphopoiesis. The regulatory interactions were inferred mostly from published experimental data. However, 15 out of 159 regulatory interactions are predictions arising from the present study. The network is modelled as a continuous dynamical system, in the form of a set of differential equations. The dynamical behaviour of the model describes the differentiation process from the common lymphocyte precursor (CLP) to several mature B and T cell types; namely, plasma cell (PC), cytotoxic T lymphocyte (CTL), T helper 1 (Th1), Th2, Th17, and T regulatory (Treg) cells. The model qualitatively recapitulates key cellular differentiation events, being able to represent the directional and branched nature of lymphopoiesis, going from a multipotent progenitor to fully differentiated cell types.
Collapse
Affiliation(s)
- Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico.
| | - Akram Méndez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico; Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, México, Mexico
| |
Collapse
|
21
|
Ungerbäck J, Åhsberg J, Strid T, Somasundaram R, Sigvardsson M. Combined heterozygous loss of Ebf1 and Pax5 allows for T-lineage conversion of B cell progenitors. ACTA ACUST UNITED AC 2015; 212:1109-23. [PMID: 26056231 PMCID: PMC4493409 DOI: 10.1084/jem.20132100] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 05/11/2015] [Indexed: 01/07/2023]
Abstract
Ungerbäck et al. show that transcription factors Ebf1 and Pax5 act in a coordinated, dose-dependent manner to preserve B-lineage cell fate. Combined heterozygous loss of both transcription factors results in increased T cell lineage skewing in B cell progenitors. To investigate how transcription factor levels impact B-lymphocyte development, we generated mice carrying transheterozygous mutations in the Pax5 and Ebf1 genes. Whereas combined reduction of Pax5 and Ebf1 had minimal impact on the development of the earliest CD19+ progenitors, these cells displayed an increased T cell potential in vivo and in vitro. The alteration in lineage fate depended on a Notch1-mediated conversion process, whereas no signs of de-differentiation could be detected. The differences in functional response to Notch signaling in Wt and Pax5+/−Ebf1+/− pro–B cells were reflected in the transcriptional response. Both genotypes responded by the generation of intracellular Notch1 and activation of a set of target genes, but only the Pax5+/−Ebf1+/− pro–B cells down-regulated genes central for the preservation of stable B cell identity. This report stresses the importance of the levels of transcription factor expression during lymphocyte development, and suggests that Pax5 and Ebf1 collaborate to modulate the transcriptional response to Notch signaling. This provides an insight on how transcription factors like Ebf1 and Pax5 preserve cellular identity during differentiation.
Collapse
Affiliation(s)
- Jonas Ungerbäck
- Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Josefine Åhsberg
- Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Tobias Strid
- Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Rajesh Somasundaram
- Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Mikael Sigvardsson
- Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
22
|
Transcription factor networks in B-cell differentiation link development to acute lymphoid leukemia. Blood 2015; 126:144-52. [PMID: 25990863 DOI: 10.1182/blood-2014-12-575688] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/12/2015] [Indexed: 12/26/2022] Open
Abstract
B-lymphocyte development in the bone marrow is controlled by the coordinated action of transcription factors creating regulatory networks ensuring activation of the B-lymphoid program and silencing of alternative cell fates. This process is tightly connected to malignant transformation because B-lineage acute lymphoblastic leukemia cells display a pronounced block in differentiation resulting in the expansion of immature progenitor cells. Over the last few years, high-resolution analysis of genetic changes in leukemia has revealed that several key regulators of normal B-cell development, including IKZF1, TCF3, EBF1, and PAX5, are genetically altered in a large portion of the human B-lineage acute leukemias. This opens the possibility of directly linking the disrupted development as well as aberrant gene expression patterns in leukemic cells to molecular functions of defined transcription factors in normal cell differentiation. This review article focuses on the roles of transcription factors in early B-cell development and their involvement in the formation of human leukemia.
