1
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. RNA modification in normal hematopoiesis and hematologic malignancies. MedComm (Beijing) 2024; 5:e787. [PMID: 39445003 PMCID: PMC11496571 DOI: 10.1002/mco2.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic cells. Previous studies have shown that m6A plays a critical role under both normal physiological and pathological conditions. Hematopoiesis and differentiation are highly regulated processes, and recent studies on m6A mRNA methylation have revealed how this modification controls cell fate in both normal and malignant hematopoietic states. However, despite these insights, a comprehensive understanding of its complex roles between normal hematopoietic development and malignant hematopoietic diseases remains elusive. This review first provides an overview of the components and biological functions of m6A modification regulators. Additionally, it highlights the origin, differentiation process, biological characteristics, and regulatory mechanisms of hematopoietic stem cells, as well as the features, immune properties, and self-renewal pathways of leukemia stem cells. Last, the article systematically reviews the latest research advancements on the roles and mechanisms of m6A regulatory factors in normal hematopoiesis and related malignant diseases. More importantly, this review explores how targeting m6A regulators and various signaling pathways could effectively intervene in the development of leukemia, providing new insights and potential therapeutic targets. Targeting m6A modification may hold promise for achieving more precise and effective leukemia treatments.
Collapse
Affiliation(s)
- Xi Chen
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Yixiao Yuan
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Jun Pu
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiulin Jiang
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
2
|
Mohanraj L, Carter C, Liu J, Swift-Scanlan T. MicroRNA Profiles in Hematopoietic Stem Cell Transplant Recipients. Biol Res Nurs 2024; 26:559-568. [PMID: 38819871 DOI: 10.1177/10998004241257847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Background: Hematopoietic Stem Cell Transplant (HCT) is a potentially curative treatment for hematologic malignancies, including multiple myeloma. Biomarker investigation can guide identification of HCT recipients at-risk for poor outcomes. MicroRNAs (miRNAs) are a class of non-coding RNAs involved in the modulation and regulation of pathological processes and are emerging as prognostic and predictive biomarkers for multiple health conditions. This pilot study aimed to examine miRNA profiles associated with HCT-related risk factors and outcomes in patients undergoing autologous HCT. Methods: Patients eligible for autologous HCT were recruited and blood samples and HCT-related variables were collected. Differential expression analysis of miRNA was conducted on 24 patient samples to compare changes in miRNA profile in HCT eligible patients before and after transplant. Results: Unsupervised clustering of differentially expressed (p < .05) miRNAs pre- and post- HCT identified clusters of up- and down-regulated miRNAs. Four miRNAs (miR-125a-5p, miR-99b-5p, miR-382-5p, miR-145-5p) involved in hematopoiesis (differentiation of progenitor cells, granulocyte function, thrombopoiesis, and tumor suppression) were significantly downregulated post-HCT. Correlation analyses identified select miRNAs associated with risk factors (such as frailty, fatigue, cognitive decline) and quality of life pre- and post-HCT. Select miRNAs were correlated with platelet engraftment. Conclusion: Future studies should examine miRNA signatures in larger cohorts in association with HCT outcomes; and expand investigations in patients receiving allogeneic transplants. This will lead to identification of biomarkers for risk stratification of HCT recipients.
Collapse
Affiliation(s)
- Lathika Mohanraj
- Department of Adult Health and Nursing Systems, School of Nursing, Virginia Commonwealth University, Richmond, VA, USA
| | - Christiane Carter
- Bioinformatics Shared Resource, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jinze Liu
- Department of Biostatistics, School of Population Health, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
3
|
Sawant H, Sun B, Mcgrady E, Bihl JC. Role of miRNAs in neurovascular injury and repair. J Cereb Blood Flow Metab 2024; 44:1693-1708. [PMID: 38726895 PMCID: PMC11494855 DOI: 10.1177/0271678x241254772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 10/18/2024]
Abstract
MicroRNAs (miRNA) are endogenously produced small, non-coded, single-stranded RNAs. Due to their involvement in various cellular processes and cross-communication with extracellular components, miRNAs are often coined the "grand managers" of the cell. miRNAs are frequently involved in upregulation as well as downregulation of specific gene expression and thus, are often found to play a vital role in the pathogenesis of multiple diseases. Central nervous system (CNS) diseases prove fatal due to the intricate nature of both their development and the methods used for treatment. A considerable amount of ongoing research aims to delineate the complex relationships between miRNAs and different diseases, including each of the neurological disorders discussed in the present review. Ongoing research suggests that specific miRNAs can play either a pathologic or restorative and/or protective role in various CNS diseases. Understanding how these miRNAs are involved in various regulatory processes of CNS such as neuroinflammation, neurovasculature, immune response, blood-brain barrier (BBB) integrity and angiogenesis is of empirical importance for developing effective therapies. Here in this review, we summarized the current state of knowledge of miRNAs and their roles in CNS diseases along with a focus on their association with neuroinflammation, innate immunity, neurovascular function and BBB.
Collapse
Affiliation(s)
- Harshal Sawant
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Bowen Sun
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Erin Mcgrady
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Ji Chen Bihl
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
4
|
Hedayati N, Safaei Naeini M, Ale Sahebfosoul MM, Mafi A, Eshaghi Milasi Y, Rizaneh A, Nabavi N, Farahani N, Alimohammadi M, Ghezelbash B. MicroRNA dysregulation and its impact on apoptosis-related signaling pathways in myelodysplastic syndrome. Pathol Res Pract 2024; 261:155478. [PMID: 39079383 DOI: 10.1016/j.prp.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/18/2024]
Abstract
Myelodysplastic syndrome (MDS) holds a unique position among blood cancers, encompassing a spectrum of blood-related disorders marked by impaired maturation of blood cell precursors, bone marrow abnormalities, genetic instability, and a higher likelihood of progressing to acute myeloid leukemia. MicroRNAs (miRNAs), short non-coding RNA molecules typically 18-24 nucleotides in length, are known to regulate gene expression and contribute to various biological processes, including cellular differentiation and programmed cell death. Additionally, miRNAs are involved in many aspects of cancer development, influencing cell growth, transformation, and apoptosis. In this study, we explore the impact of microRNAs on cellular apoptosis in MDS.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mobina Safaei Naeini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Rizaneh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behrooz Ghezelbash
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Srivastava J, Kundal K, Rai B, Saxena P, Katiyar S, Tripathy N, Yadav S, Gupta R, Kumar R, Nityanand S, Chaturvedi CP. Global microRNA profiling of bone marrow-MSC derived extracellular vesicles identifies miRNAs associated with hematopoietic dysfunction in aplastic anemia. Sci Rep 2024; 14:19654. [PMID: 39179703 PMCID: PMC11343855 DOI: 10.1038/s41598-024-70369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Recently, we have reported that extracellular vesicles (EVs) from the bone marrow mesenchymal stromal cells (BM-MSC) of aplastic anemia (AA) patients inhibit hematopoietic stem and progenitor cell (HSPC) proliferative and colony-forming ability and promote apoptosis. One mechanism by which AA BM-MSC EVs might contribute to these altered HSPC functions is through microRNAs (miRNAs) encapsulated in EVs. However, little is known about the role of BM-MSC EVs derived miRNAs in regulating HSPC functions in AA. Therefore, we performed miRNA profiling of EVs from BM-MSC of AA (n = 6) and normal controls (NC) (n = 6) to identify differentially expressed miRNAs. The Integrated DEseq2 analysis revealed 34 significantly altered mature miRNAs, targeting 235 differentially expressed HSPC genes in AA. Hub gene analysis revealed 10 HSPC genes such as IGF-1R, IGF2R, PAK1, PTPN1, etc., which are targeted by EV miRNAs and had an enrichment of chemokine, MAPK, NK cell-mediated cytotoxicity, Rap1, PI3k-Akt, mTOR signalling pathways which are associated with hematopoietic homeostasis. We further showed that miR-139-5p and its target, IGF-1R (hub-gene), might regulate HSPC proliferation and apoptosis, which may serve as potential therapeutic targets in AA. Overall, the study highlights that AA BM-MSC EV miRNAs could contribute to impaired HSPC functions in AA.
Collapse
Affiliation(s)
- Jyotika Srivastava
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Kavita Kundal
- Computational Genomics and Transcriptomics Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Hyderabad, 502285, Telangana, India
| | - Bhuvnesh Rai
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Pragati Saxena
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Shobhita Katiyar
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Naresh Tripathy
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Sanjeev Yadav
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Ruchi Gupta
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India
| | - Rahul Kumar
- Computational Genomics and Transcriptomics Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Hyderabad, 502285, Telangana, India
| | - Soniya Nityanand
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India.
- King George's Medical University, Lucknow, India.
| | - Chandra Prakash Chaturvedi
- Department of Hematology, Stem Cell Research Center, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Barely Road, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
6
|
Ling RE, Cross JW, Roy A. Aberrant stem cell and developmental programs in pediatric leukemia. Front Cell Dev Biol 2024; 12:1372899. [PMID: 38601080 PMCID: PMC11004259 DOI: 10.3389/fcell.2024.1372899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Hematopoiesis is a finely orchestrated process, whereby hematopoietic stem cells give rise to all mature blood cells. Crucially, they maintain the ability to self-renew and/or differentiate to replenish downstream progeny. This process starts at an embryonic stage and continues throughout the human lifespan. Blood cancers such as leukemia occur when normal hematopoiesis is disrupted, leading to uncontrolled proliferation and a block in differentiation of progenitors of a particular lineage (myeloid or lymphoid). Although normal stem cell programs are crucial for tissue homeostasis, these can be co-opted in many cancers, including leukemia. Myeloid or lymphoid leukemias often display stem cell-like properties that not only allow proliferation and survival of leukemic blasts but also enable them to escape treatments currently employed to treat patients. In addition, some leukemias, especially in children, have a fetal stem cell profile, which may reflect the developmental origins of the disease. Aberrant fetal stem cell programs necessary for leukemia maintenance are particularly attractive therapeutic targets. Understanding how hijacked stem cell programs lead to aberrant gene expression in place and time, and drive the biology of leukemia, will help us develop the best treatment strategies for patients.
