1
|
Xiao T, Chen Z, Xie Y, Yang C, Wu J, Gao L. Histone deacetylase inhibitors: targeting epigenetic regulation in the treatment of acute leukemia. Ther Adv Hematol 2024; 15:20406207241283277. [PMID: 39421716 PMCID: PMC11483798 DOI: 10.1177/20406207241283277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
Acute leukemia (AL) is a rare yet perilous malignancy. Currently, the primary treatment for AL involves combination chemotherapy as the cornerstone of comprehensive measures, alongside hematopoietic stem cell transplantation as a radical approach. However, despite these interventions, mortality rates remain high, particularly among refractory/recurrent patients or elderly individuals with a poor prognosis. Acetylation, a form of epigenetic regulation, has emerged as a promising therapeutic avenue for treating AL. Recent studies have highlighted the potential of acetylation regulation as a novel treatment pathway. Histone deacetylase inhibitors (HDACis) play a pivotal role in modulating the differentiation and development of tumor cells through diverse pathways, simultaneously impacting the maturation and function of lymphocytes. HDACis demonstrate promise in enhancing survival rates and achieving a complete response in both acute myeloid leukemia and acute T-lymphoblastic leukemia patients. This article provides a comprehensive review of the advancements in HDACi therapy for AL, shedding light on its potential implications for clinical practice.
Collapse
Affiliation(s)
- Tong Xiao
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhigang Chen
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yutong Xie
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chao Yang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junhong Wu
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lei Gao
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing 400037, China
| |
Collapse
|
2
|
Heuts BMH, Martens JHA. Understanding blood development and leukemia using sequencing-based technologies and human cell systems. Front Mol Biosci 2023; 10:1266697. [PMID: 37886034 PMCID: PMC10598665 DOI: 10.3389/fmolb.2023.1266697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
Our current understanding of human hematopoiesis has undergone significant transformation throughout the years, challenging conventional views. The evolution of high-throughput technologies has enabled the accumulation of diverse data types, offering new avenues for investigating key regulatory processes in blood cell production and disease. In this review, we will explore the opportunities presented by these advancements for unraveling the molecular mechanisms underlying normal and abnormal hematopoiesis. Specifically, we will focus on the importance of enhancer-associated regulatory networks and highlight the crucial role of enhancer-derived transcription regulation. Additionally, we will discuss the unprecedented power of single-cell methods and the progression in using in vitro human blood differentiation system, in particular induced pluripotent stem cell models, in dissecting hematopoietic processes. Furthermore, we will explore the potential of ever more nuanced patient profiling to allow precision medicine approaches. Ultimately, we advocate for a multiparameter, regulatory network-based approach for providing a more holistic understanding of normal hematopoiesis and blood disorders.
Collapse
Affiliation(s)
- Branco M H Heuts
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
3
|
Liu G, Wang L, Wess J, Dean A. Enhancer looping protein LDB1 regulates hepatocyte gene expression by cooperating with liver transcription factors. Nucleic Acids Res 2022; 50:9195-9211. [PMID: 36018801 PMCID: PMC9458430 DOI: 10.1093/nar/gkac707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
Enhancers establish proximity with distant target genes to regulate temporospatial gene expression and specify cell identity. Lim domain binding protein 1 (LDB1) is a conserved and widely expressed protein that functions as an enhancer looping factor. Previous studies in erythroid cells and neuronal cells showed that LDB1 forms protein complexes with different transcription factors to regulate cell-specific gene expression. Here, we show that LDB1 regulates expression of liver genes by occupying enhancer elements and cooperating with hepatic transcription factors HNF4A, FOXA1, TCF7 and GATA4. Using the glucose transporter SLC2A2 gene, encoding GLUT2, as an example, we find that LDB1 regulates gene expression by mediating enhancer-promoter interactions. In vivo, we find that LDB1 deficiency in primary mouse hepatocytes dysregulates metabolic gene expression and changes the enhancer landscape. Conditional deletion of LDB1 in adult mouse liver induces glucose intolerance. However, Ldb1 knockout hepatocytes show improved liver pathology under high-fat diet conditions associated with increased expression of genes related to liver fatty acid metabolic processes. Thus, LDB1 is linked to liver metabolic functions under normal and obesogenic conditions.
Collapse
Affiliation(s)
- Guoyou Liu
- Correspondence may also be addressed to Guoyou Liu. Tel: +1 301 435 9396;
| | - Lei Wang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann Dean
- To whom correspondence should be addressed. Tel: +1 301 496 6068;
| |
Collapse
|
4
|
Hemogen /BRG1 cooperativity modulates promoter and enhancer activation during erythropoiesis. Blood 2022; 139:3532-3545. [PMID: 35297980 DOI: 10.1182/blood.2021014308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Hemogen, also known as EDAG, is a hematopoietic tissue-specific gene that regulates the proliferation and differentiation of hematopoietic cells. However, the mechanism underlying hemogen function in erythropoiesis is unknown. We found that depletion of hemogen in human CD34+ erythroid progenitor cells and HUDEP2 cells significantly reduced the expression of genes associated with heme and hemoglobin synthesis, supporting a positive role of hemogen in erythroid maturation. In human K562 cells, hemogen antagonized the occupancy of co-repressors NuRD complex and facilitated LDB1 complex-mediated chromatin looping. Hemogen recruited SWI/SNF complex ATPase BRG1 as a co-activator to regulate nucleosome accessibility and H3K27ac enrichment for promoter and enhancer activity. To ask if hemogen/BRG1 cooperativity is conserved in mammalian systems, we generated hemogen KO/KI mice and investigated hemogen/BRG1 function in murine erythropoiesis. Loss of hemogen in E12.5-E16.5 fetal liver cells impeded erythroid differentiation through reducing the production of mature erythroblasts. ChIP-seq in WT and hemogen KO animal revealed BRG1 is largely dependent on hemogen to regulate chromatin accessibility at erythroid gene promoters and enhancers. In summary, hemogen/BRG1 interaction in mammals is essential for fetal erythroid maturation and hemoglobin production through its active role in promoter and enhancer activity and chromatin organization.
Collapse
|
5
|
Mehrpouri M, Pourbagheri-Sigaroodi A, Bashash D. The contributory roles of histone deacetylases (HDACs) in hematopoiesis regulation and possibilities for pharmacologic interventions in hematologic malignancies. Int Immunopharmacol 2021; 100:108114. [PMID: 34492531 DOI: 10.1016/j.intimp.2021.108114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
Although the definitive role of epigenetic modulations in a wide range of hematologic malignancies, spanning from leukemia to lymphoma and multiple myeloma, has been evidenced, few articles reviewed the task. Given the high accessibility of histone deacetylase (HDACs) to necessary transcription factors involved in hematopoiesis, this review aims to outline physiologic impacts of these enzymes in normal hematopoiesis, and also to outline the original data obtained from international research laboratories on their regulatory role in the differentiation and maturation of different hematopoietic lineages. Questions on how aberrant expression of HDACs contributes to the formation of hematologic malignancies are also responded, because these classes of enzymes have a respectable share in the development, progression, and recurrence of leukemia, lymphoma, and multiple myeloma. The last section provides a special focus on the therapeutic perspectiveof HDACs inhibitors, either as single agents or in a combined-modal strategy, in these neoplasms. In conclusion, optimizing the dose and the design of more patient-tailored inhibitors, while maintaining low toxicity against normal cells, will help improve clinical outcomes of HDAC inhibitors in hematologic malignancies.
