1
|
Sun C, Hu B, Li Y, Wu Z, Zhou J, Li J, Chen J, Du G, Zhao X. Efficient stereoselective hydroxylation of deoxycholic acid by the robust whole-cell cytochrome P450 CYP107D1 biocatalyst. Synth Syst Biotechnol 2023; 8:741-748. [PMID: 38107826 PMCID: PMC10722395 DOI: 10.1016/j.synbio.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023] Open
Abstract
Deoxycholic acid (DCA) has been authorized by the Federal Drug Agency for cosmetic reduction of redundant submental fat. The hydroxylated product (6β-OH DCA) was developed to improve the solubility and pharmaceutic properties of DCA for further applications. Herein, a combinatorial catalytic strategy was applied to construct a powerful Cytochrome P450 biocatalyst (CYP107D1, OleP) to convert DCA to 6β-OH DCA. Firstly, the weak expression of OleP was significantly improved using pRSFDuet-1 plasmid in the E. coli C41 (DE3) strain. Next, the supply of heme was enhanced by the moderate overexpression of crucial genes in the heme biosynthetic pathway. In addition, a new biosensor was developed to select the appropriate redox partner. Furthermore, a cost-effective whole-cell catalytic system was constructed, resulting in the highest reported conversion rate of 6β-OH DCA (from 4.8% to 99.1%). The combinatorial catalytic strategies applied in this study provide an efficient method to synthesize high-value-added hydroxylated compounds by P450s.
Collapse
Affiliation(s)
- Chixiang Sun
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Baodong Hu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yanchun Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhimeng Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
2
|
Yan P, Liu H, Zhou T, Sun P, Wang Y, Wang X, Zhang L, Wang T, Dong J, Zhu J, Lv L, Li W, Qi S, Liang Y, Kong E. Crosstalk of Synapsin1 palmitoylation and phosphorylation controls the dynamicity of synaptic vesicles in neurons. Cell Death Dis 2022; 13:786. [PMID: 36097267 PMCID: PMC9468182 DOI: 10.1038/s41419-022-05235-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
The dynamics of synaptic vesicles (SVs) within presynaptic domains are tightly controlled by synapsin1 phosphorylation; however, the mechanism underlying the anchoring of synapsin1 with F-actin or SVs is not yet fully understood. Here, we found that Syn1 is modified with protein palmitoylation, and examining the roles of Syn1 palmitoylation in neurons led us to uncover that Syn1 palmitoylation is negatively regulated by its phosphorylation; together, they manipulate the clustering and redistribution of SVs. Using the combined approaches of electron microscopy and genetics, we revealed that Syn1 palmitoylation is vital for its binding with F-actin but not SVs. Inhibition of Syn1 palmitoylation causes defects in SVs clustering and a reduced number of total SVs in vivo. We propose a model in which SVs redistribution is triggered by upregulated Syn1 phosphorylation and downregulated Syn1 palmitoylation, and they reversibly promote SVs clustering. The crosstalk of Syn1 palmitoylation and phosphorylation thereby bidirectionally manipulates SVs dynamics in neurons.
Collapse
Affiliation(s)
- Peipei Yan
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Huicong Liu
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Tao Zhou
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Pu Sun
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Yilin Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Xibin Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Lin Zhang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Tian Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Jing Dong
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Jiangli Zhu
- grid.13291.380000 0001 0807 1581Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, 610041 Chengdu, China
| | - Luxian Lv
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shiqian Qi
- grid.13291.380000 0001 0807 1581Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, 610041 Chengdu, China
| | - Yinming Liang
- grid.412990.70000 0004 1808 322XLaboratory of Genetic Regulators in the Immune System, Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Eryan Kong
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
3
|
McLure RJ, Radford SE, Brockwell DJ. High-throughput directed evolution: a golden era for protein science. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Kim H, Hwang SG, Guk K, Bae Y, Park H, Lim EK, Kang T, Jung J. Development of antibody against drug-resistant respiratory syncytial virus: Rapid detection of mutant virus using split superfolder green fluorescent protein-antibody system. Biosens Bioelectron 2021; 194:113593. [PMID: 34481240 DOI: 10.1016/j.bios.2021.113593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Respiratory syncytial virus (RSV) infections are associated with severe bronchiolitis or pneumonia. Although palivizumab is used to prevent RSV infections, the occurrence of palivizumab-resistant RSV strains is increasing, and these strains pose a threat to public health. Herein, we report an antibody with affinity to the S275F RSV antigen, enabling the specific detection of palivizumab-resistant RSV strains. Experimental and simulation results confirmed the affinity of the antibody to the S275F RSV antigen. Furthermore, we developed a rapid S275F RSV antigen detection method using a split superfolder green fluorescent protein (ssGFP) that can interact with the antibody. In the presence of the mutant virus antigen, ssGFP emitted fluorescence within 1 min, allowing the rapid identification of S275F RSV. We anticipate that the developed antibody would be useful for the precise diagnosis of antiviral drug-resistant RSV strains and help treat patients with RSV infections.