Collapse
Affiliation(s)
- Rebecca E. Ling
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Joe W. Cross
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
7
|
Jimbu L, Mesaros O, Joldes C, Neaga A, Zaharie L, Zdrenghea M. MicroRNAs Associated with a Bad Prognosis in Acute Myeloid Leukemia and Their Impact on Macrophage Polarization. Biomedicines 2024; 12:121. [PMID: 38255226 PMCID: PMC10813737 DOI: 10.3390/biomedicines12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding ribonucleic acids (RNAs) associated with gene expression regulation. Since the discovery of the first miRNA in 1993, thousands of miRNAs have been studied and they have been associated not only with physiological processes, but also with various diseases such as cancer and inflammatory conditions. MiRNAs have proven to be not only significant biomarkers but also an interesting therapeutic target in various diseases, including cancer. In acute myeloid leukemia (AML), miRNAs have been regarded as a welcome addition to the limited therapeutic armamentarium, and there is a vast amount of data on miRNAs and their dysregulation. Macrophages are innate immune cells, present in various tissues involved in both tissue repair and phagocytosis. Based on their polarization, macrophages can be classified into two groups: M1 macrophages with pro-inflammatory functions and M2 macrophages with an anti-inflammatory action. In cancer, M2 macrophages are associated with tumor evasion, metastasis, and a poor outcome. Several miRNAs have been associated with a poor prognosis in AML and with either the M1 or M2 macrophage phenotype. In the present paper, we review miRNAs with a reported negative prognostic significance in cancer with a focus on AML and analyze their potential impact on macrophage polarization.
Collapse
Affiliation(s)
- Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Corina Joldes
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
| | - Laura Zaharie
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Dewi R, Yusoff NA, Abdul Razak SR, Abd Hamid Z. Analysis of self-renewing and differentiation-related microRNAs and transcription factors in multilineage mouse hematopoietic stem/progenitor cells induced by 1,4-benzoquinone. PeerJ 2023; 11:e15608. [PMID: 37456886 PMCID: PMC10340113 DOI: 10.7717/peerj.15608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Background HSPCs are targets for benzene-induced hematotoxicity and leukemogenesis. However, benzene toxicity targeting microRNAs (miRNAs) and transcription factors (TF) that are involve in regulating self-renewing and differentiation of HSPCs comprising of different hematopoietic lineages remains poorly understood. In this study, the effect of a benzene metabolite, 1,4-benzoquinone (1,4-BQ) exposure, in HSPCs focusing on the self-renewing (miRNAs: miR-196b and miR-29a; TF: HoxB4, Bmi-1) and differentiation (miRNAs: miR-181a, TF: GATA3) pathways were investigated. Methods Freshly isolated mouse BM cells were initially exposed to 1,4-BQ at 1.25 to 5 µM for 24 h, followed by miRNAs and TF studies in BM cells. Then, the miRNAs expression was further evaluated in HSPCs of different lineages comprised of myeloid, erythroid and pre-B lymphoid progenitors following 7-14 days of colony forming unit (CFU) assay. Results Exposure to 1,4-BQ in BM cells significantly (p < 0.05) reduced the miR-196b (2.5 and 5 µM), miR-181a (1.25, 2.5 and 5 µM) and miR-29a (1.25 µM) along with upregulation of miR-29a at 2.5 µM. Meanwhile, 1,4-BQ exposure in HSPCs significantly increased the miR-196b expression level (p < 0.05) only in myeloid and pre-B lymphoid progenitors at 2.5 and 5 µM. Significant (p < 0.05) reduction in expression of miR-181a in myeloid (1.25 µM), erythroid (5 µM) progenitors along with miR-29a in myeloid (1.25 µM) and pre-B lymphoid (5 µM) progenitors were noted following exposure to 1,4-BQ. Meanwhile, increased expression of miR-181a was observed in pre-B lymphoid progenitor upon exposure to 1,4-BQ, but only at 5 µM. As for TF studies, expression of HoxB4 protein was significantly increased (p < 0.05) at all 1,4-BQ concentrations as compared to Bmi-1 and GATA3, which were significantly (p < 0.05) elevated starting at 2.5 µM of 1,4-BQ. Conclusion 1,4-BQ induces aberration of miRNAs and transcription factors protein expression that are involved in regulating self-renewing and differentiation pathways of HSPCs. Moreover, epigenetic toxicity as evidenced from the miRNAs expression was found to be mediated by a lineage-driven mechanism. The role of cell lineage in governing the toxicity of 1,4-BQ in HSPCs lineages deserves further investigation.
Collapse
Affiliation(s)
- Ramya Dewi
- Biomedical Science Programme and Centre of Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Nur Afizah Yusoff
- Biomedical Science Programme and Centre of Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Siti Razila Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Zariyantey Abd Hamid
- Biomedical Science Programme and Centre of Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Walsh AD, Stone S, Freytag S, Aprico A, Kilpatrick TJ, Ansell BRE, Binder MD. Mouse microglia express unique miRNA-mRNA networks to facilitate age-specific functions in the developing central nervous system. Commun Biol 2023; 6:555. [PMID: 37217597 DOI: 10.1038/s42003-023-04926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Microglia regulate multiple processes in the central nervous system, exhibiting a considerable level of cellular plasticity which is facilitated by an equally dynamic transcriptional environment. While many gene networks that regulate microglial functions have been characterised, the influence of epigenetic regulators such as small non-coding microRNAs (miRNAs) is less well defined. We have sequenced the miRNAome and mRNAome of mouse microglia during brain development and adult homeostasis, identifying unique profiles of known and novel miRNAs. Microglia express both a consistently enriched miRNA signature as well as temporally distinctive subsets of miRNAs. We generated robust miRNA-mRNA networks related to fundamental developmental processes, in addition to networks associated with immune function and dysregulated disease states. There was no apparent influence of sex on miRNA expression. This study reveals a unique developmental trajectory of miRNA expression in microglia during critical stages of CNS development, establishing miRNAs as important modulators of microglial phenotype.
Collapse
Affiliation(s)
- Alexander D Walsh
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sarrabeth Stone
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Saskia Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrea Aprico
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Brendan R E Ansell
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Michele D Binder
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
10
|
Zhong H, Geng Y, Gao R, Chen J, Chen Z, Mu X, Zhang Y, Chen X, He J. Decidual derived exosomal miR-99a-5p targets Ppp2r5a to inhibit trophoblast invasion in response to CeO 2NPs exposure. Part Fibre Toxicol 2023; 20:14. [PMID: 37081566 PMCID: PMC10116836 DOI: 10.1186/s12989-023-00524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The biological effects of cerium dioxide nanoparticles (CeO2NPs), a novel material in the biomedical field, have attracted widespread attention. Our previous study confirmed that exposure to CeO2NPs during pregnancy led to abnormal trophoblast invasion during early placental development, thereby impairing placental development. The potential mechanisms may be related to low-quality decidualization triggered by CeO2NPs exposure, such as an imbalance in trophoblast invasion regulators secreted by decidual cells. However, the intermediate link mediating the "dialogue" between decidual cells and trophoblasts during this process remains unclear. As an important connection between cells, exosomes participate in the "dialogue" between endometrial cells and trophoblasts. Exosomes transfer bioactive microRNA into target cells, which can target and regulate the level of mRNA in target cells. RESULTS Here, we constructed a mice primary uterine stromal cell-induced decidualization model in vitro, and detected the effect of CeO2NPs exposure on the expression of decidual-derived exosomal miRNAs by high-throughput sequencing. Bioinformatics analysis and dual-luciferase reporter assays were performed to identify target genes of the screened key miRNAs in regulating trophoblast invasion. Finally, the role of the screened miRNAs and their target genes in regulating trophoblast (HTR-8/SVneo cells) invasion was confirmed. The results showed that CeO2NPs exposure inhibited trophoblast invasion by promoting miR-99a-5p expression in decidual-derived exosomes, and Ppp2r5a is a potential target gene for miR-99a-5p to inhibit trophoblast invasion. CONCLUSIONS This study revealed the molecular mechanism by which CeO2NPs exposure inhibits trophoblast invasion from the perspective of decidual derived exosomal miRNAs. These results will provide an experimental basis for screening potential therapeutic targets for the negative biological effects of CeO2NPs exposure and new ideas for studying the mechanism of damage to trophoblast cells at the decidual-foetal interface by harmful environmental or occupational factors.
Collapse
Affiliation(s)
- Hangtian Zhong
- School of Public Health, Chongqing Medical University, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- School of Public Health, Chongqing Medical University, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhuxiu Chen
- School of Public Health, Chongqing Medical University, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- School of Public Health, Chongqing Medical University, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- School of Public Health, Chongqing Medical University, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- School of Public Health, Chongqing Medical University, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Mozzoni P, Poli D, Pinelli S, Tagliaferri S, Corradi M, Cavallo D, Ursini CL, Pigini D. Benzene Exposure and MicroRNAs Expression: In Vitro, In Vivo and Human Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1920. [PMID: 36767288 PMCID: PMC9914606 DOI: 10.3390/ijerph20031920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on human health is established and interest in them is progressively increasing. Environmental and occupational risk factors affecting human health include chemical agents. Benzene represents a pollutant of concern due to its ubiquity and because it may alter gene expression by epigenetic mechanisms, including miRNA expression changes. This review summarizes recent findings on miRNAs associated with benzene exposure considering in vivo, in vitro and human findings in order to better understand the molecular mechanisms through which benzene induces toxic effects and to evaluate whether selected miRNAs may be used as biomarkers associated with benzene exposure. Original research has been included and the study selection, data extraction and assessments agreed with PRISMA criteria. Both in vitro studies and human results showed a variation in miRNAs' expression after exposure to benzene. In vivo surveys also exhibited this trend, but they cannot be regarded as conclusive because of their small number. However, this review confirms the potential role of miRNAs as "early warning" signals in the biological response induced by exposure to benzene. The importance of identifying miRNAs' expression, which, once validated, might work as sentinel molecules to better understand the extent of the exposure to xenobiotics, is clear. The identification of miRNAs as a molecular signature associated with specific exposure would be advantageous for disease prevention and health promotion in the workplace.
Collapse
Affiliation(s)
- Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellent Research in Toxicology, University of Parma, 43126 Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sara Tagliaferri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellent Research in Toxicology, University of Parma, 43126 Parma, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellent Research in Toxicology, University of Parma, 43126 Parma, Italy
| | - Delia Cavallo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Cinzia Lucia Ursini
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Daniela Pigini
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| |
Collapse
|
12
|
Wang H, Han Y, Qian P. Emerging Roles of Epigenetic Regulators in Maintaining Hematopoietic Stem Cell Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:29-44. [PMID: 38228957 DOI: 10.1007/978-981-99-7471-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are adult stem cells with the ability of self-renewal and multilineage differentiation into functional blood cells, thus playing important roles in the homeostasis of hematopoiesis and the immune response. Continuous self-renewal of HSCs offers fresh supplies for the HSC pool, which differentiate into all kinds of mature blood cells, supporting the normal functioning of the entire blood system. Nevertheless, dysregulation of the homeostasis of hematopoiesis is often the cause of many blood diseases. Excessive self-renewal of HSCs leads to hematopoietic malignancies (e.g., leukemia), while deficiency in HSC regeneration results in pancytopenia (e.g., anemia). The regulation of hematopoietic homeostasis is finely tuned, and the rapid development of high-throughput sequencing technologies has greatly boosted research in this field. In this chapter, we will summarize the recent understanding of epigenetic regulators including DNA methylation, histone modification, chromosome remodeling, noncoding RNAs, and RNA modification that are involved in hematopoietic homeostasis, which provides fundamental basis for the development of therapeutic strategies against hematopoietic diseases.
