1
|
Ramlow L, Falcke M, Lindner B. An integrate-and-fire approach to Ca 2+ signaling. Part II: Cumulative refractoriness. Biophys J 2023; 122:4710-4729. [PMID: 37981761 PMCID: PMC10754692 DOI: 10.1016/j.bpj.2023.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023] Open
Abstract
Inositol 1,4,5-trisphosphate-induced Ca2+ signaling is a second messenger system used by almost all eukaryotic cells. The agonist concentration stimulating Ca2+ signals is encoded in the frequency of a Ca2+ concentration spike sequence. When a cell is stimulated, the interspike intervals (ISIs) often show a distinct transient during which they gradually increase, a system property we refer to as cumulative refractoriness. We extend a previously published stochastic model to include the Ca2+ concentration in the intracellular Ca2+ store as a slow adaptation variable. This model can reproduce both stationary and transient statistics of experimentally observed ISI sequences. We derive approximate expressions for the mean and coefficient of variation of the stationary ISIs. We also consider the response to the onset of a constant stimulus and estimate the length of the transient and the strength of the adaptation of the ISI. We show that the adaptation sets the coefficient of variation in agreement with current ideas derived from experiments. Moreover, we explain why, despite a pronounced transient behavior, ISI correlations can be weak, as often observed in experiments. Finally, we fit our model to reproduce the transient statistics of experimentally observed ISI sequences in stimulated HEK cells. The fitted model is able to qualitatively reproduce the relationship between the stationary interval correlations and the number of transient intervals, as well as the strength of the ISI adaptation. We also find positive correlations in the experimental sequence that cannot be explained by our model.
Collapse
Affiliation(s)
- Lukas Ramlow
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Department of Physics, Humboldt University Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Martin Falcke
- Department of Physics, Humboldt University Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Department of Physics, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
2
|
Friedhoff VN, Lindner B, Falcke M. Modeling IP 3-induced Ca 2+ signaling based on its interspike interval statistics. Biophys J 2023; 122:2818-2831. [PMID: 37312455 PMCID: PMC10398346 DOI: 10.1016/j.bpj.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
Inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ signaling is a second messenger system used by almost all eukaryotic cells. Recent research demonstrated randomness of Ca2+ signaling on all structural levels. We compile eight general properties of Ca2+ spiking common to all cell types investigated and suggest a theory of Ca2+ spiking starting from the random behavior of IP3 receptor channel clusters mediating the release of Ca2+ from the endoplasmic reticulum capturing all general properties and pathway-specific behavior. Spike generation begins after the absolute refractory period of the previous spike. According to its hierarchical spreading from initiating channel openings to cell level, we describe it as a first passage process from none to all clusters open while the cell recovers from the inhibition which terminated the previous spike. Our theory reproduces the exponential stimulation response relation of the average interspike interval Tav and its robustness properties, random spike timing with a linear moment relation between Tav and the interspike interval SD and its robustness properties, sensitive dependency of Tav on diffusion properties, and nonoscillatory local dynamics. We explain large cell variability of Tav observed in experiments by variability of channel cluster coupling by Ca2+-induced Ca2+ release, the number of clusters, and IP3 pathway component expression levels. We predict the relation between puff probability and agonist concentration and [IP3] and agonist concentration. Differences of spike behavior between cell types and stimulating agonists are explained by the different types of negative feedback terminating spikes. In summary, the hierarchical random character of spike generation explains all of the identified general properties.
Collapse
Affiliation(s)
- Victor Nicolai Friedhoff
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Physics, Humboldt University, Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Department of Physics, Humboldt University, Berlin, Germany
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Physics, Humboldt University, Berlin, Germany.
| |
Collapse
|
3
|
Ramlow L, Falcke M, Lindner B. An integrate-and-fire approach to Ca 2+ signaling. Part I: Renewal model. Biophys J 2023; 122:713-736. [PMID: 36635961 PMCID: PMC9989887 DOI: 10.1016/j.bpj.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
In computational neuroscience integrate-and-fire models capture the spike generation by a subthreshold dynamics supplemented by a simple fire-and-reset rule; they allow for a numerically efficient and analytically tractable description of stochastic single cell as well as network dynamics. Stochastic spiking is also a prominent feature of Ca2+ signaling which suggests to adopt the integrate-and-fire approach for this fundamental biophysical process. The model introduced here consists of two components describing 1) activity of clusters of inositol-trisphosphate receptor channels and 2) dynamics of the global Ca2+ concentrations in the cytosol. The cluster dynamics is given in terms of a cyclic Markov chain, capturing the puff, i.e., the punctuated release of Ca2+ from intracellular stores. The cytosolic Ca2+ concentration is described by an integrate-and-fire dynamics driven by the puff current. For the cyclic Markov chain we derive expressions for the statistics of the interpuff interval, the single-puff strength and the puff current assuming constant cytosolic Ca2+. The latter condition is often well approximated because cytosolic Ca2+ varies much slower than the cluster activity does. Furthermore, because the detailed two-component model is numerically expensive to simulate and difficult to treat analytically, we develop an analytical framework to approximate the driving puff current of the stochastic cytosolic Ca2+ dynamics by a temporally uncorrelated Gaussian noise. This approximation reduces our two-component system to an integrate-and-fire model with a nonlinear drift function and a multiplicative Gaussian white noise, a model that is known to generate a renewal spike train, i.e., a point process with statistically independent interspike intervals. The model allows for fast numerical simulations, permits to derive analytical expressions for the rate of Ca2+ spiking and the coefficient of variation of the interspike interval, and to approximate the interspike interval density and the spike train power spectrum. Comparison of these statistics to experimental data is discussed.
Collapse
Affiliation(s)
- Lukas Ramlow
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Physics Department of Humboldt University Berlin, Berlin, Germany.
| | - Martin Falcke
- Physics Department of Humboldt University Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Physics Department of Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
4
|
Oprea L, Desjardins N, Jiang X, Sareen K, Zheng JQ, Khadra A. Characterizing spontaneous Ca 2+ local transients in OPCs using computational modeling. Biophys J 2022; 121:4419-4432. [PMID: 36352783 PMCID: PMC9748374 DOI: 10.1016/j.bpj.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Spontaneous Ca2+ local transients (SCaLTs) in isolated oligodendrocyte precursor cells are largely regulated by the following fluxes: store-operated Ca2+ entry (SOCE), Na+/Ca2+ exchange, Ca2+ pumping through Ca2+-ATPases, and Ca2+-induced Ca2+-release through ryanodine receptors and inositol-trisphosphate receptors. However, the relative contributions of these fluxes in mediating fast spiking and the slow baseline oscillations seen in SCaLTs remain incompletely understood. Here, we developed a stochastic spatiotemporal computational model to simulate SCaLTs in a homogeneous medium with ionic flow between the extracellular, cytoplasmic, and endoplasmic-reticulum compartments. By simulating the model and plotting both the histograms of SCaLTs obtained experimentally and from the model as well as the standard deviation of inter-SCaLT intervals against inter-SCaLT interval averages of multiple model and experimental realizations, we revealed the following: (1) SCaLTs exhibit very similar characteristics between the two data sets, (2) they are mostly random, (3) they encode information in their frequency, and (4) their slow baseline oscillations could be due to the stochastic slow clustering of inositol-trisphosphate receptors (modeled as an Ornstein-Uhlenbeck noise process). Bifurcation analysis of a deterministic temporal version of the model showed that the contribution of fluxes to SCaLTs depends on the parameter regime and that the combination of excitability, stochasticity, and mixed-mode oscillations are responsible for irregular spiking and doublets in SCaLTs. Additionally, our results demonstrated that blocking each flux reduces SCaLTs' frequency and that the reverse (forward) mode of Na+/Ca2+ exchange decreases (increases) SCaLTs. Taken together, these results provide a quantitative framework for SCaLT formation in oligodendrocyte precursor cells.