Collapse
Affiliation(s)
- Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seul Gee Hwang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kyeonghye Guk
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yoonji Bae
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Ren C, Wen X, Mencius J, Quan S. An enzyme-based biosensor for monitoring and engineering protein stability in vivo. Proc Natl Acad Sci U S A 2021; 118:e2101618118. [PMID: 33753520 PMCID: PMC8020752 DOI: 10.1073/pnas.2101618118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein stability affects the physiological functions of proteins and is also a desirable trait in many protein engineering tasks, yet improving protein stability is challenging because of limitations in methods for directly monitoring protein stability in cells. Here, we report an in vivo stability biosensor wherein a protein of interest (POI) is inserted into a microbial enzyme (CysGA) that catalyzes the formation of endogenous fluorescent compounds, thereby coupling POI stability to simple fluorescence readouts. We demonstrate the utility of the biosensor in directed evolution to obtain stabilized, less aggregation-prone variants of two POIs (including nonamyloidogenic variants of human islet amyloid polypeptide). Beyond engineering applications, we exploited our biosensor in deep mutational scanning for experimental delineation of the stability-related contributions of all residues throughout the catalytic domain of a histone H3K4 methyltransferase, thereby revealing its scientifically informative stability landscape. Thus, our highly accessible method for in vivo monitoring of the stability of diverse proteins will facilitate both basic research and applied protein engineering efforts.
Collapse
Affiliation(s)
- Chang Ren
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Wen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Mencius
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Dolberg TB, Meger AT, Boucher JD, Corcoran WK, Schauer EE, Prybutok AN, Raman S, Leonard JN. Computation-guided optimization of split protein systems. Nat Chem Biol 2021; 17:531-539. [PMID: 33526893 PMCID: PMC8084939 DOI: 10.1038/s41589-020-00729-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
Splitting bioactive proteins into conditionally reconstituting fragments is a powerful strategy for building tools to study and control biological systems. However, split proteins often exhibit a high propensity to reconstitute even without the conditional trigger, limiting their utility. Current approaches for tuning reconstitution propensity are laborious, context-specific, or often ineffective. Here, we report a computational design strategy grounded in fundamental protein biophysics to guide experimental evaluation of a sparse set of mutants to identify an optimal functional window. We hypothesized that testing a limited set of mutants would direct subsequent mutagenesis efforts by predicting desirable mutant combinations from a vast mutational landscape. This strategy varies the degree of interfacial destabilization while preserving stability and catalytic activity. We validate our method by solving two distinct split protein design challenges, generating both design and mechanistic insights. This new technology will streamline the generation and use of split protein systems for diverse applications.
Collapse
Affiliation(s)
- Taylor B Dolberg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Anthony T Meger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan D Boucher
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - William K Corcoran
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Elizabeth E Schauer
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Alexis N Prybutok
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA. .,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
7
|
In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides. Int J Mol Sci 2020; 21:ijms21134719. [PMID: 32630650 PMCID: PMC7369778 DOI: 10.3390/ijms21134719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
The cell membrane is a complex and highly regulated system that is composed of lipid bilayer and proteins. One of the main functions of the cell membrane is the regulation of cell entry. Cell-penetrating peptides (CPPs) are defined as peptides that can cross the plasma membrane and deliver their cargo inside the cell. The uptake of a peptide is determined by its sequence and biophysicochemical properties. At the same time, the uptake mechanism and efficiency are shown to be dependent on local peptide concentration, cell membrane lipid composition, characteristics of the cargo, and experimental methodology, suggesting that a highly efficient CPP in one system might not be as productive in another. To better understand the dependence of CPPs on the experimental system, we present a review of the in vitro assays that have been employed in the literature to evaluate CPPs and CPP-cargos. Our comprehensive review suggests that utilization of orthogonal assays will be more effective for deciphering the true ability of CPPs to translocate through the membrane and enter the cell cytoplasm.
