1
|
Boudinot P, Novas S, Jouneau L, Mondot S, Lefranc MP, Grimholt U, Magadán S. Evolution of T cell receptor beta loci in salmonids. Front Immunol 2023; 14:1238321. [PMID: 37649482 PMCID: PMC10464911 DOI: 10.3389/fimmu.2023.1238321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
T-cell mediated immunity relies on a vast array of antigen specific T cell receptors (TR). Characterizing the structure of TR loci is essential to study the diversity and composition of T cell responses in vertebrate species. The lack of good-quality genome assemblies, and the difficulty to perform a reliably mapping of multiple highly similar TR sequences, have hindered the study of these loci in non-model organisms. High-quality genome assemblies are now available for the two main genera of Salmonids, Salmo and Oncorhynchus. We present here a full description and annotation of the TRB loci located on chromosomes 19 and 25 of rainbow trout (Oncorhynchus mykiss). To get insight about variations of the structure and composition of TRB locus across salmonids, we compared rainbow trout TRB loci with other salmonid species and confirmed that the basic structure of salmonid TRB locus is a double set of two TRBV-D-J-C loci in opposite orientation on two different chromosomes. Our data shed light on the evolution of TRB loci in Salmonids after their whole genome duplication (WGD). We established a coherent nomenclature of salmonid TRB loci based on comprehensive annotation. Our work provides a fundamental basis for monitoring salmonid T cell responses by TRB repertoire sequencing.
Collapse
Affiliation(s)
- Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Samuel Novas
- Immunology Laboratory, Research Center for Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Vigo, Spain
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Stanislas Mondot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-Paule Lefranc
- IMGT, The International ImMunoGeneTics Information System® (IMGT), Laboratoire d´ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Unni Grimholt
- Fish Health Research Section, Norwegian Veterinary Institute, Oslo, Norway
| | - Susana Magadán
- Immunology Laboratory, Research Center for Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Vigo, Spain
| |
Collapse
|
2
|
Watanabe Y, Yamamoto H, Matsuba I, Watanabe K, Kunishima T, Takechi Y, Takuma T, Araki Y, Hirotsu N, Sakai H, Oikawa R, Danno H, Fukuda M, Sugino R, Futagami S, Wada K, Itoh F, Tateishi K, Oda I, Hatori Y, Degawa H. Time-series transcriptome analysis of peripheral blood mononuclear cells obtained from individuals who received the SARS-CoV-2 mRNA vaccine. J Med Virol 2023; 95:e28884. [PMID: 37342886 DOI: 10.1002/jmv.28884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Messenger ribonucleic acid (mRNA) vaccination against coronavirus disease 2019 (COVID-19) is an effective prevention strategy, despite a limited understanding of the molecular mechanisms underlying the host immune system and individual heterogeneity of the variable effects of mRNA vaccination. We assessed the time-series changes in the comprehensive gene expression profiles of 200 vaccinated healthcare workers by performing bulk transcriptome and bioinformatics analyses, including dimensionality reduction utilizing the uniform manifold approximation and projection (UMAP) technique. For these analyses, blood samples, including peripheral blood mononuclear cells (PBMCs), were collected from 214 vaccine recipients before vaccination (T1) and on Days 22 (T2, after second dose), 90, 180 (T3, before a booster dose), and 360 (T4, after a booster dose) after receiving the first dose of BNT162b2 vaccine (UMIN000043851). UMAP successfully visualized the main cluster of gene expression at each time point in PBMC samples (T1-T4). Through differentially expressed gene (DEG) analysis, we identified genes that showed fluctuating expression levels and gradual increases in expression levels from T1 to T4, as well as genes with increased expression levels at T4 alone. We also succeeded in dividing these cases into five types based on the changes in gene expression levels. High-throughput and temporal bulk RNA-based transcriptome analysis is a useful approach for inclusive, diverse, and cost-effective large-scale clinical studies.