Collapse
Affiliation(s)
- Lawrence Oprea
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | | | - Xiaoyu Jiang
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Kushagra Sareen
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - James Q Zheng
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Anmar Khadra
- Department of Physiology, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
5
|
Kaimachnikov NP, Kotova PD, Kochkina EN, Rogachevskaja OA, Khokhlov AA, Bystrova MF, Kolesnikov SS. Modeling of Ca2+ transients initiated by GPCR agonists in mesenchymal stromal cells. BBA ADVANCES 2021; 1:100012. [PMID: 37082025 PMCID: PMC10074909 DOI: 10.1016/j.bbadva.2021.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022] Open
Abstract
The integrative study that included experimentation and mathematical modeling was carried out to analyze dynamic aspects of transient Ca2+ signaling induced by brief pulses of GPCR agonists in mesenchymal stromal cells from the human adipose tissue (AD-MSCs). The experimental findings argued for IP3/Ca2+-regulated Ca2+ release via IP3 receptors (IP3Rs) as a key mechanism mediating agonist-dependent Ca2+ transients. The consistent signaling circuit was proposed to formalize coupling of agonist binding to Ca2+ mobilization for mathematical modeling. The model properly simulated the basic phenomenology of agonist transduction in AD-MSCs, which mostly produced single Ca2+ spikes upon brief stimulation. The spike-like responses were almost invariantly shaped at different agonist doses above a threshold, while response lag markedly decreased with stimulus strength. In AD-MSCs, agonists and IP3 uncaging elicited similar Ca2+ transients but IP3 pulses released Ca2+ without pronounced delay. This suggested that IP3 production was rate-limiting in agonist transduction. In a subpopulation of AD-MSCs, brief agonist pulses elicited Ca2+ bursts crowned by damped oscillations. With properly adjusted parameters of IP3R inhibition by cytosolic Ca2+, the model reproduced such oscillatory Ca2+ responses as well. GEM-GECO1 and R-CEPIA1er, the genetically encoded sensors of cytosolic and reticular Ca2+, respectively, were co-expressed in HEK-293 cells that also responded to agonists in an "all-or-nothing" manner. The experimentally observed Ca2+ signals triggered by ACh in both compartments were properly simulated with the suggested signaling circuit. Thus, the performed modeling of the transduction process provides sufficient theoretical basis for deeper interpretation of experimental findings on agonist-induced Ca2+ signaling in AD-MSCs.
Collapse
|
6
|
Bartlett PJ, Cloete I, Sneyd J, Thomas AP. IP 3-Dependent Ca 2+ Oscillations Switch into a Dual Oscillator Mechanism in the Presence of PLC-Linked Hormones. iScience 2020; 23:101062. [PMID: 32353764 PMCID: PMC7191650 DOI: 10.1016/j.isci.2020.101062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 12/11/2019] [Accepted: 04/09/2020] [Indexed: 11/28/2022] Open
Abstract
Ca2+ oscillations that depend on inositol-1,4,5-trisphosphate (IP3) have been ascribed to biphasic Ca2+ regulation of the IP3 receptor (IP3R) or feedback mechanisms controlling IP3 levels in different cell types. IP3 uncaging in hepatocytes elicits Ca2+ transients that are often localized at the subcellular level and increase in magnitude with stimulus strength. However, this does not reproduce the broad baseline-separated global Ca2+ oscillations elicited by vasopressin. Addition of hormone to cells activated by IP3 uncaging initiates a qualitative transition from high-frequency spatially disorganized Ca2+ transients, to low-frequency, oscillatory Ca2+ waves that propagate throughout the cell. A mathematical model with dual coupled oscillators that integrates Ca2+-induced Ca2+ release at the IP3R and mutual feedback mechanisms of cross-coupling between Ca2+ and IP3 reproduces this behavior. Thus, multiple Ca2+ oscillation modes can coexist in the same cell, and hormonal stimulation can switch from the simpler to the more complex to yield robust signaling.
Collapse
Affiliation(s)
- Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Ielyaas Cloete
- Department of Mathematics, The University of Auckland, Auckland, New Zealand
| | - James Sneyd
- Department of Mathematics, The University of Auckland, Auckland, New Zealand
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
7
|
Powell J, Falcke M, Skupin A, Bellamy TC, Kypraios T, Thul R. A Statistical View on Calcium Oscillations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:799-826. [PMID: 31646535 DOI: 10.1007/978-3-030-12457-1_32] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transient rises and falls of the intracellular calcium concentration have been observed in numerous cell types and under a plethora of conditions. There is now a growing body of evidence that these whole-cell calcium oscillations are stochastic, which poses a significant challenge for modelling. In this review, we take a closer look at recently developed statistical approaches to calcium oscillations. These models describe the timing of whole-cell calcium spikes, yet their parametrisations reflect subcellular processes. We show how non-stationary calcium spike sequences, which e.g. occur during slow depletion of intracellular calcium stores or in the presence of time-dependent stimulation, can be analysed with the help of so-called intensity functions. By utilising Bayesian concepts, we demonstrate how values of key parameters of the statistical model can be inferred from single cell calcium spike sequences and illustrate what information whole-cell statistical models can provide about the subcellular mechanistic processes that drive calcium oscillations. In particular, we find that the interspike interval distribution of HEK293 cells under constant stimulation is captured by a Gamma distribution.
Collapse
Affiliation(s)
- Jake Powell
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - Martin Falcke
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany.,Department of Physics, Humboldt University, Berlin, Germany
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg.,National Biomedical Computation Resource, University California San Diego, La Jolla, CA, USA
| | - Tomas C Bellamy
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Theodore Kypraios
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - Rüdiger Thul
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
8
|
Falcke M, Friedhoff VN. The stretch to stray on time: Resonant length of random walks in a transient. CHAOS (WOODBURY, N.Y.) 2018; 28:053117. [PMID: 29857685 DOI: 10.1063/1.5023164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
First-passage times in random walks have a vast number of diverse applications in physics, chemistry, biology, and finance. In general, environmental conditions for a stochastic process are not constant on the time scale of the average first-passage time or control might be applied to reduce noise. We investigate moments of the first-passage time distribution under an exponential transient describing relaxation of environmental conditions. We solve the Laplace-transformed (generalized) master equation analytically using a novel method that is applicable to general state schemes. The first-passage time from one end to the other of a linear chain of states is our application for the solutions. The dependence of its average on the relaxation rate obeys a power law for slow transients. The exponent ν depends on the chain length N like ν=-N/(N+1) to leading order. Slow transients substantially reduce the noise of first-passage times expressed as the coefficient of variation (CV), even if the average first-passage time is much longer than the transient. The CV has a pronounced minimum for some lengths, which we call resonant lengths. These results also suggest a simple and efficient noise control strategy and are closely related to the timing of repetitive excitations, coherence resonance, and information transmission by noisy excitable systems. A resonant number of steps from the inhibited state to the excitation threshold and slow recovery from negative feedback provide optimal timing noise reduction and information transmission.