Collapse
|
8
|
Chandler PG, Broendum SS, Riley BT, Spence MA, Jackson CJ, McGowan S, Buckle AM. Strategies for Increasing Protein Stability. Methods Mol Biol 2020; 2073:163-181. [PMID: 31612442 DOI: 10.1007/978-1-4939-9869-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The stability of wild-type proteins is often a hurdle to their practical use in research, industry, and medicine. The route to engineering stability of a protein of interest lies largely with the available data. Where high-resolution structural data is available, rational design, based on fundamental principles of protein chemistry, can improve protein stability. Recent advances in computational biology and the use of nonnatural amino acids have also provided novel rational methods for improving protein stability. Likewise, the explosion of sequence and structural data available in public databases, in combination with improvements in freely available computational tools, has produced accessible phylogenetic approaches. Trawling modern sequence databases can identify the thermostable homologs of a target protein, and evolutionary data can be quickly generated using available phylogenetic tools. Grafting features from those thermostable homologs or ancestors provides stability improvement through a semi-rational approach. Further, molecular techniques such as directed evolution have shown great promise in delivering designer proteins. These strategies are well documented and newly accessible to the molecular biologist, allowing for rapid enhancements of protein stability.
Collapse
Affiliation(s)
- Peter G Chandler
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sebastian S Broendum
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Blake T Riley
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Matthew A Spence
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sheena McGowan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
9
|
Ren C, Wen X, Mencius J, Quan S. Selection and screening strategies in directed evolution to improve protein stability. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0288-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractProtein stability is not only fundamental for experimental, industrial, and therapeutic applications, but is also the baseline for evolving novel protein functions. For decades, stability engineering armed with directed evolution has continued its rapid development and inevitably poses challenges. Generally, in directed evolution, establishing a reliable link between a genotype and any interpretable phenotype is more challenging than diversifying genetic libraries. Consequently, we set forth in a small picture to emphasize the screening or selection techniques in protein stability-directed evolution to secure the link. For a more systematic review, two main branches of these techniques, namely cellular or cell-free display and stability biosensors, are expounded with informative examples.
Collapse
|
10
|
Abstract
Many proteins can be split into fragments that spontaneously reassemble, without covalent linkage, into a functional protein. For split green fluorescent proteins (GFPs), fragment reassembly leads to a fluorescent readout, which has been widely used to investigate protein-protein interactions. We review the scope and limitations of this approach as well as other diverse applications of split GFPs as versatile sensors, molecular glues, optogenetic tools, and platforms for photophysical studies.
Collapse
Affiliation(s)
- Matthew G Romei
- Department of Chemistry, Stanford University, Stanford, California 94305, USA; ,
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA; ,
| |
Collapse
|
11
|
Mo HM, Xu Y, Yu XW. Improved Soluble Expression and Catalytic Activity of a Thermostable Esterase Using a High-Throughput Screening System Based on a Split-GFP Assembly. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12756-12764. [PMID: 30411620 DOI: 10.1021/acs.jafc.8b04646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The thermostable esterase Aaeo1 displays a low expression level and forms a great amount of inclusion bodies in E. coli. Herein, a split-GFP system was established in which the fluorescence intensity exhibited a good linear correlation with the soluble protein expression level and the esterase activity. In the primary high-throughput screening, the mutant library was screened by flow cytometry via detection of a split-GFP reporter. Then, through a secondary screening against esterase activity, two mutants with improved soluble expression and catalytic activity were obtained. The soluble expression of the mutant enzymes in E. coli was improved by 2-fold. The kcat/ Km values of the mutant enzymes were 2-fold higher than that of the parent. We explored the relationship between the amino acid mutations in the two mutants and the enzyme activity. The enzyme activity of mutant I51V-E170D was 4.5 times higher than that of the parent.