Collapse
Affiliation(s)
- Yoshiyuki Watanabe
- Kawasaki Physicians Association, Kawasaki, Japan
- Department of Internal Medicine, Kawasaki Rinko General Hospital, Kawasaki, Japan
- Department of Gastroenterology, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Internal Medicine, Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
- Department of Otorhinolaryngology, Toho University Omori Medical Center, Tokyo, Japan
| | - Hiroyuki Yamamoto
- Department of Gastroenterology, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Bioinformatics, St. Marianna University Graduate School of Medicine, Kanagawa, Japan
| | | | - Karin Watanabe
- Department of Internal Medicine, Kawasaki Rinko General Hospital, Kawasaki, Japan
| | | | | | | | | | | | | | - Ritsuko Oikawa
- Department of Gastroenterology, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | - Seiji Futagami
- Department of Internal Medicine, Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Kota Wada
- Department of Otorhinolaryngology, Toho University Omori Medical Center, Tokyo, Japan
| | - Fumio Itoh
- Department of Gastroenterology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ichiro Oda
- Department of Internal Medicine, Kawasaki Rinko General Hospital, Kawasaki, Japan
| | | | | |
Collapse
|
3
|
Ott JA, Haakenson JK, Kelly AR, Christian C, Criscitiello MF, Smider VV. Evolution of surrogate light chain in tetrapods and the relationship between lengths of CDR H3 and VpreB tails. Front Immunol 2022; 13:1001134. [PMID: 36311706 PMCID: PMC9614664 DOI: 10.3389/fimmu.2022.1001134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
In the mammalian immune system, the surrogate light chain (SLC) shapes the antibody repertoire during B cell development by serving as a checkpoint for production of functional heavy chains (HC). Structural studies indicate that tail regions of VpreB contact and cover the third complementarity-determining region of the HC (CDR H3). However, some species, particularly bovines, have CDR H3 regions that may not be compatible with this HC-SLC interaction model. With immense structural and genetic diversity in antibody repertoires across species, we evaluated the genetic origins and sequence features of surrogate light chain components. We examined tetrapod genomes for evidence of conserved gene synteny to determine the evolutionary origin of VpreB1, VpreB2, and IGLL1, as well as VpreB3 and pre-T cell receptor alpha (PTCRA) genes. We found the genes for the SLC components (VpreB1, VpreB2, and IGLL1) only in eutherian mammals. However, genes for PTCRA occurred in all amniote groups and genes for VpreB3 occurred in all tetrapod groups, and these genes were highly conserved. Additionally, we found evidence of a new VpreB gene in non-mammalian tetrapods that is similar to the VpreB2 gene of eutherian mammals, suggesting VpreB2 may have appeared earlier in tetrapod evolution and may be a precursor to traditional VpreB2 genes in higher vertebrates. Among eutherian mammals, sequence conservation between VpreB1 and VpreB2 was low for all groups except rabbits and rodents, where VpreB2 was nearly identical to VpreB1 and did not share conserved synteny with VpreB2 of other species. VpreB2 of rabbits and rodents likely represents a duplicated variant of VpreB1 and is distinct from the VpreB2 of other mammals. Thus, rabbits and rodents have two variants of VpreB1 (VpreB1-1 and VpreB1-2) but no VpreB2. Sequence analysis of VpreB tail regions indicated differences in sequence content, charge, and length; where repertoire data was available, we observed a significant relationship between VpreB2 tail length and maximum DH length. We posit that SLC components co-evolved with immunoglobulin HC to accommodate the repertoire - particularly CDR H3 length and structure, and perhaps highly unusual HC (like ultralong HC of cattle) may bypass this developmental checkpoint altogether.