Collapse
|
23
|
Boller S, Grosschedl R. The regulatory network of B-cell differentiation: a focused view of early B-cell factor 1 function. Immunol Rev 2014; 261:102-15. [PMID: 25123279 PMCID: PMC4312928 DOI: 10.1111/imr.12206] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the last decades, many studies have investigated the transcriptional and epigenetic regulation of lineage decision in the hematopoietic system. These efforts led to a model in which extrinsic signals and intrinsic cues establish a permissive chromatin context upon which a regulatory network of transcription factors and epigenetic modifiers act to guide the differentiation of hematopoietic lineages. These networks include lineage-specific factors that further modify the epigenetic landscape and promote the generation of specific cell types. The process of B lymphopoiesis requires a set of transcription factors, including Ikaros, PU.1, E2A, and FoxO1 to 'prime' cis-regulatory regions for subsequent activation by the B-lineage-specific transcription factors EBF1 and Pax-5. The expression of EBF1 is initiated by the combined action of E2A and FoxO1, and it is further enhanced and maintained by several positive feedback loops that include Pax-5 and IL-7 signaling. EBF1 acts in concert with Ikaros, PU.1, Runx1, E2A, FoxO1, and Pax-5 to establish the B cell-specific transcription profile. EBF1 and Pax-5 also collaborate to repress alternative cell fates and lock cells into the B-lineage fate. In addition to the functions of EBF1 in establishing and maintaining B-cell identity, EBF1 is required to coordinate differentiation with cell proliferation and survival.
Collapse
Affiliation(s)
- Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and EpigeneticsFreiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and EpigeneticsFreiburg, Germany
| |
Collapse
|
24
|
Abstract
T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors; they also have developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in contrast to B cell gene networks, the T cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete T cell-like effector differentiation can proceed without T cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
25
|
Kirchenbaum GA, St Clair JB, Detanico T, Aviszus K, Wysocki LJ. Functionally responsive self-reactive B cells of low affinity express reduced levels of surface IgM. Eur J Immunol 2014; 44:970-82. [PMID: 24375379 DOI: 10.1002/eji.201344276] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/11/2013] [Accepted: 12/18/2013] [Indexed: 12/18/2022]
Abstract
Somatic gene rearrangement generates a diverse repertoire of B cells, many which have receptors possessing a range of affinities for self-Ag. Newly generated B cells express high and relatively uniform amounts of surface IgM (sIgM), while follicular (FO) B cells express sIgM at widely varying levels. It is plausible, therefore, that downmodulation of sIgM serves as a mechanism to maintain weakly self-reactive B cells in a responsive state by decreasing their avidity for self-Ag. We tested this hypothesis by performing comparative functional tests with FO IgM(hi) and IgM(lo) B cells from the unrestricted repertoire of WT C57BL/6 mice. We found that FO IgM(lo) B cells mobilized Ca(2+) equivalently to IgM(hi) B cells when the same number of sIgM molecules was engaged. In agreement, FO IgM(lo) B cells were functionally competent to produce an antibody response following adoptive transfer. The FO IgM(lo) cell population had elevated levels of Nur77 transcript, and was enriched with nuclear-reactive specificities. Hybridoma sampling revealed that these B-cell receptors were of low affinity. Collectively, these results suggest that sIgM downmodulation by low-affinity, self-reactive B cells preserves their immunocompetence and circumvents classical peripheral tolerance mechanisms that would otherwise reduce diversity within the B cell compartment.