Collapse
Affiliation(s)
- Hui Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| |
Collapse
|
13
|
Weng H, Huang H, Chen J. N 6-Methyladenosine RNA Modification in Normal and Malignant Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:105-123. [PMID: 38228961 DOI: 10.1007/978-981-99-7471-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Over 170 nucleotide variants have been discovered in messenger RNAs (mRNAs) and non-coding RNAs so far. However, only a few of them, including N6-methyladenosine (m6A), 5-methylcytidine (m5C), and N1-methyladenosine (m1A), could be mapped in the transcriptome. These RNA modifications appear to be dynamically regulated, with writer, eraser, and reader proteins being identified for each modification. As a result, there is a growing interest in studying their biological impacts on normal bioprocesses and tumorigenesis over the past few years. As the most abundant internal modification in eukaryotic mRNAs, m6A plays a vital role in the post-transcriptional regulation of mRNA fate via regulating almost all aspects of mRNA metabolism, including RNA splicing, nuclear export, RNA stability, and translation. Studies on mRNA m6A modification serve as a great example for exploring other modifications on mRNA. In this chapter, we will review recent advances in the study of biological functions and regulation of mRNA modifications, specifically m6A, in both normal hematopoiesis and malignant hematopoiesis. We will also discuss the potential of targeting mRNA modifications as a treatment for hematopoietic disorders.
Collapse
Affiliation(s)
- Hengyou Weng
- The First Affiliated Hospital, The Fifth Affiliated Hospital, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory, Guangzhou, China.
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- Gehr Family Center for Leukemia Research and City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
| |
Collapse
|
14
|
Chang YH, Jou ST, Yen CT, Lin CY, Yu CH, Chang SK, Lu MY, Chang HH, Pai CH, Hu CY, Lin KH, Lin SR, Lin DT, Chen HY, Yang YL, Lin SW, Yu SL. A microRNA signature for clinical outcomes of pediatric ALL patients treated with TPOG protocols. Am J Cancer Res 2022; 12:4764-4774. [PMID: 36381326 PMCID: PMC9641388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023] Open
Abstract
MicroRNA (miRNA) expression is reportedly associated with clinical outcomes in childhood acute lymphoblastic leukemia (ALL). Here, we aimed at investigating whether miRNA expression is associated with clinical outcomes in pediatric ALL patients treated with the Taiwan Pediatric Oncology Group (TPOG) protocols. The expression of 397 miRNAs was measured using stem-loop quantitative real-time polymerase chain reaction miRNA arrays in 60 pediatric ALL patients treated with TPOG-ALL-93 or TPOG-ALL-97 VHR (very high-risk) protocols. In order to identify prognosis-related miRNAs, original cohort was randomly split into the training and testing cohort in a 2:1 ratio, and univariate Cox proportional hazards regression was applied to identify associations between event-free survival (EFS) and expressions of miRNAs. Four prognosis-related miRNAs were selected and validated in another independent cohort composed of 103 patients treated with the TPOG-ALL-2002 protocol. Risk score, including the impact of four prognosis-related miRNAs, was calculated for each patients, followed by grouping patients into the high or low risk-score groups. Irrespective of the training, testing, or validation cohort, risk-score group was significantly associated with EFS and overall survival (OS). Risk-score group combining with clinical characteristics including the age onset (≥10 years), white blood cell counts (≥100 × 109/L), cell type (T- or B-cell), sex, and risk groups of the treatment protocols were used as predictors of EFS using the multivariate Cox proportional hazards regression. Results showed that the risk-score group was the strongest predictor. In the validation cohort, hazard ratios (HRs) of the risk-score group were 7.06 (95% CI=1.93-25.84, p-value =0.003) and 14.03 (95% CI=3.34-59.04, p-value =0.003) for EFS and OS, respectively. High risk-score group had higher risk of having poor prognosis and risk of death than that in the low risk group. Accuracy of the prediction model for 5-year EFS could reach 0.76. For the prediction of 5-year OS, accuracy was 0.75. In conclusion, a miRNA signature was associated with clinical outcomes in childhood ALL patients treated with TPOG protocols and might be a suitable prognostic biomarker.
Collapse
Affiliation(s)
- Ya-Hsuan Chang
- Institute of Statistical Science Academia SinicaTaipei, Taiwan
| | - Shiann-Tarng Jou
- Department of Pediatrics, National Taiwan University HospitalTaipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Ching-Tzu Yen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science Academia SinicaTaipei, Taiwan
| | - Chih-Hsiang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Sheng-Kai Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Meng-Yao Lu
- Department of Pediatrics, National Taiwan University HospitalTaipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University HospitalTaipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Chen-Hsueh Pai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Chung-Yi Hu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Kai-Hsin Lin
- Department of Pediatrics, National Taiwan University HospitalTaipei, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian UniversityTaoyuan, Taiwan
| | - Dong-Tsamn Lin
- Department of Pediatrics, National Taiwan University HospitalTaipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University HospitalTaipei, Taiwan
- Department of Laboratory Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science Academia SinicaTaipei, Taiwan
| | - Yung-Li Yang
- Department of Pediatrics, National Taiwan University HospitalTaipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University HospitalTaipei, Taiwan
- Department of Laboratory Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University HospitalTaipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University HospitalTaipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Graduate Institute of Pathology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
15
|
Fletcher D, Brown E, Javadala J, Uysal‐Onganer P, Guinn B. microRNA expression in acute myeloid leukaemia: New targets for therapy? EJHAEM 2022; 3:596-608. [PMID: 36051053 PMCID: PMC9421970 DOI: 10.1002/jha2.441] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Recent studies have shown that short non-coding RNAs, known as microRNAs (miRNAs) and their dysregulation, are implicated in the pathogenesis of acute myeloid leukaemia (AML). This is due to their role in the control of gene expression in a variety of molecular pathways. Therapies involving miRNA suppression and replacement have been developed. The normalisation of expression and the subsequent impact on AML cells have been investigated for some miRNAs, demonstrating their potential to act as therapeutic targets. Focussing on miRs with therapeutic potential, we have reviewed those that have a significant impact on the aberrant biological processes associated with AML, and crucially, impact leukaemic stem cell survival. We describe six miRNAs in preclinical trials (miR-21, miR-29b, miR-126, miR-181a, miR-223 and miR-196b) and two miRNAs that are in clinical trials (miR-29 and miR-155). However none have been used to treat AML patients and greater efforts are needed to develop miRNA therapies that could benefit AML patients in the future.
Collapse
Affiliation(s)
| | - Elliott Brown
- Department of Biomedical SciencesUniversity of HullHull, UK
| | | | - Pinar Uysal‐Onganer
- Cancer Research GroupSchool of Life SciencesUniversity of WestminsterLondonUK
| | | |
Collapse
|
16
|
Small noncoding RNAs play superior roles in maintaining hematopoietic stem cell homeostasis. BLOOD SCIENCE 2022; 4:125-132. [DOI: 10.1097/bs9.0000000000000123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
|
17
|
Plantone D, Pardini M, Locci S, Nobili F, De Stefano N. B Lymphocytes in Alzheimer's Disease-A Comprehensive Review. J Alzheimers Dis 2022; 88:1241-1262. [PMID: 35754274 DOI: 10.3233/jad-220261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) represents the most common type of neurodegenerative dementia and is characterized by extracellular amyloid-β (Aβ) deposition, pathologic intracellular tau protein tangles, and neuronal loss. Increasing evidence has been accumulating over the past years, supporting a pivotal role of inflammation in the pathogenesis of AD. Microglia, monocytes, astrocytes, and neurons have been shown to play a major role in AD-associated inflammation. However recent studies showed that the role of both T and B lymphocytes may be important. In particular, B lymphocytes are the cornerstone of humoral immunity, they constitute a heterogenous population of immune cells, being their mature subsets significantly impacted by the inflammatory milieu. The role of B lymphocytes on AD pathogenesis is gaining interest for several reasons. Indeed, the majority of elderly people develop the process of "inflammaging", which is characterized by increased blood levels of proinflammatory molecules associated with an elevated susceptibility to chronic diseases. Epitope-specific alteration pattern of naturally occurring antibodies targeting the amino-terminus and the mid-domain of Aβ in both plasma and cerebrospinal fluid has been described in AD patients. Moreover, a possible therapeutic role of B lymphocytes depletion was recently demonstrated in murine AD models. Interestingly, active immunization against Aβ and tau, one of the main therapeutic strategies under investigation, depend on B lymphocytes. Finally. several molecules being tested in AD clinical trials can modify the homeostasis of B cells. This review summarizes the evidence supporting the role of B lymphocytes in AD from the pathogenesis to the possible therapeutic implications.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Sara Locci
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
18
|
Crisafulli L, Ficara F. Micro-RNAs: A safety net to protect hematopoietic stem cell self-renewal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1693. [PMID: 34532984 PMCID: PMC9285953 DOI: 10.1002/wrna.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/05/2022]
Abstract
The hematopoietic system is sustained over time by a small pool of hematopoietic stem cells (HSCs). They reside at the apex of a complex hierarchy composed of cells with progressively more restricted lineage potential, regenerative capacity, and with different proliferation characteristics. Like other somatic stem cells, HSCs are endowed with long-term self-renewal and multipotent differentiation ability, to sustain the high turnover of mature cells such as erythrocytes or granulocytes, and to rapidly respond to acute peripheral stresses including bleeding, infections, or inflammation. Maintenance of both attributes over time, and of the proper balance between these opposite features, is crucial to ensure the homeostasis of the hematopoietic system. Micro-RNAs (miRNAs) are short non-coding RNAs that regulate gene expression posttranscriptionally upon binding to specific mRNA targets. In the past 10 years they have emerged as important players for preserving the HSC pool by acting on several biological mechanisms, such as maintenance of the quiescent state while preserving proliferation ability, prevention of apoptosis, premature differentiation, lineage skewing, excessive expansion, or retention within the BM niche. miRNA-mediated posttranscriptional fine-tuning of all these processes constitutes a safety mechanism to protect HSCs, by complementing the action of transcription factors and of other regulators and avoiding unwanted expansion or aplasia. The current knowledge of miRNAs function in different aspects of HSC biology, including consequences of aberrant miRNA expression, will be reviewed; yet unsolved issues will be discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Laura Crisafulli
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Francesca Ficara
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
19
|
Gleba JJ, Kłopotowska D, Banach J, Mielko KA, Turlej E, Maciejewska M, Kutner A, Wietrzyk J. Micro-RNAs in Response to Active Forms of Vitamin D3 in Human Leukemia and Lymphoma Cells. Int J Mol Sci 2022; 23:ijms23095019. [PMID: 35563410 PMCID: PMC9104187 DOI: 10.3390/ijms23095019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding micro-RNA (miRNAs) regulate the protein expression responsible for cell growth and proliferation. miRNAs also play a role in a cancer cells’ response to drug treatment. Knowing that leukemia and lymphoma cells show different responses to active forms of vitamin D3, we decided to investigate the role of selected miRNA molecules and regulated proteins, analyzing if there is a correlation between the selected miRNAs and regulated proteins in response to two active forms of vitamin D3, calcitriol and tacalcitol. A total of nine human cell lines were analyzed: five leukemias: MV-4-1, Thp-1, HL-60, K562, and KG-1; and four lymphomas: Raji, Daudi, Jurkat, and U2932. We selected five miRNA molecules—miR-27b, miR-32, miR-125b, miR-181a, and miR-181b—and the proteins regulated by these molecules, namely, CYP24A1, Bak1, Bim, p21, p27, p53, and NF-kB. The results showed that the level of selected miRNAs correlates with the level of proteins, especially p27, Bak1, NFκB, and CYP24A1, and miR-27b and miR-125b could be responsible for the anticancer activity of active forms of vitamin D3 in human leukemia and lymphoma.