Collapse
Affiliation(s)
- Jeannine A. Ott
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jeremy K. Haakenson
- Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Abigail R. Kelly
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Claire Christian
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Michael F. Criscitiello
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Vaughn V. Smider
- Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
4
|
Zapata AG. Lympho-Hematopoietic Microenvironments and Fish Immune System. BIOLOGY 2022; 11:747. [PMID: 35625475 PMCID: PMC9138301 DOI: 10.3390/biology11050747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
In the last 50 years information on the fish immune system has increased importantly, particularly that on species of marked commercial interest (i.e., salmonids, cods, catfish, sea breams), that occupy a key position in the vertebrate phylogenetical tree (i.e., Agnatha, Chondrichtyes, lungfish) or represent consolidated experimental models, such as zebrafish or medaka. However, most obtained information was based on genetic sequence analysis with little or no information on the cellular basis of the immune responses. Although jawed fish contain a thymus and lympho-hematopoietic organs equivalents to mammalian bone marrow, few studies have accounted for the presumptive relationships between the organization of these cell microenvironments and the known immune capabilities of the fish immune system. In the current review, we analyze this topic providing information on: (1) The origins of T and B lymphopoiesis in Agnatha and jawed fish; (2) the remarkable organization of the thymus of teleost fish; (3) the occurrence of numerous, apparently unrelated organs housing lympho-hematopoietic progenitors and, presumably, B lymphopoiesis; (4) the existence of fish immunological memory in the absence of germinal centers.
Collapse
Affiliation(s)
- Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; ; Tel.: +34-913-944-979
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
5
|
Edholm ES, Fenton CG, Mondot S, Paulssen RH, Lefranc MP, Boudinot P, Magadan S. Profiling the T Cell Receptor Alpha/Delta Locus in Salmonids. Front Immunol 2021; 12:753960. [PMID: 34733285 PMCID: PMC8559430 DOI: 10.3389/fimmu.2021.753960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
In jawed vertebrates, two major T cell populations have been characterized. They are defined as α/β or γ/δ T cells, based on the expressed T cell receptor. Salmonids (family Salmonidae) include two key teleost species for aquaculture, rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) which constitute important models for fish immunology and important targets for vaccine development. The growing interest to decipher the dynamics of adaptive immune responses against pathogens or vaccines has resulted in recent efforts to sequence the immunoglobulin (IG) or antibodies and T cell receptor (TR) repertoire in these species. In this context, establishing a comprehensive and coherent locus annotation is the fundamental basis for the analysis of high-throughput repertoire sequencing data. We therefore decided to revisit the description and annotation of TRA/TRD locus in Atlantic salmon and two strains of rainbow trout (Swanson and Arlee) using the now available high-quality genome assemblies. Phylogenetic analysis of functional TRA/TRD V genes from these three genomes led to the definition of 25 subgroups shared by both species, some with particular feature. A total of 128 TRAJ genes were identified in Salmo, the majority with a close counterpart in Oncorhynchus. Analysis of expressed TRA repertoire indicates that most TRAV gene subgroups are expressed at mucosal and systemic level. The present work on TRA/TRD locus annotation along with the analysis of TRA repertoire sequencing data show the feasibility and advantages of a common salmonid TRA/TRD nomenclature that allows an accurate annotation and analysis of high-throughput sequencing results, across salmonid T cell subsets.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Faculty of Biosciences, Fisheries & Economics, Norwegian College of Fishery Science, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Christopher Graham Fenton
- Clinical Bioinformatics Research Group, Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Stanislas Mondot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ruth H Paulssen
- Clinical Bioinformatics Research Group, Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System (IMGT), Laboratoire d´ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), CNRS, University of Montpellier, Montpellier Cedex, France
| | - Pierre Boudinot
- Université Paris Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Susana Magadan
- Immunology Laboratory, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain.,Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| |
Collapse
|
6
|
Aghaallaei N, Dick AM, Tsingos E, Inoue D, Hasel E, Thumberger T, Toyoda A, Leptin M, Wittbrodt J, Bajoghli B. αβ/γδ T cell lineage outcome is regulated by intrathymic cell localization and environmental signals. SCIENCE ADVANCES 2021; 7:7/29/eabg3613. [PMID: 34261656 PMCID: PMC8279519 DOI: 10.1126/sciadv.abg3613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/28/2021] [Indexed: 05/07/2023]
Abstract
αβ and γδ T cells are two distinct sublineages that develop in the vertebrate thymus. Thus far, their differentiation from a common progenitor is mostly understood to be regulated by intrinsic mechanisms. However, the proportion of αβ/γδ T cells varies in different vertebrate taxa. How this process is regulated in species that tend to produce a high frequency of γδ T cells is unstudied. Using an in vivo teleost model, the medaka, we report that progenitors first enter a thymic niche where their development into γδ T cells is favored. Translocation from this niche, mediated by chemokine receptor Ccr9b, is a prerequisite for their differentiation into αβ T cells. On the other hand, the thymic niche also generates opposing gradients of the cytokine interleukin-7 and chemokine Ccl25a, and, together, they influence the lineage outcome. We propose a previously unknown mechanism that determines the proportion of αβ/γδ lineages within species.
