1
|
Schiavone G, Richter S, Henke T, Koch I, Thies L, Klöpper F, Megighian A, Pirazzini M, Binz T. Probing the properties of PTEN specific botulinum toxin type E mutants. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02879-2. [PMID: 39849213 DOI: 10.1007/s00702-025-02879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Botulinum neurotoxins (BoNT) are established biopharmaceuticals for neuromuscular and secretory conditions based on their ability to block neurotransmitter release from neurons by proteolyzing specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, a mutant catalytic domain of serotype E (LC/E) exhibiting 16 mutations was reported to cleave the phosphatase and tensin homolog (PTEN). This molecule represents an attractive new target in neurons as several reports support PTEN knockdown as a strategy to stimulate axonal regeneration after injury. Though this LC/E mutant was shown to cleave PTEN in primary neurons through lentivirus-based expression, its expression and functionality as mutated full-length BoNT/E have not been studied. Hence, we assembled the 16 mutations stepwise in a bacterial expression plasmid for LC/E and purified several multiple mutants of LC/E. Biochemical characterization showed that the 16-fold mutant did not exhibit a detectable activity toward SNAP-25 up to 10 µM final concentration while it displayed an EC50 of approximately 200 nM for PTEN, exceeding 1000-fold that for LC/E-wt on the native substrate SNAP-25. Unexpectedly, expression of the full length 16-fold mutated BoNT/E did not provide soluble protein, possibly due to an interference of the interaction between LC and the translocation domain. Reversion of individual mutations revealed the E159L and S162Q substitutions, critical for redirecting LC/E activity toward PTEN, as main culprits for the solubility issue. To overcome this problem, we applied a methodology proved successful years ago, harnessing a proteolytically inactive variant of BoNT type D (BoNT/Di) as neurospecific delivery system for cargo proteins. The fusion protein LCE-16x-BoNT/Di could be produced in sufficient yields. Activity tests using rat cerebellar granule neurons showed BoNT/E-like activity for LC/E-wt-BoNT/Di, but no PTEN-directed activity for LC/E-16x-BoNT/Di.
Collapse
Affiliation(s)
- Giorgia Schiavone
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Sandy Richter
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Tina Henke
- Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623, Hannover, Germany
| | - Ineke Koch
- Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623, Hannover, Germany
| | - Linda Thies
- Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623, Hannover, Germany
| | - Fiete Klöpper
- Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623, Hannover, Germany
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
- Padova Neuroscience Center, University of Padova, Padova, 35131, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.
| | - Thomas Binz
- Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623, Hannover, Germany.
| |
Collapse
|
2
|
Matak I, Lacković Z. Native botulinum toxin type A vs. redesigned botulinum toxins in pain: What did we learn so far? Curr Opin Pharmacol 2024; 78:102476. [PMID: 39178620 DOI: 10.1016/j.coph.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024]
Abstract
Driven by the clinical success of botulinum toxin serotype A (BoNT/A) and the need for improved chronic pain management, researchers attempted to develop re-designed botulinum toxin (BoNT)-based molecules as novel analgesics. Various recombinant protein expression strategies including retargeted binding domains, and chimeric toxins combining different serotypes were tested to improve BoNT/A therapeutic safety margin and expand its efficacy. The aim of this review is to re-evaluate the current design strategies for recombinant BoNT-based molecules for pain treatment, compares their analgesic profile against the native BoNT/A, as well as to discuss the main strengths and potential weaknesses of reported approaches.
Collapse
Affiliation(s)
- Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| | - Zdravko Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Haroun R, Gossage SJ, Iseppon F, Fudge A, Caxaria S, Arcangeletti M, Leese C, Davletov B, Cox JJ, Sikandar S, Welsh F, Chessell IP, Wood JN. Novel therapies for cancer-induced bone pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100167. [PMID: 39399223 PMCID: PMC11470602 DOI: 10.1016/j.ynpai.2024.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/15/2024]
Abstract
Cancer pain is a growing problem, especially with the substantial increase in cancer survival. Reports indicate that bone metastasis, whose primary symptom is bone pain, occurs in 65-75% of patients with advanced breast or prostate cancer. We optimized a preclinical in vivo model of cancer-induced bone pain (CIBP) involving the injection of Lewis Lung Carcinoma cells into the intramedullary space of the femur of C57BL/6 mice or transgenic mice on a C57BL/6 background. Mice gradually reduce the use of the affected limb, leading to altered weight bearing. Symptoms of secondary cutaneous heat sensitivity also manifest themselves. Following optimization, three potential analgesic treatments were assessed; 1) single ion channel targets (targeting the voltage-gated sodium channels NaV1.7, NaV1.8, or acid-sensing ion channels), 2) silencing µ-opioid receptor-expressing neurons by modified botulinum compounds, and 3) targeting two inflammatory mediators simultaneously (nerve growth factor (NGF) and tumor necrosis factor (TNF)). Unlike global NaV1.8 knockout mice which do not show any reduction in CIBP-related behavior, embryonic conditional NaV1.7 knockout mice in sensory neurons exhibit a mild reduction in CIBP-linked behavior. Modified botulinum compounds also failed to cause a detectable analgesic effect. In contrast, inhibition of NGF and/or TNF resulted in a significant reduction in CIBP-driven weight-bearing alterations and prevented the development of secondary cutaneous heat hyperalgesia. Our results support the inhibition of these inflammatory mediators, and more strongly their dual inhibition to treat CIBP, given the superiority of combination therapies in extending the time needed to reach limb use score zero in our CIBP model.
Collapse
Affiliation(s)
- Rayan Haroun
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Samuel J. Gossage
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Federico Iseppon
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Alexander Fudge
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Sara Caxaria
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Manuel Arcangeletti
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Charlotte Leese
- Department of Biomedical Science, University of Sheffield, South Yorkshire S10 2TN, United Kingdom
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, South Yorkshire S10 2TN, United Kingdom
| | - James J. Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Fraser Welsh
- AstraZeneca BioPharmaceuticals R&D, Neuroscience, Discovery Centre, Biomedical campus, 1 Francis Crick Ave, Cambridge CB2 0AA, United Kingdom
| | - Iain P. Chessell
- AstraZeneca BioPharmaceuticals R&D, Neuroscience, Discovery Centre, Biomedical campus, 1 Francis Crick Ave, Cambridge CB2 0AA, United Kingdom
| | - John N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research (WIBR), University College London (UCL), London WC1E 6BT, United Kingdom
| |
Collapse
|
4
|
Xu X, Liu D, Wu M, Luo L, Feng J, Ou Y, Kang Y, Panayi AC, Long Y, Cui Y. The Effect of Calf Subcutaneous Fat Thickness on Patient Satisfaction after Calf Contouring with Botulinum Toxin A. Plast Reconstr Surg 2024; 154:63e-69e. [PMID: 37220391 DOI: 10.1097/prs.0000000000010721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
BACKGROUND As a minimally invasive therapy, botulinum toxin A (BTXA) treatment effectively reduces the hypertrophy of the gastrocnemius muscle (GM). Patient satisfaction is, however, reported to be low after treatment, with a possible correlation between high satisfaction and thinner subcutaneous fat. The goal of this study was to classify the subcutaneous fat of calves to understand the relation between fat thickness and patient satisfaction after BTXA treatment. METHODS The maximal leg circumference was measured, and B-mode ultrasound was used to measure the thickness of the medial head of the GM and of the subcutaneous fat. Patients were followed up at 1 and 6 months after BTXA treatment. RESULTS A total of 50 cases were classified into the following levels of fat thickness: slim (<0.55 cm), moderate (0.55 to 0.85 cm), and bulge (>0.85 cm). All patients were treated with 300 units of BTXA. Patients in the slim and bulge groups reported higher satisfaction rate than patients in the moderate group, with patients in the slim and bulge groups reporting complete satisfaction (100%) with calf contour at the 6-month follow-up. The satisfaction rate with the improvement in total leg circumference was low in all 3 groups. No severe complications were encountered in this study. CONCLUSIONS This study identified a U-shaped correlation between calf subcutaneous fat thickness and patient satisfaction rate after treatment. The authors' results provide a theoretical basis for BTXA treatment and suggest the importance of preprocedure conversations in GM hypertrophy treatment. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, II.