Collapse
Affiliation(s)
- Justyna Joanna Gleba
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
- Correspondence: ; Tel.: +48-1-904-207-2571
| | - Dagmara Kłopotowska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
| | - Karolina Anna Mielko
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
- Department of Experimental Biology, The Wroclaw University of Environmental and Life Sciences, Norwida 27 B, 50-375 Wroclaw, Poland
| | - Magdalena Maciejewska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
| | - Andrzej Kutner
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland;
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
| |
Collapse
|
20
|
Krivdova G, Voisin V, Schoof EM, Marhon SA, Murison A, McLeod JL, Gabra MM, Zeng AGX, Aigner S, Yee BA, Shishkin AA, Van Nostrand EL, Hermans KG, Trotman-Grant AC, Mbong N, Kennedy JA, Gan OI, Wagenblast E, De Carvalho DD, Salmena L, Minden MD, Bader GD, Yeo GW, Dick JE, Lechman ER. Identification of the global miR-130a targetome reveals a role for TBL1XR1 in hematopoietic stem cell self-renewal and t(8;21) AML. Cell Rep 2022; 38:110481. [PMID: 35263585 PMCID: PMC11185845 DOI: 10.1016/j.celrep.2022.110481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells.
Collapse
Affiliation(s)
- Gabriela Krivdova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada
| | - Veronique Voisin
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Erwin M Schoof
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jessica L McLeod
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Martino M Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexander A Shishkin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Karin G Hermans
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Program of Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Aaron C Trotman-Grant
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - James A Kennedy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Division of Medical Oncology and Hematology, Sunnybrook Health Sciences Centre, Toronto, ON M4N3M5, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Elvin Wagenblast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leonardo Salmena
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada.
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
21
|
Okeke C, Silas U, Nnodu O, Clementina O. HSC and miRNA Regulation with Implication for Foetal Haemoglobin Induction in Beta Haemoglobinopathies. Curr Stem Cell Res Ther 2022; 17:339-347. [PMID: 35189805 DOI: 10.2174/1574888x17666220221104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Sickle cell disease (SCD) is one of the most common haemoglobinopathies worldwide, with up to 70 % of global SCD annual births occurring in sub-Saharan Africa. Reports have shown that 50 to 80 % of affected children in these countries die annually. Efforts geared towards understanding and controlling HbF production in SCD patients could lead to strategies for effective control of globin gene expression and therapeutic approaches that could be beneficial to individuals with haemoglobinopathies. Hemopoietic stem cells (HSCs) are characterized by a specific miRNA signature in every state of differentiation. The role of miRNAs has become evident both in the maintenance of the "stemness" and in the early induction of differentiation by modulation of the expression of the master pluripotency genes and during early organogenesis. miRNAs are extra regulatory mechanisms in hematopoietic stem cells (HSCs) via influencing transcription profiles together with transcript stability. miRNAs have been reported to be used to reprogram primary somatic cells toward pluripotency. Their involvement in cell editing holds the potential for therapy for many genetic diseases. This review provides a snapshot of miRNA involvement in cell fate decisions, haemoglobin induction pathway, and their journey as some emerge prime targets for therapy in beta haemoglobinopathies.
Collapse
Affiliation(s)
- Chinwe Okeke
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Nsukka, Nigeria
| | - Ufele Silas
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Nsukka, Nigeria
| | - Obiageli Nnodu
- Department of Haematology, College of Medicine, University of Abuja, Abuja Nigeria
| | - Odoh Clementina
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
22
|
Ganesan S, Mathews V, Vyas N. Microenvironment and drug resistance in acute myeloid leukemia: Do we know enough? Int J Cancer 2021; 150:1401-1411. [PMID: 34921734 DOI: 10.1002/ijc.33908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AMLs), as the name suggests, often develop suddenly and are very progressive forms of cancer. Unlike in acute promyelocytic leukemia, a subtype of AML, the outcomes in most other AMLs remain poor. This is mainly attributed to the acquired drug resistance and lack of targeted therapy. Different studies across laboratories suggest that the cellular mechanisms to impart therapy resistance are often very dynamic and should be identified in a context-specific manner. Our review highlights the progress made so far in identifying the different cellular mechanisms of mutation-independent therapy resistance in AML. It reiterates that for more effective outcomes cancer therapies should acquire a more tailored approach where the protective interactions between the cancer cells and their niches are identified and targeted.
Collapse
Affiliation(s)
- Saravanan Ganesan
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Neha Vyas
- Division of Molecular Medicine, St. John's Research Institute, SJNAHS, Bengaluru, India
| |
Collapse
|
23
|
The Role of microRNAs in the Mammary Gland Development, Health, and Function of Cattle, Goats, and Sheep. Noncoding RNA 2021; 7:ncrna7040078. [PMID: 34940759 PMCID: PMC8708473 DOI: 10.3390/ncrna7040078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Milk is an integral and therefore complex structural element of mammalian nutrition. Therefore, it is simple to conclude that lactation, the process of producing milk, is as complex as the mammary gland, the organ responsible for this biochemical activity. Nutrition, genetics, epigenetics, disease pathogens, climatic conditions, and other environmental variables all impact breast productivity. In the last decade, the number of studies devoted to epigenetics has increased dramatically. Reports are increasingly describing the direct participation of microRNAs (miRNAs), small noncoding RNAs that regulate gene expression post-transcriptionally, in the regulation of mammary gland development and function. This paper presents a summary of the current state of knowledge about the roles of miRNAs in mammary gland development, health, and functions, particularly during lactation. The significance of miRNAs in signaling pathways, cellular proliferation, and the lipid metabolism in agricultural ruminants, which are crucial in light of their role in the nutrition of humans as consumers of dairy products, is discussed.
Collapse
|
24
|
Shen H, Gonskikh Y, Stoute J, Liu KF. Human DIMT1 generates N 26,6A-dimethylation-containing small RNAs. J Biol Chem 2021; 297:101146. [PMID: 34473991 PMCID: PMC8463865 DOI: 10.1016/j.jbc.2021.101146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Dimethyladenosine transferase 1 (DIMT1) is an evolutionarily conserved RNA N6,6-dimethyladenosine (m26,6A) methyltransferase. DIMT1 plays an important role in ribosome biogenesis, and the catalytic activity of DIMT1 is indispensable for cell viability and protein synthesis. A few RNA-modifying enzymes can install the same modification in multiple RNA species. However, whether DIMT1 can work on RNA species other than 18S rRNA is unclear. Here, we describe that DIMT1 generates m26,6A not only in 18S rRNA but also in small RNAs. In addition, m26,6A in small RNAs were significantly decreased in cells expressing catalytically inactive DIMT1 variants (E85A or NLPY variants) compared with cells expressing wildtype DIMT1. Both E85A and NLPY DIMT1 variant cells present decreased protein synthesis and cell viability. Furthermore, we observed that DIMT1 is highly expressed in human cancers, including acute myeloid leukemia. Our data suggest that downregulation of DIMT1 in acute myeloid leukemia cells leads to a decreased m26,6A level in small RNAs. Together, these data suggest that DIMT1 not only installs m26,6A in 18S rRNA but also generates m26,6A-containing small RNAs, both of which potentially contribute to the impact of DIMT1 on cell viability and gene expression.
Collapse
Affiliation(s)
- Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yulia Gonskikh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julian Stoute
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
25
|
Afshari A, Yaghobi R, Rezaei G. Inter-regulatory role of microRNAs in interaction between viruses and stem cells. World J Stem Cells 2021; 13:985-1004. [PMID: 34567421 PMCID: PMC8422934 DOI: 10.4252/wjsc.v13.i8.985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/11/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are well known for post-transcriptional regulatory ability over specific mRNA targets. miRNAs exhibit temporal or tissue-specific expression patterns and regulate the cell and tissue developmental pathways. They also have determinative roles in production and differentiation of multiple lineages of stem cells and might have therapeutic advantages. miRNAs are a part of some viruses’ regulatory machinery, not a byproduct. The trace of miRNAs was detected in the genomes of viruses and regulation of cell reprograming and viral pathogenesis. Combination of inter-regulatory systems has been detected for miRNAs during viral infections in stem cells. Contraction between viruses and stem cells may be helpful in therapeutic tactics, pathogenesis, controlling viral infections and defining stem cell developmental strategies that is programmed by miRNAs as a tool. Therefore, in this review we intended to study the inter-regulatory role of miRNAs in the interaction between viruses and stem cells and tried to explain the advantages of miRNA regulatory potentials, which make a new landscape for future studies.