Collapse
Affiliation(s)
- Narges Aghaallaei
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Advaita M Dick
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Erika Tsingos
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Daigo Inoue
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Eva Hasel
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Maria Leptin
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- EMBO, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Baubak Bajoghli
- Department of Hematology, Oncology, Immunology, and Rheumatology, University Hospital of Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany.
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
7
|
Miccoli A, Guerra L, Pianese V, Saraceni PR, Buonocore F, Taddei AR, Couto A, De Wolf T, Fausto AM, Scapigliati G, Picchietti S. Molecular, Cellular and Functional Analysis of TRγ Chain along the European Sea Bass Dicentrarchus labrax Development. Int J Mol Sci 2021; 22:ijms22073376. [PMID: 33806063 PMCID: PMC8036326 DOI: 10.3390/ijms22073376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
In jawed vertebrates, adaptive immune responses are enabled by T cells. Two lineages were characterized based on their T cell receptor (TcR) heterodimers, namely αβ or γδ peptide chains, which display an Ig domain-type sequence that is somatically rearranged. γδ T cells have been less extensively characterized than αβ and teleost fish, in particular, suffer from a severe scarcity of data. In this paper, we worked on the well-known model, the European sea bass Dicentrarchus labrax, to broaden the understanding of teleost γδ-T cells. The T cell receptor chain (TR) γ transcript was expressed at a later developmental stage than TRβ, suggesting a layered appearance of fish immune cells, and the thymus displayed statistically-significant higher mRNA levels than any other organ or lymphoid tissue investigated. The polyclonal antibody developed against the TRγ allowed the localization of TRγ-expressing cells in lymphoid organs along the ontogeny. Cell positivity was investigated through flow cytometry and the highest percentage was found in peripheral blood leukocytes, followed by thymus, gut, gills, spleen and head kidney. Numerous TRγ-expressing cells were localized in the gut mucosa, and the immunogold labelling revealed ultrastructural features that are typical of T cells. At last, microalgae-based diet formulations significantly modulated the abundance of TRγ+ cells in the posterior intestine, hinting at a putative involvement in nutritional immunity. From a comparative immunological perspective, our results contribute to the comprehension of the diversity and functionalities of γδ T cells during the development of a commercially relevant marine teleost model.
Collapse
Affiliation(s)
- Andrea Miccoli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Laura Guerra
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Valeria Pianese
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Paolo Roberto Saraceni
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Anna Rita Taddei
- Section of Electron Microscopy, Great Equipment Center, University of Tuscia, 01100 Viterbo, Italy;
| | - Ana Couto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal;
| | - Tania De Wolf
- INVE Aquaculture Research Center, 57016 Rosignano Solvay, Italy;
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (A.M.); (L.G.); (V.P.); (P.R.S.); (F.B.); (A.M.F.); (G.S.)