Collapse
Affiliation(s)
- Xiangwen Xu
- From the Department of Plastic and Reconstructive Surgery, Peking University Shenzhen Hospital
| | - Dandan Liu
- From the Department of Plastic and Reconstructive Surgery, Peking University Shenzhen Hospital
| | - Mengfan Wu
- From the Department of Plastic and Reconstructive Surgery, Peking University Shenzhen Hospital
| | - Lin Luo
- From the Department of Plastic and Reconstructive Surgery, Peking University Shenzhen Hospital
| | - Jun Feng
- From the Department of Plastic and Reconstructive Surgery, Peking University Shenzhen Hospital
| | - Yanting Ou
- From the Department of Plastic and Reconstructive Surgery, Peking University Shenzhen Hospital
| | - Yixing Kang
- From the Department of Plastic and Reconstructive Surgery, Peking University Shenzhen Hospital
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School
| | - Yun Long
- From the Department of Plastic and Reconstructive Surgery, Peking University Shenzhen Hospital
| | - Yongyan Cui
- From the Department of Plastic and Reconstructive Surgery, Peking University Shenzhen Hospital
| |
Collapse
|
5
|
Rasetti-Escargueil C, Palea S. Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications. Toxins (Basel) 2024; 16:261. [PMID: 38922155 PMCID: PMC11209287 DOI: 10.3390/toxins16060261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Botulinum neurotoxins (BoNTs) have been used for almost half a century in the treatment of excessive muscle contractility. BoNTs are routinely used to treat movement disorders such as cervical dystonia, spastic conditions, blepharospasm, and hyperhidrosis, as well as for cosmetic purposes. In addition to the conventional indications, the use of BoNTs to reduce pain has gained increased recognition, giving rise to an increasing number of indications in disorders associated with chronic pain. Furthermore, BoNT-derived formulations are benefiting a much wider range of patients suffering from overactive bladder, erectile dysfunction, arthropathy, neuropathic pain, and cancer. BoNTs are categorised into seven toxinotypes, two of which are in clinical use, and each toxinotype is divided into multiple subtypes. With the development of bioinformatic tools, new BoNT-like toxins have been identified in non-Clostridial organisms. In addition to the expanding indications of existing formulations, the rich variety of toxinotypes or subtypes in the wild-type BoNTs associated with new BoNT-like toxins expand the BoNT superfamily, forming the basis on which to develop new BoNT-based therapeutics as well as research tools. An overview of the diversity of the BoNT family along with their conventional therapeutic uses is presented in this review followed by the engineering and formulation opportunities opening avenues in therapy.
Collapse
Affiliation(s)
| | - Stefano Palea
- Humana Biosciences-Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670 Labège, France;
| |
Collapse
|
6
|
Maiarù M, Leese C, Silva-Hucha S, Fontana-Giusti S, Tait L, Tamagnini F, Davletov B, Hunt SP. Substance P-Botulinum Mediates Long-term Silencing of Pain Pathways that can be Re-instated with a Second Injection of the Construct in Mice. THE JOURNAL OF PAIN 2024; 25:104466. [PMID: 38218509 DOI: 10.1016/j.jpain.2024.01.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Chronic pain presents an enormous personal and economic burden and there is an urgent need for effective treatments. In a mouse model of chronic neuropathic pain, selective silencing of key neurons in spinal pain signalling networks with botulinum constructs resulted in a reduction of pain behaviours associated with the peripheral nerve. However, to establish clinical relevance it was important to know how long this silencing period lasted. Now, we show that neuronal silencing and the concomitant reduction of neuropathic mechanical and thermal hypersensitivity lasts for up to 120d following a single injection of botulinum construct. Crucially, we show that silencing and analgesia can then be reinstated with a second injection of the botulinum conjugate. Here we demonstrate that single doses of botulinum-toxin conjugates are a powerful new way of providing long-term neuronal silencing and pain relief. PERSPECTIVE: This research demonstrates that botulinum-toxin conjugates are a powerful new way of providing long-term neuronal silencing without toxicity following a single injection of the conjugate and have the potential for repeated dosing when silencing reverses.
Collapse
Affiliation(s)
- Maria Maiarù
- Department of Pharmacology, School of Pharmacy, University of Reading; Room 109, Hopkins Building, Whiteknights Campus, Reading RG6 6UB, United Kingdom
| | - Charlotte Leese
- Department of Biomedical Science, Firth Court, University of Sheffield; Sheffield S10 2TN
| | - Silvia Silva-Hucha
- Department of Cell and Developmental Biology, Medawar Building, University College London; Gower Street, London, WC1E 6BT, United Kingdom
| | - Sofia Fontana-Giusti
- Department of Pharmacology, School of Pharmacy, University of Reading; Room 109, Hopkins Building, Whiteknights Campus, Reading RG6 6UB, United Kingdom
| | - Luke Tait
- Cardiff University Brain Research Imaging Centre, Cardiff University; Cardiff, United Kingdom
| | - Francesco Tamagnini
- Department of Pharmacology, School of Pharmacy, University of Reading; Room 109, Hopkins Building, Whiteknights Campus, Reading RG6 6UB, United Kingdom
| | - Bazbek Davletov
- Department of Biomedical Science, Firth Court, University of Sheffield; Sheffield S10 2TN
| | - Stephen P Hunt
- Department of Cell and Developmental Biology, Medawar Building, University College London; Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Zhantleuova A, Leese C, Andreou AP, Karimova A, Carpenter G, Davletov B. Recent Developments in Engineering Non-Paralytic Botulinum Molecules for Therapeutic Applications. Toxins (Basel) 2024; 16:175. [PMID: 38668600 PMCID: PMC11054698 DOI: 10.3390/toxins16040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
This review discusses the expanding application of botulinum neurotoxin in treating neurological conditions. The article specifically explores novel approaches to using non-paralytic botulinum molecules. These new molecules, such as BiTox or el-iBoNT, offer an alternative for patients who face limitations in using paralytic forms of botulinum neurotoxin due to concerns about muscle function loss. We highlight the research findings that confirm not only the effectiveness of these molecules but also their reduced paralytic effect. We also discuss a potential cause for the diminished paralytic action of these molecules, specifically changes in the spatial parameters of the new botulinum molecules. In summary, this article reviews the current research that enhances our understanding of the application of new botulinum neurotoxins in the context of common conditions and suggests new avenues for developing more efficient molecules.
Collapse
Affiliation(s)
- Aisha Zhantleuova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty A15E3C7, Kazakhstan; (A.Z.); (A.K.)
| | - Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2JA, UK;
| | - Anna P. Andreou
- Headache Research, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK;
- Neuresta, Inc., San Diego, CA 91991, USA
| | - Altynay Karimova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty A15E3C7, Kazakhstan; (A.Z.); (A.K.)
| | - Guy Carpenter
- Salivary Research, Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London SE1 1UL, UK;
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2JA, UK;
- Neuresta, Inc., San Diego, CA 91991, USA
| |
Collapse
|
8
|
Liu D, Xu X, Wu M, Luo L, Feng J, Ou Y, Panayi AC, Long Y, Cui Y. Classification of gastrocnemius muscle hypertrophy for personalized botulinum toxin type A treatment. J Cosmet Dermatol 2024; 23:90-98. [PMID: 37529982 DOI: 10.1111/jocd.15943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Owing to its safety and convenience, botulinum toxin type A (BoNtA) has become a first-choice treatment for contouring calf muscle asymmetries or deformities. Different injection methods and dosages have been discussed in the literature, but a standardized BoNtA treatment remains unclear. AIMS This study aimed to classify gastrocnemius muscle hypertrophy (GMH) through multiple measurements to provide a personalized BoNtA treatment protocol. METHODS The measurements combining of gastrocnemius muscle (GM) contour, max leg circumference and GM thickness was applied to classify different type of GMH in a normal population. Based on these findings, a personalized BoNtA treatment protocol was determined and evaluated regarding max leg circumference, GM thickness, the position of max leg circumference, patient and doctor satisfaction rate, and complications. RESULTS A total of 100 GMH were classified into two bulging types (bilateral-bulging type and unilateral-bulging type) and two categories (moderate GMH and severe GMH). 40 cases were treated with personalized BoNtA injection methods ("Even" or "Intense"method) and dosages (300 or 400 units). Follow-up examinations at 1, 3, and 6 months after treatment. Max leg circumference and GM thickness decreased significantly and the position of max leg circumference rose prominently during treatment (2.56± 1.93; p< 0.05). The overall patient satisfaction rate was 70%-100%. No serious complications occurred. CONCLUSIONS We identify four groups of GMH through several measurements and outline a personalized BoNtA treatment for each type. This recommended protocol may improve the therapeutic outcomes and patient satisfaction after treatment.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Plastic and Reconstructive Surgery, Peking university Shenzhen hospital, Shenzhen, China
| | - Xiangwen Xu
- Department of Plastic and Reconstructive Surgery, Peking university Shenzhen hospital, Shenzhen, China
| | - Mengfan Wu
- Department of Plastic and Reconstructive Surgery, Peking university Shenzhen hospital, Shenzhen, China
| | - Lin Luo
- Department of Plastic and Reconstructive Surgery, Peking university Shenzhen hospital, Shenzhen, China
| | - Jun Feng
- Department of Plastic and Reconstructive Surgery, Peking university Shenzhen hospital, Shenzhen, China
| | - Yanting Ou
- Department of Plastic and Reconstructive Surgery, Peking university Shenzhen hospital, Shenzhen, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yun Long
- Department of Plastic and Reconstructive Surgery, Peking university Shenzhen hospital, Shenzhen, China
| | - Yongyan Cui
- Department of Plastic and Reconstructive Surgery, Peking university Shenzhen hospital, Shenzhen, China
| |
Collapse
|
9
|
Leese C, Christmas C, Mészáros J, Ward S, Maiaru M, Hunt SP, Davletov B. New botulinum neurotoxin constructs for treatment of chronic pain. Life Sci Alliance 2023; 6:e202201631. [PMID: 37041008 PMCID: PMC10098373 DOI: 10.26508/lsa.202201631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Chronic pain affects one in five people across human societies, with few therapeutic options available. Botulinum neurotoxin (BoNT) can provide long-lasting pain relief by inhibiting local release of neuropeptides and neurotransmitters, but its highly paralytic nature has limited its analgesic potential. Recent advances in protein engineering have raised the possibility of synthesising non-paralysing botulinum molecules for translation to pain sufferers. However, the synthesis of these molecules, via several synthetic steps, has been challenging. Here, we describe a simple platform for safe production of botulinum molecules for treating nerve injury-induced pain. We produced two versions of isopeptide-bonded BoNT from separate botulinum parts using an isopeptide bonding system. Although both molecules cleaved their natural substrate, SNAP25, in sensory neurons, the structurally elongated iBoNT did not cause motor deficit in rats. We show that the non-paralytic elongated iBoNT targets specific cutaneous nerve fibres and provides sustained pain relief in a rat nerve injury model. Our results demonstrate that novel botulinum molecules can be produced in a simple and safe manner and be useful for treating neuropathic pain.