Collapse
Affiliation(s)
- Mahdieh Mehrpouri
- Department of Laboratory Sciences, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Jakobczyk H, Debaize L, Soubise B, Avner S, Rouger-Gaudichon J, Commet S, Jiang Y, Sérandour AA, Rio AG, Carroll JS, Wichmann C, Lie-A-Ling M, Lacaud G, Corcos L, Salbert G, Galibert MD, Gandemer V, Troadec MB. Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia. J Hematol Oncol 2021; 14:47. [PMID: 33743795 PMCID: PMC7981807 DOI: 10.1186/s13045-021-01051-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
Background B Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) is the most common pediatric cancer. Identifying key players involved in proliferation of BCP-ALL cells is crucial to propose new therapeutic targets. Runt Related Transcription Factor 1 (RUNX1) and Core-Binding Factor Runt Domain Alpha Subunit 2 Translocated To 3 (CBFA2T3, ETO2, MTG16) are master regulators of hematopoiesis and are implicated in leukemia. Methods We worked with BCP-ALL mononuclear bone marrow patients’ cells and BCP-ALL cell lines, and performed Chromatin Immunoprecipitations followed by Sequencing (ChIP-Seq), co-immunoprecipitations (co-IP), proximity ligation assays (PLA), luciferase reporter assays and mouse xenograft models. Results We demonstrated that CBFA2T3 transcript levels correlate with RUNX1 expression in the pediatric t(12;21) ETV6-RUNX1 BCP-ALL. By ChIP-Seq in BCP-ALL patients’ cells and cell lines, we found that RUNX1 is recruited on its promoter and on an enhancer of CBFA2T3 located − 2 kb upstream CBFA2T3 promoter and that, subsequently, the transcription factor RUNX1 drives both RUNX1 and CBFA2T3 expression. We demonstrated that, mechanistically, RUNX1 and CBFA2T3 can be part of the same complex allowing CBFA2T3 to strongly potentiate the activity of the transcription factor RUNX1. Finally, we characterized a CBFA2T3-mimicking peptide that inhibits the interaction between RUNX1 and CBFA2T3, abrogating the activity of this transcription complex and reducing BCP-ALL lymphoblast proliferation. Conclusions Altogether, our findings reveal a novel and important activation loop between the transcription regulator CBFA2T3 and the transcription factor RUNX1 that promotes BCP-ALL proliferation, supporting the development of an innovative therapeutic approach based on the NHR2 subdomain of CBFA2T3 protein. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01051-z.
Collapse
Affiliation(s)
- Hélène Jakobczyk
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Lydie Debaize
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Benoit Soubise
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France
| | - Stéphane Avner
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Jérémie Rouger-Gaudichon
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Département d'onco-hematologie pediatrique, Centre Hospitalier Universitaire de Caen Normandie, Caen, France
| | - Séverine Commet
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France.,CHRU Brest, Service de génétique, laboratoire de génétique chromosomique, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France
| | - Yan Jiang
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France.,Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | | | - Anne-Gaëlle Rio
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Haemostasis, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Michael Lie-A-Ling
- Cancer Research UK Manchester Institute, University of Manchester, Aderley Park, Macclesfield, SK10 4TG, UK
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, University of Manchester, Aderley Park, Macclesfield, SK10 4TG, UK
| | - Laurent Corcos
- Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France
| | - Gilles Salbert
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France
| | - Marie-Dominique Galibert
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Service de Génétique et Génomique Moléculaire, Centre Hospitalier Universitaire de Rennes (CHU-Rennes), 35033, Rennes, France
| | - Virginie Gandemer
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France.,Department of Pediatric Hemato-Oncology, Centre Hospitalier Universitaire de Rennes (CHU-Rennes), 35203, Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, 35000, Rennes, France. .,Univ Brest, Inserm, EFS, UMR 1078, GGB, 29200, Brest, France. .,CHRU Brest, Service de génétique, laboratoire de génétique chromosomique, 22 avenue Camille Desmoulins, 29238, Brest Cedex 3, France.
| |
Collapse
|
7
|
Guo X, Plank-Bazinet J, Krivega I, Dale RK, Dean A. Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization. Nucleic Acids Res 2020; 48:10226-10240. [PMID: 32960220 DOI: 10.1093/nar/gkaa736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 11/14/2022] Open
Abstract
The underlying mechanism of transcriptional co-repressor ETO2 during early erythropoiesis and hemoglobin switching is unclear. We find that absence of ETO2 in mice interferes with down-regulation of PU.1 and GATA2 in the fetal liver, impeding a key step required for commitment to erythroid maturation. In human β-globin transgenic Eto2 null mice and in human CD34+ erythroid progenitor cells with reduced ETO2, loss of ETO2 results in ineffective silencing of embryonic/fetal globin gene expression, impeding hemoglobin switching during erythroid differentiation. ETO2 occupancy genome-wide occurs virtually exclusively at LDB1-complex binding sites in enhancers and ETO2 loss leads to increased enhancer activity and expression of target genes. ETO2 recruits the NuRD nucleosome remodeling and deacetylation complex to regulate histone acetylation and nucleosome occupancy in the β-globin locus control region and γ-globin gene. Loss of ETO2 elevates LDB1, MED1 and Pol II in the locus and facilitates fetal γ-globin/LCR looping and γ-globin transcription. Absence of the ETO2 hydrophobic heptad repeat region impairs ETO2-NuRD interaction and function in antagonizing γ-globin/LCR looping. Our results reveal a pivotal role for ETO2 in erythropoiesis and globin gene switching through its repressive role in the LDB1 complex, affecting the transcription factor and epigenetic environment and ultimately restructuring chromatin organization.
Collapse
Affiliation(s)
- Xiang Guo
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Jennifer Plank-Bazinet
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Wang P, Wang Z, Liu J. Role of HDACs in normal and malignant hematopoiesis. Mol Cancer 2020; 19:5. [PMID: 31910827 PMCID: PMC6945581 DOI: 10.1186/s12943-019-1127-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Normal hematopoiesis requires the accurate orchestration of lineage-specific patterns of gene expression at each stage of development, and epigenetic regulators play a vital role. Disordered epigenetic regulation has emerged as a key mechanism contributing to hematological malignancies. Histone deacetylases (HDACs) are a series of key transcriptional cofactors that regulate gene expression by deacetylation of lysine residues on histone and nonhistone proteins. In normal hematopoiesis, HDACs are widely involved in the development of various lineages. Their functions involve stemness maintenance, lineage commitment determination, cell differentiation and proliferation, etc. Deregulation of HDACs by abnormal expression or activity and oncogenic HDAC-containing transcriptional complexes are involved in hematological malignancies. Currently, HDAC family members are attractive targets for drug design, and a variety of HDAC-based combination strategies have been developed for the treatment of hematological malignancies. Drug resistance and limited therapeutic efficacy are key issues that hinder the clinical applications of HDAC inhibitors (HDACis). In this review, we summarize the current knowledge of how HDACs and HDAC-containing complexes function in normal hematopoiesis and highlight the etiology of HDACs in hematological malignancies. Moreover, the implication and drug resistance of HDACis are also discussed. This review presents an overview of the physiology and pathology of HDACs in the blood system.