Collapse
Affiliation(s)
- Greg A Kirchenbaum
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA
| | | | | | | | | |
Collapse
|
26
|
Santos PM, Ding Y, Borghesi L. Cell-intrinsic in vivo requirement for the E47-p21 pathway in long-term hematopoietic stem cells. THE JOURNAL OF IMMUNOLOGY 2013; 192:160-8. [PMID: 24259504 DOI: 10.4049/jimmunol.1302502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Major regulators of long-term hematopoietic stem cell (LT-HSC) self-renewal and proliferation have been identified, but knowledge of their in vivo interaction in a linear pathway is lacking. In this study, we show a direct genetic link between the transcription factor E47 and the major cell cycle regulator p21 in controlling LT-HSC integrity in vivo under repopulation stress. Numerous studies have shown that E47 activates p21 transcription in hematopoietic subsets in vitro, and we now reveal the in vivo relevance of the E47-p21 pathway by reducing the gene dose of each factor individually (E47(het) or p21(het)) versus in tandem (E47(het)p21(het)). E47(het)p21(het) LT-HSCs and downstream short-term hematopoietic stem cells exhibit hyperproliferation and preferential susceptibility to mitotoxin compared to wild-type or single haploinsufficient controls. In serial adoptive transfers that rigorously challenge self-renewal, E47(het)p21(het) LT-HSCs dramatically and progressively decline, indicating the importance of cell-intrinsic E47-p21 in preserving LT-HSCs under stress. Transient numeric recovery of downstream short-term hematopoietic stem cells enabled the production of functionally competent myeloid but not lymphoid cells, as common lymphoid progenitors were decreased, and peripheral lymphocytes were virtually ablated. Thus, we demonstrate a developmental compartment-specific and lineage-specific requirement for the E47-p21 pathway in maintaining LT-HSCs, B cells, and T cells under hematopoietic repopulation stress in vivo.
Collapse
Affiliation(s)
- Patricia M Santos
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | | | | |
Collapse
|
27
|
Åhsberg J, Ungerbäck J, Strid T, Welinder E, Stjernberg J, Larsson M, Qian H, Sigvardsson M. Early B-cell factor 1 regulates the expansion of B-cell progenitors in a dose-dependent manner. J Biol Chem 2013; 288:33449-61. [PMID: 24078629 DOI: 10.1074/jbc.m113.506261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription factor doses are of importance for normal and malignant B-lymphocyte development; however, the understanding of underlying mechanisms and functional consequences of reduced transcription factor levels is limited. We have analyzed progenitor and B-lineage compartments in mice carrying heterozygote mutations in the E2a, Ebf1, or Pax5 gene. Although lymphoid progenitors from Ebf1 or Pax5 heterozygote mice were specified and lineage-restricted in a manner comparable with Wt progenitors, this process was severely impaired in E2a heterozygote mutant mice. This defect was not significantly enhanced upon combined deletion of E2a with Ebf1 or Pax5. Analysis of the pre-B-cell compartment in Ebf1 heterozygote mice revealed a reduction in cell numbers. These cells expressed Pax5 and other B-lineage-associated genes, and global gene expression analysis suggested that the reduction of the pre-B-cell compartment was a result of impaired pre-B-cell expansion. This idea was supported by a reduction in IL2Rα-expressing late pre-B-cells as well as by cell cycle analysis and by the finding that the complexity of the VDJ rearrangement patterns was comparable in Wt and Ebf1(+/-) pre-B-cells, although the number of progenitors was reduced. Heterozygote deletion of Ebf1 resulted in impaired response to IL7 in vitro and reduced expression levels of pre-BCR on the cell surface, providing possible explanations for the observed stage-specific reduction in cellular expansion. Thus, transcription factor doses are critical for specification as well as expansion of B-lymphoid progenitors, providing increased insight into the molecular regulation of B-cell development.