Collapse
Affiliation(s)
- Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Claire Christmas
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Judit Mészáros
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Stephanie Ward
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Maria Maiaru
- Department of Pharmacology, School of Pharmacy, University of Reading, Whiteknights Campus, Reading, UK
| | - Stephen P Hunt
- Cell and Developmental Biology, University College London, London, UK
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
- Neuresta, Inc., San Diego, CA, USA
| |
Collapse
|
10
|
Khvotchev M, Soloviev M. SNARE Modulators and SNARE Mimetic Peptides. Biomolecules 2022; 12:biom12121779. [PMID: 36551207 PMCID: PMC9776023 DOI: 10.3390/biom12121779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins play a central role in most forms of intracellular membrane trafficking, a key process that allows for membrane and biocargo shuffling between multiple compartments within the cell and extracellular environment. The structural organization of SNARE proteins is relatively simple, with several intrinsically disordered and folded elements (e.g., SNARE motif, N-terminal domain, transmembrane region) that interact with other SNAREs, SNARE-regulating proteins and biological membranes. In this review, we discuss recent advances in the development of functional peptides that can modify SNARE-binding interfaces and modulate SNARE function. The ability of the relatively short SNARE motif to assemble spontaneously into stable coiled coil tetrahelical bundles has inspired the development of reduced SNARE-mimetic systems that use peptides for biological membrane fusion and for making large supramolecular protein complexes. We evaluate two such systems, based on peptide-nucleic acids (PNAs) and coiled coil peptides. We also review how the self-assembly of SNARE motifs can be exploited to drive on-demand assembly of complex re-engineered polypeptides.
Collapse
Affiliation(s)
- Mikhail Khvotchev
- Department of Biochemistry, Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (M.K.); (M.S.)
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Correspondence: (M.K.); (M.S.)
| |
Collapse
|
11
|
Staurengo-Ferrari L, Deng L, Chiu IM. Interactions between nociceptor sensory neurons and microbial pathogens in pain. Pain 2022; 163:S57-S68. [PMID: 36252233 PMCID: PMC9586460 DOI: 10.1097/j.pain.0000000000002721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Larissa Staurengo-Ferrari
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
| | - Liwen Deng
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
| | - Isaac M. Chiu
- Harvard Medical School, Blavatnik Institute, Department of Immunology, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Andreou AP, Leese C, Greco R, Demartini C, Corrie E, Simsek D, Zanaboni A, Koroleva K, Lloyd JO, Lambru G, Doran C, Gafurov O, Seward E, Giniatullin R, Tassorelli C, Davletov B. Double-Binding Botulinum Molecule with Reduced Muscle Paralysis: Evaluation in In Vitro and In Vivo Models of Migraine. Neurotherapeutics 2021; 18:556-568. [PMID: 33205382 PMCID: PMC8116399 DOI: 10.1007/s13311-020-00967-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 12/29/2022] Open
Abstract
With a prevalence of 15%, migraine is the most common neurological disorder and among the most disabling diseases, taking into account years lived with disability. Current oral medications for migraine show variable effects and are frequently associated with intolerable side effects, leading to the dissatisfaction of both patients and doctors. Injectable therapeutics, which include calcitonin gene-related peptide-targeting monoclonal antibodies and botulinum neurotoxin A (BoNT/A), provide a new paradigm for treatment of chronic migraine but are effective only in approximately 50% of subjects. Here, we investigated a novel engineered botulinum molecule with markedly reduced muscle paralyzing properties which could be beneficial for the treatment of migraine. This stapled botulinum molecule with duplicated binding domain-binary toxin-AA (BiTox/AA)-cleaves synaptosomal-associated protein 25 with a similar efficacy to BoNT/A in neurons; however, the paralyzing effect of BiTox/AA was 100 times less when compared to native BoNT/A following muscle injection. The performance of BiTox/AA was evaluated in cellular and animal models of migraine. BiTox/AA inhibited electrical nerve fiber activity in rat meningeal preparations while, in the trigeminovascular model, BiTox/AA raised electrical and mechanical stimulation thresholds in Aδ- and C-fiber nociceptors. In the rat glyceryl trinitrate (GTN) model, BiTox/AA proved effective in inhibiting GTN-induced hyperalgesia in the orofacial formalin test. We conclude that the engineered botulinum molecule provides a useful prototype for designing advanced future therapeutics for an improved efficacy in the treatment of migraine.
Collapse
Affiliation(s)
- Anna P Andreou
- Headache Research-Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Headache Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK
| | - Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rosaria Greco
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Eve Corrie
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Deniz Simsek
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Anna Zanaboni
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Joseph O Lloyd
- Headache Research-Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Giorgio Lambru
- Headache Research-Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Headache Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK
| | - Ciara Doran
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Oleg Gafurov
- Laboratory of Neurobiology, Kazan University, Kazan, Russia
| | - Elizabeth Seward
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan University, Kazan, Russia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Cristina Tassorelli
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
13
|
Rasetti-Escargueil C, Popoff MR. Engineering Botulinum Neurotoxins for Enhanced Therapeutic Applications and Vaccine Development. Toxins (Basel) 2020; 13:1. [PMID: 33374954 PMCID: PMC7821915 DOI: 10.3390/toxins13010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) show increasing therapeutic applications ranging from treatment of locally paralyzed muscles to cosmetic benefits. At first, in the 1970s, BoNT was used for the treatment of strabismus, however, nowadays, BoNT has multiple medical applications including the treatment of muscle hyperactivity such as strabismus, dystonia, movement disorders, hemifacial spasm, essential tremor, tics, cervical dystonia, cerebral palsy, as well as secretory disorders (hyperhidrosis, sialorrhea) and pain syndromes such as chronic migraine. This review summarizes current knowledge related to engineering of botulinum toxins, with particular emphasis on their potential therapeutic applications for pain management and for retargeting to non-neuronal tissues. Advances in molecular biology have resulted in generating modified BoNTs with the potential to act in a variety of disorders, however, in addition to the modifications of well characterized toxinotypes, the diversity of the wild type BoNT toxinotypes or subtypes, provides the basis for innovative BoNT-based therapeutics and research tools. This expanding BoNT superfamily forms the foundation for new toxins candidates in a wider range of therapeutic options.