Collapse
Affiliation(s)
- Pan Wang
- The Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China.,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zi Wang
- The Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China. .,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
9
|
Churpek JE, Bresnick EH. Transcription factor mutations as a cause of familial myeloid neoplasms. J Clin Invest 2019; 129:476-488. [PMID: 30707109 DOI: 10.1172/jci120854] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The initiation and evolution of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are driven by genomic events that disrupt multiple genes controlling hematopoiesis. Human genetic studies have discovered germline mutations in single genes that instigate familial MDS/AML. The best understood of these genes encode transcription factors, such as GATA-2, RUNX1, ETV6, and C/EBPα, which establish and maintain genetic networks governing the genesis and function of blood stem and progenitor cells. Many questions remain unanswered regarding how genes and circuits within these networks function in physiology and disease and whether network integrity is exquisitely sensitive to or efficiently buffered from perturbations. In familial MDS/AML, mutations change the coding sequence of a gene to generate a mutant protein with altered activity or introduce frameshifts or stop codons or disrupt regulatory elements to alter protein expression. Each mutation has the potential to exert quantitatively and qualitatively distinct influences on networks. Consistent with this mechanistic diversity, disease onset is unpredictable and phenotypic variability can be considerable. Efforts to elucidate mechanisms and forge prognostic and therapeutic strategies must therefore contend with a spectrum of patient-specific leukemogenic scenarios. Here we illustrate mechanistic advances in our understanding of familial MDS/AML syndromes caused by germline mutations of hematopoietic transcription factors.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Lopez CK, Malinge S, Gaudry M, Bernard OA, Mercher T. Pediatric Acute Megakaryoblastic Leukemia: Multitasking Fusion Proteins and Oncogenic Cooperations. Trends Cancer 2017; 3:631-642. [PMID: 28867167 DOI: 10.1016/j.trecan.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
Pediatric leukemia presents specific clinical and genetic features from adult leukemia but the underpinning mechanisms of transformation are still unclear. Acute megakaryoblastic leukemia (AMKL) is the malignant accumulation of progenitors of the megakaryocyte lineage that normally produce blood platelets. AMKL is diagnosed de novo, in patients showing a poor prognosis, or in Down syndrome (DS) patients with a better prognosis. Recent data show that de novo AMKL is primarily associated with chromosomal alterations leading to the expression of fusions between transcriptional regulators. This review highlights the most recurrent genetic events found in de novo pediatric AMKL patients and, based on recent functional analyses, proposes a mechanism of leukemogenesis common to de novo and DS-AMKL.
Collapse
MESH Headings
- Age Factors
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Child
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Megakaryoblastic, Acute/drug therapy
- Leukemia, Megakaryoblastic, Acute/etiology
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Megakaryoblastic, Acute/pathology
- Megakaryocytes/metabolism
- Megakaryocytes/pathology
- Molecular Targeted Therapy
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Cécile K Lopez
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Sébastien Malinge
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris Diderot, 75013 Paris, France
| | - Muriel Gaudry
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Olivier A Bernard
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France; Université Paris Diderot, 75013 Paris, France.
| |
Collapse
|
11
|
Hamey FK, Nestorowa S, Kinston SJ, Kent DG, Wilson NK, Göttgens B. Reconstructing blood stem cell regulatory network models from single-cell molecular profiles. Proc Natl Acad Sci U S A 2017; 114:5822-5829. [PMID: 28584094 PMCID: PMC5468644 DOI: 10.1073/pnas.1610609114] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Adult blood contains a mixture of mature cell types, each with specialized functions. Single hematopoietic stem cells (HSCs) have been functionally shown to generate all mature cell types for the lifetime of the organism. Differentiation of HSCs toward alternative lineages must be balanced at the population level by the fate decisions made by individual cells. Transcription factors play a key role in regulating these decisions and operate within organized regulatory programs that can be modeled as transcriptional regulatory networks. As dysregulation of single HSC fate decisions is linked to fatal malignancies such as leukemia, it is important to understand how these decisions are controlled on a cell-by-cell basis. Here we developed and applied a network inference method, exploiting the ability to infer dynamic information from single-cell snapshot expression data based on expression profiles of 48 genes in 2,167 blood stem and progenitor cells. This approach allowed us to infer transcriptional regulatory network models that recapitulated differentiation of HSCs into progenitor cell types, focusing on trajectories toward megakaryocyte-erythrocyte progenitors and lymphoid-primed multipotent progenitors. By comparing these two models, we identified and subsequently experimentally validated a difference in the regulation of nuclear factor, erythroid 2 (Nfe2) and core-binding factor, runt domain, alpha subunit 2, translocated to, 3 homolog (Cbfa2t3h) by the transcription factor Gata2. Our approach confirms known aspects of hematopoiesis, provides hypotheses about regulation of HSC differentiation, and is widely applicable to other hierarchical biological systems to uncover regulatory relationships.
Collapse
Affiliation(s)
- Fiona K Hamey
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Sonia Nestorowa
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Sarah J Kinston
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - David G Kent
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Nicola K Wilson
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
12
|
Fujiwara T, Sasaki K, Saito K, Hatta S, Ichikawa S, Kobayashi M, Okitsu Y, Fukuhara N, Onishi Y, Harigae H. Forced FOG1 expression in erythroleukemia cells: Induction of erythroid genes and repression of myelo-lymphoid transcription factor PU.1. Biochem Biophys Res Commun 2017; 485:380-387. [PMID: 28216155 DOI: 10.1016/j.bbrc.2017.02.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 11/27/2022]
Abstract
The transcription factor GATA-1-interacting protein Friend of GATA-1 (FOG1) is essential for proper transcriptional activation and repression of GATA-1 target genes; yet, the mechanisms by which FOG1 exerts its activating and repressing functions remain unknown. Forced FOG1 expression in human K562 erythroleukemia cells induced the expression of erythroid genes (SLC4A1, globins) but repressed that of GATA-2 and PU.1. A quantitative chromatin immunoprecipitation (ChIP) analysis demonstrated increased GATA-1 chromatin occupancy at both FOG1-activated as well as FOG1-repressed gene loci. However, while TAL1 chromatin occupancy was significantly increased at FOG1-activated gene loci, it was significantly decreased at FOG1-repressed gene loci. When FOG1 was overexpressed in TAL1-knocked down K562 cells, FOG1-mediated activation of HBA, HBG, and SLC4A1 was significantly compromised by TAL1 knockdown, suggesting that FOG1 may require TAL1 to activate GATA-1 target genes. Promoter analysis and quantitative ChIP analysis demonstrated that FOG1-mediated transcriptional repression of PU.1 would be mediated through a GATA-binding element located at its promoter, accompanied by significantly decreased H3 acetylation at lysine 4 and 9 (K4 and K9) as well as H3K4 trimethylation. Our results provide important mechanistic insight into the role of FOG1 in the regulation of GATA-1-regulated genes and suggest that FOG1 has an important role in inducing cells to differentiate toward the erythroid lineage rather than the myelo-lymphoid one by repressing the expression of PU.1.
Collapse
Affiliation(s)
- Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan.
| | - Katsuyuki Sasaki
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; Department of Laboratory, Tohoku University Hospital, Sendai, 1-1 Seiryo-cho, Aoba-ku, Sendai 980-8574, Japan
| | - Kei Saito
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Shunsuke Hatta
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Satoshi Ichikawa
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Masahiro Kobayashi
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Yoko Okitsu
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Noriko Fukuhara
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Yasushi Onishi
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School, Sendai, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
13
|
Abstract
The discovery of the GATA binding protein (GATA factor) transcription factor family revolutionized hematology. Studies of GATA proteins have yielded vital contributions to our understanding of how hematopoietic stem and progenitor cells develop from precursors, how progenitors generate red blood cells, how hemoglobin synthesis is regulated, and the molecular underpinnings of nonmalignant and malignant hematologic disorders. This thrilling journey began with mechanistic studies on a β-globin enhancer- and promoter-binding factor, GATA-1, the founding member of the GATA family. This work ushered in the cloning of related proteins, GATA-2-6, with distinct and/or overlapping expression patterns. Herein, we discuss how the hematopoietic GATA factors (GATA-1-3) function via a battery of mechanistic permutations, which can be GATA factor subtype, cell type, and locus specific. Understanding this intriguing protein family requires consideration of how the mechanistic permutations are amalgamated into circuits to orchestrate processes of interest to the hematologist and more broadly.