Collapse
Affiliation(s)
- Martin Falcke
- Max Delbrück Center for Molecular Medicine, Robert Rössle Str. 10, 13125 Berlin, Germany
| | | |
Collapse
|
9
|
Falcke M, Moein M, Tilūnaitė A, Thul R, Skupin A. On the phase space structure of IP 3 induced Ca 2+ signalling and concepts for predictive modeling. CHAOS (WOODBURY, N.Y.) 2018; 28:045115. [PMID: 31906671 DOI: 10.1063/1.5021073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The correspondence between mathematical structures and experimental systems is the basis of the generalizability of results found with specific systems and is the basis of the predictive power of theoretical physics. While physicists have confidence in this correspondence, it is less recognized in cellular biophysics. On the one hand, the complex organization of cellular dynamics involving a plethora of interacting molecules and the basic observation of cell variability seem to question its possibility. The practical difficulties of deriving the equations describing cellular behaviour from first principles support these doubts. On the other hand, ignoring such a correspondence would severely limit the possibility of predictive quantitative theory in biophysics. Additionally, the existence of functional modules (like pathways) across cell types suggests also the existence of mathematical structures with comparable universality. Only a few cellular systems have been sufficiently investigated in a variety of cell types to follow up these basic questions. IP3 induced Ca2+signalling is one of them, and the mathematical structure corresponding to it is subject of ongoing discussion. We review the system's general properties observed in a variety of cell types. They are captured by a reaction diffusion system. We discuss the phase space structure of its local dynamics. The spiking regime corresponds to noisy excitability. Models focussing on different aspects can be derived starting from this phase space structure. We discuss how the initial assumptions on the set of stochastic variables and phase space structure shape the predictions of parameter dependencies of the mathematical models resulting from the derivation.
Collapse
Affiliation(s)
- Martin Falcke
- Max Delbrück Centre for Molecular Medicine, Robert Rössler Strasse 10, 13125 Berlin, Germany and Department of Physics, Humboldt University, Newtonstr. 15, 12489 Berlin, Germany
| | - Mahsa Moein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Rue de Swing, Belval L-4367, Luxembourg
| | - Agne Tilūnaitė
- Systems Biology Laboratory, School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rüdiger Thul
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Rue de Swing, Belval L-4367, Luxembourg
| |
Collapse
|
10
|
Li X, Wu Y, Gao X, Cai M, Shuai J. Wave failure at strong coupling in intracellular Ca^{2+} signaling system with clustered channels. Phys Rev E 2018; 97:012406. [PMID: 29448381 DOI: 10.1103/physreve.97.012406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Indexed: 01/04/2023]
Abstract
As an important intracellular signal, Ca^{2+} ions control diverse cellular functions. In this paper, we discuss the Ca^{2+} signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (IP_{3}) receptor channels are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large Ca^{2+} diffusion coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in biological Ca^{2+} signaling systems.
Collapse
Affiliation(s)
- Xiang Li
- Department of Physics, Xiamen University, Xiamen 361005, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China
| | - Yuning Wu
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Xuejuan Gao
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Meichun Cai
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China.,Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361102, China
| |
Collapse
|
11
|
Tilūnaitė A, Croft W, Russell N, Bellamy TC, Thul R. A Bayesian approach to modelling heterogeneous calcium responses in cell populations. PLoS Comput Biol 2017; 13:e1005794. [PMID: 28985235 PMCID: PMC5646906 DOI: 10.1371/journal.pcbi.1005794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/18/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022] Open
Abstract
Calcium responses have been observed as spikes of the whole-cell calcium concentration in numerous cell types and are essential for translating extracellular stimuli into cellular responses. While there are several suggestions for how this encoding is achieved, we still lack a comprehensive theory. To achieve this goal it is necessary to reliably predict the temporal evolution of calcium spike sequences for a given stimulus. Here, we propose a modelling framework that allows us to quantitatively describe the timing of calcium spikes. Using a Bayesian approach, we show that Gaussian processes model calcium spike rates with high fidelity and perform better than standard tools such as peri-stimulus time histograms and kernel smoothing. We employ our modelling concept to analyse calcium spike sequences from dynamically-stimulated HEK293T cells. Under these conditions, different cells often experience diverse stimulus time courses, which is a situation likely to occur in vivo. This single cell variability and the concomitant small number of calcium spikes per cell pose a significant modelling challenge, but we demonstrate that Gaussian processes can successfully describe calcium spike rates in these circumstances. Our results therefore pave the way towards a statistical description of heterogeneous calcium oscillations in a dynamic environment. Upon stimulation a large number of cell types respond with transient increases of the intracellular calcium concentration, which often take the form of repetitive spikes. It is therefore believed that calcium spikes play a central role in cellular signal transduction. A critical feature of these calcium spikes is that they occur randomly, which raises the question of how we can predict the timing of calcium spikes. We here show that by using Bayesian ideas and concepts from stochastic processes, we can quantitatively compute the calcium spike rate for a given stimulus. Our analysis also demonstrates that traditional methods for spike rate estimation perform less favourably compared to a Bayesian approach when small numbers of cells are investigated. To test our methodology under conditions that closely mimic those experienced in vivo we challenged cells with agonist concentrations that vary both in space and time. We find that cells that experience similar stimulus profiles are described by similar calcium spike rates. This suggests that calcium spike rates may constitute a quantitative description of whole-cell calcium spiking that reflects both the randomness and the spatiotemporal organisation of the calcium signalling machinery.