Collapse
Affiliation(s)
- Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| | - Ghazal Rezaei
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| |
Collapse
|
26
|
Chen Z, Xie Y, Liu D, Liu P, Li F, Zhang Z, Zhang M, Wang X, Zhang Y, Sun X, Huang Q. Downregulation of miR-142a Contributes to the Enhanced Anti-Apoptotic Ability of Murine Chronic Myelogenous Leukemia Cells. Front Oncol 2021; 11:718731. [PMID: 34386429 PMCID: PMC8354203 DOI: 10.3389/fonc.2021.718731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background Leukemic stem cell (LSC) is thought to be responsible for chronic myelogenous leukemia (CML) initiation and relapse. However, the inherent regulation of LSCs remains largely obscure. Herein, we integratedly analyzed miRNA and gene expression alterations in bone marrow (BM) Lin-Sca1+c-Kit+ cells (LSKs) of a tet-off inducible CML mouse model, Scl/tTA-BCR/ABL (BA). Methods Scl/tTA and TRE-BA transgenic mice were crossed in the presence of doxycycline to get double transgenic mice. Both miRNA and mRNA expression profiles were generated from BM LSKs at 0 and 3 weeks after doxycycline withdrawal. The target genes of differentially expressed miRNAs were predicted, followed by the miRNA-mRNA network construction. In vitro and in vivo experiments were further performed to elucidate their regulation and function in CML progression. Results As a result of the integrated analysis and experimental validation, an anti-apoptotic pathway emerged from the fog. miR-142a was identified to be downregulated by enhanced ERK-phosphorylation in BA-harboring cells, thereby relieving its repression on Ciapin1, an apoptosis inhibitor. Moreover, miR-142a overexpression could partially rescue the abnormal anti-apoptotic phenotype and attenuate CML progression. Conclusion Taken together, this study explored the miRNA-mRNA regulatory networks in murine CML LSKs and demonstrated that ERK-miR-142a-Ciapin1 axis played an essential role in CML pathogenesis.
Collapse
Affiliation(s)
- Zhiwei Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Liu
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Hematology, Jiangxi Academy of Clinical Medical Sciences, Nanchang, China
| | - Zhanglin Zhang
- Department of Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengmeng Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanliang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuhua Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Rose SA, Wroblewska A, Dhainaut M, Yoshida H, Shaffer JM, Bektesevic A, Ben-Zvi B, Rhoads A, Kim EY, Yu B, Lavin Y, Merad M, Buenrostro JD, Brown BD. A microRNA expression and regulatory element activity atlas of the mouse immune system. Nat Immunol 2021; 22:914-927. [PMID: 34099919 PMCID: PMC8480231 DOI: 10.1038/s41590-021-00944-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
To better define the control of immune system regulation, we generated an atlas of microRNA (miRNA) expression from 63 mouse immune cell populations and connected these signatures with assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromatin immunoprecipitation followed by sequencing (ChIP-seq) and nascent RNA profiles to establish a map of miRNA promoter and enhancer usage in immune cells. miRNA complexity was relatively low, with >90% of the miRNA compartment of each population comprising <75 miRNAs; however, each cell type had a unique miRNA signature. Integration of miRNA expression with chromatin accessibility revealed putative regulatory elements for differentially expressed miRNAs, including miR-21a, miR-146a and miR-223. The integrated maps suggest that many miRNAs utilize multiple promoters to reach high abundance and identified dominant and divergent miRNA regulatory elements between lineages and during development that may be used by clustered miRNAs, such as miR-99a/let-7c/miR-125b, to achieve distinct expression. These studies, with web-accessible data, help delineate the cis-regulatory elements controlling miRNA signatures of the immune system.
Collapse
Affiliation(s)
- Samuel A Rose
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aleksandra Wroblewska
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maxime Dhainaut
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | | | - Anela Bektesevic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Ben-Zvi
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Rhoads
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bingfei Yu
- Division of Biology, University of California San Diego, La Jolla, CA, USA
| | - Yonit Lavin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Brian D Brown
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
28
|
Ghafouri-Fard S, Niazi V, Taheri M. Role of miRNAs and lncRNAs in hematopoietic stem cell differentiation. Noncoding RNA Res 2021; 6:8-14. [PMID: 33385102 PMCID: PMC7770514 DOI: 10.1016/j.ncrna.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have diverse roles in the differentiation of hematopoietic cells. Among these transcripts, long ncRNAs (lncRNAs) and microRNAs (miRNAs) have especial contribution in this regard particularly by affecting levels of transcription factors that define differentiation of each linage. miR-222, miR-10a, miR-126, miR-106, miR-10b, miR-17, miR-20, miR-146, miR-155, miR-223, miR-221, miR-92, miR-150, miR-126 and miR-142 are among miRNAs that partake in the differentiation of hematopoietic stem cells. Meanwhile, this process is controlled by a number of lncRNAs such as PU.1-AS, AlncRNA-EC7, EGO, HOTAIRM1, Fas-AS1, LincRNA-EPS and lncRNA-CSR. Manipulation of expression of these transcripts has functional significance in the treatment of cancers and in cell therapy. In this paper, we have provided a brief summary of the role of miRNAs and lncRNAs in the regulation of hematopoietic stem cells.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Luinenburg DG, Dinitzen AB, Flohr Svendsen A, Cengiz R, Ausema A, Weersing E, Bystrykh L, de Haan G. Persistent expression of microRNA-125a targets is required to induce murine hematopoietic stem cell repopulating activity. Exp Hematol 2021; 94:47-59.e5. [PMID: 33333212 DOI: 10.1016/j.exphem.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression posttranscriptionally by binding to the 3' untranslated regions of their target mRNAs. The evolutionarily conserved microRNA-125a (miR-125a) is highly expressed in both murine and human hematopoietic stem cells (HSCs), and previous studies have found that miR-125 strongly enhances self-renewal of HSCs and progenitors. In this study we explored whether temporary overexpression of miR-125a would be sufficient to permanently increase HSC self-renewal or, rather, whether persistent overexpression of miR-125a is required. We used three complementary in vivo approaches to reversibly enforce expression of miR-125a in murine HSCs. Additionally, we interrogated the underlying molecular mechanisms responsible for the functional changes that occur in HSCs on overexpression of miR-125a. Our data indicate that continuous expression of miR-125a is required to enhance HSC activity. Our molecular analysis confirms changes in pathways that explain the characteristics of miR-125a overexpressing HSCs. Moreover, it provides several novel putative miR-125a targets, but also highlights the complex molecular changes that collectively lead to enhanced HSC function.
Collapse
Affiliation(s)
- Daniëlle G Luinenburg
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexander Bak Dinitzen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arthur Flohr Svendsen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Roza Cengiz
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertina Ausema
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ellen Weersing
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Leonid Bystrykh
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerald de Haan
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
30
|
Hu M, Lu Y, Zeng H, Zhang Z, Chen S, Qi Y, Xu Y, Chen F, Tang Y, Chen M, Du C, Shen M, Wang F, Su Y, Wang S, Wang J. MicroRNA-21 maintains hematopoietic stem cell homeostasis through sustaining the NF-κB signaling pathway in mice. Haematologica 2021; 106:412-423. [PMID: 31974197 PMCID: PMC7849563 DOI: 10.3324/haematol.2019.236927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Long-term hematopoietic output is dependent on hematopoietic stem cell (HSC) homeostasis which is maintained by a complex molecular network in which microRNA play crucial roles, although the underlying molecular basis has not been fully elucidated. Here we show that microRNA-21 (miR-21) is enriched in murine HSC, and that mice with conditional knockout of miR-21 exhibit an obvious perturbation in hematopoiesis. Moreover, significant loss of HSC quiescence and long-term reconstituting ability are observed in the absence of miR-21. Further studies revealed that miR-21 deficiency markedly decreases the nuclear factor kappa B (NF-B) pathway, accompanied by increased expression of PDCD4, a direct target of miR-21, in HSC. Interestingly, overexpression of PDCD4 in wild-type HSC generates similar phenotypes as those of miR-21-deficient HSC. More importantly, knockdown of PDCD4 can significantly rescue the attenuation of NF-B activity, thereby improving the defects in miR-21-null HSC. On the other hand, we found that miR-21 is capable of preventing HSC from ionizing radiation- induced DNA damage via activation of the NF-B pathway. Collectively, our data demonstrate that miR-21 is involved in maintaining HSC homeostasis and function, at least in part, by regulating the PDCD4-mediated NF-B pathway and provide a new insight into radioprotection of HSC.
Collapse
Affiliation(s)
- Mengjia Hu
- Third Military Medical University, Chongqing, China
| | - Yukai Lu
- Third Military Medical University, Chongqing, China
| | - Hao Zeng
- Third Military Medical University, Chongqing, China
| | - Zihao Zhang
- Third Military Medical University, Chongqing, China
| | - Shilei Chen
- Third Military Medical University, Chongqing, China
| | - Yan Qi
- Third Military Medical University, Chongqing, China
| | - Yang Xu
- Third Military Medical University, Chongqing, China
| | - Fang Chen
- Third Military Medical University, Chongqing, China
| | - Yong Tang
- Third Military Medical University, Chongqing, China
| | - Mo Chen
- Third Military Medical University, Chongqing, China
| | - Changhong Du
- Third Military Medical University, Chongqing, China
| | | | | | - Yongping Su
- Third Military Medical University, Chongqing, China
| | - Song Wang
- Third Military Medical University, Chongqing, China
| | - Junping Wang
- Third Military Medical University, Chongqing, China
| |
Collapse
|
31
|
Seol HS, Akiyama Y, Lee SE, Shimada S, Jang SJ. Loss of miR-100 and miR-125b results in cancer stem cell properties through IGF2 upregulation in hepatocellular carcinoma. Sci Rep 2020; 10:21412. [PMID: 33293585 PMCID: PMC7722933 DOI: 10.1038/s41598-020-77960-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Stemness factors control microRNA expression in cancer stem cells. Downregulation of miR-100 and miR-125b is associated with tumor progression and prognosis of various cancers. Comparing miRNA profiling of patient-derived tumorsphere (TS) and adherent (2D) hepatocellular carcinoma cells, miR-100 and miR-125b are identified to have association with stemness. In TS cells, miR-100 and miR-125b were downregulated comparing to 2D cells. The finding was reproduced in Hep3B cells. Overexpression of stemness factors NANOG, OCT4 and SOX2 by introduction of gene constructs in Hep3B cells suppressed these two miRNA expression levels. Treatment of chromeceptin, an IGF signaling pathway inhibitor, decreased numbers of TS and inhibited the AKT/mTOR pathway. Stable cell line of miR-100 and miR-125b overexpression decreased IGF2 expression and inhibited tumor growth in the xenograft model. In conclusion, miR-100 and miR-125b have tumor suppressor role in hepatocellular carcinoma through inhibiting IGF2 expression and activation of the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Hyang Sook Seol
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, South Korea.