Collapse
|
14
|
Fujiwara T. GATA Transcription Factors: Basic Principles and Related Human Disorders. TOHOKU J EXP MED 2017; 242:83-91. [DOI: 10.1620/tjem.242.83] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| |
Collapse
|
15
|
Weeks RJ, Ludgate JL, LeMée G, Morison IM. TESTIN Induces Rapid Death and Suppresses Proliferation in Childhood B Acute Lymphoblastic Leukaemia Cells. PLoS One 2016; 11:e0151341. [PMID: 26985820 PMCID: PMC4795691 DOI: 10.1371/journal.pone.0151341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/07/2016] [Indexed: 12/22/2022] Open
Abstract
Background Childhood acute lymphoblastic leukaemia (ALL) is the most common malignancy in children. Despite high cure rates, side effects and late consequences of the intensive treatments are common. Unquestionably, the identification of new therapeutic targets will lead to safer, more effective treatments. We identified TES promoter methylation and transcriptional silencing as a very common molecular abnormality in childhood ALL, irrespective of molecular subtype. The aims of the present study were to demonstrate that TES promoter methylation is aberrant, to determine the effects of TES re-expression in ALL, and to determine if those effects are mediated via TP53 activity. Methods Normal fetal and adult tissue DNA was isolated and TES promoter methylation determined by Sequenom MassARRAY. Quantitative RT-PCR and immunoblot were used to confirm re-expression of TES in ALL cell lines after 5’-aza-2’-deoxycytidine (decitabine) exposure or transfection with TES expression plasmids. The effects of TES re-expression on ALL cells were investigated using standard cell proliferation, cell death and cell cycle assays. Results In this study, we confirm that the TES promoter is unmethylated in normal adult and fetal tissues. We report that decitabine treatment of ALL cell lines results in demethylation of the TES promoter and attendant expression of TES mRNA. Re-expression of TESTIN protein in ALL cells using expression plasmid transfection results in rapid cell death or cell cycle arrest independent of TP53 activity. Conclusions These results suggest that TES is aberrantly methylated in ALL and that re-expression of TESTIN has anti-leukaemia effects which point to novel therapeutic opportunities for childhood ALL.
Collapse
Affiliation(s)
- Robert J. Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- * E-mail:
| | - Jackie L. Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gwenn LeMée
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ian M. Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
DeVilbiss AW, Tanimura N, McIver SC, Katsumura KR, Johnson KD, Bresnick EH. Navigating Transcriptional Coregulator Ensembles to Establish Genetic Networks: A GATA Factor Perspective. Curr Top Dev Biol 2016; 118:205-44. [PMID: 27137658 DOI: 10.1016/bs.ctdb.2016.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complex developmental programs require orchestration of intrinsic and extrinsic signals to control cell proliferation, differentiation, and survival. Master regulatory transcription factors are vital components of the machinery that transduce these stimuli into cellular responses. This is exemplified by the GATA family of transcription factors that establish cell type-specific genetic networks and control the development and homeostasis of systems including blood, vascular, adipose, and cardiac. Dysregulated GATA factor activity/expression underlies anemia, immunodeficiency, myelodysplastic syndrome, and leukemia. Parameters governing the capacity of a GATA factor expressed in multiple cell types to generate cell type-specific transcriptomes include selective coregulator usage and target gene-specific chromatin states. As knowledge of GATA-1 mechanisms in erythroid cells constitutes a solid foundation, we will focus predominantly on GATA-1, while highlighting principles that can be extrapolated to other master regulators. GATA-1 interacts with ubiquitous and lineage-restricted transcription factors, chromatin modifying/remodeling enzymes, and other coregulators to activate or repress transcription and to maintain preexisting transcriptional states. Major unresolved issues include: how does a GATA factor selectively utilize diverse coregulators; do distinct epigenetic landscapes and nuclear microenvironments of target genes dictate coregulator requirements; and do gene cohorts controlled by a common coregulator ensemble function in common pathways. This review will consider these issues in the context of GATA factor-regulated hematopoiesis and from a broader perspective.
Collapse
Affiliation(s)
- A W DeVilbiss
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - N Tanimura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - S C McIver
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K R Katsumura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K D Johnson
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - E H Bresnick
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States.
| |
Collapse
|
17
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
18
|
Abstract
Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.
Collapse
|
19
|
Tanimura N, Miller E, Igarashi K, Yang D, Burstyn JN, Dewey CN, Bresnick EH. Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation. EMBO Rep 2015; 17:249-65. [PMID: 26698166 DOI: 10.15252/embr.201541465] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022] Open
Abstract
Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2). Using genetic editing to unravel mechanisms governing heme biosynthesis, we discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis elements strongly reduces GATA-1-induced Alas2 transcription, heme biosynthesis, and surprisingly, GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing ALAS-2 function in Alas2 cis element-mutant cells by providing its catalytic product 5-aminolevulinic acid rescues heme biosynthesis and the GATA-1-dependent genetic network. Heme amplifies GATA-1 function by downregulating the heme-sensing transcriptional repressor Bach1 and via a Bach1-insensitive mechanism. Through this dual mechanism, heme and a master regulator collaborate to orchestrate a cell type-specific transcriptional program that promotes cellular differentiation.
Collapse
Affiliation(s)
- Nobuyuki Tanimura
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Eli Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University School of Medicine, Sendai, Japan
| | - David Yang
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Judith N Burstyn
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
20
|
Stadhouders R, Cico A, Stephen T, Thongjuea S, Kolovos P, Baymaz HI, Yu X, Demmers J, Bezstarosti K, Maas A, Barroca V, Kockx C, Ozgur Z, van Ijcken W, Arcangeli ML, Andrieu-Soler C, Lenhard B, Grosveld F, Soler E. Control of developmentally primed erythroid genes by combinatorial co-repressor actions. Nat Commun 2015; 6:8893. [PMID: 26593974 PMCID: PMC4673834 DOI: 10.1038/ncomms9893] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022] Open
Abstract
How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2–IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation. Conserved sets of transcription factors (TFs) regulate hematopoiesis. Here, Stadhouders et al. show that IRF2BP2 is a component of the LDB1 TF complex and together with its co-repressor ETO2, enhances transcriptional repression, which plays a crucial role at the erythroid progenitor stage.
