1
|
Bizior A, Williamson G, Harris T, Hoskisson PA, Javelle A. Prokaryotic ammonium transporters: what has three decades of research revealed? MICROBIOLOGY (READING, ENGLAND) 2023; 169:001360. [PMID: 37450375 PMCID: PMC10433425 DOI: 10.1099/mic.0.001360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
The exchange of ammonium across cellular membranes is a fundamental process in all domains of life. In plants, bacteria and fungi, ammonium represents a vital source of nitrogen, which is scavenged from the external environment. In contrast, in animal cells ammonium is a cytotoxic metabolic waste product and must be excreted to prevent cell death. Transport of ammonium is facilitated by the ubiquitous Amt/Mep/Rh transporter superfamily. In addition to their function as transporters, Amt/Mep/Rh proteins play roles in a diverse array of biological processes and human physiopathology. Despite this clear physiological importance and medical relevance, the molecular mechanism of Amt/Mep/Rh proteins has remained elusive. Crystal structures of bacterial Amt/Rh proteins suggest electroneutral transport, whilst functional evidence supports an electrogenic mechanism. Here, focusing on bacterial members of the family, we summarize the structure of Amt/Rh proteins and what three decades of research tells us concerning the general mechanisms of ammonium translocation, in particular the possibility that the transport mechanism might differ in various members of the Amt/Mep/Rh superfamily.
Collapse
Affiliation(s)
- Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| |
Collapse
|
2
|
Koltun A, Maniero RA, Vitti M, de Setta N, Giehl RFH, Lima JE, Figueira A. Functional characterization of the sugarcane ( Saccharum spp.) ammonium transporter AMT2;1 suggests a role in ammonium root-to-shoot translocation. FRONTIERS IN PLANT SCIENCE 2022; 13:1039041. [PMID: 36466275 PMCID: PMC9716016 DOI: 10.3389/fpls.2022.1039041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
AMMONIUM TRANSPORTER/METHYLAMMONIUM PERMEASE/RHESUS (AMT) family members transport ammonium across membranes in all life domains. Plant AMTs can be categorized into AMT1 and AMT2 subfamilies. Functional studies of AMTs, particularly AMT1-type, have been conducted using model plants but little is known about the function of AMTs from crops. Sugarcane (Saccharum spp.) is a major bioenergy crop that requires heavy nitrogen fertilization but depends on a low carbon-footprint for competitive sustainability. Here, we identified and functionally characterized sugarcane ScAMT2;1 by complementing ammonium uptake-defective mutants of Saccharomyces cerevisiae and Arabidopsis thaliana. Reporter gene driven by the ScAMT2;1 promoter in A. thaliana revealed preferential expression in the shoot vasculature and root endodermis/pericycle according to nitrogen availability and source. Arabidopsis quadruple mutant plants expressing ScAMT2;1 driven by the CaMV35S promoter or by a sugarcane endogenous promoter produced significantly more biomass than mutant plants when grown in NH4 + and showed more 15N-ammonium uptake by roots and nitrogen translocation to shoots. In A. thaliana, ScAMT2;1 displayed a Km of 90.17 µM and Vmax of 338.99 µmoles h-1 g-1 root DW. Altogether, our results suggest that ScAMT2;1 is a functional high-affinity ammonium transporter that might contribute to ammonium uptake and presumably to root-to-shoot translocation under high NH4 + conditions.
Collapse
Affiliation(s)
- Alessandra Koltun
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Rodolfo A. Maniero
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marielle Vitti
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ricardo F. H. Giehl
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Joni E. Lima
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
3
|
Kellom M, Pagliara S, Richards TA, Santoro AE. Exaggerated trans-membrane charge of ammonium transporters in nutrient-poor marine environments. Open Biol 2022; 12:220041. [PMID: 35857930 PMCID: PMC9277239 DOI: 10.1098/rsob.220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transporter proteins are a vital interface between cells and their environment. In nutrient-limited environments, microbes with transporters that are effective at bringing substrates into their cells will gain a competitive advantage over variants with reduced transport function. Microbial ammonium transporters (Amt) bring ammonium into the cytoplasm from the surrounding periplasm space, but diagnosing Amt adaptations to low nutrient environments solely from sequence data has been elusive. Here, we report altered Amt sequence amino acid distribution from deep marine samples compared to variants sampled from shallow water in two important microbial lineages of the marine water column community-Marine Group I Archaea (Thermoproteota) and the uncultivated gammaproteobacterial lineage SAR86. This pattern indicates an evolutionary pressure towards an increasing dipole in Amt for these clades in deep ocean environments and is predicted to generate stronger electric fields facilitating ammonium acquisition. This pattern of increasing dipole charge with depth was not observed in lineages capable of accessing alternative nitrogen sources, including the abundant alphaproteobacterial clade SAR11. We speculate that competition for ammonium in the deep ocean drives transporter sequence evolution. The low concentration of ammonium in the deep ocean is therefore likely due to rapid uptake by Amts concurrent with decreasing nutrient flux.