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - San-Eun Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, South Korea
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Se Jin Jang
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, South Korea. .,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 05505, Seoul, South Korea.
| |
Collapse
|
32
|
Zaro BW, Noh JJ, Mascetti VL, Demeter J, George B, Zukowska M, Gulati GS, Sinha R, Flynn RA, Banuelos A, Zhang A, Wilkinson AC, Jackson P, Weissman IL. Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells. eLife 2020; 9:e62210. [PMID: 33236985 PMCID: PMC7688314 DOI: 10.7554/elife.62210] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
The balance of hematopoietic stem cell (HSC) self-renewal and differentiation is critical for a healthy blood supply; imbalances underlie hematological diseases. The importance of HSCs and their progenitors have led to their extensive characterization at genomic and transcriptomic levels. However, the proteomics of hematopoiesis remains incompletely understood. Here we report a proteomics resource from mass spectrometry of mouse young adult and old adult mouse HSCs, multipotent progenitors and oligopotent progenitors; 12 cell types in total. We validated differential protein levels, including confirmation that Dnmt3a protein levels are undetected in young adult mouse HSCs until forced into cycle. Additionally, through integrating proteomics and RNA-sequencing datasets, we identified a subset of genes with apparent post-transcriptional repression in young adult mouse HSCs. In summary, we report proteomic coverage of young and old mouse HSCs and progenitors, with broader implications for understanding mechanisms for stem cell maintenance, niche interactions and fate determination.
Collapse
Affiliation(s)
- Balyn W Zaro
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Joseph J Noh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Victoria L Mascetti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Benson George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Monika Zukowska
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Gunsagar S Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Ryan A Flynn
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Allison Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Allison Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Peter Jackson
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
- Department of Developmental Biology and the Stanford UC-Berkeley Stem Cell InstituteStanfordUnited States
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
33
|
Bhatlekar S, Manne BK, Basak I, Edelstein LC, Tugolukova E, Stoller ML, Cody MJ, Morley SC, Nagalla S, Weyrich AS, Rowley JW, O'Connell RM, Rondina MT, Campbell RA, Bray PF. miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin. Blood 2020; 136:1760-1772. [PMID: 32844999 PMCID: PMC7544541 DOI: 10.1182/blood.2020005230] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022] Open
Abstract
There is heritability to interindividual variation in platelet count, and better understanding of the regulating genetic factors may provide insights for thrombopoiesis. MicroRNAs (miRs) regulate gene expression in health and disease, and megakaryocytes (MKs) deficient in miRs have lower platelet counts, but information about the role of miRs in normal human MK and platelet production is limited. Using genome-wide miR profiling, we observed strong correlations among human bone marrow MKs, platelets, and differentiating cord blood-derived MK cultures, and identified MK miR-125a-5p as associated with human platelet number but not leukocyte or hemoglobin levels. Overexpression and knockdown studies showed that miR-125a-5p positively regulated human MK proplatelet (PP) formation in vitro. Inhibition of miR-125a-5p in vivo lowered murine platelet counts. Analyses of MK and platelet transcriptomes identified LCP1 as a miR-125a-5p target. LCP1 encodes the actin-bundling protein, L-plastin, not previously studied in MKs. We show that miR-125a-5p directly targets and reduces expression of MK L-plastin. Overexpression and knockdown studies show that L-plastin promotes MK progenitor migration, but negatively correlates with human platelet count and inhibits MK PP formation (PPF). This work provides the first evidence for the actin-bundling protein, L-plastin, as a regulator of human MK PPF via inhibition of the late-stage MK invagination system, podosome and PPF, and PP branching. We also provide resources of primary and differentiating MK transcriptomes and miRs associated with platelet counts. miR-125a-5p and L-plastin may be relevant targets for increasing in vitro platelet manufacturing and for managing quantitative platelet disorders.
Collapse
Affiliation(s)
- Seema Bhatlekar
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | - Bhanu K Manne
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | - Indranil Basak
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | - Leonard C Edelstein
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA
| | - Emilia Tugolukova
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | | | - Mark J Cody
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | - Sharon C Morley
- Division of Infectious Diseases, Department of Pediatrics and
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Srikanth Nagalla
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Andrew S Weyrich
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
- Division of Pulmonary, Department of Internal Medicine
| | - Jesse W Rowley
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
- Division of Pulmonary, Department of Internal Medicine
| | - Ryan M O'Connell
- Division of Microbiology and Immunology, Department of Pathology, and
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Matthew T Rondina
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
- Geriatric Research, Education and Clinical Center, George E. Wahlen VAMC GRECC, Salt Lake City, UT; and
- Division of General Internal Medicine and
| | - Robert A Campbell
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
- Division of General Internal Medicine and
| | - Paul F Bray
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
34
|
Chatterjee B, Saha P, Bose S, Shukla D, Chatterjee N, Kumar S, Tripathi PP, Srivastava AK. MicroRNAs: As Critical Regulators of Tumor- Associated Macrophages. Int J Mol Sci 2020; 21:ijms21197117. [PMID: 32992449 PMCID: PMC7582892 DOI: 10.3390/ijms21197117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging shreds of evidence suggest that tumor-associated macrophages (TAMs) modulate various hallmarks of cancer during tumor progression. Tumor microenvironment (TME) prime TAMs to execute important roles in cancer development and progression, including angiogenesis, matrix metalloproteinases (MMPs) secretion, and extracellular matrix (ECM) disruption. MicroRNAs (miRNAs) are critical epigenetic regulators, which modulate various functions in diverse types of cells, including macrophages associated with TME. In this review article, we provide an update on miRNAs regulating differentiation, maturation, activation, polarization, and recruitment of macrophages in the TME. Furthermore, extracellular miRNAs are secreted from cancerous cells, which control macrophages phenotypic plasticity to support tumor growth. In return, TAMs also secrete various miRNAs that regulate tumor growth. Herein, we also describe the recent updates on the molecular connection between tumor cells and macrophages. A better understanding of the interaction between miRNAs and TAMs will provide new pharmacological targets to combat cancer.
Collapse
Affiliation(s)
- Bilash Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Devendra Shukla
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, WB 700026, India;
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education & Research, Tirupati, Andhra Pradesh 517507, India;
| | - Prem Prakash Tripathi
- Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India;
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
- Correspondence:
| |
Collapse
|
35
|
MicroRNA miR-181-A Rheostat for TCR Signaling in Thymic Selection and Peripheral T-Cell Function. Int J Mol Sci 2020; 21:ijms21176200. [PMID: 32867301 PMCID: PMC7503384 DOI: 10.3390/ijms21176200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
The selection of T cells during intra-thymic d evelopment is crucial to obtain a functional and simultaneously not self-reactive peripheral T cell repertoire. However, selection is a complex process dependent on T cell receptor (TCR) thresholds that remain incompletely understood. In peripheral T cells, activation, clonal expansion, and contraction of the active T cell pool, as well as other processes depend on TCR signal strength. Members of the microRNA (miRNA) miR-181 family have been shown to be dynamically regulated during T cell development as well as dependent on the activation stage of T cells. Indeed, it has been shown that expression of miR-181a leads to the downregulation of multiple phosphatases, implicating miR-181a as ‘‘rheostat’’ of TCR signaling. Consistently, genetic models have revealed an essential role of miR-181a/b-1 for the generation of unconventional T cells as well as a function in tuning TCR sensitivity in peripheral T cells during aging. Here, we review these broad roles of miR-181 family members in T cell function via modulating TCR signal strength.
Collapse
|
36
|
microRNAs as promising biomarkers of platelet activity in antiplatelet therapy monitoring. Int J Mol Sci 2020; 21:ijms21103477. [PMID: 32423125 PMCID: PMC7278969 DOI: 10.3390/ijms21103477] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Given the high morbidity and mortality of cardiovascular diseases (CVDs), novel biomarkers for platelet reactivity are urgently needed. Ischemic events in CVDs are causally linked to platelets, small anucleate cells important for hemostasis. The major side-effect of antiplatelet therapy are life-threatening bleeding events. Current platelet function tests are not sufficient in guiding treatment decisions. Platelets host a broad spectrum of microRNAs (miRNAs) and are a major source of cell-free miRNAs in the blood stream. Platelet-related miRNAs have been suggested as biomarkers of platelet activation and assessment of antiplatelet therapy responsiveness. Platelets release miRNAs upon activation, possibly leading to alterations of plasma miRNA levels in conjunction with CVD or inadequate platelet inhibition. Unlike current platelet function tests, which measure platelet activation ex vivo, signatures of platelet-related miRNAs potentially enable the assessment of in vivo platelet reactivity. Evidence suggests that some miRNAs are responsive to platelet inhibition, making them promising biomarker candidates. In this review, we explain the secretion of miRNAs upon platelet activation and discuss the potential use of platelet-related miRNAs as biomarkers for CVD and antiplatelet therapy monitoring, but also highlight remaining gaps in our knowledge and uncertainties regarding clinical utility. We also elaborate on technical issues and limitations concerning plasma miRNA quantification.
Collapse
|
37
|
Jacques C, Tesfaye R, Lavaud M, Georges S, Baud’huin M, Lamoureux F, Ory B. Implication of the p53-Related miR-34c, -125b, and -203 in the Osteoblastic Differentiation and the Malignant Transformation of Bone Sarcomas. Cells 2020; 9:cells9040810. [PMID: 32230926 PMCID: PMC7226610 DOI: 10.3390/cells9040810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The formation of the skeleton occurs throughout the lives of vertebrates and is achieved through the balanced activities of two kinds of specialized bone cells: the bone-forming osteoblasts and the bone-resorbing osteoclasts. Impairment in the remodeling processes dramatically hampers the proper healing of fractures and can also result in malignant bone diseases such as osteosarcoma. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs implicated in the control of various cellular activities such as proliferation, differentiation, and apoptosis. Their post-transcriptional regulatory role confers on them inhibitory functions toward specific target mRNAs. As miRNAs are involved in the differentiation program of precursor cells, it is now well established that this class of molecules also influences bone formation by affecting osteoblastic differentiation and the fate of osteoblasts. In response to various cell signals, the tumor-suppressor protein p53 activates a huge range of genes, whose miRNAs promote genomic-integrity maintenance, cell-cycle arrest, cell senescence, and apoptosis. Here, we review the role of three p53-related miRNAs, miR-34c, -125b, and -203, in the bone-remodeling context and, in particular, in osteoblastic differentiation. The second aim of this study is to deal with the potential implication of these miRNAs in osteosarcoma development and progression.