- Correspondence: ; Tel.: +39-0761-357-135
| |
Collapse
|
8
|
Li X, Mizsei R, Tan K, Mallis RJ, Duke-Cohan JS, Akitsu A, Tetteh PW, Dubey A, Hwang W, Wagner G, Lang MJ, Arthanari H, Wang JH, Reinherz EL. Pre-T cell receptors topologically sample self-ligands during thymocyte β-selection. Science 2021; 371:181-185. [PMID: 33335016 PMCID: PMC8011828 DOI: 10.1126/science.abe0918] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/03/2020] [Indexed: 11/02/2022]
Abstract
Self-discrimination, a critical but ill-defined molecular process programmed during thymocyte development, requires myriad pre-T cell receptors (preTCRs) and αβTCRs. Using x-ray crystallography, we show how a preTCR applies the concave β-sheet surface of its single variable domain (Vβ) to "horizontally" grab the protruding MHC α2-helix. By contrast, αβTCRs purpose all six complementarity-determining region (CDR) loops of their paired VαVβ module to recognize peptides bound to major histocompatibility complex molecules (pMHCs) in "vertical" head-to-head binding. The preTCR topological fit ensures that CDR3β reaches the peptide's featured C-terminal segment for pMHC sampling, establishing the subsequent αβTCR canonical docking mode. "Horizontal" docking precludes germline CDR1β- and CDR2β-MHC binding to broaden β-chain repertoire diversification before αβTCR-mediated selection refinement. Thus, one subunit successively attunes the recognition logic of related multicomponent receptors.
Collapse
Affiliation(s)
- Xiaolong Li
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Réka Mizsei
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Robert J Mallis
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aoi Akitsu
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul W Tetteh
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abhinav Dubey
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
- Department of Physics & Astronomy, Texas A&M University, College Station, TX, USA
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jia-Huai Wang
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Zebrafish and Medaka: Two Teleost Models of T-Cell and Thymic Development. Int J Mol Sci 2019; 20:ijms20174179. [PMID: 31454991 PMCID: PMC6747487 DOI: 10.3390/ijms20174179] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/26/2023] Open
Abstract
Over the past two decades, studies have demonstrated that several features of T-cell and thymic development are conserved from teleosts to mammals. In particular, works using zebrafish (Danio rerio) and medaka (Oryzias latipes) have shed light on the cellular and molecular mechanisms underlying these biological processes. In particular, the ease of noninvasive in vivo imaging of these species enables direct visualization of all events associated with these processes, which are, in mice, technically very demanding. In this review, we focus on defining the similarities and differences between zebrafish and medaka in T-cell development and thymus organogenesis; and highlight their advantages as two complementary model systems for T-cell immunobiology and modeling of human diseases.
Collapse
|
10
|
Aghaallaei N, Bajoghli B. Making Thymus Visible: Understanding T-Cell Development from a New Perspective. Front Immunol 2018; 9:375. [PMID: 29552011 PMCID: PMC5840141 DOI: 10.3389/fimmu.2018.00375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/09/2018] [Indexed: 12/17/2022] Open
Abstract
T-cell development is coupled with a highly ordered migratory pattern. Lymphoid progenitors must follow a precise journey; starting from the hematopoietic tissue, they move toward the thymus and then migrate into and out of distinct thymic microenvironments, where they receive signals and cues required for their differentiation into naïve T-cells. Knowing where, when, and how these cells make directional “decisions” is key to understanding T-cell development. Such insights can be gained by directly observing developing T-cells within their environment under various conditions and following specific experimental manipulations. In the last decade, several model systems have been developed to address temporal and spatial aspects of T-cell development using imaging approaches. In this perspective article, we discuss the advantages and limitations of these systems and highlight a particularly powerful in vivo model that has been recently established. This model system enables the migratory behavior of all thymocytes to be studied simultaneously in a noninvasive and quantitative manner, making it possible to perform systems-level studies that reveal fundamental principles governing T-cell dynamics during development and in disease.