Collapse
Affiliation(s)
- Matthew Kellom
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Thomas A. Richards
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Alyson E. Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
4
|
Khalid S, Schroeder C, Bond PJ, Duncan AL. What have molecular simulations contributed to understanding of Gram-negative bacterial cell envelopes? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35294337 PMCID: PMC9558347 DOI: 10.1099/mic.0.001165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial cell envelopes are compositionally complex and crowded and while highly dynamic in some areas, their molecular motion is very limited, to the point of being almost static in others. Therefore, it is no real surprise that studying them at high resolution across a range of temporal and spatial scales requires a number of different techniques. Details at atomistic to molecular scales for up to tens of microseconds are now within range for molecular dynamics simulations. Here we review how such simulations have contributed to our current understanding of the cell envelopes of Gram-negative bacteria.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Cyril Schroeder
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
5
|
Brito AS, Neuhäuser B, Wintjens R, Marini AM, Boeckstaens M. Yeast filamentation signaling is connected to a specific substrate translocation mechanism of the Mep2 transceptor. PLoS Genet 2020; 16:e1008634. [PMID: 32069286 PMCID: PMC7048316 DOI: 10.1371/journal.pgen.1008634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 02/28/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
The dimorphic transition from the yeast to the filamentous form of growth allows cells to explore their environment for more suitable niches and is often crucial for the virulence of pathogenic fungi. In contrast to their Mep1/3 paralogues, fungal Mep2-type ammonium transport proteins of the conserved Mep-Amt-Rh family have been assigned an additional receptor role required to trigger the filamentation signal in response to ammonium scarcity. Here, genetic, kinetic and structure-function analyses were used to shed light on the poorly characterized signaling role of Saccharomyces cerevisiae Mep2. We show that Mep2 variants lacking the C-terminal tail conserve the ability to induce filamentation, revealing that signaling can proceed in the absence of exclusive binding of a putative partner to the largest cytosolic domain of the protein. Our data support that filamentation signaling requires the conformational changes accompanying substrate translocation through the pore crossing the hydrophobic core of Mep2. pHluorin reporter assays show that the transport activity of Mep2 and of non-signaling Mep1 differently affect yeast cytosolic pH in vivo, and that the unique pore variant Mep2H194E, with apparent uncoupling of transport and signaling functions, acquires increased ability of acidification. Functional characterization in Xenopus oocytes reveals that Mep2 mediates electroneutral substrate translocation while Mep1 performs electrogenic transport. Our findings highlight that the Mep2-dependent filamentation induction is connected to its specific transport mechanism, suggesting a role of pH in signal mediation. Finally, we show that the signaling process is conserved for the Mep2 protein from the human pathogen Candida albicans. Fungal Mep2-type ammonium transport proteins of the conserved Mep-Amt-Rh family that includes human Rhesus factors are specifically required to allow filamentation in response to ammonium limitation. These proteins were therefore assigned a receptor role while the underlying mechanism of signal transduction remains poorly understood. The “transceptor” property has subsequently been proposed to concern transporters of all kind of micro- and macro- nutrients in eukaryotes, from fungi to human. However, bringing the firm demonstration of their existence remains challenging as variants with full uncoupling of transport and receptor functions are difficult to obtain. Our data question the involvement of the C-terminal extremity of Saccharomyces cerevisiae Mep2 in the signal mediation leading to filamentation. If signaling partners exist, they should also bind to cytosolic loops and/or membrane-embedded domains. The capacity of Mep2 to enable filamentation is closely intertwined to the mechanism of substrate translocation through the pore of the hydrophobic core of the protein. In Xenopus oocytes, the transport activity of non-signaling Mep1 is electrogenic while it is electroneutral for Mep2, the latter likely translocating the weak base NH3, but not the proton released after NH4+ recognition and depronotation. We propose that given consequences of a Mep2-specific transport process, such as an intracellular pH modification, could be the underlying cause of the filamentation signal ensured by Mep2-type proteins.