Collapse
Affiliation(s)
- Josefine Åhsberg
- From the Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty for Health Sciences, Linköping University, University Lab 1, Level 13, SE-581 85 Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
28
|
A germline point mutation in Runx1 uncouples its role in definitive hematopoiesis from differentiation. Exp Hematol 2013; 41:980-991.e1. [PMID: 23823022 DOI: 10.1016/j.exphem.2013.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/14/2022]
Abstract
Definitive hematopoiesis requires the master hematopoietic transcription factor Runx1, which is a frequent target of leukemia-related chromosomal translocations. Several of the translocation-generated fusion proteins retain the DNA binding activity of Runx1, but lose subnuclear targeting and associated transactivation potential. Complete loss of these functions in vivo resembles Runx1 ablation, which causes embryonic lethality. We developed a knock-in mouse that expresses full-length Runx1 with a mutation in the subnuclear targeting cofactor interaction domain, Runx1(HTY350-352AAA). Mutant mice survive to adulthood, and hematopoietic stem cell emergence appears to be unaltered. However, defects are observed in multiple differentiated hematopoietic lineages at stages where Runx1 is known to play key roles. Thus, a germline mutation in Runx1 reveals uncoupling of its functions during developmental hematopoiesis from subsequent differentiation across multiple hematopoietic lineages in the adult. These findings indicate that subnuclear targeting and cofactor interactions with Runx1 are important in many compartments throughout hematopoietic differentiation.
Collapse
|
29
|
Abstract
The t(12;21) chromosomal translocation, targeting the gene encoding the RUNX1 transcription factor, is observed in 25% of pediatric acute lymphoblastic leukemia (ALL) and is an initiating event in the disease. To elucidate the mechanism by which RUNX1 disruption initiates leukemogenesis, we investigated its normal role in murine B-cell development. This study revealed 2 critical functions of Runx1: (1) to promote survival and development of progenitors specified to the B-cell lineage, a function that can be substituted by ectopic Bcl2 expression, and (2) to enable the developmental transition through the pre-B stage triggered by the pre-B-cell antigen receptor (pre-BCR). Gene expression analysis and genomewide Runx1 occupancy studies support the hypothesis that Runx1 reinforces the transcription factor network governing early B-cell survival and development and specifically regulates genes encoding members of the Lyn kinase subfamily (key integrators of interleukin-7 and pre-BCR signaling) and the stage-specific transcription factors SpiB and Aiolos (critical downstream effectors of pre-BCR signaling). Interrogation of expression databases of 257 ALL samples demonstrated the specific down-regulation of the SPIB and IKZF3 genes (the latter encoding AIOLOS) in t(12;21) ALL, providing novel insight into the mechanism by which the translocation blocks B-cell development and promotes leukemia.
Collapse
|
30
|
Venigalla RKC, McGuire VA, Clarke R, Patterson-Kane JC, Najafov A, Toth R, McCarthy PC, Simeons F, Stojanovski L, Arthur JSC. PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development. EMBO J 2013; 32:1008-22. [PMID: 23463102 PMCID: PMC3616287 DOI: 10.1038/emboj.2013.40] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 01/30/2013] [Indexed: 01/25/2023] Open
Abstract
Phosphoinositide-dependent kinase-1 (PDK1) controls the activation of a subset of AGC kinases. Using a conditional knockout of PDK1 in haematopoietic cells, we demonstrate that PDK1 is essential for B cell development. B-cell progenitors lacking PDK1 arrested at the transition of pro-B to pre-B cells, due to a cell autonomous defect. Loss of PDK1 decreased the expression of the IgH chain in pro-B cells due to impaired recombination of the IgH distal variable segments, a process coordinated by the transcription factor Pax5. The expression of Pax5 in pre-B cells was decreased in PDK1 knockouts, which correlated with reduced expression of the Pax5 target genes IRF4, IRF8 and Aiolos. As a result, Ccnd3 is upregulated in PDK1 knockout pre-B cells and they have an impaired ability to undergo cell-cycle arrest, a necessary event for Ig light chain rearrangement. Instead, these cells underwent apoptosis that correlated with diminished expression of the pro-survival gene Bcl2A1. Reintroduction of both Pax5 and Bcl2A1 together into PDK1 knockout pro-B cells restored their ability to differentiate in vitro into mature B cells.