Collapse
Affiliation(s)
- Agne Tilūnaitė
- School of Mathematical Sciences, University of Nottingham, Nottingham, England, United Kingdom
| | - Wayne Croft
- School of Life Sciences, University of Nottingham, Nottingham, England, United Kingdom
| | - Noah Russell
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, England, United Kingdom
| | - Tomas C Bellamy
- School of Life Sciences, University of Nottingham, Nottingham, England, United Kingdom
| | - Rüdiger Thul
- School of Mathematical Sciences, University of Nottingham, Nottingham, England, United Kingdom
| |
Collapse
|
12
|
Cao P, Falcke M, Sneyd J. Mapping Interpuff Interval Distribution to the Properties of Inositol Trisphosphate Receptors. Biophys J 2017; 112:2138-2146. [PMID: 28538151 DOI: 10.1016/j.bpj.2017.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/14/2017] [Accepted: 03/24/2017] [Indexed: 01/24/2023] Open
Abstract
Tightly clustered inositol trisphosphate receptors (IP3Rs) control localized Ca2+ liberation from the endoplasmic reticulum to generate repetitive Ca2+ puffs. Distributions of the interpuff interval (IPI), i.e., the waiting time between successive puffs, are found to be well characterized by a probability density function involving only two parameters, λ and ξ, which represent the basal rate of puff generation and the recovery rate from refractoriness, respectively. However, how the two parameters depend on the kinetic parameters of single IP3Rs in a cluster is still unclear. In this article, using a stochastic puff model and a single-channel data-based IP3R model, we establish the dependencies of λ and ξ on two important IP3R model parameters, IP3 concentration ([IP3]) and the recovery rate from Ca2+ inhibition (rlow). By varying [IP3] and rlow in physiologically plausible ranges, we find that the ξ-λ plane is comprised of only two disjoint regions, a biologically impermissible region and a region where each parameter set (ξ, λ) can be caused by using two different combinations of [IP3] and rlow. The two combinations utilize very different mechanisms to maintain the same IPI distribution, and the mechanistic difference provides a way of identifying IP3R kinetic parameters by observing properties of the IPI.
Collapse
Affiliation(s)
- Pengxing Cao
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Martin Falcke
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - James Sneyd
- Department of Mathematics, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
13
|
|
14
|
Mönke G, Cristiano E, Finzel A, Friedrich D, Herzel H, Falcke M, Loewer A. Excitability in the p53 network mediates robust signaling with tunable activation thresholds in single cells. Sci Rep 2017; 7:46571. [PMID: 28417973 PMCID: PMC5394551 DOI: 10.1038/srep46571] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/17/2017] [Indexed: 01/07/2023] Open
Abstract
Cellular signaling systems precisely transmit information in the presence of molecular noise while retaining flexibility to accommodate the needs of individual cells. To understand design principles underlying such versatile signaling, we analyzed the response of the tumor suppressor p53 to varying levels of DNA damage in hundreds of individual cells and observed a switch between distinct signaling modes characterized by isolated pulses and sustained oscillations of p53 accumulation. Guided by dynamic systems theory we show that this requires an excitable network structure comprising positive feedback and provide experimental evidence for its molecular identity. The resulting data-driven model reproduced all features of measured signaling responses and is sufficient to explain their heterogeneity in individual cells. We present evidence that heterogeneity in the levels of the feedback regulator Wip1 sets cell-specific thresholds for p53 activation, providing means to modulate its response through interacting signaling pathways. Our results demonstrate how excitable signaling networks can provide high specificity, sensitivity and robustness while retaining unique possibilities to adjust their function to the physiology of individual cells.
Collapse
Affiliation(s)
- Gregor Mönke
- Mathematical Cell Physiology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Elena Cristiano
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Ana Finzel
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Dhana Friedrich
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité and Humboldt University, Berlin, Germany
| | - Martin Falcke
- Mathematical Cell Physiology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Alexander Loewer
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
- Department of Biology, Technische Universitaet Darmstadt, Germany
| |
Collapse
|
15
|
Chen Y, Qi H, Li X, Cai M, Chen X, Liu W, Shuai J. Suppressing effect of Ca^{2+} blips on puff amplitudes by inhibiting channels to prevent recovery. Phys Rev E 2016; 94:022411. [PMID: 27627339 DOI: 10.1103/physreve.94.022411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 11/07/2022]
Abstract
As local signals, calcium puffs arise from the concerted opening of a few nearby inositol 1,4,5-trisphospate receptor channels to release Ca^{2+} ions from the endoplasmic reticulum. Although Ca^{2+} puffs have been well studied, little is known about the modulation of cytosolic basal Ca^{2+} concentration ([Ca^{2+}]_{Basal}) on puff dynamics. In this paper we consider a puff model to study how the statistical properties of puffs are modulated by [Ca^{2+}]_{Basal}. The puff frequency and lifetime trivially increase with the increasing [Ca^{2+}]_{Basal}, but an unexpected result is that the puff amplitude and the maximum open-channel number of the puff show decreasing relationship with the increasing [Ca^{2+}]_{Basal}. The underlying dynamics is related not only to the increasing puff frequency which gives a shorter recovery time, but also to the increasing frequency of blips with only one channel open. We indicate that Ca^{2+} blips cause the channels to be inhibited and prevent their recovery during interpuff intervals, resulting in the suppressing effect on puff amplitudes. With increasing [Ca^{2+}]_{Basal}, more blips occur to cause more channels to be inhibited, leaving fewer channels available for puff events. This study shows that the blips may play relevant functions in global Ca^{2+} waves through modulating puff dynamics.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Physics, College of Physics Science and Technology, Xiamen University, Xiamen 361005, China
| | - Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, China
| | - Xiang Li
- Department of Physics, College of Physics Science and Technology, Xiamen University, Xiamen 361005, China
| | - Meichun Cai
- Department of Physics, College of Physics Science and Technology, Xiamen University, Xiamen 361005, China
| | - Xingqiang Chen
- Department of Physics, College of Physics Science and Technology, Xiamen University, Xiamen 361005, China
| | - Wen Liu
- Department of Physics, College of Physics Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jianwei Shuai
- Department of Physics, College of Physics Science and Technology, Xiamen University, Xiamen 361005, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen 361102, China
| |
Collapse
|
16
|
Abstract
The role of cytosolic Ca(2+) on the kinetics of Inositol 1,4,5-triphosphate receptors (IP3Rs) and on the dynamics of IP3R-mediated Ca(2+) signals has been studied at large both experimentally and by modeling. The role of luminal Ca(2+) has not been investigated with that much detail although it has been found that it is relevant for signal termination in the case of Ca(2+) release through ryanodine receptors. In this work we present the results of observing the dynamics of luminal and cytosolic Ca(2+) simultaneously in Xenopus laevis oocytes. Combining observations and modeling we conclude that there is a rapid mechanism that guarantees the availability of free Ca(2+) in the lumen even when a relatively large Ca(2+) release is evoked. Comparing the dynamics of cytosolic and luminal Ca(2+) during a release, we estimate that they are consistent with a 80% of luminal Ca(2+) being buffered. The rapid availability of free luminal Ca(2+) correlates with the observation that the lumen occupies a considerable volume in several regions across the images.
Collapse
|
17
|
Role of time delay on intracellular calcium dynamics driven by non-Gaussian noises. Sci Rep 2016; 6:25067. [PMID: 27121687 PMCID: PMC4848611 DOI: 10.1038/srep25067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/11/2016] [Indexed: 12/26/2022] Open
Abstract
Effect of time delay (τ) on intracellular calcium dynamics with non-Gaussian noises in transmission processes of intracellular Ca2+ is studied by means of second-order stochastic Runge-Kutta type algorithm. By simulating and analyzing time series, normalized autocorrelation function, and characteristic correlation time of cytosolic and calcium store’s Ca2+ concentration, the results exhibit: (i) intracellular calcium dynamics’s time coherence disappears and stability strengthens as τ → 0.1s; (ii) for the case of τ < 0.1s, the normalized autocorrelation functions of cytosolic and calcium store’s Ca2+ concentration show damped motion when τ is very short, but they trend to a level line as τ → 0.1s, and for the case of τ > 0.1s, they show different variation as τ increases, the former changes from underdamped motion to a level line, but the latter changes from damped motion to underdamped motion; and (iii) at the moderate value of time delay, reverse resonance occurs both in cytosol and calcium store.