Collapse
Affiliation(s)
- Ana Sofia Brito
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Gosselies, Belgium
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - René Wintjens
- Unité Microbiologie, Chimie Bioorganique et Macromoléculaire, Département RD3, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Anna Maria Marini
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Gosselies, Belgium
- * E-mail: (AMM); (MB)
| | - Mélanie Boeckstaens
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Gosselies, Belgium
- * E-mail: (AMM); (MB)
| |
Collapse
|
6
|
A pore-occluding phenylalanine gate prevents ion slippage through plant ammonium transporters. Sci Rep 2019; 9:16765. [PMID: 31727964 PMCID: PMC6856177 DOI: 10.1038/s41598-019-53333-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
Throughout all kingdoms of life, highly conserved transport proteins mediate the passage of ammonium across membranes. These transporters share a high homology and a common pore structure. Whether NH3, NH4+ or NH3 + H+ is the molecularly transported substrate, still remains unclear for distinct proteins. High-resolution protein structures of several ammonium transporters suggested two conserved pore domains, an external NH4+ recruitment site and a pore-occluding twin phenylalanine gate, to take over a crucial role in substrate determination and selectivity. Here, we show that while the external recruitment site seems essential for AtAMT1;2 function, single mutants of the double phenylalanine gate were not reduced in their ammonium transport capacity. Despite an unchanged ammonium transport rate, a single mutant of the inner phenylalanine showed reduced N-isotope selection that was proposed to be associated with ammonium deprotonation during transport. Even though ammonium might pass the mutant AMT pore in the ionic form, the transporter still excluded potassium ions from being transported. Our results, highlight the importance of the twin phenylalanine gate in blocking uncontrolled ammonium ion flux.
Collapse
|
7
|
Ariz I, Boeckstaens M, Gouveia C, Martins AP, Sanz-Luque E, Fernández E, Soveral G, von Wirén N, Marini AM, Aparicio-Tejo PM, Cruz C. Nitrogen isotope signature evidences ammonium deprotonation as a common transport mechanism for the AMT-Mep-Rh protein superfamily. SCIENCE ADVANCES 2018; 4:eaar3599. [PMID: 30214933 PMCID: PMC6135547 DOI: 10.1126/sciadv.aar3599] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Ammonium is an important nitrogen (N) source for living organisms, a key metabolite for pH control, and a potent cytotoxic compound. Ammonium is transported by the widespread AMT-Mep-Rh membrane proteins, and despite their significance in physiological processes, the nature of substrate translocation (NH3/NH4+) by the distinct members of this family is still a matter of controversy. Using Saccharomyces cerevisiae cells expressing representative AMT-Mep-Rh ammonium carriers and taking advantage of the natural chemical-physical property of the N isotopic signature linked to NH4+/NH3 conversion, this study shows that only cells expressing AMT-Mep-Rh proteins were depleted in 15N relative to 14N when compared to the external ammonium source. We observed 15N depletion over a wide range of external pH, indicating its independence of NH3 formation in solution. On the basis of inhibitor studies, ammonium transport by nonspecific cation channels did not show isotope fractionation but competition with K+. We propose that kinetic N isotope fractionation is a common feature of AMT-Mep-Rh-type proteins, which favor 14N over 15N, owing to the dissociation of NH4+ into NH3 + H+ in the protein, leading to 15N depletion in the cell and allowing NH3 passage or NH3/H+ cotransport. This deprotonation mechanism explains these proteins' essential functions in environments under a low NH4+/K+ ratio, allowing organisms to specifically scavenge NH4+. We show that 15N isotope fractionation may be used in vivo not only to determine the molecular species being transported by ammonium transport proteins, but also to track ammonium toxicity and associated amino acids excretion.
Collapse
Affiliation(s)
- Idoia Ariz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mélanie Boeckstaens
- Biology of Membrane Transport, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Catarina Gouveia
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Paula Martins
- iMed.ULisboa–Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, Univeristy of Córdoba, 14071 Cordoba, Spain
| | - Emilio Fernández
- Department of Biochemistry and Molecular Biology, Univeristy of Córdoba, 14071 Cordoba, Spain
| | - Graça Soveral
- iMed.ULisboa–Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research, Seeland, 06466 OT Gatersleben, Germany
| | - Anna M. Marini
- Biology of Membrane Transport, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | | | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Boo MV, Hiong KC, Goh EJK, Choo CYL, Wong WP, Chew SF, Ip YK. The ctenidium of the giant clam, Tridacna squamosa, expresses an ammonium transporter 1 that displays light-suppressed gene and protein expression and may be involved in ammonia excretion. J Comp Physiol B 2018; 188:765-777. [DOI: 10.1007/s00360-018-1161-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/03/2018] [Accepted: 04/15/2018] [Indexed: 01/31/2023]
|
9
|
van den Berg B, Chembath A, Jefferies D, Basle A, Khalid S, Rutherford JC. Structural basis for Mep2 ammonium transceptor activation by phosphorylation. Nat Commun 2016; 7:11337. [PMID: 27088325 PMCID: PMC4852598 DOI: 10.1038/ncomms11337] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 03/14/2016] [Indexed: 11/18/2022] Open
Abstract
Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation.