Collapse
Affiliation(s)
- Narges Aghaallaei
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital, University of Tübingen, Tübingen, Germany
| | - Baubak Bajoghli
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Liu X, Li YS, Shinton SA, Rhodes J, Tang L, Feng H, Jette CA, Look AT, Hayakawa K, Hardy RR. Zebrafish B Cell Development without a Pre-B Cell Stage, Revealed by CD79 Fluorescence Reporter Transgenes. THE JOURNAL OF IMMUNOLOGY 2017; 199:1706-1715. [PMID: 28739882 DOI: 10.4049/jimmunol.1700552] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022]
Abstract
CD79a and CD79b proteins associate with Ig receptors as integral signaling components of the B cell Ag receptor complex. To study B cell development in zebrafish, we isolated orthologs of these genes and performed in situ hybridization, finding that their expression colocalized with IgH-μ in the kidney, which is the site of B cell development. CD79 transgenic lines were made by linking the promoter and upstream regulatory segments of CD79a and CD79b to enhanced GFP to identify B cells, as demonstrated by PCR analysis of IgH-μ expression in sorted cells. We crossed these CD79-GFP lines to a recombination activating gene (Rag)2:mCherry transgenic line to identify B cell development stages in kidney marrow. Initiation of CD79:GFP expression in Rag2:mCherry+ cells and the timing of Ig H and L chain expression revealed simultaneous expression of both IgH-μ- and IgL-κ-chains, without progressing through the stage of IgH-μ-chain alone. Rag2:mCherry+ cells without CD79:GFP showed the highest Rag1 and Rag2 mRNAs compared with CD79a and CD79b:GFP+ B cells, which showed strongly reduced Rag mRNAs. Thus, B cell development in zebrafish does not go through a Raghi CD79+IgH-μ+ pre-B cell stage, different from mammals. After the generation of CD79:GFP+ B cells, decreased CD79 expression occurred upon differentiation to Ig secretion, as detected by alteration from membrane to secreted IgH-μ exon usage, similar to in mammals. This confirmed a conserved role for CD79 in B cell development and differentiation, without the requirement of a pre-B cell stage in zebrafish.
Collapse
Affiliation(s)
- Xingjun Liu
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Yue-Sheng Li
- Fox Chase Cancer Center, Philadelphia, PA 19111.,DNA Sequencing and Genomic Core, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | - Hui Feng
- The Center for Cancer Research, Boston University School of Medicine, Boston, MA 02118
| | - Cicely A Jette
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84103; and
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | | | | |
Collapse
|
12
|
Das DK, Mallis RJ, Duke-Cohan JS, Hussey RE, Tetteh PW, Hilton M, Wagner G, Lang MJ, Reinherz EL. Pre-T Cell Receptors (Pre-TCRs) Leverage Vβ Complementarity Determining Regions (CDRs) and Hydrophobic Patch in Mechanosensing Thymic Self-ligands. J Biol Chem 2016; 291:25292-25305. [PMID: 27707880 DOI: 10.1074/jbc.m116.752865] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/28/2016] [Indexed: 11/06/2022] Open
Abstract
The pre-T cell receptor (pre-TCR) is a pTα-β heterodimer functioning in early αβ T cell development. Although once thought to be ligand-autonomous, recent studies show that pre-TCRs participate in thymic repertoire formation through recognition of peptides bound to major histocompatibility molecules (pMHC). Using optical tweezers, we probe pre-TCR bonding with pMHC at the single molecule level. Like the αβTCR, the pre-TCR is a mechanosensor undergoing force-based structural transitions that dynamically enhance bond lifetimes and exploiting allosteric control regulated via the Cβ FG loop region. The pre-TCR structural transitions exhibit greater reversibility than TCRαβ and ordered force-bond lifetime curves. Higher piconewton force requires binding through both complementarity determining region loops and hydrophobic Vβ patch apposition. This patch functions in the pre-TCR as a surrogate Vα domain, fostering ligand promiscuity to favor development of β chains with self-reactivity but is occluded by α subunit replacement of pTα upon αβTCR formation. At the double negative 3 thymocyte stage where the pre-TCR is first expressed, pre-TCR interaction with self-pMHC ligands imparts growth and survival advantages as revealed in thymic stromal cultures, imprinting fundamental self-reactivity in the T cell repertoire. Collectively, our data imply the existence of sequential mechanosensor αβTCR repertoire tuning via the pre-TCR.