Collapse
|
14
|
Sikorra S, Donald S, Elliott M, Schwede S, Coker SF, Kupinski AP, Tripathi V, Foster K, Beard M, Binz T. Engineering an Effective Human SNAP-23 Cleaving Botulinum Neurotoxin A Variant. Toxins (Basel) 2020; 12:toxins12120804. [PMID: 33352834 PMCID: PMC7766560 DOI: 10.3390/toxins12120804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022] Open
Abstract
Botulinum neurotoxin (BoNT) serotype A inhibits neurotransmitter release by cleaving SNAP-25 and represents an established pharmaceutical for treating medical conditions caused by hyperactivity of cholinergic nerves. Oversecretion from non-neuronal cells is often also the cause of diseases. Notably, excessive release of inflammatory messengers is thought to contribute to diseases such as chronic obstructive pulmonary disease, asthma, diabetes etc. The expansion of its application to these medical conditions is prevented because the major non-neuronal SNAP-25 isoform responsible for exocytosis, SNAP-23, is, in humans, virtually resistant to BoNT/A. Based on previous structural data and mutagenesis studies of SNAP-23 we optimized substrate binding pockets of the enzymatic domain for interaction with SNAP-23. Systematic mutagenesis and rational design yielded the mutations E148Y, K166F, S254A, and G305D, each of which individually increased the activity of LC/A against SNAP-23 between 3- to 23-fold. The assembled quadruple mutant showed approximately 2000-fold increased catalytic activity against human SNAP-23 in in vitro cleavage assays. A comparable increase in activity was recorded for the full-length BoNT/A quadruple mutant tested in cultivated primary neurons transduced with a fluorescently tagged-SNAP-23 encoding gene. Equipped with a suitable targeting domain this quadruple mutant promises to complete successfully tests in cells of the immune system.
Collapse
Affiliation(s)
- Stefan Sikorra
- Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623 Hannover, Germany; (S.S.); (S.S.)
| | - Sarah Donald
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK; (S.D.); (M.E.); (S.-F.C.); (A.P.K.); (V.T.); (K.F.)
| | - Mark Elliott
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK; (S.D.); (M.E.); (S.-F.C.); (A.P.K.); (V.T.); (K.F.)
| | - Susan Schwede
- Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623 Hannover, Germany; (S.S.); (S.S.)
| | - Shu-Fen Coker
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK; (S.D.); (M.E.); (S.-F.C.); (A.P.K.); (V.T.); (K.F.)
| | - Adam P. Kupinski
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK; (S.D.); (M.E.); (S.-F.C.); (A.P.K.); (V.T.); (K.F.)
| | - Vineeta Tripathi
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK; (S.D.); (M.E.); (S.-F.C.); (A.P.K.); (V.T.); (K.F.)
| | - Keith Foster
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK; (S.D.); (M.E.); (S.-F.C.); (A.P.K.); (V.T.); (K.F.)
| | - Matthew Beard
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK; (S.D.); (M.E.); (S.-F.C.); (A.P.K.); (V.T.); (K.F.)
- Correspondence: (M.B.); (T.B.); Tel.: +44(0)7850-910340 (M.B.); +49(0)511-532-2859 (T.B.)
| | - Thomas Binz
- Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623 Hannover, Germany; (S.S.); (S.S.)
- Correspondence: (M.B.); (T.B.); Tel.: +44(0)7850-910340 (M.B.); +49(0)511-532-2859 (T.B.)
| |
Collapse
|
15
|
Saccardo A, Soloviev M, Ferrari E. A thermo-responsive, self-assembling biointerface for on demand release of surface-immobilised proteins. Biomater Sci 2020; 8:2673-2681. [PMID: 32254844 DOI: 10.1039/c9bm01957j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dedicated chemistries for on-demand capture and release of biomolecules at the solid-liquid interface are required for applications in drug delivery, for the synthesis of switchable surfaces used in analytical devices and for the assembly of next-generation biomaterials with complex architectures and functions. Here we report the engineering of a binary self-assembling polypeptide system for reversible protein capture, immobilisation and controlled thermo-responsive release from a solid surface. The first element of the binary system is a universal protein substrate immobilised on a solid surface. This protein is bio-inspired by the neuronal SNAP25, which is the protein involved in the docking and fusion of synaptic vesicles to the synaptic membrane. The second element is an artificial chimeric protein engineered to include distinct domains from three different proteins: Syntaxin, VAMP and SNAP25. These native proteins constitute the machinery dedicated to vesicle trafficking in eukaryotes. We removed approximately 70% of native protein sequence from these proteins and constructed a protein chimera capable of high affinity interaction and self-assembly with immobilised substrate. The interaction of the two parts of the engineered protein complex is strong but fully-reversible and therefore the chimera can be recombinantly fused as a tag to a protein of interest, to allow spontaneous assembly and stimuli-sensitive release from the surface upon heating at a predetermined temperature. Two thermo-responsive tags are reported: the first presents remarkable thermal stability with melting temperature of the order of 80 °C; the second disassembles at a substantially lower temperature of about 45 °C. The latter is a promising candidate for remote-controlled localised delivery of therapeutic proteins, as physiologically tolerable local increase of temperatures in the 40-45 °C range can be achieved using magnetic fields, infra-red light or focused ultrasound. Importantly, these two novel polypeptides provide a broader blueprint for the engineering of future functional proteins with predictable folding and response to external stimuli.
Collapse
Affiliation(s)
- Angela Saccardo
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK.
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Enrico Ferrari
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK.
| |
Collapse
|
16
|
Leese C, Bresnahan R, Doran C, Simsek D, Fellows AD, Restani L, Caleo M, Schiavo G, Mavlyutov T, Henke T, Binz T, Davletov B. Duplication of clostridial binding domains for enhanced macromolecular delivery into neurons. Toxicon X 2020; 5:100019. [PMID: 32140681 PMCID: PMC7043326 DOI: 10.1016/j.toxcx.2019.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/03/2022] Open
Abstract
Neurological diseases constitute a quarter of global disease burden and are expected to rise worldwide with the ageing of human populations. There is an increasing need to develop new molecular systems which can deliver drugs specifically into neurons, non-dividing cells meant to last a human lifetime. Neuronal drug delivery must rely on agents which can recognise neurons with high specificity and affinity. Here we used a recently introduced ‘stapling’ system to prepare macromolecules carrying duplicated binding domains from the clostridial family of neurotoxins. We engineered individual parts of clostridial neurotoxins separately and combined them using a strong alpha-helical bundle. We show that combining two identical binding domains of tetanus and botulinum type D neurotoxins, in a sterically defined way by protein stapling, allows enhanced intracellular delivery of molecules into neurons. We also engineered a botulinum neurotoxin type C variant with a duplicated binding domain which increased enzymatic delivery compared to the native type C toxin. We conclude that duplication of the binding parts of tetanus or botulinum neurotoxins will allow production of high avidity agents which could deliver imaging reagents and large therapeutic enzymes into neurons with superior efficiency. Macromolecules carrying duplicated clostridial binding domains (Hc) were produced. Double tetanus Hc increased protein delivery into cultured rodent neurones. Double tetanus Hc increased enzyme delivery into rodent spinal cord and brain area. Double BoNT/D Hc increased enzyme delivery into rat and human neurones in culture. Recombinant double-Hc BoNT/C was engineered, increasing delivery in cell cultures.
Collapse
Affiliation(s)
- Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca Bresnahan
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Ciara Doran
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Deniz Simsek
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Alexander D Fellows
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Laura Restani
- CNR Neuroscience Institute, Pisa, 1-56124 Pisa, Italy
| | - Matteo Caleo
- CNR Neuroscience Institute, Pisa, 1-56124 Pisa, Italy
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Timur Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tina Henke
- Institute of Cellular Biochemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Thomas Binz
- Institute of Cellular Biochemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
17
|
Steward L, Brin MF, Brideau-Andersen A. Novel Native and Engineered Botulinum Neurotoxins. Handb Exp Pharmacol 2020; 263:63-89. [PMID: 32274579 DOI: 10.1007/164_2020_351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Botulinum neurotoxins (BoNTs), produced by Clostridia and other bacteria, are the most potent toxins known. Their cleavage of the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins in neurons prevents the release of neurotransmitters, thus resulting in the muscle paralysis that is characteristic of botulism. This mechanism of action has been exploited for a variety of therapeutic and cosmetic applications of BoNTs. This chapter provides an overview of the native BoNTs, including the classical serotypes and their clinical use, mosaic BoNTs, and novel BoNTs that have been recently identified in clostridial and non-clostridial strains. In addition, the modular structure of native BoNTs, which are composed of a light chain and a heavy chain, is amenable to a multitude of novel fusions and mutations using molecular biology techniques. These novel recombinant BoNTs have been used or are being developed to further characterize the biology of toxins, to assist in vaccine production, to serve as delivery vehicles to neurons, and to be utilized as novel therapeutics for both neuronal and non-neuronal cells.