Collapse
Affiliation(s)
- Bert van den Berg
- Institute for Cell and Molecular Biosciences, The Medical
School, Newcastle University, Newcastle upon Tyne
NE2 4HH, UK
| | - Anupama Chembath
- Institute for Cell and Molecular Biosciences, The Medical
School, Newcastle University, Newcastle upon Tyne
NE2 4HH, UK
| | - Damien Jefferies
- School of Chemistry, University of Southampton,
Highfield Campus, Southampton
SO17 1BJ, UK
| | - Arnaud Basle
- Institute for Cell and Molecular Biosciences, The Medical
School, Newcastle University, Newcastle upon Tyne
NE2 4HH, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton,
Highfield Campus, Southampton
SO17 1BJ, UK
| | - Julian C. Rutherford
- Institute for Cell and Molecular Biosciences, The Medical
School, Newcastle University, Newcastle upon Tyne
NE2 4HH, UK
| |
Collapse
|
10
|
Abstract
Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants. The structure of an ammonia channel from plants extends our understanding of substrate specificity in different types of aquaporins and reveals an intriguing side pore that raises new questions. Ammonia is a central molecule in nitrogen metabolism. Aquaporins are integral membrane proteins that form channels that accelerate the passive permeation of small polar uncharged molecules, like water and ammonia, across lipid membranes of the cell. Structural information of ammonia-permeable aquaporins has been lacking. Here, we report a high-resolution structure of the ammonia-permeable aquaporin AtTIP2;1 and explore it by functional assays of mutants and by molecular dynamics simulations. Our data uncover unexpected features of the substrate selectivity filter, including a conserved arginine in a new orientation that is stabilized by interactions to a histidine that is linked to ammonia specificity. An additional histidine in a different part of AtTIP2;1 fortifies the position of the arginine and interacts directly with the substrate in the channel. This histidine is therefore included in an extended selectivity filter, which should prompt a reinterpretation of the determinants of specificity in all types of aquaporins. We speculate that an intriguing water-filled side pore, next to the substrate-binding histidine, participates in deprotonating ammonium ions, which could increase the net permeation of ammonia. Understanding the principles of ammonia permeability may, in the future, allow us to modulate the passage of ammonia and generate crops with higher nitrogen-use efficiency.
Collapse
|
11
|
Offre P, Kerou M, Spang A, Schleper C. Variability of the transporter gene complement in ammonia-oxidizing archaea. Trends Microbiol 2014; 22:665-75. [PMID: 25169021 DOI: 10.1016/j.tim.2014.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/17/2014] [Accepted: 07/30/2014] [Indexed: 12/19/2022]
Abstract
Ammonia-oxidizing archaea (AOA) are a widespread and abundant component of microbial communities in many different ecosystems. The extent of physiological differences between individual AOA is, however, unknown. Here, we compare the transporter gene complements of six AOA, from four different environments and two major clades, to assess their potential for substrate uptake and efflux. Each of the corresponding AOA genomes encode a unique set of transporters and although the composition of AOA transporter complements follows a phylogenetic pattern, few transporter families are conserved in all investigated genomes. A comparison of ammonia transporters encoded by archaeal and bacterial ammonia oxidizers highlights the variance among AOA lineages as well as their distinction from the ammonia-oxidizing bacteria, and suggests differential ecological adaptations.
Collapse
Affiliation(s)
- Pierre Offre
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstrasse 14, A-1090 Wien, Austria.
| | - Melina Kerou
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstrasse 14, A-1090 Wien, Austria
| | - Anja Spang
- Uppsala University, Department of Cell and Molecular Biology, Science for Life Laboratory, Box 596, SE-75123, Uppsala, Sweden
| | - Christa Schleper
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstrasse 14, A-1090 Wien, Austria.