Collapse
|
38
|
Genome-wide transcriptomics leads to the identification of deregulated genes after deferasirox therapy in low-risk MDS patients. THE PHARMACOGENOMICS JOURNAL 2020; 20:664-671. [DOI: 10.1038/s41397-020-0154-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
|
39
|
Khalaj M, Woolthuis CM, Hu W, Durham BH, Chu SH, Qamar S, Armstrong SA, Park CY. miR-99 regulates normal and malignant hematopoietic stem cell self-renewal. J Exp Med 2020; 214:2453-2470. [PMID: 28733386 PMCID: PMC5551568 DOI: 10.1084/jem.20161595] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/18/2017] [Accepted: 06/08/2017] [Indexed: 12/17/2022] Open
Abstract
The mechanisms that regulate self-renewal in hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) are poorly understood. Herein, Khalaj et al. identify microRNA-99 (miR-99) as a novel noncoding RNA critical for the maintenance of HSCs and LSCs and demonstrate that miR-99 mediates its role by suppressing multiple target genes, including HOXA1. The microRNA-99 (miR-99) family comprises a group of broadly conserved microRNAs that are highly expressed in hematopoietic stem cells (HSCs) and acute myeloid leukemia stem cells (LSCs) compared with their differentiated progeny. Herein, we show that miR-99 regulates self-renewal in both HSCs and LSCs. miR-99 maintains HSC long-term reconstitution activity by inhibiting differentiation and cell cycle entry. Moreover, miR-99 inhibition induced LSC differentiation and depletion in an MLL-AF9–driven mouse model of AML, leading to reduction in leukemia-initiating activity and improved survival in secondary transplants. Confirming miR-99’s role in established AML, miR-99 inhibition induced primary AML patient blasts to undergo differentiation. A forward genetic shRNA library screen revealed Hoxa1 as a critical mediator of miR-99 function in HSC maintenance, and this observation was independently confirmed in both HSCs and LSCs. Together, these studies demonstrate the importance of noncoding RNAs in the regulation of HSC and LSC function and identify miR-99 as a critical regulator of stem cell self-renewal.
Collapse
Affiliation(s)
- Mona Khalaj
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Weill Graduate School of Medical Sciences, Cornell University, New York, NY
| | - Carolien M Woolthuis
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benjamin H Durham
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - S Haihua Chu
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Sarah Qamar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Weill Graduate School of Medical Sciences, Cornell University, New York, NY
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Christopher Y Park
- Department of Pathology, New York University School of Medicine, New York, NY
| |
Collapse
|
40
|
Rostami Z, Khorashadizadeh M, Naseri M. Immunoregulatory properties of mesenchymal stem cells: Micro-RNAs. Immunol Lett 2020; 219:34-45. [PMID: 31917251 DOI: 10.1016/j.imlet.2019.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are excellent candidates for different cellular therapies due to their physiological properties such as immunoregulatory function. whetheare currently utilized for regenerative medication and treatment of a number of inflammatory illnesses given their ability to considerably impact tissue microenvironments via extracellular vesicles or toll-like receptor pathway modulation. MicroRNAs (miRNAs) are small noncoding RNAs that target the messenger RNA and play a critical role in different biological procedures, such as the development and reaction of the immune system. Moreover, miRNAs have recently been revealed to have serious functions in MSCs to regulate immunomodulatory properties. In this review, we study how the miRNAs pathway can modulate the immunoregulatory activity of MSCs by counting their interactions with immune cells and also discuss the possibility of using miRNA-based implications for MSC-based therapies.
Collapse
Affiliation(s)
- Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Khorashadizadeh
- Medical Biotechnology (PhD), Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
41
|
Dewi R, Hamid ZA, Rajab NF, Shuib S, Razak SA. Genetic, epigenetic, and lineage-directed mechanisms in benzene-induced malignancies and hematotoxicity targeting hematopoietic stem cells niche. Hum Exp Toxicol 2019; 39:577-595. [PMID: 31884827 DOI: 10.1177/0960327119895570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Benzene is a known hematotoxic and leukemogenic agent with hematopoietic stem cells (HSCs) niche being the potential target. Occupational and environmental exposure to benzene has been linked to the incidences of hematological disorders and malignancies. Previous studies have shown that benzene may act via multiple modes of action targeting HSCs niche, which include induction of chromosomal and micro RNA aberrations, leading to genetic and epigenetic modification of stem cells and probable carcinogenesis. However, understanding the mechanism linking benzene to the HSCs niche dysregulation is challenging due to complexity of its microenvironment. The niche is known to comprise of cell populations accounted for HSCs and their committed progenitors of lymphoid, erythroid, and myeloid lineages. Thus, it is fundamental to address novel approaches via lineage-directed strategy to elucidate precise mechanism involved in benzene-induced toxicity targeting HSCs and progenitors of different lineages. Here, we review the key genetic and epigenetic factors that mediate hematotoxicological effects by benzene and its metabolites in targeting HSCs niche. Overall, the use of combined genetic, epigenetic, and lineage-directed strategies targeting the HSCs niche is fundamental to uncover the key mechanisms in benzene-induced hematological disorders and malignancies.
Collapse
Affiliation(s)
- R Dewi
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Z Abdul Hamid
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - N F Rajab
- Biomedical Science Programme and Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - S Shuib
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Sr Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
42
|
Mann M, Mehta A, de Boer CG, Kowalczyk MS, Lee K, Haldeman P, Rogel N, Knecht AR, Farouq D, Regev A, Baltimore D. Heterogeneous Responses of Hematopoietic Stem Cells to Inflammatory Stimuli Are Altered with Age. Cell Rep 2019; 25:2992-3005.e5. [PMID: 30540934 DOI: 10.1016/j.celrep.2018.11.056] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/05/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022] Open
Abstract
Long-term hematopoietic stem cells (LT-HSCs) maintain hematopoietic output throughout an animal's lifespan. However, with age, the balance is disrupted, and LT-HSCs produce a myeloid-biased output, resulting in poor immune responses to infectious challenge and the development of myeloid leukemias. Here, we show that young and aged LT-HSCs respond differently to inflammatory stress, such that aged LT-HSCs produce a cell-intrinsic, myeloid-biased expression program. Using single-cell RNA sequencing (scRNA-seq), we identify a myeloid-biased subset within the LT-HSC population (mLT-HSCs) that is prevalent among aged LT-HSCs. We identify CD61 as a marker of mLT-HSCs and show that CD61-high LT-HSCs are uniquely primed to respond to acute inflammatory challenge. We predict that several transcription factors regulate the mLT-HSCs gene program and show that Klf5, Ikzf1, and Stat3 play an important role in age-related inflammatory myeloid bias. We have therefore identified and isolated an LT-HSC subset that regulates myeloid versus lymphoid balance under inflammatory challenge and with age.
Collapse
Affiliation(s)
- Mati Mann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Arnav Mehta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA 90025, USA
| | - Carl G de Boer
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | | | - Kevin Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pearce Haldeman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noga Rogel
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Abigail R Knecht
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Daneyal Farouq
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Biology, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA.
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
43
|
Vishnubalaji R, Shaath H, Elango R, Alajez NM. Noncoding RNAs as potential mediators of resistance to cancer immunotherapy. Semin Cancer Biol 2019; 65:65-79. [PMID: 31733291 DOI: 10.1016/j.semcancer.2019.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Substantial evolution in cancer therapy has been witnessed lately, steering mainly towards immunotherapeutic approaches, replacing or in combination with classical therapies. Whereas the use of various immunotherapy approaches, such as adoptive T cell therapy, genetically-modified T cells, or immune checkpoint inhibitors, has been a triumph for cancer immunotherapy, the great challenge is the ability of the immune system to sustain long lasting anti-tumor response. Additionally, epigenetic changes in a suppressive tumor microenvironment can pertain to T cell exhaustion, limiting their functionality. Noncoding RNAs (ncRNAs) have emerged over the last years as key players in epigenetic regulation. Among those, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have been studied extensively for their potential role in regulating tumor immunity through direct regulation of genes involved in immune activation or suppression. In this review, we will provide an overview of contemporary approaches for cancer immunotherapy and will present the current state of knowledge implicating miRNAs and lncRNAs in regulating immune response against human cancer and their potential implications in resistance to cancer immunotherapy, with main emphasis on immune checkpoints regulation.
Collapse
Affiliation(s)
- Radhakrishnan Vishnubalaji
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Hibah Shaath
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ramesh Elango
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
44
|
Wünsche P, Eckert ESP, Holland-Letz T, Paruzynski A, Hotz-Wagenblatt A, Fronza R, Rath T, Gil-Farina I, Schmidt M, von Kalle C, Klein C, Ball CR, Herbst F, Glimm H. Mapping Active Gene-Regulatory Regions in Human Repopulating Long-Term HSCs. Cell Stem Cell 2019; 23:132-146.e9. [PMID: 29979988 DOI: 10.1016/j.stem.2018.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/03/2018] [Accepted: 06/08/2018] [Indexed: 12/29/2022]
Abstract
Genes that regulate hematopoietic stem cell (HSC) self-renewal, proliferation, and differentiation are tightly controlled by regulatory regions. However, mapping such regions relies on surface markers and immunophenotypic definition of HSCs. Here, we use γ-retroviral integration sites (γRV ISs) from a gene therapy trial for 10 patients with Wiskott-Aldrich syndrome to mark active enhancers and promoters in functionally defined long-term repopulating HSCs. Integration site clusters showed the highest ATAC-seq signals at HSC-specific peaks and strongly correlated with hematopoietic risk variants. Tagged genes were significantly enriched for HSC gene sets. We were able to map over 3,000 HSC regulatory regions in late-contributing HSCs, and we used these data to identify miR-10a and miR-335 as two miRNAs regulating early hematopoiesis. In this study, we show that viral insertion sites can be used as molecular tags to assess chromatin conformation on functionally defined cell populations, thereby providing a genome-wide resource for regulatory regions in human repopulating long-term HSCs.