Collapse
Affiliation(s)
- Ram K C Venigalla
- MRC Protein Phosphorylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yu Y, Wang J, Khaled W, Burke S, Li P, Chen X, Yang W, Jenkins NA, Copeland NG, Zhang S, Liu P. Bcl11a is essential for lymphoid development and negatively regulates p53. ACTA ACUST UNITED AC 2012; 209:2467-83. [PMID: 23230003 PMCID: PMC3526365 DOI: 10.1084/jem.20121846] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bcl11a regulates development of lymphoid cells in adult mice in part by inhibiting expression of p53. Transcription factors play important roles in lymphopoiesis. We have previously demonstrated that Bcl11a is essential for normal lymphocyte development in the mouse embryo. We report here that, in the adult mouse, Bcl11a is expressed in most hematopoietic cells and is highly enriched in B cells, early T cell progenitors, common lymphoid progenitors (CLPs), and hematopoietic stem cells (HSCs). In the adult mouse, Bcl11a deletion causes apoptosis in early B cells and CLPs and completely abolishes the lymphoid development potential of HSCs to B, T, and NK cells. Myeloid development, in contrast, is not obviously affected by the loss of Bcl11a. Bcl11a regulates expression of Bcl2, Bcl2-xL, and Mdm2, which inhibits p53 activities. Overexpression of Bcl2 and Mdm2, or p53 deficiency, rescues both lethality and proliferative defects in Bcl11a-deficient early B cells and enables the mutant CLPs to differentiate to lymphocytes. Bcl11a is therefore essential for lymphopoiesis and negatively regulates p53 activities. Deletion of Bcl11a may represent a new approach for generating a mouse model that completely lacks an adaptive immune system.
Collapse
Affiliation(s)
- Yong Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
MBD2 and multiple domains of CHD4 are required for transcriptional repression by Mi-2/NuRD complexes. Mol Cell Biol 2012; 32:5078-88. [PMID: 23071088 DOI: 10.1128/mcb.00819-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mi-2/nucleosome remodeling and deacetylase (NuRD) chromatin remodeling complexes are important regulators of chromatin structure and DNA accessibility. We examined requirements for individual domains of chromodomain helicase DNA-binding protein 4 (CHD4), a core catalytic component of NuRD complexes, as well as the NuRD subunit methyl-binding domain protein 2 (MBD2) and methylated DNA, for NuRD function in the context of tissue-specific transcription. By itself, loss of NuRD activity is not sufficient for transcriptional activation. However, NuRD complexes greatly reduce activation of the B cell-specific mb-1 (Cd79a) gene by the transcription factors EBF1 and Pax5. Using our B cell model system, we determined that the two chromodomains and ATPase/helicase and C-terminal domains (CTD) of CHD4 are all necessary for repression of mb-1 promoters by NuRD. All of these domains except the CTD are required for efficient association of CHD4 with mb-1 promoter chromatin. Loss of MBD2 expression or of DNA methylation impaired association of CHD4 with mb-1 promoter chromatin and enhanced its transcription. We conclude that repressive functions of MBD2-containing NuRD complexes are dependent on cooperative interactions between the major domains of CHD4 with histones and DNA and on binding of methylated DNA by MBD2.