Collapse
Affiliation(s)
- Ralph Stadhouders
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Alba Cico
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Tharshana Stephen
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Supat Thongjuea
- Computational Biology Unit, Bergen Center for Computational Science, N-5008 Bergen, Norway.,MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Petros Kolovos
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - H Irem Baymaz
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Xiao Yu
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Jeroen Demmers
- Department of Proteomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Department of Proteomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Vilma Barroca
- CEA/DSV/iRCM/SCSR, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Christel Kockx
- Center for Biomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Zeliha Ozgur
- Center for Biomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Wilfred van Ijcken
- Center for Biomics, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Marie-Laure Arcangeli
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Hematopoietic and Leukemic Stem cells, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Charlotte Andrieu-Soler
- Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - Boris Lenhard
- Department of Molecular Sciences, Faculty of Medicine, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands.,Cancer Genomics Center, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands
| | - Eric Soler
- Department of Cell Biology, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands.,Inserm UMR967, CEA/DSV/iRCM, Laboratory of Molecular Hematopoiesis, Université Paris-Saclay, 92265 Fontenay-aux-Roses, France.,Cancer Genomics Center, Erasmus Medical Center, 3015CN Rotterdam, The Netherlands.,Laboratory of Excellence GR-Ex, 75015 Paris, France
| |
Collapse
|
21
|
Histone Deacetylase 3 Is Required for Efficient T Cell Development. Mol Cell Biol 2015; 35:3854-65. [PMID: 26324326 DOI: 10.1128/mcb.00706-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/19/2015] [Indexed: 12/12/2022] Open
Abstract
Hdac3 is a key target for Hdac inhibitors that are efficacious in cutaneous T cell lymphoma. Moreover, the regulation of chromatin structure is critical as thymocytes transition from an immature cell with open chromatin to a mature T cell with tightly condensed chromatin. To define the phenotypes controlled by Hdac3 during T cell development, we conditionally deleted Hdac3 using the Lck-Cre transgene. This strategy inactivated Hdac3 in the double-negative stages of thymocyte development and caused a significant impairment at the CD8 immature single-positive (ISP) stage and the CD4/CD8 double-positive stage, with few mature CD4(+) or CD8(+) single-positive cells being produced. When Hdac3(-/-) mice were crossed with Bcl-xL-, Bcl2-, or TCRβ-expressing transgenic mice, a modest level of complementation was found. However, when the null mice were crossed with mice expressing a fully rearranged T cell receptor αβ transgene, normal levels of CD4 single-positive cells were produced. Thus, Hdac3 is required for the efficient transit from double-negative stage 4 through positive selection.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW KIT tyrosine kinase receptor is essential for several tissue stem cells, especially for hematopoietic stem cells (HSCs). Moderately decreased KIT signaling is well known to cause anemia and defective HSC self-renewal, whereas gain-of-function mutations are infrequently found in leukemias. Thus, maintaining KIT signal strength is critically important for homeostasis. KIT signaling in HSCs involves effectors such as SHP2 and PTPN11. This review summarizes the recent developments on the novel mechanisms regulating or reinforcing KIT signal strength in HSCs and its perturbation in polycythemia vera. RECENT FINDINGS Stem cell leukemia (SCL) is a transcription factor that is essential for HSC development. Genetic experiments indicate that Kit, protein tyrosine phosphatase, nonreceptor type 11 (Ptpn11), or Scl control long-term HSC self-renewal, survival, and quiescence in adults. Kit is now shown to be centrally involved in two feedforward loops in HSCs, one with Ptpn11 and the other with Scl. SUMMARY Knowledge of the regulatory mechanisms that favor self-renewal divisions or a lineage determination process is central to the design of strategies to expand HSCs for the purpose of cell therapy. In addition, transcriptome and phosphoproteome analyses of erythroblasts in polycythemia vera identified lower SCL expression and hypophosphorylated KIT, suggesting that the KIT-SCL loop is relevant to the pathophysiology of human blood disorders as well.
Collapse
|
23
|
Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation. Mol Cell Biol 2015; 35:2059-72. [PMID: 25848090 DOI: 10.1128/mcb.01413-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
Setd8 is the sole histone methyltransferase in mammals capable of monomethylating histone H4 lysine 20 (H4K20me1). Setd8 is expressed at significantly higher levels in erythroid cells than any other cell or tissue type, suggesting that Setd8 has an erythroid-cell-specific function. To test this hypothesis, stable Setd8 knockdown was established in extensively self-renewing erythroblasts (ESREs), a well-characterized, nontransformed model of erythroid maturation. Knockdown of Setd8 resulted in impaired erythroid maturation characterized by a delay in hemoglobin accumulation, larger mean cell area, persistent ckit expression, incomplete nuclear condensation, and lower rates of enucleation. Setd8 knockdown did not alter ESRE proliferation or viability or result in accumulation of DNA damage. Global gene expression analyses following Setd8 knockdown demonstrated that in erythroid cells, Setd8 functions primarily as a repressor. Most notably, Gata2 expression was significantly higher in knockdown cells than in control cells and Gata2 knockdown rescued some of the maturation impairments associated with Setd8 disruption. Setd8 occupies critical regulatory elements in the Gata2 locus, and knockdown of Setd8 resulted in loss of H4K20me1 and gain of H4 acetylation at the Gata2 1S promoter. These results suggest that Setd8 is an important regulator of erythroid maturation that works in part through repression of Gata2 expression.
Collapse
|
24
|
McIver SC, Kang YA, DeVilbiss AW, O'Driscoll CA, Ouellette JN, Pope NJ, Camprecios G, Chang CJ, Yang D, Bouhassira EE, Ghaffari S, Bresnick EH. The exosome complex establishes a barricade to erythroid maturation. Blood 2014; 124:2285-97. [PMID: 25115889 PMCID: PMC4183988 DOI: 10.1182/blood-2014-04-571083] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/25/2014] [Indexed: 12/28/2022] Open
Abstract
Complex genetic networks control hematopoietic stem cell differentiation into progenitors that give rise to billions of erythrocytes daily. Previously, we described a role for the master regulator of erythropoiesis, GATA-1, in inducing genes encoding components of the autophagy machinery. In this context, the Forkhead transcription factor, Foxo3, amplified GATA-1-mediated transcriptional activation. To determine the scope of the GATA-1/Foxo3 cooperativity, and to develop functional insights, we analyzed the GATA-1/Foxo3-dependent transcriptome in erythroid cells. GATA-1/Foxo3 repressed expression of Exosc8, a pivotal component of the exosome complex, which mediates RNA surveillance and epigenetic regulation. Strikingly, downregulating Exosc8, or additional exosome complex components, in primary erythroid precursor cells induced erythroid cell maturation. Our results demonstrate a new mode of controlling erythropoiesis in which multiple components of the exosome complex are endogenous suppressors of the erythroid developmental program.
Collapse
Affiliation(s)
- Skye C McIver
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Yoon-A Kang
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Andrew W DeVilbiss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Chelsea A O'Driscoll
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jonathan N Ouellette
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Nathaniel J Pope
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Genis Camprecios
- Department of Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY
| | - Chan-Jung Chang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY; and
| | - David Yang
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison WI
| | - Eric E Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY; and
| | - Saghi Ghaffari
- Department of Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
25
|
The over-expression of aquaporin-1 alters erythroid gene expression in human erythroleukemia K562 cells. Tumour Biol 2014; 36:291-302. [PMID: 25252847 DOI: 10.1007/s13277-014-2614-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022] Open
Abstract
Aquaporin genes are differentially expressed in primitive versus definitive erythropoiesis. Our previous research results showed that over-expression of aquaporin-1 (AQP1) gene greatly promotes the erythroid differentiation of erythroleukemia K562 cells, using benzidine staining and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) analysis for representative erythroid-related genes, including γ-globin. But the molecular mechanisms underlying erythroid-specific gene regulation remain unknown. In this study, we demonstrated that AQP1 induced hemoglobins expression and altered erythroid gene expression by microarray analysis in K562 cells. The retroviral expression vector of AQP1 (pBABE-puro-AQP1) was constructed and infected K562 cells to establish a stable AQP1 over-expression cell line (K562-AQP1). AQP1 over-expression effectively inhibited cell proliferation and induced cell growth arrest in G1 phase of K562 cells. Then microarray profile was applied to analyze the differentially expressed genes which involved the mechanism of AQP1 in erythroid differentiation induction. The DAVID functional annotation clustering tool was used to identify biological functions enriched with the differentially expressed genes (n = 466 genes) and to group genes into clusters based on their functional similarity. Significant enrichment of genes involved in "oxygen transporter activity" (p = 3.8E-7) including hemoglobins (HBD, HBG, HBB, HBE1, and HBQ1), HEMGN, and EBP42 were validated by qRT-PCR. Moreover, silencing of HEMGN by RNA interference in K562-AQP1 cells resulted in down-regulation of these genes. These data provide a better understanding of the role of AQP1 in erythroid differentiation, by promoting HEMGN induction and other potential signaling pathways associated with hemoglobin induction.