Collapse
Affiliation(s)
| | - Mitchell F Brin
- Allergan plc, Irvine, CA, USA.,University of California, Irvine, CA, USA
| | | |
Collapse
|
18
|
Tang M, Meng J, Wang J. New Engineered-Botulinum Toxins Inhibit the Release of Pain-Related Mediators. Int J Mol Sci 2019; 21:ijms21010262. [PMID: 31906003 PMCID: PMC6981458 DOI: 10.3390/ijms21010262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Targeted delivery of potent inhibitor of cytokine/pain-mediator into inflammatory or pain-sensing cells is a promising avenue for treating chronic pain, a world-wide major healthcare burden. An unmet need exists for a specific and effective delivery strategy. Herein, we describe a new approach using sortase to site-specifically ligate a non-toxic botulinum neurotoxin D (BoNT/D) core-therapeutic (synaptobrevin-cleaving protease and translocation domains) to cell-specific targeting ligands. An engineered core-therapeutic was efficiently ligated to IL-1β ligand within minutes. The resultant conjugate specifically entered into cultured murine primary macrophages, cleaved synaptobrevin 3 and inhibited LPS/IFN-γ evoked IL-6 release. Likewise, a CGRP receptor antagonist ligand delivered BoNT/D protease into sensory neurons and inhibited K+-evoked substance P release. As cytokines and neuropeptides are major regulators of inflammation and pain, blocking their release by novel engineered inhibitors highlights their therapeutic potential. Our report describes a new and widely-applicable strategy for the production of targeted bio-therapeutics for numerous chronic diseases.
Collapse
Affiliation(s)
| | - Jianghui Meng
- Correspondence: (J.M.); (J.W.); Tel.: +353-1700-7351 (J.M.); +353-1700-7489 (J.W.)
| | - Jiafu Wang
- Correspondence: (J.M.); (J.W.); Tel.: +353-1700-7351 (J.M.); +353-1700-7489 (J.W.)
| |
Collapse
|
19
|
Maiarù M, Leese C, Certo M, Echeverria-Altuna I, Mangione AS, Arsenault J, Davletov B, Hunt SP. Selective neuronal silencing using synthetic botulinum molecules alleviates chronic pain in mice. Sci Transl Med 2018; 10:10/450/eaar7384. [DOI: 10.1126/scitranslmed.aar7384] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/20/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
|
20
|
Fonfria E, Elliott M, Beard M, Chaddock JA, Krupp J. Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity. Toxins (Basel) 2018; 10:toxins10070278. [PMID: 29973505 PMCID: PMC6071219 DOI: 10.3390/toxins10070278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/14/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly successful protein therapeutics. Over 40 naturally occurring BoNTs have been described thus far and, of those, only 2 are commercially available for clinical use. Different members of the BoNT family present different biological properties but share a similar multi-domain structure at the molecular level. In nature, BoNTs are encoded by DNA in producing clostridial bacteria and, as such, are amenable to recombinant production through insertion of the coding DNA into other bacterial species. This, in turn, creates possibilities for protein engineering. Here, we review the production of BoNTs by the natural host and also recombinant production approaches utilised in the field. Applications of recombinant BoNT-production include the generation of BoNT-derived domain fragments, the creation of novel BoNTs with improved performance and enhanced therapeutic potential, as well as the advancement of BoNT vaccines. In this article, we discuss site directed mutagenesis, used to affect the biological properties of BoNTs, including approaches to alter their binding to neurons and to alter the specificity and kinetics of substrate cleavage. We also discuss the target secretion inhibitor (TSI) platform, in which the neuronal binding domain of BoNTs is substituted with an alternative cellular ligand to re-target the toxins to non-neuronal systems. Understanding and harnessing the potential of the biological diversity of natural BoNTs, together with the ability to engineer novel mutations and further changes to the protein structure, will provide the basis for increasing the scope of future BoNT-based therapeutics.
Collapse
Affiliation(s)
- Elena Fonfria
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Mark Elliott
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Matthew Beard
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - John A Chaddock
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Johannes Krupp
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| |
Collapse
|
21
|
Webb RP. Engineering of Botulinum Neurotoxins for Biomedical Applications. Toxins (Basel) 2018; 10:toxins10060231. [PMID: 29882791 PMCID: PMC6024800 DOI: 10.3390/toxins10060231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) have been used as therapeutic agents in the clinical treatment of a wide array of neuromuscular and autonomic neuronal transmission disorders. These toxins contain three functional domains that mediate highly specific neuronal cell binding, internalization and cytosolic delivery of proteolytic enzymes that cleave proteins integral to the exocytosis of neurotransmitters. The exceptional cellular specificity, potency and persistence within the neuron that make BoNTs such effective toxins, also make them attractive models for derivatives that have modified properties that could potentially expand their therapeutic repertoire. Advances in molecular biology techniques and rapid DNA synthesis have allowed a wide variety of novel BoNTs with alternative functions to be assessed as potential new classes of therapeutic drugs. This review examines how the BoNTs have been engineered in an effort to produce new classes of therapeutic molecules to address a wide array of disorders.
Collapse
Affiliation(s)
- Robert P Webb
- The Division of Molecular and Translational Sciences, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, USA.
| |
Collapse
|
22
|
Tehran DA, Pirazzini M. Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip. Toxins (Basel) 2018; 10:toxins10050190. [PMID: 29748471 PMCID: PMC5983246 DOI: 10.3390/toxins10050190] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
Botulinum neurotoxins (BoNTs), the etiological agents of botulism, are the deadliest toxins known to humans. Yet, thanks to their biological and toxicological features, BoNTs have become sophisticated tools to study neuronal physiology and valuable therapeutics for an increasing number of human disorders. BoNTs are produced by multiple bacteria of the genus Clostridium and, on the basis of their different immunological properties, were classified as seven distinct types of toxin. BoNT classification remained stagnant for the last 50 years until, via bioinformatics and high-throughput sequencing techniques, dozens of BoNT variants, novel serotypes as well as BoNT-like toxins within non-clostridial species have been discovered. Here, we discuss how the now “booming field” of botulinum neurotoxin may shed light on their evolutionary origin and open exciting avenues for future therapeutic applications.
Collapse
Affiliation(s)
- Domenico Azarnia Tehran
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
23
|
Abstract
BiTox attenuated A-nociceptor-mediated mechanosensitivity in rat models of chronic pain. Plasma extravasation and keratinocyte proliferation were also inhibited but C-fiber nociception was not impaired. Local injections of botulinum toxins have been reported to be useful not only for the treatment of peripheral neuropathic pain and migraine but also to cause long-lasting muscle paralysis, a potentially serious side effect. Recently, a botulinum A-based molecule (“BiTox”) has been synthesized that retains neuronal silencing capacity without triggering muscle paralysis. In this study, we examined whether BiTox delivered peripherally was able to reduce or prevent the increased nociceptive sensitivity found in animal models of inflammatory, surgical, and neuropathic pain. Plasma extravasation and edema were also measured as well as keratinocyte proliferation. No motor deficits were seen and acute thermal and mechanical nociceptive thresholds were unimpaired by BiTox injections. We found reduced plasma extravasation and inflammatory edema as well as lower levels of keratinocyte proliferation in cutaneous tissue after local BiTox injection. However, we found no evidence that BiTox was transported to the dorsal root ganglia or dorsal horn and no deficits in formalin-elicited behaviors or capsaicin or formalin-induced c-Fos expression within the dorsal horn. In contrast, Bitox treatment strongly reduced A-nociceptor-mediated secondary mechanical hyperalgesia associated with either complete Freund’s adjuvant (CFA)-induced joint inflammation or capsaicin injection and the hypersensitivity associated with spared nerve injury. These results imply that although local release of neuromodulators from C-fibers was inhibited by BiTox injection, C-nociceptive signaling function was not impaired. Taken together with recent clinical data the results suggest that BiTox should be considered for treatment of pain conditions in which A-nociceptors are thought to play a significant role.