Collapse
Affiliation(s)
- Hong-Mei Mo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi 214122 , PR China
- Suqian Industrial Technology Research Institute of Jiangnan University , Suqian 223814 , PR China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi 214122 , PR China
- Suqian Industrial Technology Research Institute of Jiangnan University , Suqian 223814 , PR China
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi 214122 , PR China
- Suqian Industrial Technology Research Institute of Jiangnan University , Suqian 223814 , PR China
| |
Collapse
|
12
|
Weiffert T, Linse S. Protein stabilization with retained function of monellin using a split GFP system. Sci Rep 2018; 8:12763. [PMID: 30143736 PMCID: PMC6109104 DOI: 10.1038/s41598-018-31177-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/10/2018] [Indexed: 11/09/2022] Open
Abstract
Sweet proteins are an unexploited resource in the search for non-carbohydrate sweeteners mainly due to their low stability towards heating. Variants of the sweet protein monellin, with increased stability, were derived by an in vivo screening method based on the thermodynamic linkage between fragment complementation and protein stability. This approach depends on the correlation between mutational effects on the affinity between protein fragments and the stability of the intact protein. By linking the two fragments of monellin to the split GFP (green fluorescent protein) system, reconstitution of GFP was promoted and moderately fluorescent colonies were obtained. Two separate random libraries were produced for the monellin chains and the mutant clones were ranked based on fluorescence intensity. Mutants with increased affinity between the fragments, and subsequently increased stability, caused increased fluorescence intensity of split GFP. Single chain monellin variants of the top-ranked mutants for each chain, S76Y in the A-chain and W3C + R39G in the B-chain and all combinations thereof, were expressed and the increase in stability was verified by temperature denaturation studies using circular dichroism spectroscopy. Functionality studies showed that mutant S76Y has retained sweetness and has potential use within the food industry.
Collapse
Affiliation(s)
- Tanja Weiffert
- Department of Biochemistry and Structural Biology, Chemical Centre, Lund University, SE221 00, Lund, Sweden.
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Chemical Centre, Lund University, SE221 00, Lund, Sweden
| |
Collapse
|
13
|
Sachsenhauser V, Bardwell JC. Directed evolution to improve protein folding in vivo. Curr Opin Struct Biol 2018; 48:117-123. [PMID: 29278775 PMCID: PMC5880552 DOI: 10.1016/j.sbi.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
Recently, several innovative approaches have been developed that allow one to directly screen or select for improved protein folding in the cellular context. These methods have the potential of not just leading to a better understanding of the in vivo folding process, they may also allow for improved production of proteins of biotechnological interest.
Collapse
Affiliation(s)
- Veronika Sachsenhauser
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - James Ca Bardwell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
García-Mauriño SM, Díaz-Quintana A, Rivero-Rodríguez F, Cruz-Gallardo I, Grüttner C, Hernández-Vellisca M, Díaz-Moreno I. A putative RNA binding protein from Plasmodium vivax apicoplast. FEBS Open Bio 2017; 8:177-188. [PMID: 29435408 PMCID: PMC5794462 DOI: 10.1002/2211-5463.12351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/03/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023] Open
Abstract
Malaria is caused by Apicomplexa protozoans from the Plasmodium genus entering the bloodstream of humans and animals through the bite of the female mosquitoes. The annotation of the Plasmodium vivax genome revealed a putative RNA binding protein (apiRBP) that was predicted to be trafficked into the apicoplast, a plastid organelle unique to Apicomplexa protozoans. Although a 3D structural model of the apiRBP corresponds to a noncanonical RNA recognition motif with an additional C‐terminal α‐helix (α3), preliminary protein production trials were nevertheless unsuccessful. Theoretical solvation analysis of the apiRBP model highlighted an exposed hydrophobic region clustering α3. Hence, we used a C‐terminal GFP‐fused chimera to stabilize the highly insoluble apiRBP and determined its ability to bind U‐rich stretches of RNA. The affinity of apiRBP toward such RNAs is highly dependent on ionic strength, suggesting that the apiRBP–RNA complex is driven by electrostatic interactions. Altogether, apiRBP represents an attractive tool for apicoplast transcriptional studies and for antimalarial drug design.