Collapse
|
26
|
Hewitt KJ, Sanalkumar R, Johnson KD, Keles S, Bresnick EH. Epigenetic and genetic mechanisms in red cell biology. Curr Opin Hematol 2014; 21:155-64. [PMID: 24722192 PMCID: PMC6061918 DOI: 10.1097/moh.0000000000000034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Erythropoiesis, in which hematopoietic stem cells (HSCs) generate lineage-committed progenitors that mature into erythrocytes, is regulated by numerous chromatin modifying and remodeling proteins. We will focus on how epigenetic and genetic mechanisms mesh to establish the erythroid transcriptome and how studying erythropoiesis can yield genomic principles. RECENT FINDINGS Trans-acting factor binding to small DNA motifs (cis-elements) underlies regulatory complex assembly at specific chromatin sites, and therefore unique transcriptomes. As cis-elements are often very small, thousands or millions of copies of a given element reside in a genome. Chromatin restricts factor access in a context-dependent manner, and cis-element-binding factors recruit chromatin regulators that mediate functional outputs. Technologies to map chromatin attributes of loci in vivo, to edit genomes and to sequence whole genomes have been transformative in discovering critical cis-elements linked to human disease. SUMMARY Cis-elements mediate chromatin-targeting specificity, and chromatin regulators dictate cis-element accessibility/function, illustrating an amalgamation of genetic and epigenetic mechanisms. Cis-elements often function ectopically when studied outside of their endogenous loci, and complex strategies to identify nonredundant cis-elements require further development. Facile genome-editing technologies provide a new approach to address this problem. Extending genetic analyses beyond exons and promoters will yield a rich pipeline of cis-element alterations with importance for red cell biology and disease.
Collapse
Affiliation(s)
- Kyle J. Hewitt
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Rajendran Sanalkumar
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Kirby D. Johnson
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| | - Sunduz Keles
- UW-Madison Blood Research Program, Carbone Cancer Center
- Department of Biostatistics and Medical Informatics, Department of Statistics, Wisconsin Institutes for Medical Research, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health
- UW-Madison Blood Research Program, Carbone Cancer Center
| |
Collapse
|
27
|
Abstract
The unremitting demand to replenish differentiated cells in tissues requires efficient mechanisms to generate and regulate stem and progenitor cells. Although master regulatory transcription factors, including GATA binding protein-2 (GATA-2), have crucial roles in these mechanisms, how such factors are controlled in developmentally dynamic systems is poorly understood. Previously, we described five dispersed Gata2 locus sequences, termed the -77, -3.9, -2.8, -1.8, and +9.5 GATA switch sites, which contain evolutionarily conserved GATA motifs occupied by GATA-2 and GATA-1 in hematopoietic precursors and erythroid cells, respectively. Despite common attributes of transcriptional enhancers, targeted deletions of the -2.8, -1.8, and +9.5 sites revealed distinct and unpredictable contributions to Gata2 expression and hematopoiesis. Herein, we describe the targeted deletion of the -3.9 site and mechanistically compare the -3.9 site with other GATA switch sites. The -3.9(-/-) mice were viable and exhibited normal Gata2 expression and steady-state hematopoiesis in the embryo and adult. We established a Gata2 repression/reactivation assay, which revealed unique +9.5 site activity to mediate GATA factor-dependent chromatin structural transitions. Loss-of-function analyses provided evidence for a mechanism in which a mediator of long-range transcriptional control [LIM domain binding 1 (LDB1)] and a chromatin remodeler [Brahma related gene 1 (BRG1)] synergize through the +9.5 site, conferring expression of GATA-2, which is known to promote the genesis and survival of hematopoietic stem cells.
Collapse
|
28
|
Identification of NuRSERY, a new functional HDAC complex composed by HDAC5, GATA1, EKLF and pERK present in human erythroid cells. Int J Biochem Cell Biol 2014; 50:112-22. [PMID: 24594363 DOI: 10.1016/j.biocel.2014.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/17/2014] [Accepted: 02/21/2014] [Indexed: 12/21/2022]
Abstract
To clarify the role of HDACs in erythropoiesis, expression, activity and function of class I (HDAC1, HDAC2, HDAC3) and class IIa (HDAC4, HDAC5) HDACs during in vitro maturation of human erythroblasts were compared. During erythroid maturation, expression of HDAC1, HDAC2 and HDAC3 remained constant and activity and GATA1 association (its partner of the NuRD complex), of HDAC1 increased. By contrast, HDAC4 content drastically decreased and HDAC5 remained constant in content but decreased in activity. In erythroid cells, pull down experiments identified the presence of a novel complex formed by HDAC5, GATA1, EKLF and pERK which was instead undetectable in cells of the megakaryocytic lineage. With erythroid maturation, association among HDAC5, GATA1 and EKLF persisted but levels of pERK sharply decreased. Treatment of erythroleukemic cells with inhibitors of ERK phosphorylation reduced by >90% the total and nuclear content of HDAC5, GATA1 and EKLF, suggesting that ERK phosphorylation is required for the formation of this complex. Based on the function of class IIa HDACs as chaperones of other proteins to the nucleus and the erythroid-specificity of HDAC5 localization, this novel HDAC complex was named nuclear remodeling shuttle erythroid (NuRSERY). Exposure of erythroid cells to the class II-selective HDAC inhibitor (HDACi) APHA9 increased γ/(γ+β) globin expression ratios (Mai et al., 2007), suggesting that NuRSERY may regulate globin gene expression. In agreement with this hypothesis, exposure of erythroid cells to APHA9 greatly reduced the association among HDAC5, GATA1 and EKLF. Since exposure to APHA9 did not affect survival rates or p21 activation, NuRSERY may represent a novel, possibly less toxic, target for epigenetic therapies of hemoglobinopaties and other disorders.
Collapse
|
29
|
Fujiwara T, Saitoh H, Inoue A, Kobayashi M, Okitsu Y, Katsuoka Y, Fukuhara N, Onishi Y, Ishizawa K, Ichinohasama R, Harigae H. 3-Deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase, promotes erythroid differentiation. J Biol Chem 2014; 289:8121-34. [PMID: 24492606 PMCID: PMC3961643 DOI: 10.1074/jbc.m114.548651] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
EZH2, a core component of polycomb repressive complex 2 (PRC2), plays a role in transcriptional repression through histone H3 Lys-27 trimethylation and is involved in various biological processes, including hematopoiesis. It is well known that 3-deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase that targets the degradation of EZH2, preferentially induces apoptosis in various hematological malignancies, suggesting that EZH2 may be a new target for epigenetic treatment. Because PRC2 participates in epigenetic silencing of a subset of GATA-1 target genes during erythroid differentiation, inhibition of EZH2 may influence erythropoiesis. To explore this possibility, we evaluated the impact of DZNep on erythropoiesis. DZNep treatment significantly induced erythroid differentiation of K562 cells, as assessed by benzidine staining and quantitative RT-PCR analysis for representative erythroid-related genes, including globins. When we evaluated the effects of DZNep in human primary erythroblasts derived from cord blood CD34-positive cells, the treatment significantly induced erythroid-related genes, as observed in K562 cells, suggesting that DZNep induces erythroid differentiation. Unexpectedly, siRNA-mediated EZH2 knockdown had no significant effect on the expression of erythroid-related genes. Transcriptional profiling of DZNep-treated K562 cells revealed marked up-regulation of SLC4A1 and EPB42, previously reported as representative targets of the transcriptional corepressor ETO2. In addition, DZNep treatment reduced the protein level of ETO2. These data suggest that erythroid differentiation by DZNep may not be directly related to EZH2 inhibition but may be partly associated with reduced protein level of hematopoietic corepressor ETO2. These data provide a better understanding of the mechanism of action of DZNep, which may be exploited for therapeutic applications for hematological diseases, including anemia.