Collapse
|
24
|
Mavlyutov TA, Duellman T, Kim HT, Epstein ML, Leese C, Davletov BA, Yang J. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody. Neuroscience 2016; 331:148-57. [PMID: 27339730 PMCID: PMC5047027 DOI: 10.1016/j.neuroscience.2016.06.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023]
Abstract
Sigma-1 receptor (S1R) is a unique pluripotent modulator of living systems and has been reported to be associated with a number of neurological diseases including pathological pain. Intrathecal administration of S1R antagonists attenuates the pain behavior of rodents in both inflammatory and neuropathic pain models. However, the S1R localization in the spinal cord shows a selective ventral horn motor neuron distribution, suggesting the high likelihood of S1R in the dorsal root ganglion (DRG) mediating the pain relief by intrathecally administered drugs. Since primary afferents are the major component in the pain pathway, we examined the mouse and rat DRGs for the presence of the S1R. At both mRNA and protein levels, quantitative RT-PCR (qRT-PCR) and Western confirmed that the DRG contains greater S1R expression in comparison to spinal cord, cortex, or lung but less than liver. Using a custom-made highly specific antibody, we demonstrated the presence of a strong S1R immuno-fluorescence in all rat and mouse DRG neurons co-localizing with the Neuron-Specific Enolase (NSE) marker, but not in neural processes or GFAP-positive glial satellite cells. In addition, S1R was absent in afferent terminals in the skin and in the dorsal horn of the spinal cord. Using immuno-electron microscopy, we showed that S1R is detected in the nuclear envelope and endoplasmic reticulum (ER) of DRG cells. In contrast to other cells, S1R is also located directly at the plasma membrane of the DRG neurons. The presence of S1R in the nuclear envelope of all DRG neurons suggests an exciting potential role of S1R as a regulator of neuronal nuclear activities and/or gene expression, which may provide insight toward new molecular targets for modulating nociception at the level of primary afferent neurons.
Collapse
MESH Headings
- Animals
- Antibodies
- Blotting, Western
- Cell Membrane/metabolism
- Endoplasmic Reticulum/metabolism
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/ultrastructure
- Immunohistochemistry
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Neurons/metabolism
- Neurons/ultrastructure
- Nuclear Envelope/metabolism
- Phosphopyruvate Hydratase/metabolism
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Receptors, sigma/genetics
- Receptors, sigma/immunology
- Receptors, sigma/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Timur A Mavlyutov
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA.
| | - Tyler Duellman
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA
| | - Hung Tae Kim
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA
| | - Miles L Epstein
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, South Yorkshire, England, United Kingdom
| | - Bazbek A Davletov
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, South Yorkshire, England, United Kingdom
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53726, USA.
| |
Collapse
|
25
|
Arsenault J, Cuijpers SAG, Niranjan D, Davletov B. Unexpected transcellular protein crossover occurs during canonical DNA transfection. J Cell Biochem 2015; 115:2047-54. [PMID: 25043607 PMCID: PMC4263260 DOI: 10.1002/jcb.24884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 07/09/2014] [Indexed: 01/13/2023]
Abstract
Transfection of DNA has been invaluable for biological sciences, yet the effects upon membrane homeostasis are far from negligible. Here, we demonstrate that Neuro2A cells transfected using Lipofectamine LTX with the fluorescently coupled Botulinum serotype A holoenzyme (EGFP-LcA) cDNA express this SNAP25 protease that can, once translated, escape the transfected host cytosol and become endocytosed into untransfected cells, without its innate binding and translocation domains. Fluorescent readouts revealed moderate transfection rates (30–50%) while immunoblotting revealed a surprisingly total enzymatic cleavage of SNAP25; the transgenic protein acted beyond the confines of its host cell. Using intracellular dyes, no important cytotoxic effects were observed from reagent treatment alone, which excluded the possibility of membrane ruptures, though noticeably, intracellular acidic organelles were redistributed towards the plasma membrane. This drastic, yet frequently unobserved, change in protein permeability and endosomal trafficking following reagent treatment highlights important concerns for all studies using transient transfection. J. Cell. Biochem. 115: 2047–2054, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jason Arsenault
- MRC-Laboratory of Molecular Biology, Neurobiology Division, Cambridge, CB2 0QH, UK; Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada, M5S 3M2
| | | | | | | |
Collapse
|
26
|
Harper CB, Bademosi AT, Coulson EJ, Meunier FA. A role for SNAREs in neuronal survival? J Neurochem 2014; 129:753-5. [PMID: 24697239 DOI: 10.1111/jnc.12699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Callista B Harper
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | | | | | | |
Collapse
|
27
|
Arsenault J, Cuijpers SAG, Ferrari E, Niranjan D, Rust A, Leese C, O'Brien JA, Binz T, Davletov B. Botulinum protease-cleaved SNARE fragments induce cytotoxicity in neuroblastoma cells. J Neurochem 2014; 129:781-91. [PMID: 24372287 PMCID: PMC4063335 DOI: 10.1111/jnc.12645] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/11/2022]
Abstract
Soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) are crucial for exocytosis, trafficking, and neurite outgrowth, where vesicular SNAREs are directed toward their partner target SNAREs: synaptosomal-associated protein of 25 kDa and syntaxin. SNARE proteins are normally membrane bound, but can be cleaved and released by botulinum neurotoxins. We found that botulinum proteases types C and D can easily be transduced into endocrine cells using DNA-transfection reagents. Following administration of the C and D proteases into normally refractory Neuro2A neuroblastoma cells, the SNARE proteins were cleaved with high efficiency within hours. Remarkably, botulinum protease exposures led to cytotoxicity evidenced by spectrophotometric assays and propidium iodide penetration into the nuclei. Direct delivery of SNARE fragments into the neuroblastoma cells reduced viability similar to botulinum proteases' application. We observed synergistic cytotoxic effects of the botulinum proteases, which may be explained by the release and interaction of soluble SNARE fragments. We show for the first time that previously observed cytotoxicity of botulinum neurotoxins/C in neurons could be achieved in cells of neuroendocrine origin with implications for medical uses of botulinum preparations.
Collapse
|
28
|
Ferrari E, Gu C, Niranjan D, Restani L, Rasetti-Escargueil C, Obara I, Geranton SM, Arsenault J, Goetze TA, Harper CB, Nguyen TH, Maywood E, O'Brien J, Schiavo G, Wheeler DW, Meunier FA, Hastings M, Edwardson JM, Sesardic D, Caleo M, Hunt SP, Davletov B. Synthetic self-assembling clostridial chimera for modulation of sensory functions. Bioconjug Chem 2013; 24:1750-9. [PMID: 24011174 PMCID: PMC3901392 DOI: 10.1021/bc4003103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridial neurotoxins reversibly block neuronal communication for weeks and months. While these proteolytic neurotoxins hold great promise for clinical applications and the investigation of brain function, their paralytic activity at neuromuscular junctions is a stumbling block. To redirect the clostridial activity to neuronal populations other than motor neurons, we used a new self-assembling method to combine the botulinum type A protease with the tetanus binding domain, which natively targets central neurons. The two parts were produced separately and then assembled in a site-specific way using a newly introduced 'protein stapling' technology. Atomic force microscopy imaging revealed dumbbell shaped particles which measure ∼23 nm. The stapled chimera inhibited mechanical hypersensitivity in a rat model of inflammatory pain without causing either flaccid or spastic paralysis. Moreover, the synthetic clostridial molecule was able to block neuronal activity in a defined area of visual cortex. Overall, we provide the first evidence that the protein stapling technology allows assembly of distinct proteins yielding new biomedical properties.
Collapse
Affiliation(s)
- Enrico Ferrari
- MRC Laboratory of Molecular Biology , Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Masuyer G, Chaddock JA, Foster KA, Acharya KR. Engineered botulinum neurotoxins as new therapeutics. Annu Rev Pharmacol Toxicol 2013; 54:27-51. [PMID: 24016211 DOI: 10.1146/annurev-pharmtox-011613-135935] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Botulinum neurotoxins (BoNTs) cause flaccid paralysis by inhibiting neurotransmission at cholinergic nerve terminals. Each BoNT consists of three domains that are essential for toxicity: the binding domain, the translocation domain, and the catalytic light-chain domain. BoNT modular architecture is associated with a multistep mechanism that culminates in the intracellular proteolysis of SNARE (soluble N-ethylmaleimide-sensitive-fusion-protein attachment protein receptor) proteins, which prevents synaptic vesicle exocytosis. As the most toxic proteins known, BoNTs have been extensively studied and are used as pharmaceutical agents to treat an increasing variety of disorders. This review summarizes the level of sophistication reached in BoNT engineering and highlights the diversity of approaches taken to utilize the modularity of the toxin. Improved efficiency and applicability have been achieved by direct mutagenesis and interserotype domain rearrangement. The scope of BoNT activity has been extended to nonneuronal cells and offers the basis for novel biomolecules in the treatment of secretion disorders.