Collapse
|
33
|
Heckl D, Schwarzer A, Haemmerle R, Steinemann D, Rudolph C, Skawran B, Knoess S, Krause J, Li Z, Schlegelberger B, Baum C, Modlich U. Lentiviral vector induced insertional haploinsufficiency of Ebf1 causes murine leukemia. Mol Ther 2012; 20:1187-95. [PMID: 22472950 DOI: 10.1038/mt.2012.59] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Integrating vectors developed on the basis of various retroviruses have demonstrated therapeutic potential following genetic modification of long-lived hematopoietic stem and progenitor cells. Lentiviral vectors (LV) are assumed to circumvent genotoxic events previously observed with γ-retroviral vectors, due to their integration bias to transcription units in comparison to the γ-retroviral preference for promoter regions and CpG islands. However, recently several studies have revealed the potential for gene activation by LV insertions. Here, we report a murine acute B-lymphoblastic leukemia (B-ALL) triggered by insertional gene inactivation. LV integration occurred into the 8th intron of Ebf1, a major regulator of B-lymphopoiesis. Various aberrant splice variants could be detected that involved splice donor and acceptor sites of the lentiviral construct, inducing downregulation of Ebf1 full-length message. The transcriptome signature was compatible with loss of this major determinant of B-cell differentiation, with partial acquisition of myeloid markers, including Csf1r (macrophage colony-stimulating factor (M-CSF) receptor). This was accompanied by receptor phosphorylation and STAT5 activation, both most likely contributing to leukemic progression. Our results highlight the risk of intragenic vector integration to initiate leukemia by inducing haploinsufficiency of a tumor suppressor gene. We propose to address this risk in future vector design.
Collapse
Affiliation(s)
- Dirk Heckl
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mercer EM, Lin YC, Murre C. Factors and networks that underpin early hematopoiesis. Semin Immunol 2011; 23:317-25. [PMID: 21930392 DOI: 10.1016/j.smim.2011.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 08/19/2011] [Indexed: 01/08/2023]
Abstract
Multiple trajectories have recently been described through which hematopoietic progenitor cells travel prior to becoming lineage-committed effectors. A wide spectrum of transcription factors has recently been identified that modulate developmental progression along such trajectories. Here we describe how distinct families of transcription factors act and are linked together to orchestrate early hematopoiesis.
Collapse
Affiliation(s)
- Elinore M Mercer
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, United States.
| | | | | |
Collapse
|
35
|
Lukin K, Fields S, Guerrettaz L, Straign D, Rodriguez V, Zandi S, Månsson R, Cambier JC, Sigvardsson M, Hagman J. A dose-dependent role for EBF1 in repressing non-B-cell-specific genes. Eur J Immunol 2011; 41:1787-93. [PMID: 21469119 DOI: 10.1002/eji.201041137] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 02/12/2011] [Accepted: 03/17/2011] [Indexed: 11/11/2022]
Abstract
In the absence of early B-cell factor 1 (EBF1), B-cell development is arrested at an uncommitted progenitor stage that exhibits increased lineage potentials. Previously, we investigated the roles of EBF1 and its DNA-binding partner Runx1 by evaluating B lymphopoiesis in single (EBF1(het) and Runx1(het)) and compound haploinsufficent (Ebf1(+/-) Runx1(+/-), ER(het)) mice. Here, we demonstrate that decreased Ebf1 gene dosage results in the inappropriate expression of NK-cell lineage-specific genes in B-cell progenitors. Moreover, prolonged expression of Ly6a/Sca-1 suggested the maintenance of a relatively undifferentiated phenotype. These effects were exacerbated by reduced expression of Runx1 and occurred despite expression of Pax5. Repression of inappropriately expressed genes was restored in most pre-B and all immature B cells of ER(het) mice. Enforced EBF1 expression repressed promiscuous transcription in pro-B cells of ER(het) mice and in Ebf1(-/-) Pax5(-/-) fetal liver cells. Together, our studies suggest that normal levels of EBF1 are critical for maintaining B-cell identity by directing repression of non-B-cell-specific genes.
Collapse
Affiliation(s)
- Kara Lukin
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Santos PM, Borghesi L. Molecular resolution of the B cell landscape. Curr Opin Immunol 2011; 23:163-70. [PMID: 21236654 PMCID: PMC3073704 DOI: 10.1016/j.coi.2010.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 11/29/2010] [Indexed: 01/10/2023]
Abstract
The progression of hematopoietic stem cells (HSCs) to the B lymphocyte lineage requires that uncommitted progenitors successfully negotiate the transition from multipotency to unipotency, including the loss of self-renewal potential. Previous work identified essential transcription factors that mediate B lineage development. Major advances build on this knowledge and reveal coordinated changes in gene expression occurring within single cells at sequential stages in the B cell differentiation pathway. Recent studies on epigenetic mechanisms also provide a framework within which transcription factor activity, chromatin modifications, and gene expression patterns can be viewed at hierarchical levels to link genotype and phenotype.