Collapse
|
30
|
Expression profiling of ETO2-regulated miRNAs in erythroid cells: Possible influence on miRNA abundance. FEBS Open Bio 2013; 3:428-32. [PMID: 24251106 PMCID: PMC3821025 DOI: 10.1016/j.fob.2013.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 12/26/2022] Open
Abstract
ETO2 is a component of a protein complex containing master regulators of hematopoiesis, including GATA-1 and SCL/TAL1, and also has RNA binding properties. Although ETO2 has been reported to repress GATA-1 target genes through histone deacetylation of the target gene loci in erythroid cells, little is known about the contribution of ETO2 to microRNA (miRNA) regulation. Here, we conducted miRNA profiling in ETO2-overexpressing and ETO2-silenced K562 cells. The analysis suggests that ETO2 positively regulates the abundance of mature miRNAs, including miR-21, miR-29b and let-7e. Our data suggest a novel mode of ETO2-mediated target gene repression via effects on miRNA expression. miRNA profiling was conducted in ETO2-overexpressing and ETO2-silenced K562 cells. ETO2 positively regulates the abundance of miRNA. ETO2 positively regulates the expression of miR-21, miR-29b and let-7e.
Collapse
Key Words
- CBF1, core-binding factor 1
- ETO2
- ETO2 (CBFA2T3), core-binding factor, runt domain, alpha subunit 2, translocated to, 3
- Erythropoiesis
- IL-3, interleukin 3
- IMDM, Iscove’s Modified Dulbecco’s Media
- LMO2, LIM domain only 2
- RPMI, Roswell Park Memorial Institute
- SCF, stem cell factor
- cDNA, complementary DNA
- miRNA
- siRNA, small interfering RNA
Collapse
|
31
|
Transcriptional regulation of haematopoietic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:187-212. [PMID: 23696358 DOI: 10.1007/978-94-007-6621-1_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Haematopoietic stem cells (HSCs) are a rare cell population found in the bone marrow of adult mammals and are responsible for maintaining the entire haematopoietic system. Definitive HSCs are produced from mesoderm during embryonic development, from embryonic day 10 in the mouse. HSCs seed the foetal liver before migrating to the bone marrow around the time of birth. In the adult, HSCs are largely quiescent but have the ability to divide to self-renew and expand, or to proliferate and differentiate into any mature haematopoietic cell type. Both the specification of HSCs during development and their cellular choices once formed are tightly controlled at the level of transcription. Numerous transcriptional regulators of HSC specification, expansion, homeostasis and differentiation have been identified, primarily from analysis of mouse gene knockout experiments and transplantation assays. These include transcription factors, epigenetic modifiers and signalling pathway effectors. This chapter reviews the current knowledge of these HSC transcriptional regulators, predominantly focusing on the transcriptional regulation of mouse HSCs, although transcriptional regulation of human HSCs is also mentioned where relevant. Due to the breadth and maturity of this field, we have prioritised recently identified examples of HSC transcriptional regulators. We go on to highlight additional layers of control that regulate expression and activity of HSC transcriptional regulators and discuss how chromosomal translocations that result in fusion proteins of these HSC transcriptional regulators commonly drive leukaemias through transcriptional dysregulation.
Collapse
|
32
|
Inoue A, Fujiwara T, Okitsu Y, Katsuoka Y, Fukuhara N, Onishi Y, Ishizawa K, Harigae H. Elucidation of the role of LMO2 in human erythroid cells. Exp Hematol 2013; 41:1062-76.e1. [PMID: 24041784 DOI: 10.1016/j.exphem.2013.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 01/08/2023]
Abstract
LIM-only protein 2 (LMO2) is a non-DNA-binding component of a protein complex containing master regulators of hematopoiesis, including GATA-1, SCL/TAL1, and LDB1. However, the role of LMO2 in human erythroid differentiation is unclear. LMO2 knockdown in hemin-treated K562 cells reduced the benzidine-positive cell ratio, suggesting that LMO2 retards hemin-mediated K562 cell differentiation. Microarray analysis using K562 cells after siRNA-mediated LMO2 knockdown indicated that 177 and 78 genes were upregulated and downregulated (>1.5-fold), respectively. The downregulated gene ensemble contained prototypical erythroid genes (HBB, SLC4A1). Whereas LMO2 knockdown did not affect GATA-1 or SCL/TAL1 expression, it resulted in significantly reduced chromatin occupancy of GATA-1, SCL/TAL1, and LDB1 at the β-globin locus control region and SLC4A1 locus in both K562 cells and human induced pluripotent stem cell-derived erythroid cells. Introduction of GATA-1 mutations, shown to impair direct interaction with LMO2, significantly diminished chromatin occupancy. On the other hand, knockdown of either SCL/TAL1 or LDB1 also resulted in significantly reduced chromatin occupancy of GATA-1 at endogenous loci, suggesting that impaired assembly of these components also affects GATA-1 chromatin occupancy. In an ex vivo model of erythroid differentiation from CD34(+) cells, LMO2 protein level peaked on day 5 and decreased at later stages of differentiation. The LMO2 expression pattern was similar to those of GATA-1 and SCL/TAL1. Furthermore, shRNA-mediated LMO2 knockdown in primary erythroblasts suggested that LMO2 regulates HBB, HBA, and SLC4A1 expression. LMO2 contributes to GATA-1 target gene expression by affecting assembly of the GATA-SCL/TAL1 complex components at endogenous loci.
Collapse
Affiliation(s)
- Ai Inoue
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Role of transcriptional corepressor ETO2 in erythroid cells. Exp Hematol 2012; 41:303-15.e1. [PMID: 23127762 DOI: 10.1016/j.exphem.2012.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/02/2012] [Accepted: 10/30/2012] [Indexed: 02/08/2023]
Abstract
Transcriptional corepressor ETO2 is a component of a protein complex containing master regulators of hematopoiesis, including GATA-1, SCL/TAL1, LMO2, and LDB1. To elucidate the role of ETO2 during erythroid differentiation, including the effects of ETO2 on GATA-1 targets, we performed gene expression profiling using K562 cells overexpressed with ETO2. The analysis demonstrated that 667 and 598 genes were upregulated and downregulated (more than twofold), respectively, in ETO2-overexpressing cells. ETO2-repressed genes included those encoding prototypical erythroid proteins. To test what percentages of ETO2-repressed genes could be direct target genes of GATA-1 in K562 cells, we merged the microarray results with ChIP-seq profile (n = 5,749), demonstrating that 23.1% of ETO2-repressed genes contained significant GATA-1 in their loci. However, there was no significant enrichment of PU.1 target genes among ETO2-repressed genes. Gene ontology analysis among ETO2-repressed genes revealed significant enrichment of genes related to "oxygen transporter," corresponding to globin genes. Quantitative chromatin immunoprecipitation and ETO2 knockdown analyses confirmed that ETO2 directly regulates globin genes in K562 cells. Next, we evaluated the role of ETO2 in human primary erythroblasts, derived from cord blood CD34-positive cells. In an ex vivo model of erythroid differentiation from CD34-positive cells, ETO2 protein level peaked at day 2-4 and almost diminished at the later stage of differentiation. Furthermore, short hairpin RNA-mediated knockdown and retroviral vector-mediated overexpression of ETO2 in primary erythroblasts suggested that ETO2 significantly represses HBB, HBA, and ALAS2 expression. In summary, ETO2 regulates GATA-1 target genes critical for erythroid differentiation, and the decrease of ETO2 levels during erythroid differentiation would contribute to the activation of these targets.