Collapse
Affiliation(s)
- Dibyendu Kumar Das
- From the Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235
| | - Robert J Mallis
- the Departments of Biological Chemistry and Molecular Pharmacology and
| | - Jonathan S Duke-Cohan
- the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and.,Medicine, Harvard Medical School, and
| | - Rebecca E Hussey
- the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and
| | - Paul W Tetteh
- the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and.,Medicine, Harvard Medical School, and
| | - Mark Hilton
- From the Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235
| | - Gerhard Wagner
- the Departments of Biological Chemistry and Molecular Pharmacology and
| | - Matthew J Lang
- From the Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, .,the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37235
| | - Ellis L Reinherz
- the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and .,Medicine, Harvard Medical School, and
| |
Collapse
|
13
|
Old JM. Haematopoiesis in Marsupials. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:40-46. [PMID: 26592963 DOI: 10.1016/j.dci.2015.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Marsupials are a group of mammals that give birth to immature young lacking mature immune tissues at birth, and are unable to mount their own specific immune defence. Their immune tissues develop in a non-sterile ex-utero environment unlike that of eutherian mammals such as ourselves. Marsupials are therefore ideal models for studying the development of immune tissues, in particular haematopoiesis, yet relatively little has been investigated. Most studies have been restricted to histological or immunohistological studies, however some factors likely to be involved, based on eutherian studies in haematopoiesis, have been isolated and characterised, including a few key markers, and some cell signaling and regulation molecules, mostly involved in lymphocytopoiesis. However the role of many molecules in haematopoiesis is largely presumed. We currently lack much of the rudimentary information regarding time of appearance and expression levels of these molecules, and no functional studies have been conducted. This paper reviews our knowledge of marsupial haematopoiesis to date, and highlights the need for future research in marsupials to gain further insights into the evolution of haematopoiesis.
Collapse
Affiliation(s)
- Julie M Old
- Water and Wildlife Ecology, School of Science and Health, University of Western Sydney, Hawkesbury, Locked Bag 1797, Penrith, N.S.W, 2751 Australia.
| |
Collapse
|
14
|
Magadan S, Sunyer OJ, Boudinot P. Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates. Results Probl Cell Differ 2015; 57:235-64. [PMID: 26537384 PMCID: PMC5124013 DOI: 10.1007/978-3-319-20819-0_10] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates.
Collapse
Affiliation(s)
- Susana Magadan
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| | - Oriol J Sunyer
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| |
Collapse
|
15
|
Kuhns MS, Badgandi HB. Piecing together the family portrait of TCR-CD3 complexes. Immunol Rev 2013; 250:120-43. [PMID: 23046126 DOI: 10.1111/imr.12000] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The pre-T-cell receptor (TCR)-, αβTCR-, and γδTCR-CD3 complexes are members of a family of modular biosensors that are responsible for driving T-cell development, activation, and effector functions. They inform essential checkpoint decisions by relaying key information from their ligand-binding modules (TCRs) to their signaling modules (CD3γε + CD3δε and CD3ζζ) and on to the intracellular signaling apparatus. Their actions shape the T-cell repertoire, as well as T-cell-mediated immunity; yet, the mechanisms that underlie their activity remain an enigma. As with any molecular machine, understanding how they function depends upon understanding how their parts fit and work together. In the 30 years since the initial biochemical and genetic characterizations of the αβTCR, the structure and function of the individual components of these family members have been extensively characterized. Cumulatively, this information has allowed us to piece together a portrait of the αβTCR-CD3 complex and outline the form of the remaining family members. Here we review the known structural and functional characteristics of the components of these TCR-CD3 complex family members. We then discuss how these data have informed our understanding of the architecture of the αβTCR-CD3 complex as well as their implications for the other family members. The intent is to provide a framework for considering: (i) how these thematically similar complexes diverge to execute their specific functions and (ii) how our knowledge of the form and function of these distinct family members can cross-inform our understanding of the other family members.