Collapse
Affiliation(s)
- Sofía M García-Mauriño
- Instituto de Investigaciones Químicas (IIQ) Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja) Universidad de Sevilla Consejo Superior de Investigaciones Científicas (CSIC) Sevilla Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ) Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja) Universidad de Sevilla Consejo Superior de Investigaciones Científicas (CSIC) Sevilla Spain
| | - Francisco Rivero-Rodríguez
- Instituto de Investigaciones Químicas (IIQ) Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja) Universidad de Sevilla Consejo Superior de Investigaciones Científicas (CSIC) Sevilla Spain
| | | | - Christian Grüttner
- Instituto de Investigaciones Químicas (IIQ) Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja) Universidad de Sevilla Consejo Superior de Investigaciones Científicas (CSIC) Sevilla Spain
| | - Marian Hernández-Vellisca
- Instituto de Investigaciones Químicas (IIQ) Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja) Universidad de Sevilla Consejo Superior de Investigaciones Científicas (CSIC) Sevilla Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja) Universidad de Sevilla Consejo Superior de Investigaciones Científicas (CSIC) Sevilla Spain
| |
Collapse
|
15
|
Enterina JR, Wu L, Campbell RE. Emerging fluorescent protein technologies. Curr Opin Chem Biol 2015; 27:10-7. [DOI: 10.1016/j.cbpa.2015.05.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/07/2015] [Indexed: 11/28/2022]
|
16
|
Verma SC, Cai Q, Kreider E, Lu J, Robertson ES. Comprehensive analysis of LANA interacting proteins essential for viral genome tethering and persistence. PLoS One 2013; 8:e74662. [PMID: 24040311 PMCID: PMC3770571 DOI: 10.1371/journal.pone.0074662] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 08/05/2013] [Indexed: 12/12/2022] Open
Abstract
Kaposi’s sarcoma associated herpesvirus is tightly linked to multiple human malignancies including Kaposi’s sarcoma (KS), Primary Effusion Lymphoma (PEL) and Multicentric Castleman’s Disease (MCD). KSHV like other herpesviruses establishes life-long latency in the infected host by persisting as chromatin and tethering to host chromatin through the virally encoded protein Latency Associated Nuclear Antigen (LANA). LANA, a multifunctional protein, is capable of binding to a large number of cellular proteins responsible for transcriptional regulation of various cellular and viral pathways involved in blocking cell death and promoting cell proliferation. This leads to enhanced cell division and replication of the viral genome, which segregates faithfully in the dividing tumor cells. The mechanism of genome segregation is well known and the binding of LANA to nucleosomal proteins, throughout the cell cycle, suggests that these interactions play an important role in efficient segregation. Various biochemical methods have identified a large number of LANA binding proteins, including histone H2A/H2B, histone H1, MeCP2, DEK, CENP-F, NuMA, Bub1, HP-1, and Brd4. These nucleosomal proteins may have various functions in tethering of the viral genome during specific phases of the viral life cycle. Therefore, we performed a comprehensive analysis of their interaction with LANA using a number of different assays. We show that LANA binds to core nucleosomal histones and also associates with other host chromatin proteins including histone H1 and high mobility group proteins (HMGs). We used various biochemical assays including co-immunoprecipitation and in-vivo localization by split GFP and fluorescence resonance energy transfer (FRET) to demonstrate their association.
Collapse
Affiliation(s)
- Subhash C. Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, Nevada, United States of America
- * E-mail: (ESR); (SCV)
| | - Qiliang Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine of Fudan University, Shanghai, China
| | - Edward Kreider
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jie Lu
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (ESR); (SCV)
| |
Collapse
|
17
|
Socha RD, Tokuriki N. Modulating protein stability - directed evolution strategies for improved protein function. FEBS J 2013; 280:5582-95. [PMID: 23711026 DOI: 10.1111/febs.12354] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 11/29/2022]
Abstract
Protein engineering is widely used to generate proteins with novel or enhanced function. However, manipulating protein function in the laboratory can prove laborious, protracted and challenging. Recent developments in the understanding of protein evolutionary dynamics have unveiled the full extent by which the evolution of function is limited by protein stability - a revelation that may be applied to protein engineering on a whole. Thus, strategies that modulate protein stability and reduce its constraining effects may facilitate the engineering of protein function. A combinatorial approach involving the introduction of compensatory mutations and manipulation of the stability threshold by chaperone buffering during directed evolution can improve the functional adaptation of a protein, thereby fostering our ability to attain ever-more ambitious protein functions in the laboratory.