Collapse
Affiliation(s)
- Geoffrey Masuyer
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom;
| | | | | | | |
Collapse
|
30
|
Arsenault J, Ferrari E, Niranjan D, Cuijpers SAG, Gu C, Vallis Y, O'Brien J, Davletov B. Stapling of the botulinum type A protease to growth factors and neuropeptides allows selective targeting of neuroendocrine cells. J Neurochem 2013; 126:223-33. [PMID: 23638840 PMCID: PMC3758956 DOI: 10.1111/jnc.12284] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/16/2013] [Accepted: 04/24/2013] [Indexed: 01/12/2023]
Abstract
Precise cellular targeting of macromolecular cargos has important biotechnological and medical implications. Using a recently established ‘protein stapling’ method, we linked the proteolytic domain of botulinum neurotoxin type A (BoNT/A) to a selection of ligands to target neuroendocrine tumor cells. The botulinum proteolytic domain was chosen because of its well-known potency to block the release of neurotransmitters and hormones. Among nine tested stapled ligands, the epidermal growth factor was able to deliver the botulinum enzyme into pheochromocytoma PC12 and insulinoma Min6 cells; ciliary neurotrophic factor was effective on neuroblastoma SH-SY5Y and Neuro2A cells, whereas corticotropin-releasing hormone was active on pituitary AtT-20 cells and the two neuroblastoma cell lines. In neuronal cultures, the epidermal growth factor- and ciliary neurotrophic factor-directed botulinum enzyme targeted distinct subsets of neurons whereas the whole native neurotoxin targeted the cortical neurons indiscriminately. At nanomolar concentrations, the retargeted botulinum molecules were able to inhibit stimulated release of hormones from tested cell lines suggesting their application for treatments of neuroendocrine disorders.
Collapse
Affiliation(s)
- Jason Arsenault
- MRC Laboratory of Molecular Biology, Neurobiology, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Botulinum neurotoxins are used clinically for conditions characterized by hyperexcitability of peripheral nerve terminals and hypersecretory syndromes. These neurotoxins are synthesized as precursor proteins with low activity, but their effects are mediated by the active form of the neurotoxin through a multistep mechanism. Following a high-affinity interaction with a protein receptor and polysialogangliosides on the synaptic membrane, botulinum neurotoxins enter the neuron and causes a sustained inhibition of synaptic transmission. The active neurotoxin is part of a high-molecular-weight complex that protects the neurotoxin from proteolytic degradation. Although complexing proteins do not affect diffusion of therapeutic neurotoxin, they may lead to the development of neutralizing antibodies that block responsiveness to it. Nerve terminal intoxication is reversible and its duration varies for different BoNT serotypes. Although it was previously assumed that botulinum neurotoxins exert effects only on the peripheral synapses, such as the neuromuscular junction, there is now substantial evidence that these neurotoxins affect neurotransmission at distal central nervous system sites as well.
Collapse
Affiliation(s)
- Ann P Tighe
- 74 Schindler Sq, Hackettstown, NJ 07840, USA
| | | |
Collapse
|
32
|
Chen C, Wang S, Wang H, Mao X, Zhang T, Ji G, Shi X, Xia T, Lu W, Zhang D, Dai J, Guo Y. Potent neutralization of botulinum neurotoxin/B by synergistic action of antibodies recognizing protein and ganglioside receptor binding domain. PLoS One 2012; 7:e43845. [PMID: 22952786 PMCID: PMC3430616 DOI: 10.1371/journal.pone.0043845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/26/2012] [Indexed: 11/27/2022] Open
Abstract
Background Botulinum neurotoxins (BoNTs), the causative agents for life-threatening human disease botulism, have been recognized as biological warfare agents. Monoclonal antibody (mAb) therapeutics hold considerable promise as BoNT therapeutics, but the potencies of mAbs against BoNTs are usually less than that of polyclonal antibodies (or oligoclonal antibodies). The confirmation of key epitopes with development of effective mAb is urgently needed. Methods and Findings We selected 3 neutralizing mAbs which recognize different non-overlapping epitopes of BoNT/B from a panel of neutralizing antibodies against BoNT/B. By comparing the neutralizing effects among different combination groups, we found that 8E10, response to ganglioside receptor binding site, could synergy with 5G10 and 2F4, recognizing non-overlapping epitopes within Syt II binding sites. However, the combination of 5G10 with 2F4 blocking protein receptor binding sites did not achieve synergistical effects. Moreover, we found that the binding epitope of 8E10 was conserved among BoNT A, B, E, and F, which might cross-protect the challenge of different serotypes of BoNTs in vivo. Conclusions The combination of two mAbs recognizing different receptors' binding domain in BoNTs has a synergistic effect. 8E10 is a potential universal partner for the synergistical combination with other mAb against protein receptor binding domain in BoNTs of other serotypes.
Collapse
Affiliation(s)
- Changchun Chen
- School of Pharmacy, The Center for Antibody Medicine of Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shuhui Wang
- School of Pharmacy, The Center for Antibody Medicine of Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Huajing Wang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
| | - Xiaoyan Mao
- Lanzhou Institute of Biological Products, Lanzhou, Gansu, People's Republic of China
| | - Tiancheng Zhang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
| | - Guanghui Ji
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
| | - Xin Shi
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
| | - Tian Xia
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
| | - Weijia Lu
- Lanzhou Institute of Biological Products, Lanzhou, Gansu, People's Republic of China
| | - Dapeng Zhang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
| | - Jianxin Dai
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
- PLA General Hospital Cancer Center, Beijing, People's Republic of China
- * E-mail: (JXD); (YJG)
| | - Yajun Guo
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
- PLA General Hospital Cancer Center, Beijing, People's Republic of China
- * E-mail: (JXD); (YJG)
| |
Collapse
|
33
|
Davletov B, Ferrari E, Ushkaryov Y. Presynaptic neurotoxins: an expanding array of natural and modified molecules. Cell Calcium 2012; 52:234-40. [PMID: 22658826 DOI: 10.1016/j.ceca.2012.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/04/2012] [Accepted: 05/13/2012] [Indexed: 11/15/2022]
Abstract
The process of neurotransmitter release from nerve terminals is a target for a wide array of presynaptic toxins produced by various species, from humble bacteria to arthropods to vertebrate animals. Unlike other toxins, most presynaptic neurotoxins do not kill cells but simply inhibit or activate synaptic transmission. In this review, we describe two types of presynaptic neurotoxins: clostridial toxins and latrotoxins, which are, respectively, the most potent blockers and stimulators of neurotransmitter release. These toxins have been instrumental in defining presynaptic functions and are now widely used in research and medicine. Here, we would like to analyse the diversity of these toxins and demonstrate how the knowledge of their structures and mechanisms of action can help us to design better tools for research and medical applications. We will look at natural and synthetic variations of these exquisite molecular machines, highlighting recent advances in our understanding of presynaptic toxins and questions that remain to be answered. If we can decipher how a given biomolecule is modified by nature to target different species, we will be able to design new variants that carry only desired characteristics to achieve specific therapeutic, agricultural or research goals. Indeed, a number of research groups have already initiated a quest to harness the power of natural toxins with the aim of making them more specifically targeted and safer for future research and medical applications.
Collapse
Affiliation(s)
- Bazbek Davletov
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | | | | |
Collapse
|
34
|
Ferrari E, Soloviev M, Niranjan D, Arsenault J, Gu C, Vallis Y, O'Brien J, Davletov B. Assembly of protein building blocks using a short synthetic peptide. Bioconjug Chem 2012; 23:479-84. [PMID: 22299630 PMCID: PMC3309608 DOI: 10.1021/bc2005208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Combining proteins or their defined domains offers new
enhanced
functions. Conventionally, two proteins are either fused into a single
polypeptide chain by recombinant means or chemically cross-linked.
However, these strategies can have drawbacks such as poor expression
(recombinant fusions) or aggregation and inactivation (chemical cross-linking),
especially in the case of large multifunctional proteins. We developed
a new linking method which allows site-oriented, noncovalent, yet
irreversible stapling of modified proteins at neutral pH and ambient
temperature. This method is based on two distinct polypeptide linkers
which self-assemble in the presence of a specific peptide staple allowing
on-demand and irreversible combination of protein domains. Here we
show that linkers can either be expressed or be chemically conjugated
to proteins of interest, depending on the source of the proteins.
We also show that the peptide staple can be shortened to 24 amino
acids still permitting an irreversible combination of functional proteins.
The versatility of this modular technique is demonstrated by stapling
a variety of proteins either in solution or to surfaces.