Collapse
|
18
|
Bartlett PJ, Metzger W, Gaspers LD, Thomas AP. Differential Regulation of Multiple Steps in Inositol 1,4,5-Trisphosphate Signaling by Protein Kinase C Shapes Hormone-stimulated Ca2+ Oscillations. J Biol Chem 2015; 290:18519-33. [PMID: 26078455 DOI: 10.1074/jbc.m115.657767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 11/06/2022] Open
Abstract
How Ca(2+) oscillations are generated and fine-tuned to yield versatile downstream responses remains to be elucidated. In hepatocytes, G protein-coupled receptor-linked Ca(2+) oscillations report signal strength via frequency, whereas Ca(2+) spike amplitude and wave velocity remain constant. IP3 uncaging also triggers oscillatory Ca(2+) release, but, in contrast to hormones, Ca(2+) spike amplitude, width, and wave velocity were dependent on [IP3] and were not perturbed by phospholipase C (PLC) inhibition. These data indicate that oscillations elicited by IP3 uncaging are driven by the biphasic regulation of the IP3 receptor by Ca(2+), and, unlike hormone-dependent responses, do not require PLC. Removal of extracellular Ca(2+) did not perturb Ca(2+) oscillations elicited by IP3 uncaging, indicating that reloading of endoplasmic reticulum stores via plasma membrane Ca(2+) influx does not entrain the signal. Activation and inhibition of PKC attenuated hormone-induced Ca(2+) oscillations but had no effect on Ca(2+) increases induced by uncaging IP3. Importantly, PKC activation and inhibition differentially affected Ca(2+) spike frequencies and kinetics. PKC activation amplifies negative feedback loops at the level of G protein-coupled receptor PLC activity and/or IP3 metabolism to attenuate IP3 levels and suppress the generation of Ca(2+) oscillations. Inhibition of PKC relieves negative feedback regulation of IP3 accumulation and, thereby, shifts Ca(2+) oscillations toward sustained responses or dramatically prolonged spikes. PKC down-regulation attenuates phenylephrine-induced Ca(2+) wave velocity, whereas responses to IP3 uncaging are enhanced. The ability to assess Ca(2+) responses in the absence of PLC activity indicates that IP3 receptor modulation by PKC regulates Ca(2+) release and wave velocity.
Collapse
Affiliation(s)
- Paula J Bartlett
- From the Department of Pharmacology and Physiology, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Walson Metzger
- From the Department of Pharmacology and Physiology, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Lawrence D Gaspers
- From the Department of Pharmacology and Physiology, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Andrew P Thomas
- From the Department of Pharmacology and Physiology, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| |
Collapse
|
19
|
Thul R, Rietdorf K, Bootman MD, Coombes S. Unifying principles of calcium wave propagation - Insights from a three-dimensional model for atrial myocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2131-43. [PMID: 25746480 DOI: 10.1016/j.bbamcr.2015.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/17/2015] [Accepted: 02/23/2015] [Indexed: 11/30/2022]
Abstract
Atrial myocytes in a number of species lack transverse tubules. As a consequence the intracellular calcium signals occurring during each heartbeat exhibit complex spatio-temporal dynamics. These calcium patterns arise from saltatory calcium waves that propagate via successive rounds of diffusion and calcium-induced calcium release. The many parameters that impinge on calcium-induced calcium release and calcium signal propagation make it difficult to know a priori whether calcium waves will successfully travel, or be extinguished. In this study, we describe in detail a mathematical model of calcium signalling that allows the effect of such parameters to be independently assessed. A key aspect of the model is to follow the triggering and evolution of calcium signals within a realistic three-dimensional cellular volume of an atrial myocyte, but with low computational costs. This is achieved by solving the linear transport equation for calcium analytically between calcium release events and by expressing the onset of calcium liberation as a threshold process. The model makes non-intuitive predictions about calcium signal propagation. For example, our modelling illustrates that the boundary of a cell produces a wave-guiding effect that enables calcium ions to propagate further and for longer, and can subtly alter the pattern of calcium wave movement. The high spatial resolution of the modelling framework allows the study of any arrangement of calcium release sites. We demonstrate that even small variations in randomly positioned release sites cause highly heterogeneous cellular responses. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- R Thul
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - K Rietdorf
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - M D Bootman
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - S Coombes
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
20
|
Gaspers LD, Bartlett PJ, Politi A, Burnett P, Metzger W, Johnston J, Joseph SK, Höfer T, Thomas AP. Hormone-induced calcium oscillations depend on cross-coupling with inositol 1,4,5-trisphosphate oscillations. Cell Rep 2014; 9:1209-18. [PMID: 25456123 PMCID: PMC6469397 DOI: 10.1016/j.celrep.2014.10.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/08/2014] [Accepted: 10/10/2014] [Indexed: 11/29/2022] Open
Abstract
Receptor-mediated oscillations in cytosolic Ca2+ concentration ([Ca2+]i) could originate either directly from an autonomous Ca2+ feedback oscillator at the inositol 1,4,5-trisphosphate (IP3) receptor or as a secondary consequence of IP3 oscillations driven by Ca2+ feedback on IP3 metabolism. It is challenging to discriminate these alternatives, because IP3 fluctuations could drive Ca2+ oscillations or could just be a secondary response to the [Ca2+]i spikes. To investigate this problem, we constructed a recombinant IP3 buffer using type-I IP3 receptor ligand-binding domain fused to GFP (GFP-LBD), which buffers IP3 in the physiological range. This IP3 buffer slows hormone-induced [IP3] dynamics without changing steady-state [IP3]. GFP-LBD perturbed [Ca2+]i oscillations in a dose-dependent manner: it decreased both the rate of [Ca2+]i rise and the speed of Ca2+ wave propagation and, at high levels, abolished [Ca2+]i oscillations completely. These data, together with computational modeling, demonstrate that IP3 dynamics play a fundamental role in generating [Ca2+]i oscillations and waves. Gaspers et al. use a genetically encoded IP3 buffer to suppress IP3 dynamics during hormonal stimulation. Using this approach, they find that positive feedback of Ca2+ on IP3 formation is an essential component, generating long-period, baseline-separated Ca2+ oscillations and intracellular Ca2+ waves.