Collapse
Affiliation(s)
- Peer Wünsche
- Department of Translational and Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Elias S P Eckert
- Department of Translational and Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Tim Holland-Letz
- Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raffaele Fronza
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Rath
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Irene Gil-Farina
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany; GeneWerk GmbH, Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, NCT-Dresden, University Hospital, Carl Gustav Carus, Technische Universität Dresden, Dresden and DKFZ, Heidelberg, Germany
| | - Friederike Herbst
- Department of Translational and Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational and Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Translational Medical Oncology, NCT-Dresden, University Hospital, Carl Gustav Carus, Technische Universität Dresden, Dresden and DKFZ, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
45
|
Xiao C, Wang K, Xu Y, Hu H, Zhang N, Wang Y, Zhong Z, Zhao J, Li Q, Zhu D, Ke C, Zhong S, Wu X, Yu H, Zhu W, Chen J, Zhang J, Wang J, Hu X. Transplanted Mesenchymal Stem Cells Reduce Autophagic Flux in Infarcted Hearts via the Exosomal Transfer of miR-125b. Circ Res 2019; 123:564-578. [PMID: 29921652 DOI: 10.1161/circresaha.118.312758] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE Autophagy can preserve cell viability under conditions of mild ischemic stress by degrading damaged organelles for ATP production, but under conditions of severe ischemia, it can promote cell death and worsen cardiac performance. Mesenchymal stem cells (MSCs) are cardioprotective when tested in animal models of myocardial infarction, but whether these benefits occur through the regulation of autophagy is unknown. OBJECTIVE To determine whether transplanted MSCs reduce the rate of autophagic degradation (autophagic flux) in infarcted hearts and if so, to characterize the mechanisms involved. METHODS AND RESULTS Treatment with transplanted MSCs improved cardiac function and infarct size while reducing apoptosis and measures of autophagic flux (bafilomycin A1-induced LC3-II [microtubule-associated protein 1 light chain 3] accumulation and autophagosome/autolysosome prevalence) in infarcted mouse hearts. In hypoxia and serum deprivation-cultured neonatal mouse cardiomyocytes, autophagic flux and cell death, as well as p53-Bnip3 (B-cell lymphoma 2-interacting protein 3) signaling, declined when the cells were cultured with MSCs or MSC-secreted exosomes (MSC-exo), but the changes associated with MSC-exo were largely abolished by pretreatment with the exosomal inhibitor GW4869. Furthermore, a mimic of the exosomal oligonucleotide miR-125b reduced, whereas an anti-miR-125b oligonucleotide increased, autophagic flux and cell death, via modulating p53-Bnip3 signaling in hypoxia and serum deprivation-cultured neonatal mouse cardiomyocytes. In the in vivo mouse myocardial infarction model, MSC-exo, but not the exosomes obtained from MSCs pretreated with the anti-miR-125b oligonucleotide (MSC-exoanti-miR-125b), recapitulated the same results as the in vitro experiments. Moreover, measurements of infarct size and cardiac function were significantly better in groups that were treated with MSC-exo than the MSC-exoanti-miR-125b group. CONCLUSIONS The beneficial effects offered by MSC transplantation after myocardial infarction are at least partially because of improved autophagic flux through excreted exosome containing mainly miR-125b-5p.
Collapse
Affiliation(s)
- Changchen Xiao
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Kan Wang
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Yinchuan Xu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Hengxun Hu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Na Zhang
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Yingchao Wang
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Zhiwei Zhong
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Jing Zhao
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Qingju Li
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Dan Zhu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Changle Ke
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Shuhan Zhong
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Xianpeng Wu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Hong Yu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Wei Zhu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Jinghai Chen
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Institute of Translational Medicine (J.C.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham (J.Z.)
| | - Jian'an Wang
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| | - Xinyang Hu
- From the Department of Cardiology, Second Affiliated Hospital, College of Medicine (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.).,Zhejiang University, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (C.X., K.W., Y.X., H.H., N.Z., Y.W., Z.Z., J.Z., Q.L., D.Z., C.K., S.Z., X.W., H.Y., W.Z., J.C., J.W., X.H.)
| |
Collapse
|
46
|
Xu SJ, Hu HT, Li HL, Chang S. The Role of miRNAs in Immune Cell Development, Immune Cell Activation, and Tumor Immunity: With a Focus on Macrophages and Natural Killer Cells. Cells 2019; 8:cells8101140. [PMID: 31554344 PMCID: PMC6829453 DOI: 10.3390/cells8101140] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) is the primary arena where tumor cells and the host immune system interact. Bidirectional communication between tumor cells and the associated stromal cell types within the TME influences disease initiation and progression, as well as tumor immunity. Macrophages and natural killer (NK) cells are crucial components of the stromal compartment and display either pro- or anti-tumor properties, depending on the expression of key regulators. MicroRNAs (miRNAs) are emerging as such regulators. They affect several immune cell functions closely related to tumor evasion of the immune system. This review discusses the role of miRNAs in the differentiation, maturation, and activation of immune cells as well as tumor immunity, focusing particularly on macrophages and NK cells.
Collapse
Affiliation(s)
- Shi Jun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hong Tao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Hai Liang Li
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
47
|
Tsai DY, Hung KH, Chang CW, Lin KI. Regulatory mechanisms of B cell responses and the implication in B cell-related diseases. J Biomed Sci 2019; 26:64. [PMID: 31472685 PMCID: PMC6717636 DOI: 10.1186/s12929-019-0558-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Terminally differentiated B cell, the plasma cell, is the sole cell type capable of producing antibodies in our body. Over the past 30 years, the identification of many key molecules controlling B cell activation and differentiation has elucidated the molecular pathways for generating antibody-producing plasma cells. Several types of regulation modulating the functions of the important key molecules in B cell activation and differentiation add other layers of complexity in shaping B cell responses following antigen exposure in the absence or presence of T cell help. Further understanding of the mechanisms contributing to the proper activation and differentiation of B cells into antibody-secreting plasma cells may enable us to develop new strategies for managing antibody humoral responses during health and disease. Herein, we reviewed the effect of different types of regulation, including transcriptional regulation, post-transcriptional regulation and epigenetic regulation, on B cell activation, and on mounting memory B cell and antibody responses. We also discussed the link between the dysregulation of the abovementioned regulatory mechanisms and B cell-related disorders.
Collapse
Affiliation(s)
- Dong-Yan Tsai
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan
| | - Kuo-Hsuan Hung
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan
| | - Chia-Wei Chang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan. .,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan.
| |
Collapse
|
48
|
Epigenetic regulation of hematopoietic stem cell homeostasis. BLOOD SCIENCE 2019; 1:19-28. [PMID: 35402787 PMCID: PMC8974946 DOI: 10.1097/bs9.0000000000000018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
As one of the best characterized adult stem cells, hematopoietic stem cell (HSC) homeostasis is of great importance to hematopoiesis and immunity due to HSC's abilities of self-renewal and multi-lineage differentiation into functional blood cells. However, excessive self-renewal of HSCs can lead to severe hematopoietic malignancies like leukemia, whereas deficient self-renewal of HSCs may result in HSC exhaustion and eventually apoptosis of specialized cells, giving rise to abnormalities such as immunodeficiency or anemia. How HSC homeostasis is maintained has been studied for decades and regulatory factors can be generally categorized into two classes: genetic factors and epigenetic factors. Although genetic factors such as signaling pathways or transcription factors have been well explored, recent studies have emerged the indispensable roles of epigenetic factors. In this review, we have summarized regulatory mechanisms of HSC homeostasis by epigenetic factors, including DNA methylation, histone modification, chromatin remodeling, non-coding RNAs, and RNA modification, which will facilitate applications such as HSC ex vivo expansion and exploration of novel therapeutic approaches for many hematological diseases.
Collapse
|
49
|
Mammoli F, Parenti S, Lomiento M, Gemelli C, Atene CG, Grande A, Corradini R, Manicardi A, Fantini S, Zanocco-Marani T, Ferrari S. Physiological expression of miR-130a during differentiation of CD34 + human hematopoietic stem cells results in the inhibition of monocyte differentiation. Exp Cell Res 2019; 382:111445. [PMID: 31152707 DOI: 10.1016/j.yexcr.2019.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNA) are small noncoding RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, thereby determining their degradation or inhibiting translation. They are involved in processes such as proliferation, differentiation and apoptosis by fine-tuning the expression of genes underlying such events. The expression of specific miRNAs is involved in hematopoietic differentiation and their deregulation contributes to the development of hematopoietic malignancies such as acute myeloid leukemia (AML). miR-130a is over-expressed in AML. Here we show that miR-130a is physiologically expressed in myeloblasts and down-regulated during monocyte differentiation. Gain- and loss-of-function experiments performed on CD34+ human hematopoietic stem cells confirmed that expression of miR-130a inhibits monocyte differentiation by interfering with the expression of key transcription factors HOXA10, IRF8, KLF4, MAFB and PU-1. The data obtained in this study highlight that the correct modulation of miR-130a is necessary for normal differentiation to occur and confirming that deregulation of this miRNA might underlie the differentiation block occurring in AML.
Collapse
Affiliation(s)
- Fabiana Mammoli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) Srl - IRCCS, Italy.
| | - Sandra Parenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | - Mariana Lomiento
- Sant'Orsola Malpighi Hospital, University of Bologna, Bologna, Italy.
| | - Claudia Gemelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | - Claudio Giacinto Atene
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | - Alexis Grande
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, I-43124 Parma, Italy.
| | - Alex Manicardi
- Department of Organic and Macromolecular Chemistry Organic and Biomimetic Chemistry Research Group (OBCR) Faculty of Sciences - Ghent University Campus Sterre, Krijgslaan, 281 S4 B-9000 Gent, Belgium.
| | - Sebastian Fantini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | - Tommaso Zanocco-Marani
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) Srl - IRCCS, Italy.
| | - Sergio Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| |
Collapse
|
50
|
Global MicroRNA Profiling Uncovers miR-206 as a Negative Regulator of Hematopoietic Commitment in Human Pluripotent Stem Cells. Int J Mol Sci 2019; 20:ijms20071737. [PMID: 30965622 PMCID: PMC6479521 DOI: 10.3390/ijms20071737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 02/08/2023] Open
Abstract
Although human pluripotent stem cells (hPSCs) can theoretically differentiate into any cell type, their ability to produce hematopoietic cells is highly variable from one cell line to another. The underlying mechanisms of this heterogeneity are not clearly understood. Here, using a whole miRNome analysis approach in hPSCs, we discovered that their hematopoietic competency was associated with the expression of several miRNAs and conversely correlated to that of miR-206 specifically. Lentiviral-based miR-206 ectopic expression in H1 hematopoietic competent embryonic stem (ES) cells markedly impaired their differentiation toward the blood lineage. Integrative bioinformatics identified a potential miR-206 target gene network which included hematopoietic master regulators RUNX1 and TAL1. This work sheds light on the critical role of miR-206 in the generation of blood cells off hPSCs. Our results pave the way for future genetic manipulation of hPSCs aimed at increasing their blood regenerative potential and designing better protocols for the generation of bona fide hPSC-derived hematopoietic stem cells.
Collapse
|