Collapse
Affiliation(s)
- Enrico Ferrari
- MRC Laboratory of Molecular Biology, Hills Road, CB2 0QH Cambridge, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Rossi EA, Goldenberg DM, Chang CH. The dock-and-lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug Chem 2012; 23:309-23. [PMID: 22168393 DOI: 10.1021/bc2004999] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Advances in recombinant protein technology have facilitated the production of increasingly complex fusion proteins with multivalent, multifunctional designs for use in various in vitro and in vivo applications. In addition, traditional chemical conjugation remains a primary choice for linking proteins with polyethylene glycol (PEG), biotin, fluorescent markers, drugs, and others. More recently, site-specific conjugation of two or more interactive modules has emerged as a valid approach to expand the existing repertoires produced by either recombinant engineering or chemical conjugation alone, thus advancing the range of potential applications. Five such methods, each involving a specific binding event, are highlighted in this review, with a particular focus on the Dock-and-Lock (DNL) method, which exploits the natural interaction between the dimerization and docking domain (DDD) of cAMP-dependent protein kinase (PKA) and the anchoring domain (AD) of A-kinase anchoring proteins (AKAP). The various enablements of DNL to date include trivalent, tetravalent, pentavalent, and hexavalent antibodies of monospecificity or bispecificity; immnocytokines comprising multiple copies of interferon-alpha (IFNα); and site-specific PEGylation. These achievements attest to the power of the DNL platform technology to develop novel therapeutic and diagnostic agents from both proteins and nonproteins for unmet medical needs.
Collapse
Affiliation(s)
- Edmund A Rossi
- IBC Pharmaceuticals, Inc., Morris Plains, New Jersey, USA.
| | | | | |
Collapse
|
36
|
Transforming the Domain Structure of Botulinum Neurotoxins into Novel Therapeutics. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Darios F. [A modular and non pathogenic type A botulinum toxin]. Med Sci (Paris) 2011; 27:694-6. [PMID: 21880251 DOI: 10.1051/medsci/2011278005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Harper CB, Martin S, Nguyen TH, Daniels SJ, Lavidis NA, Popoff MR, Hadzic G, Mariana A, Chau N, McCluskey A, Robinson PJ, Meunier FA. Dynamin inhibition blocks botulinum neurotoxin type A endocytosis in neurons and delays botulism. J Biol Chem 2011; 286:35966-35976. [PMID: 21832053 DOI: 10.1074/jbc.m111.283879] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The botulinum neurotoxins (BoNTs) are di-chain bacterial proteins responsible for the paralytic disease botulism. Following binding to the plasma membrane of cholinergic motor nerve terminals, BoNTs are internalized into an endocytic compartment. Although several endocytic pathways have been characterized in neurons, the molecular mechanism underpinning the uptake of BoNTs at the presynaptic nerve terminal is still unclear. Here, a recombinant BoNT/A heavy chain binding domain (Hc) was used to unravel the internalization pathway by fluorescence and electron microscopy. BoNT/A-Hc initially enters cultured hippocampal neurons in an activity-dependent manner into synaptic vesicles and clathrin-coated vesicles before also entering endosomal structures and multivesicular bodies. We found that inhibiting dynamin with the novel potent Dynasore analog, Dyngo-4a(TM), was sufficient to abolish BoNT/A-Hc internalization and BoNT/A-induced SNAP25 cleavage in hippocampal neurons. Dyngo-4a also interfered with BoNT/A-Hc internalization into motor nerve terminals. Furthermore, Dyngo-4a afforded protection against BoNT/A-induced paralysis at the rat hemidiaphragm. A significant delay of >30% in the onset of botulism was observed in mice injected with Dyngo-4a. Dynamin inhibition therefore provides a therapeutic avenue for the treatment of botulism and other diseases caused by pathogens sharing dynamin-dependent uptake mechanisms.
Collapse
Affiliation(s)
- Callista B Harper
- Queensland Brain Institute, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sally Martin
- Queensland Brain Institute, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tam H Nguyen
- Queensland Brain Institute, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shari J Daniels
- Queensland Brain Institute, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michel R Popoff
- Unité des Bactéries anaérobies et Toxines, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex, France
| | - Gordana Hadzic
- Centre for Chemical Biology, Chemistry Building, the University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Anna Mariana
- Children's Medical Research Institute, the University of Sydney, Sydney, New South Wales 2145, Australia
| | - Ngoc Chau
- Children's Medical Research Institute, the University of Sydney, Sydney, New South Wales 2145, Australia
| | - Adam McCluskey
- Centre for Chemical Biology, Chemistry Building, the University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Phillip J Robinson
- Children's Medical Research Institute, the University of Sydney, Sydney, New South Wales 2145, Australia
| | - Frederic A Meunier
- Queensland Brain Institute, the University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
39
|
Ferrari E, Maywood ES, Restani L, Caleo M, Pirazzini M, Rossetto O, Hastings MH, Niranjan D, Schiavo G, Davletov B. Re-assembled botulinum neurotoxin inhibits CNS functions without systemic toxicity. Toxins (Basel) 2011; 3:345-55. [PMID: 22069712 PMCID: PMC3202830 DOI: 10.3390/toxins3040345] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/18/2011] [Accepted: 03/23/2011] [Indexed: 11/23/2022] Open
Abstract
The therapeutic potential of botulinum neurotoxin type A (BoNT/A) has recently been widely recognized. BoNT/A acts to silence synaptic transmission via specific proteolytic cleavage of an essential neuronal protein, SNAP25. The advantages of BoNT/A-mediated synaptic silencing include very long duration, high potency and localized action. However, there is a fear of possible side-effects of BoNT/A due to its diffusible nature which may lead to neuromuscular blockade away from the injection site. We recently developed a “protein-stapling” technology which allows re-assembly of BoNT/A from two separate fragments. This technology allowed, for the first time, safe production of this popular neuronal silencing agent. Here we evaluated the re-assembled toxin in several CNS assays and assessed its systemic effects in an animal model. Our results show that the re-assembled toxin is potent in inhibiting CNS function at 1 nM concentration but surprisingly does not exhibit systemic toxicity after intraperitoneal injection even at 200 ng/kg dose. This shows that the re-assembled toxin represents a uniquely safe tool for neuroscience research and future medical applications.
Collapse
Affiliation(s)
- Enrico Ferrari
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
| | - Elizabeth S. Maywood
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
| | - Laura Restani
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 56100 Pisa, Italy; (L.R.); (M.C.)
| | - Matteo Caleo
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 56100 Pisa, Italy; (L.R.); (M.C.)
| | - Marco Pirazzini
- Dipartimento di Scienze Biomediche, Università di Padova, 35121 Padova, Italy; (M.P.); (O.R.)
| | - Ornella Rossetto
- Dipartimento di Scienze Biomediche, Università di Padova, 35121 Padova, Italy; (M.P.); (O.R.)
| | - Michael H. Hastings
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
| | - Dhevahi Niranjan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
| | - Giampietro Schiavo
- Molecular NeuroPathoBiology Laboratory, Cancer Research UK London Research Institute, London WC2A 3LY, UK;
| | - Bazbek Davletov
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; (E.F.); (E.S.M.); (M.H.H.); (D.N.)
- Author to whom correspondence should be addressed; ; Tel.: +44-1-223-402-009; Fax: +44-1-223-402-310
| |
Collapse
|
40
|
Thakur G, Micic M, Yang Y, Li W, Movia D, Giordani S, Zhang H, Leblanc RM. Conjugated Quantum Dots Inhibit the Amyloid β (1-42) Fibrillation Process. Int J Alzheimers Dis 2011; 2011:502386. [PMID: 21423556 PMCID: PMC3056432 DOI: 10.4061/2011/502386] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/15/2010] [Indexed: 11/20/2022] Open
Abstract
Nanoparticles have
enormous potential in diagnostic and therapeutic
studies. We have demonstrated that the amyloid
beta mixed with and conjugated to dihydrolipoic
acid- (DHLA) capped CdSe/ZnS quantum dots (QDs)
of size approximately 2.5 nm can be used
to reduce the fibrillation process. Transmission
electron microscopy (TEM) and atomic force
microscopy (AFM) were used as tools for analysis
of fibrillation. There is a significant change
in morphology of fibrils when amyloid β (1–42) (Aβ (1–42)) is mixed or conjugated to the QDs. The length and the width of the fibrils vary under modified conditions. Thioflavin T (ThT) fluorescence supports the decrease in fibril formation in presence of DHLA-capped QDs.
Collapse
Affiliation(s)
- Garima Thakur
- 1301 Memorial Drive, Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Towards new uses of botulinum toxin as a novel therapeutic tool. Toxins (Basel) 2011; 3:63-81. [PMID: 22069690 PMCID: PMC3210455 DOI: 10.3390/toxins3010063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 12/31/2022] Open
Abstract
The uses of botulinum toxin in the fields of neurology, ophthalmology, urology, rehabilitation medicine and aesthetic applications have been revolutionary for the treatment of patients. This non-invasive therapeutic has continually been developed since first discovered in the 1970s as a new approach to what were previously surgical treatments. As these applications develop, so also the molecules are developing into tools with new therapeutic properties in specific clinical areas. This review examines how the botulinum toxin molecule is being adapted to new therapeutic uses and also how new areas of use for the existing molecules are being identified. Prospects for future developments are also considered.
Collapse
|