Collapse
|
34
|
Abstract
LMO2 regulates gene expression by facilitating the formation of multipartite DNA-binding complexes. In B cells, LMO2 is specifically up-regulated in the germinal center (GC) and is expressed in GC-derived non-Hodgkin lymphomas. LMO2 is one of the most powerful prognostic indicators in diffuse large B-cell (DLBCL) patients. However, its function in GC B cells and DLBCL is currently unknown. In this study, we characterized the LMO2 transcriptome and transcriptional complex in DLBCL cells. LMO2 regulates genes implicated in kinetochore function, chromosome assembly, and mitosis. Overexpression of LMO2 in DLBCL cell lines results in centrosome amplification. In DLBCL, the LMO2 complex contains some of the traditional partners, such as LDB1, E2A, HEB, Lyl1, ETO2, and SP1, but not TAL1 or GATA proteins. Furthermore, we identified novel LMO2 interacting partners: ELK1, nuclear factor of activated T-cells (NFATc1), and lymphoid enhancer-binding factor1 (LEF1) proteins. Reporter assays revealed that LMO2 increases transcriptional activity of NFATc1 and decreases transcriptional activity of LEF1 proteins. Overall, our studies identified a novel LMO2 transcriptome and interactome in DLBCL and provides a platform for future elucidation of LMO2 function in GC B cells and DLBCL pathogenesis.
Collapse
|
35
|
Bresnick EH, Katsumura KR, Lee HY, Johnson KD, Perkins AS. Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies. Nucleic Acids Res 2012; 40:5819-31. [PMID: 22492510 PMCID: PMC3401466 DOI: 10.1093/nar/gks281] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Numerous examples exist of how disrupting the actions of physiological regulators of blood cell development yields hematologic malignancies. The master regulator of hematopoietic stem/progenitor cells GATA-2 was cloned almost 20 years ago, and elegant genetic analyses demonstrated its essential function to promote hematopoiesis. While certain GATA-2 target genes are implicated in leukemogenesis, only recently have definitive insights emerged linking GATA-2 to human hematologic pathophysiologies. These pathophysiologies include myelodysplastic syndrome, acute myeloid leukemia and an immunodeficiency syndrome with complex phenotypes including leukemia. As GATA-2 has a pivotal role in the etiology of human cancer, it is instructive to consider mechanisms underlying normal GATA factor function/regulation and how dissecting such mechanisms may reveal unique opportunities for thwarting GATA-2-dependent processes in a therapeutic context. This article highlights GATA factor mechanistic principles, with a heavy emphasis on GATA-1 and GATA-2 functions in the hematopoietic system, and new links between GATA-2 dysregulation and human pathophysiologies.
Collapse
Affiliation(s)
- Emery H Bresnick
- Wisconsin Institutes for Medical Research, Paul Carbone Cancer Center, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| | | | | | | | | |
Collapse
|
36
|
Myeloid translocation gene 16 is required for maintenance of haematopoietic stem cell quiescence. EMBO J 2012; 31:1494-505. [PMID: 22266796 DOI: 10.1038/emboj.2011.500] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 12/16/2011] [Indexed: 01/21/2023] Open
Abstract
The t(8;21) and t(16;21) that are associated with acute myeloid leukaemia disrupt two closely related genes termed Myeloid Translocation Genes 8 (MTG8) and 16 (MTG16), respectively. Many of the transcription factors that recruit Mtg16 regulate haematopoietic stem and progenitor cell functions and are required to maintain stem cell self-renewal potential. Accordingly, we found that Mtg16-null bone marrow (BM) failed in BM transplant assays. Moreover, when removed from the animal, Mtg16-deficient stem cells continued to show defects in stem cell self-renewal assays, suggesting a requirement for Mtg16 in this process. Gene expression analysis indicated that Mtg16 was required to suppress the expression of several key cell-cycle regulators including E2F2, and chromatin immunoprecipitation assays detected Mtg16 near an E2A binding site within the first intron of E2F2. BrdU incorporation assays indicated that in the absence of Mtg16 more long-term stem cells were in the S phase, even after competitive BM transplantation where normal stem and progenitor cells are present, suggesting that Mtg16 plays a role in the maintenance of stem cell quiescence.
Collapse
|
37
|
Distinct Ldb1/NLI complexes orchestrate γ-globin repression and reactivation through ETO2 in human adult erythroid cells. Blood 2011; 118:6200-8. [PMID: 22010104 DOI: 10.1182/blood-2011-06-363101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Ldb1/GATA-1/TAL1/LMO2 complex mediates long-range interaction between the β-globin locus control region (LCR) and gene in adult mouse erythroid cells, but whether this complex mediates chromatin interactions at other developmental stages or in human cells is unknown. We investigated NLI (Ldb1 homolog) complex occupancy and chromatin conformation of the β-globin locus in human erythroid cells. In addition to the LCR, we found robust NLI complex occupancy at a site downstream of the (A)γ-globin gene within sequences of BGL3, an intergenic RNA transcript. In cells primarily transcribing β-globin, BGL3 is not transcribed and BGL3 sequences are occupied by NLI core complex members, together with corepressor ETO2 and by γ-globin repressor BCL11A. The LCR and β-globin gene establish proximity in these cells. In contrast, when γ-globin transcription is reactivated in these cells, ETO2 participation in the NLI complex at BGL3 is diminished, as is BCL11A occupancy, and both BGL3 and γ-globin are transcribed. In these cells, proximity between the BGL3/γ-globin region and the LCR is established. We conclude that alternative NLI complexes mediate γ-globin transcription or silencing through long-range LCR interactions involving an intergenic site of noncoding RNA transcription and that ETO2 is critical to this process.
Collapse
|
38
|
Wilson NK, Tijssen MR, Göttgens B. Deciphering transcriptional control mechanisms in hematopoiesis:the impact of high-throughput sequencing technologies. Exp Hematol 2011; 39:961-8. [PMID: 21781948 DOI: 10.1016/j.exphem.2011.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/07/2011] [Indexed: 12/18/2022]
Abstract
One of the key challenges facing biomedical research is to extract biologically meaningful information from the ever-increasing scale and complexity of datasets generated through high-throughput approaches. Hematopoiesis represents one of the most experimentally tractable mammalian organ systems and, therefore, has historically tended to be at the forefront of applying new technologies within biomedical research. The combination of massive parallel sequencing technologies with chromatin-immunoprecipitation (ChIP-Seq) permits genome-scale characterization of histone modification status and identification of the complete set of binding sites for transcription factors. Because transcription factors have long been recognized as essential regulators of cell fate choice in hematopoiesis, ChIP-Seq technology has rapidly entered the arena of modern experimental hematology. Here we review the biological insights gained from ChIP-Seq studies performed in the hematopoietic system since the earliest studies just 4 years ago. A surprisingly large number of different approaches have already been implemented to extract new biological knowledge from ChIP-Seq datasets. By focusing on successful insights from multiple different approaches, we hope to provide stimulating reading for anyone wanting to utilize ChIP-Seq technology within their particular research field.
Collapse
Affiliation(s)
- Nicola K Wilson
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, UK
| | | | | |
Collapse
|
39
|
Bronstein R, Segal D. Modularity of CHIP/LDB transcription complexes regulates cell differentiation. Fly (Austin) 2011; 5:200-5. [PMID: 21406967 DOI: 10.4161/fly.5.3.14854] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcription is the first step through which the cell operates, via its repertoire of transcription complexes, to direct cellular functions and cellular identity by generating the cell-specific transcriptome. The modularity of the composition of constituents of these complexes allows the cell to delicately regulate its transcriptome. In a recent study we have examined the effects of reducing the levels of specific transcription co-factors on the function of two competing transcription complexes, namely CHIP-AP and CHIP-PNR which regulate development of cells in the thorax of Drosophila. We found that changing the availability of these co-factors can shift the balance between these complexes leading to transition from utilization of CHIP-AP to CHIP-PNR. This is reflected in change in the expression profile of target genes, altering developmental cell fates. We propose that such a mechanism may operate in normal fly development. Transcription complexes analogous to CHIP-AP and CHIP-PNR exist in mammals and we discuss how such a shift in the balance between them may operate in normal mammalian development.
Collapse
Affiliation(s)
- Revital Bronstein
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|