Collapse
Affiliation(s)
- Patricia M. Santos
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop Street Pittsburgh, PA 15261
| | - Lisa Borghesi
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop Street Pittsburgh, PA 15261
| |
Collapse
|
37
|
B lymphocyte lineage specification, commitment and epigenetic control of transcription by early B cell factor 1. Curr Top Microbiol Immunol 2011; 356:17-38. [PMID: 21735360 DOI: 10.1007/82_2011_139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Early B cell factor 1 (EBF1) is a transcription factor that is critical for both B lymphopoiesis and B cell function. EBF1 is a requisite component of the B lymphocyte transcriptional network and is essential for B lineage specification. Recent studies revealed roles for EBF1 in B cell commitment. EBF1 binds its target genes via a DNA-binding domain including a unique 'zinc knuckle', which mediates a novel mode of DNA recognition. Chromatin immunoprecipitation of EBF1 in pro-B cells defined hundreds of new, as well as previously identified, target genes. Notably, expression of the pre-B cell receptor (pre-BCR), BCR and PI3K/Akt/mTOR signaling pathways is controlled by EBF1. In this review, we highlight these current developments and explore how EBF1 functions as a tissue-specific regulator of chromatin structure at B cell-specific genes.
Collapse
|
38
|
Abstract
Immune receptor gene expression is regulated by a series of developmental events that modify their accessibility in a locus, cell type, stage and allele-specific manner. This is carried out by a programmed combination of many different molecular mechanisms, including region-wide replication timing, changes in nuclear localization, chromatin contraction, histone modification, nucleosome positioning and DNA methylation. These modalities ultimately work by controlling steric interactions between receptor loci and the recombination machinery.
Collapse
Affiliation(s)
- Yehudit Bergman
- Department of Developmental Biology and Cancer Research, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel.
| | | |
Collapse
|
39
|
Early B-cell factors are required for specifying multiple retinal cell types and subtypes from postmitotic precursors. J Neurosci 2010; 30:11902-16. [PMID: 20826655 DOI: 10.1523/jneurosci.2187-10.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The establishment of functional retinal circuits in the mammalian retina depends critically on the proper generation and assembly of six classes of neurons, five of which consist of two or more subtypes that differ in morphologies, physiological properties, and/or sublaminar positions. How these diverse neuronal types and subtypes arise during retinogenesis still remains largely to be defined at the molecular level. Here we show that all four family members of the early B-cell factor (Ebf) helix-loop-helix transcription factors are similarly expressed during mouse retinogenesis in several neuronal types and subtypes including ganglion, amacrine, bipolar, and horizontal cells, and that their expression in ganglion cells depends on the ganglion cell specification factor Brn3b. Misexpressed Ebfs bias retinal precursors toward the fates of non-AII glycinergic amacrine, type 2 OFF-cone bipolar and horizontal cells, whereas a dominant-negative Ebf suppresses the differentiation of these cells as well as ganglion cells. Reducing Ebf1 expression by RNA interference (RNAi) leads to an inhibitory effect similar to that of the dominant-negative Ebf, effectively neutralizes the promotive effect of wild-type Ebf1, but has no impact on the promotive effect of an RNAi-resistant Ebf1. These data indicate that Ebfs are both necessary and sufficient for specifying non-AII glycinergic amacrine, type 2 OFF-cone bipolar and horizontal cells, whereas they are only necessary but not sufficient for specifying ganglion cells; and further suggest that Ebfs may coordinate and cooperate with other retinogenic factors to ensure proper specification and differentiation of diverse retinal cell types and subtypes.
Collapse
|
40
|
|