| |
Collapse
|
12
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
13
|
Wang J, Fulford T, Shao Q, Javelle A, Yang H, Zhu W, Merrick M. Ammonium transport proteins with changes in one of the conserved pore histidines have different performance in ammonia and methylamine conduction. PLoS One 2013; 8:e62745. [PMID: 23667517 PMCID: PMC3647058 DOI: 10.1371/journal.pone.0062745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/25/2013] [Indexed: 01/02/2023] Open
Abstract
Two conserved histidine residues are located near the mid-point of the conduction channel of ammonium transport proteins. The role of these histidines in ammonia and methylamine transport was evaluated by using a combination of in vivo studies, molecular dynamics (MD) simulation, and potential of mean force (PMF) calculations. Our in vivo results showed that a single change of either of the conserved histidines to alanine leads to the failure to transport methylamine but still facilitates good growth on ammonia, whereas double histidine variants completely lose their ability to transport both methylamine and ammonia. Molecular dynamics simulations indicated the molecular basis of the in vivo observations. They clearly showed that a single histidine variant (H168A or H318A) of AmtB confines the rather hydrophobic methylamine more strongly than ammonia around the mutated sites, resulting in dysfunction in conducting the former but not the latter molecule. PMF calculations further revealed that the single histidine variants form a potential energy well of up to 6 kcal/mol for methylamine, impairing conduction of this substrate. Unlike the single histidine variants, the double histidine variant, H168A/H318A, of AmtB was found to lose its unidirectional property of transporting both ammonia and methylamine. This could be attributed to a greatly increased frequency of opening of the entrance gate formed by F215 and F107, in this variant compared to wild-type, with a resultant lowering of the energy barrier for substrate to return to the periplasm.
Collapse
Affiliation(s)
- Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Rueda-Zubiaurre A, Herrero-García N, del Rosario Torres M, Fernández I, Osío Barcina J. Rational Design of a Nonbasic Molecular Receptor for Selective NH4+/K+Complexation in the Gas Phase. Chemistry 2012; 18:16884-9. [DOI: 10.1002/chem.201201642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/16/2012] [Indexed: 11/08/2022]
|
15
|
Ullmann RT, Andrade SLA, Ullmann GM. Thermodynamics of transport through the ammonium transporter Amt-1 investigated with free energy calculations. J Phys Chem B 2012; 116:9690-703. [PMID: 22804733 DOI: 10.1021/jp305440f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amt-1 from Archaeoglobus fulgidus (AfAmt-1) belongs to the Amt/Rh family of ammonium/ammonia transporting membrane proteins. The transport mode and the precise microscopic permeation mechanism utilized by these proteins are intensely debated. Open questions concern the identity of the transported substrate (ammonia and/or ammonium) and whether the transport is passive or active. To address these questions, we studied the overall thermodynamics of the different transport modes as a function of the environmental conditions. Then, we investigated the thermodynamics of the underlying microscopic transport mechanisms with free energy calculations within a continuum electrostatics model. The formalism developed for this purpose is of general utility in the calculation of binding free energies for ligands with multiple protonation forms or other binding forms. The results of our calculations are compared to the available experimental and theoretical data on Amt/Rh proteins and discussed in light of the current knowledge on the physiological conditions experienced by microorganisms and plants. We found that microscopic models of electroneutral and electrogenic transport modes are in principle thermodynamically viable. However, only the electrogenic variants have a net thermodynamic driving force under the physiological conditions experienced by microorganisms and plants. Thus, the transport mechanism of AfAmt-1 is most likely electrogenic.
Collapse
Affiliation(s)
- R Thomas Ullmann
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstrasse 30, BGI, 95447 Bayreuth, Germany.
| | | | | |
Collapse
|
16
|
|
17
|
Wang S, Orabi EA, Baday S, Bernèche S, Lamoureux G. Ammonium Transporters Achieve Charge Transfer by Fragmenting Their Substrate. J Am Chem Soc 2012; 134:10419-27. [DOI: 10.1021/ja300129x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shihao Wang
- Department of Chemistry and
Biochemistry and Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West,
Montréal, Québec H4B 1R6, Canada
| | - Esam A. Orabi
- Department of Chemistry and
Biochemistry and Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West,
Montréal, Québec H4B 1R6, Canada
| | - Sefer Baday
- Swiss Institute of Bioinformatics
and Biozentrum, University of Basel, Klingelbergstrasse
50/70, CH-4056 Basel, Switzerland
| | - Simon Bernèche
- Swiss Institute of Bioinformatics
and Biozentrum, University of Basel, Klingelbergstrasse
50/70, CH-4056 Basel, Switzerland
| | - Guillaume Lamoureux
- Department of Chemistry and
Biochemistry and Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West,
Montréal, Québec H4B 1R6, Canada
| |
Collapse
|