Collapse
Affiliation(s)
- Lawrence D Gaspers
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Paula J Bartlett
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Antonio Politi
- German Cancer Research Center, Division of Theoretical Systems Biology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Paul Burnett
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Walson Metzger
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jane Johnston
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Suresh K Joseph
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Thomas Höfer
- German Cancer Research Center, Division of Theoretical Systems Biology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Andrew P Thomas
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA.
| |
Collapse
|
21
|
Thurley K, Tovey SC, Moenke G, Prince VL, Meena A, Thomas AP, Skupin A, Taylor CW, Falcke M. Reliable encoding of stimulus intensities within random sequences of intracellular Ca2+ spikes. Sci Signal 2014; 7:ra59. [PMID: 24962706 PMCID: PMC4092318 DOI: 10.1126/scisignal.2005237] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ca(2+) is a ubiquitous intracellular messenger that regulates diverse cellular activities. Extracellular stimuli often evoke sequences of intracellular Ca(2+) spikes, and spike frequency may encode stimulus intensity. However, the timing of spikes within a cell is random because each interspike interval has a large stochastic component. In human embryonic kidney (HEK) 293 cells and rat primary hepatocytes, we found that the average interspike interval also varied between individual cells. To evaluate how individual cells reliably encoded stimuli when Ca(2+) spikes exhibited such unpredictability, we combined Ca(2+) imaging of single cells with mathematical analyses of the Ca(2+) spikes evoked by receptors that stimulate formation of inositol 1,4,5-trisphosphate (IP3). This analysis revealed that signal-to-noise ratios were improved by slow recovery from feedback inhibition of Ca(2+) spiking operating at the whole-cell level and that they were robust against perturbations of the signaling pathway. Despite variability in the frequency of Ca(2+) spikes between cells, steps in stimulus intensity caused the stochastic period of the interspike interval to change by the same factor in all cells. These fold changes reliably encoded changes in stimulus intensity, and they resulted in an exponential dependence of average interspike interval on stimulation strength. We conclude that Ca(2+) spikes enable reliable signaling in a cell population despite randomness and cell-to-cell variability, because global feedback reduces noise, and changes in stimulus intensity are represented by fold changes in the stochastic period of the interspike interval.
Collapse
Affiliation(s)
- Kevin Thurley
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Robert Rössle Straße 10, Berlin 13125, Germany. Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK. Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, Invalidenstraße 43, Berlin 10115, Germany
| | - Stephen C Tovey
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Gregor Moenke
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Robert Rössle Straße 10, Berlin 13125, Germany
| | - Victoria L Prince
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Abha Meena
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Andrew P Thomas
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, Esch sur Alzette 4362, Luxembourg. National Center for Microscopy and Imaging Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | - Martin Falcke
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Robert Rössle Straße 10, Berlin 13125, Germany. Department of Physics, Humboldt University Berlin, Newtonstraße 15, Berlin 12489, Germany.
| |
Collapse
|
22
|
Thul R. Translating intracellular calcium signaling into models. Cold Spring Harb Protoc 2014; 2014:2014/5/pdb.top066266. [PMID: 24786496 DOI: 10.1101/pdb.top066266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rich experimental data on intracellular calcium has put theoreticians in an ideal position to derive models of intracellular calcium signaling. Over the last 25 years, a large number of modeling frameworks have been suggested. Here, I will review some of the milestones of intracellular calcium modeling with a special emphasis on calcium-induced calcium release (CICR) through inositol-1,4,5-trisphosphate and ryanodine receptors. I will highlight key features of CICR and how they are represented in models as well as the challenges that theoreticians face when translating our current understanding of calcium signals into equations. The selected examples demonstrate that a successful model provides mechanistic insights into the molecular machinery of the Ca²⁺ signaling toolbox and determines the contribution of local Ca²⁺ release to global Ca²⁺ patterns, which at the moment cannot be resolved experimentally.
Collapse
Affiliation(s)
- Rüdiger Thul
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
23
|
Abstract
Puffs are localized Ca(2 +) signals that arise in oocytes in response to inositol 1,4,5-trisphosphate (IP3). They are the result of the liberation of Ca(2 +) from the endoplasmic reticulum through the coordinated opening of IP3 receptor/channels clustered at a functional release site. The presence of buffers that trap Ca(2 +) provides a mechanism that enriches the spatio-temporal dynamics of cytosolic calcium. The expression of different types of buffers along the cell's life provides a tool with which Ca(2 +) signals and their responses can be modulated. In this paper we extend the stochastic model of a cluster of IP3R-Ca(2 +) channels introduced previously to elucidate the effect of buffers on sequences of puffs at the same release site. We obtain analytically the probability laws of the interpuff time and of the number of channels that participate of the puffs. Furthermore, we show that under typical experimental conditions the effect of buffers can be accounted for in terms of a simple inhibiting function. Hence, by exploring different inhibiting functions we are able to study the effect of a variety of buffers on the puff size and interpuff time distributions. We find the somewhat counter-intuitive result that the addition of a fast Ca(2 +) buffer can increase the average number of channels that participate of a puff.
Collapse
Affiliation(s)
- Daniel Fraiman
- Laboratorio de Investigación en Neurociencia, Departamento de Matemática y Ciencias, Universidad de San Andrés, (1644) Buenos Aires, Argentina. CONICET, Argentina
| | | |
Collapse
|
24
|
Asfaw M, Alvarez-Lacalle E, Shiferaw Y. The timing statistics of spontaneous calcium release in cardiac myocytes. PLoS One 2013; 8:e62967. [PMID: 23690970 PMCID: PMC3656860 DOI: 10.1371/journal.pone.0062967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/27/2013] [Indexed: 11/19/2022] Open
Abstract
A variety of cardiac arrhythmias are initiated by a focal excitation that disrupts the regular beating of the heart. In some cases it is known that these excitations are due to calcium (Ca) release from the sarcoplasmic reticulum (SR) via propagating subcellular Ca waves. However, it is not understood what are the physiological factors that determine the timing of these excitations at both the subcellular and tissue level. In this paper we apply analytic and numerical approaches to determine the timing statistics of spontaneous Ca release (SCR) in a simplified model of a cardiac myocyte. In particular, we compute the mean first passage time (MFPT) to SCR, in the case where SCR is initiated by spontaneous Ca sparks, and demonstrate that this quantity exhibits either an algebraic or exponential dependence on system parameters. Based on this analysis we identify the necessary requirements so that SCR occurs on a time scale comparable to the cardiac cycle. Finally, we study how SCR is synchronized across many cells in cardiac tissue, and identify a quantitative measure that determines the relative timing of SCR in an ensemble of cells. Using this approach we identify the physiological conditions so that cell-to-cell variations in the timing of SCR is small compared to the typical duration of an SCR event. We argue further that under these conditions inward currents due to SCR can summate and generate arrhythmogenic triggered excitations in cardiac tissue.
Collapse
Affiliation(s)
- Mesfin Asfaw
- Department of Physics and Astronomy, California State University Northridge, Northridge, California, United States of America
| | - Enric Alvarez-Lacalle
- Department de Física Aplicada, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Yohannes Shiferaw
- Department of Physics and Astronomy, California State University Northridge, Northridge, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Moenke G, Falcke M, Thurley K. Hierarchic stochastic modelling applied to intracellular Ca(2+) signals. PLoS One 2012; 7:e51178. [PMID: 23300536 PMCID: PMC3531454 DOI: 10.1371/journal.pone.0051178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
Important biological processes like cell signalling and gene expression have noisy components and are very complex at the same time. Mathematical analysis of such systems has often been limited to the study of isolated subsystems, or approximations are used that are difficult to justify. Here we extend a recently published method (Thurley and Falcke, PNAS 2011) which is formulated in observable system configurations instead of molecular transitions. This reduces the number of system states by several orders of magnitude and avoids fitting of kinetic parameters. The method is applied to Ca(2+) signalling. Ca(2+) is a ubiquitous second messenger transmitting information by stochastic sequences of concentration spikes, which arise by coupling of subcellular Ca(2+) release events (puffs). We derive analytical expressions for a mechanistic Ca(2+) model, based on recent data from live cell imaging, and calculate Ca(2+) spike statistics in dependence on cellular parameters like stimulus strength or number of Ca(2+) channels. The new approach substantiates a generic Ca(2+) model, which is a very convenient way to simulate Ca(2+) spike sequences with correct spiking statistics.