Collapse
Affiliation(s)
- Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, USA.
| | | |
Collapse
|
16
|
Fillatreau S, Six A, Magadan S, Castro R, Sunyer JO, Boudinot P. The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Front Immunol 2013; 4:28. [PMID: 23408183 PMCID: PMC3570791 DOI: 10.3389/fimmu.2013.00028] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/24/2013] [Indexed: 12/17/2022] Open
Abstract
With lymphoid tissue anatomy different than mammals, and diverse adaptations to all aquatic environments, fish constitute a fascinating group of vertebrate to study the biology of B cell repertoires in a comparative perspective. Fish B lymphocytes express immunoglobulin (Ig) on their surface and secrete antigen-specific antibodies in response to immune challenges. Three antibody classes have been identified in fish, namely IgM, IgD, and IgT, while IgG, IgA, and IgE are absent. IgM and IgD have been found in all fish species analyzed, and thus seem to be primordial antibody classes. IgM and IgD are normally co-expressed from the same mRNA through alternative splicing, as in mammals. Tetrameric IgM is the main antibody class found in serum. Some species of fish also have IgT, which seems to exist only in fish and is specialized in mucosal immunity. IgM/IgD and IgT are expressed by two different sub-populations of B cells. The tools available to investigate B cell responses at the cellular level in fish are limited, but the progress of fish genomics has started to unravel a rich diversity of IgH and immunoglobulin light chain locus organization, which might be related to the succession of genome remodelings that occurred during fish evolution. Moreover, the development of deep sequencing techniques has allowed the investigation of the global features of the expressed fish B cell repertoires in zebrafish and rainbow trout, in steady state or after infection. This review provides a description of the organization of fish Ig loci, with a particular emphasis on their heterogeneity between species, and presents recent data on the structure of the expressed Ig repertoire in healthy and infected fish.
Collapse
Affiliation(s)
- Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum, Leibniz Institute Berlin, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Smelty P, Marchal C, Jaffredo T, Sire JY, Fellah JS. [Reappraisal of the role of pTα for pre-TCR signaling: lessons from non mammalian vertebrates]. Med Sci (Paris) 2011; 27:346-8. [PMID: 21524393 DOI: 10.1051/medsci/2011274004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Philippe Smelty
- Université Pierre et Marie Curie, UMR-CNRS 7622, 9, quai Saint-Bernard, 75252 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
18
|
Berry R, Chen Z, McCluskey J, Rossjohn J. Insight into the basis of autonomous immunoreceptor activation. Trends Immunol 2011; 32:165-70. [PMID: 21354859 DOI: 10.1016/j.it.2011.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/25/2011] [Accepted: 01/27/2011] [Indexed: 12/16/2022]
Abstract
Expression of the pre-T cell receptor (pTCR) by immature thymocytes is crucial for T cell development. The pTCR comprises an invariant pre-Tα chain that pairs with a newly rearranged TCRβ chain and CD3 signaling components. Despite its similarity to the mature αβTCR, which binds to specific peptide-loaded major histocompatibility molecules, the pTCR functions in a ligand-independent manner. Precisely how pTCR functions autonomously has remained a source of intense debate. Recently, the structure of the extracellular domain of the pTCR has been determined, providing insight into the mechanism of pTCR autonomous signaling. In this review, we reflect on the current understanding of pTCR function and draw comparisons to the mechanisms employed by the mature αβTCR and the related pre-B cell receptor.
Collapse
Affiliation(s)
- Richard Berry
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|