Collapse
Affiliation(s)
- Raymond D Socha
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
18
|
Andrews BT, Capraro DT, Sulkowska JI, Onuchic JN, Jennings PA. Hysteresis as a Marker for Complex, Overlapping Landscapes in Proteins. J Phys Chem Lett 2013; 4:180-188. [PMID: 23525263 PMCID: PMC3601837 DOI: 10.1021/jz301893w] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Topologically complex proteins fold by multiple routes as a result of hard-to-fold regions of the proteins. Oftentimes these regions are introduced into the protein scaffold for function and increase frustration in the otherwise smooth-funneled landscape. Interestingly, while functional regions add complexity to folding landscapes, they may also contribute to a unique behavior referred to as hysteresis. While hysteresis is predicted to be rare, it is observed in various proteins, including proteins containing a unique peptide cyclization to form a fluorescent chromophore as well as proteins containing a knotted topology in their native fold. Here, hysteresis is demonstrated to be a consequence of the decoupling of unfolding events from the isomerization or hula-twist of a chromophore in one protein and the untying of the knot in a second protein system. The question now is- can hysteresis be a marker for the interplay of landscapes where complex folding and functional regions overlap?
Collapse
Affiliation(s)
| | - Dominique T. Capraro
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA
| | | | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston TX 77005
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA
| |
Collapse
|
19
|
Abstract
Molecular chaperones assist de novo protein folding and facilitate the refolding of stress-denatured proteins. The molecular chaperone concept was coined nearly 35 years ago, and since then, tremendous strides have been made in understanding how these factors support protein folding. Here, we focus on how various chaperone proteins were first identified to play roles in protein folding. Examples are used to illustrate traditional routes of chaperone discovery and point out their advantages and limitations. Recent advances, including the development of folding biosensors and promising methods for the stabilization of proteins in vivo, provide new routes for chaperone discovery.
Collapse
Affiliation(s)
- Shu Quan
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
20
|
Shekhawat SS, Ghosh I. Split-protein systems: beyond binary protein-protein interactions. Curr Opin Chem Biol 2011; 15:789-97. [PMID: 22070901 DOI: 10.1016/j.cbpa.2011.10.014] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/07/2011] [Accepted: 10/17/2011] [Indexed: 11/29/2022]
Abstract
It has been estimated that 650,000 protein-protein interactions exist in the human interactome (Stumpf et al., 2008), a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, Escherichia coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches.
Collapse
Affiliation(s)
- Sujan S Shekhawat
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Blvd, Tucson, AZ 85721, USA
| | | |
Collapse
|
21
|
Magliery TJ, Lavinder JJ, Sullivan BJ. Protein stability by number: high-throughput and statistical approaches to one of protein science's most difficult problems. Curr Opin Chem Biol 2011; 15:443-51. [PMID: 21498105 DOI: 10.1016/j.cbpa.2011.03.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 01/24/2023]
Abstract
Most proteins are only barely stable, which impedes research, complicates therapeutic applications, and makes proteins susceptible to pathologically destabilizing mutations. Our ability to predict the thermodynamic consequences of even single point mutations is still surprisingly limited, and established methods of measuring stability are slow. Recent advances are bringing protein stability studies into the high-throughput realm. Some methods are based on inferential read-outs such as activity, proteolytic resistance or split-protein fragment reassembly. Other methods use miniaturization of direct measurements, such as intrinsic fluorescence, H/D exchange, cysteine reactivity, aggregation and hydrophobic dye binding (DSF). Protein engineering based on statistical analysis (consensus and correlated occurrences of amino acids) is promising, but much work remains to understand and implement these methods.
Collapse
Affiliation(s)
- Thomas J Magliery
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| | | | | |
Collapse
|