Collapse
Affiliation(s)
- Gregor Moenke
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Martin Falcke
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Keven Thurley
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
26
|
Song S, Li J, Zhu L, Cai L, Xu Q, Ling C, Su Y, Hu Q. Irregular Ca(2+) oscillations regulate transcription via cumulative spike duration and spike amplitude. J Biol Chem 2012; 287:40246-55. [PMID: 23071118 DOI: 10.1074/jbc.m112.417154] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND [Ca(2+)](i) oscillations are irregular and heterogeneous. RESULTS The correlations between NFκB/STAT3-GFP transcription and [Ca(2+)](i) spike amplitude/cumulative spike duration are revealed by simultaneous monitoring in single cells and validated in cell population. CONCLUSION [Ca(2+)](i) oscillations regulate transcription through [Ca(2+)](i) spike amplitude and cumulative spike duration. SIGNIFICANCE How irregular [Ca(2+)](i) oscillations control transcription is crucial for understanding biological [Ca(2+)](i) signal-regulated events. Agonist-stimulated [Ca(2+)](i) oscillations are universally irregular in their kinetics. How irregular [Ca(2+)](i) oscillations dynamically regulate agonist-stimulated downstream events has not been studied. To overcome the obstacles of irregularity and heterogeneity of [Ca(2+)](i) oscillations, agonist-stimulated [Ca(2+)](i) signaling and NFκB/STAT3-GFP nuclear translocation were simultaneously monitored in each single cell examined. The cause-effect relationship between [Ca(2+)](i) oscillation parameters and transcriptional activities was validated in cell populations through irregular [Ca(2+)](i) oscillations with varied parameters. The time duration of cumulative [Ca(2+)](i) elevations reaching the threshold [Ca(2+)](i) level for a transcriptional factor activation and [Ca(2+)](i) spike amplitude was found to control agonist-stimulated transcription and gene expression.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Pathophysiology, School of Public Health, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dickinson GD, Swaminathan D, Parker I. The probability of triggering calcium puffs is linearly related to the number of inositol trisphosphate receptors in a cluster. Biophys J 2012; 102:1826-36. [PMID: 22768938 DOI: 10.1016/j.bpj.2012.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022] Open
Abstract
Puffs are local Ca(2+) signals that arise by Ca(2+) liberation from the endoplasmic reticulum through concerted opening of tightly clustered inositol trisphosphate receptor/channels (IP(3)R). They serve both local signaling functions and trigger global Ca(2+) waves. The numbers of functional IP(3)R within clusters differ appreciably between different puff sites, and we investigated how the probability of puff occurrence varies with cluster size. We imaged puffs in SH-SY5Y cells using total internal fluorescence microscopy, and estimated cluster sizes from the magnitude of the largest puff observed at each site relative to the signal from a single channel. We find that the initial triggering rate of puffs following photorelease of IP(3), and the average frequency of subsequent repetitive puffs, vary about linearly with cluster size. These data accord well with stochastic simulations in which opening of any individual IP(3)R channel within a cluster triggers a puff via Ca(2+)-induced Ca(2+) release. An important consequence is that the signaling power of a puff site (average amount of Ca(2+) released per puff × puff frequency) varies about the square of cluster size, implying that large clusters contribute disproportionately to cellular signaling and, because of their higher puff frequency, preferentially act as pacemakers to initiate Ca(2+) waves.
Collapse
Affiliation(s)
- George D Dickinson
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA.
| | | | | |
Collapse
|
28
|
Thurley K, Smith IF, Tovey SC, Taylor CW, Parker I, Falcke M. Timescales of IP(3)-evoked Ca(2+) spikes emerge from Ca(2+) puffs only at the cellular level. Biophys J 2012; 101:2638-44. [PMID: 22261051 DOI: 10.1016/j.bpj.2011.10.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 10/14/2022] Open
Abstract
The behavior of biological systems is determined by the properties of their component molecules, but the interactions are usually too complex to understand fully how molecular behavior generates cellular behavior. Ca(2+) signaling by inositol trisphosphate receptors (IP(3)R) offers an opportunity to understand this relationship because the cellular behavior is defined largely by Ca(2+)-mediated interactions between IP(3)R. Ca(2+) released by a cluster of IP(3)R (giving a local Ca(2+) puff) diffuses and ignites the behavior of neighboring clusters (to give repetitive global Ca(2+) spikes). We use total internal reflection fluorescence microscopy of two mammalian cell lines to define the temporal relationships between Ca(2+) puffs (interpuff intervals, IPI) and Ca(2+) spikes (interspike intervals) evoked by flash photolysis of caged IP(3). We find that IPI are much shorter than interspike intervals, that puff activity is stochastic with a recovery time that is much shorter than the refractory period of the cell, and that IPI are not periodic. We conclude that Ca(2+) spikes do not arise from oscillatory dynamics of IP(3)R clusters, but that repetitive Ca(2+) spiking with its longer timescales is an emergent property of the dynamics of the whole cluster array.
Collapse
Affiliation(s)
- Kevin Thurley
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Skupin A, Thurley K. Calcium signaling: from single channels to pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:531-51. [PMID: 22453959 DOI: 10.1007/978-94-007-2888-2_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ca(2+) is not only one of the most versatile and ubiquitous second messengers but also a well-established representative example of cell signaling. The identification of most key elements involved in Ca(2+) signaling enables a mechanistic and quantitative understanding of this particular pathway. Cellular behavior relies in general on the orchestration of molecular behavior leading to reliable cellular responses that allow for regulation and adaptation. Ca(2+) signaling uses a hierarchical organization to transform single molecule behavior into cell wide signals. We have recently shown experimentally that this organization carries single channel signatures onto the whole cell level and renders Ca(2+) oscillations stochastic. Here, we briefly review the co-evolution of experimental and theoretical studies in Ca(2+) -signaling and show how dynamic bottom-up modeling can be used to address -biological questions and illuminate biological principles of cell signaling.
Collapse
Affiliation(s)
- Alexander Skupin
- Luxembourg Centre of Systems Biomedicine, University Luxembourg, Luxembourg.
| | | |
Collapse
|
30
|
Quantifying the uncertainty of spontaneous Ca2+ oscillations in astrocytes: particulars of Alzheimer's disease. Biophys J 2011; 101:554-64. [PMID: 21806923 DOI: 10.1016/j.bpj.2011.06.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 05/12/2011] [Accepted: 06/21/2011] [Indexed: 11/27/2022] Open
Abstract
The quantification of spontaneous calcium (Ca(2+)) oscillations (SCOs) in astrocytes presents a challenge because of the large irregularities in the amplitudes, durations, and initiation times of the underlying events. In this article, we use a stochastic context to account for such SCO variability, which is based on previous models for cellular Ca(2+) signaling. First, we found that passive Ca(2+) influx from the extracellular space determine the basal concentration of this ion in the cytosol. Second, we demonstrated the feasibility of estimating both the inositol 1,4,5-trisphosphate (IP(3)) production levels and the average number of IP(3) receptor channels in the somatic clusters from epifluorescent Ca(2+) imaging through the combination of a filtering strategy and a maximum-likelihood criterion. We estimated these two biophysical parameters using data from wild-type adult mice and age-matched transgenic mice overexpressing the 695-amino-acid isoform of human Alzheimer β-amyloid precursor protein. We found that, together with an increase in the passive Ca(2+) influx, a significant reduction in the sensitivity of G protein-coupled receptors might lie beneath the abnormalities in the astrocytic Ca(2+) signaling, as was observed in rodent models of Alzheimer's disease. This study provides new, to our knowledge, indices for a quantitative analysis of SCOs in normal and pathological astrocytes.
Collapse
|
31
|
Exact and approximate stochastic simulation of intracellular calcium dynamics. J Biomed Biotechnol 2011; 2011:572492. [PMID: 22131814 PMCID: PMC3216318 DOI: 10.1155/2011/572492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/25/2011] [Indexed: 11/23/2022] Open
Abstract
In simulations of chemical systems, the main task is to find an exact or approximate solution of the chemical master equation (CME) that satisfies certain constraints with respect to computation time and accuracy. While Brownian motion simulations of single molecules are often too time consuming to represent the mesoscopic level, the classical Gillespie algorithm is a stochastically exact algorithm that provides satisfying results in the representation of calcium microdomains. Gillespie's algorithm can be approximated via
the tau-leap method and the chemical Langevin equation (CLE). Both methods lead to a substantial acceleration in computation time and a relatively small decrease in accuracy. Elimination of the noise terms leads to the classical, deterministic reaction rate equations (RRE). For complex multiscale systems, hybrid simulations are increasingly
proposed to combine the advantages of stochastic and deterministic algorithms. An often used exemplary cell type in this context are striated muscle cells (e.g., cardiac and skeletal muscle cells).
The properties of these cells are well described and they express many common calcium-dependent signaling
pathways. The purpose of the present paper is to provide an overview of the aforementioned simulation approaches and their mutual relationships in the spectrum ranging from stochastic to deterministic algorithms.
Collapse
|
32
|
Linking flickering to waves and whole-cell oscillations in a mitochondrial network model. Biophys J 2011; 101:2102-11. [PMID: 22067147 DOI: 10.1016/j.bpj.2011.09.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 11/22/2022] Open
Abstract
It has been shown that transient single mitochondrial depolarizations, known as flickers, tend to occur randomly in space and time. On the other hand, many studies have shown that mitochondrial depolarization waves and whole-cell oscillations occur under oxidative stress. How single mitochondrial flickering events and whole-cell oscillations are mechanistically linked remains unclear. In this study, we developed a Markov model of the inner membrane anion channel in which reactive-oxidative-species (ROS)-induced opening of the inner membrane anion channel causes transient mitochondrial depolarizations in a single mitochondrion that occur in a nonperiodic manner, simulating flickering. We then coupled the individual mitochondria into a network, in which flickers occur randomly and sparsely when a small number of mitochondria are in the state of high superoxide production. As the number of mitochondria in the high-superoxide-production state increases, short-lived or abortive waves due to ROS-induced ROS release coexist with flickers. When the number of mitochondria in the high-superoxide-production state reaches a critical number, recurring propagating waves are observed. The origins of the waves occur randomly in space and are self-organized as a consequence of random flickering and local synchronization. We show that at this critical state, the depolarization clusters exhibit a power-law distribution, a signature of self-organized criticality. In addition, the whole-cell mitochondrial membrane potential changes from exhibiting small random fluctuations to more periodic oscillations as the superoxide production rate increases. These simulation results may provide mechanistic insight into the transition from random mitochondrial flickering to the waves and whole-cell oscillations observed in many experimental studies.
Collapse
|
33
|
Fundamental properties of Ca2+ signals. Biochim Biophys Acta Gen Subj 2011; 1820:1185-94. [PMID: 22040723 DOI: 10.1016/j.bbagen.2011.10.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/16/2011] [Accepted: 10/17/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Ca2+ is a ubiquitous and versatile second messenger that transmits information through changes of the cytosolic Ca2+ concentration. Recent investigations changed basic ideas on the dynamic character of Ca2+ signals and challenge traditional ideas on information transmission. SCOPE OF REVIEW We present recent findings on key characteristics of the cytosolic Ca2+ dynamics and theoretical concepts that explain the wide range of experimentally observed Ca2+ signals. Further, we relate properties of the dynamical regulation of the cytosolic Ca2+ concentration to ideas about information transmission by stochastic signals. MAJOR CONCLUSIONS We demonstrate the importance of the hierarchal arrangement of Ca2+ release sites on the emergence of cellular Ca2+ spikes. Stochastic Ca2+ signals are functionally robust and adaptive to changing environmental conditions. Fluctuations of interspike intervals (ISIs) and the moment relation derived from ISI distributions contain information on the channel cluster open probability and on pathway properties. GENERAL SIGNIFICANCE Robust and reliable signal transduction pathways that entail Ca2+ dynamics are essential for eukaryotic organisms. Moreover, we expect that the design of a stochastic mechanism which provides robustness and adaptivity will be found also in other biological systems. Ca2+ dynamics demonstrate that the fluctuations of cellular signals contain information on molecular behavior. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
|
34
|
Solovey G, Fraiman D, Dawson SP. Mean field strategies induce unrealistic non-linearities in calcium puffs. Front Physiol 2011; 2:46. [PMID: 21869877 PMCID: PMC3150724 DOI: 10.3389/fphys.2011.00046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/21/2011] [Indexed: 12/19/2022] Open
Abstract
Mean field models are often useful approximations to biological systems, but sometimes, they can yield misleading results. In this work, we compare mean field approaches with stochastic models of intracellular calcium release. In particular, we concentrate on calcium signals generated by the concerted opening of several clustered channels (calcium puffs). To this end we simulate calcium puffs numerically and then try to reproduce features of the resulting calcium distribution using mean field models were all the channels open and close simultaneously. We show that an unrealistic non-linear relationship between the current and the number of open channels is needed to reproduce the simulated puffs. Furthermore, a single channel current which is five times smaller than the one of the stochastic simulations is also needed. Our study sheds light on the importance of the stochastic kinetics of the calcium release channel activity to estimate the release fluxes.
Collapse
Affiliation(s)
- Guillermo Solovey
- Laboratory of Mathematical Physics, The Rockefeller University New York, NY, USA
| | | | | |
Collapse
|