1
|
Pizzi A, Dhaka A, Beccaria R, Resnati G. Anion⋯anion self-assembly under the control of σ- and π-hole bonds. Chem Soc Rev 2024; 53:6654-6674. [PMID: 38867604 DOI: 10.1039/d3cs00479a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The electrostatic attraction between charges of opposite signs and the repulsion between charges of the same sign are ubiquitous and influential phenomena in recognition and self-assembly processes. However, it has been recently revealed that specific attractive forces between ions with the same sign are relatively common. These forces can be strong enough to overcome the Coulomb repulsion between ions with the same sign, leading to the formation of stable anion⋯anion and cation⋯cation adducts. Hydroden bonds (HBs) are probably the best-known interaction that can effectively direct these counterintuitive assembly processes. In this review we discuss how σ-hole and π-hole bonds can break the paradigm of electrostatic repulsion between like-charges and effectively drive the self-assembly of anions into discrete as well as one-, two-, or three-dimensional adducts. σ-Hole and π-hole bonds are the attractive forces between regions of excess electron density in molecular entities (e.g., lone pairs or π bond orbitals) and regions of depleted electron density that are localized at the outer surface of bonded atoms opposite to the σ covalent bonds formed by atoms (σ-holes) and above and below the planar portions of molecular entities (π-holes). σ- and π-holes can be present on many different elements of the p and d block of the periodic table and the self-assembly processes driven by their presence can thus involve a wide diversity of mono- and di-anions. The formed homomeric and heteromeric adducts are typically stable in the solid phase and in polar solvents but metastable or unstable in the gas phase. The pivotal role of σ- and π-hole bonds in controlling anion⋯anion self-assembly is described in key biopharmacological systems and in molecular materials endowed with useful functional properties.
Collapse
Affiliation(s)
- Andrea Pizzi
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano, Italy.
| | - Arun Dhaka
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano, Italy.
| | - Roberta Beccaria
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano, Italy.
| | - Giuseppe Resnati
- NFMLab, Department of Chemistry, Materials, Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano, Italy.
| |
Collapse
|
2
|
Manoj KM, Bazhin NM, Tamagawa H, Jaeken L, Parashar A. The physiological role of complex V in ATP synthesis: Murzyme functioning is viable whereas rotary conformation change model is untenable. J Biomol Struct Dyn 2022; 41:3993-4012. [PMID: 35394896 DOI: 10.1080/07391102.2022.2060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Complex V or FoF1-ATPase is a multimeric protein found in bioenergetic membranes of cells and organelles like mitochondria/chloroplasts. The popular perception on Complex V deems it as a reversible molecular motor, working bi-directionally (breaking or making ATP) via a conformation-change based chemiosmotic rotary ATP synthesis (CRAS) mechanism, driven by proton-gradients or trans-membrane potential (TMP). In continuance of our pursuits against the CRAS model of cellular bioenergetics, herein we demonstrate the validity of the murburn model based in diffusible reactive (oxygen) species (DRS/DROS). Supported by new in silico derived data (that there are ∼12 adenosine nucleotide binding sites on the F1 bulb and not merely 3 sites, as perceived earlier), available structural information, known experimental observations, and thermodynamic/kinetic considerations (that de-solvation of protons from hydronium ions is facile), we deduce that Complex V serves as a physiological chemostat and a murzyme (enzyme working via murburn scheme, employing DRS). That is- Complex V uses ATP (via consumption at ε or proteins of F1 module) as a Michaelis-Menten substrate to serve as a pH-stat by inletting protons via the c-ring of Fo module. Physiologically, Complex V also functions as a murzyme by presenting ADP/Pi (or their reaction intermediates) on the αβ bulb, thereby enabling greater opportunities for DRS/proton-assisted ATP formation. Thus, the murburn paradigm succeeds the CRAS hypothesis for explaining the role of oxygen in mitochondrial physiologies of oxidative phosphorylation, thermogenesis, TMP and homeostasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Biochemistry Department, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Nikolai Mikhailovich Bazhin
- Environmental Chemistry Department, Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Laurent Jaeken
- Industrial Sciences and Technology, Karel de Grote University College, Antwerp University Association, Hoboken, Belgium
| | - Abhinav Parashar
- Biochemistry Department, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| |
Collapse
|
3
|
Li C, Hu B, Cao Y, Li Y. Elaborating the excited-state double proton transfer mechanism and multiple fluorescent characteristics of 3,5-bis(2-hydroxypheny)-1H-1,2,4-triazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119854. [PMID: 33933943 DOI: 10.1016/j.saa.2021.119854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Recently, Krishnamoorthy and coworkers reported a new type of proton transfer, which was labeled as 'proton transfer triggered proton transfer', in 3,5-bis(2-hydroxypheny)-1H-1,2,4-triazole (bis-HPTA). In this work, the excited-state double proton transfer (ESDPT) mechanism and multiple fluorescent characteristics of bis-HPTA were investigated. Upon photo-excitation, the intramolecular hydrogen bonding strength changed and the electron density of bis-HPTA redistributed. These changes will affect the proton transfer process. In S0 state, the proton transfer processes of bis-HPTA were prohibited on the stepwise and concerted pathways. After vertical excitation to the S1 state, the ESIPT-II process was more likely to occur than the ESIPT-I process, which was contrary to the conclusion that the ESIPT-II process is blocked and the ESIPT-II process takes place after the ESIPT-I process proposed by Krishnamoorthy and coworkers. When the K2 tautomer was formed through the ESIPT-II process, the second proton transfer process on the stepwise pathway was prohibited. On another stepwise pathway, after the ESIPT-I process (form the K1 tautomer), the second proton transfer process should overcome a higher potential barrier than the ESIPT-I process to form ESDPT tautomer. On the concerted pathway, the bis-HPTA can synchronous transfer double protons to form the ESDPT tautomer. The ESDPT tautomer was unstable and immediately converted to the K2 tautomer via a barrierless reverse proton transfer process. Thus, the fluorescent maximum at 465 nm from the ESDPT tautomer reported by Krishnamoorthy and coworkers was ascribed to the K2 tautomer. Most of the fluorophores show dual fluorescent properties, while the bis-HPTA undergoing ESDPT process exhibited three well-separated fluorescent peaks, corresponding to its normal form (438 nm), K1 tautomer (462 nm) and K2 tautomer (450 nm), respectively.
Collapse
Affiliation(s)
- Chaozheng Li
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Bo Hu
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yonghua Cao
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yongfeng Li
- School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
4
|
Prieß M, Göddeke H, Groenhof G, Schäfer LV. Molecular Mechanism of ATP Hydrolysis in an ABC Transporter. ACS CENTRAL SCIENCE 2018; 4:1334-1343. [PMID: 30410971 PMCID: PMC6202651 DOI: 10.1021/acscentsci.8b00369] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 05/28/2023]
Abstract
Hydrolysis of nucleoside triphosphate (NTP) plays a key role for the function of many biomolecular systems. However, the chemistry of the catalytic reaction in terms of an atomic-level understanding of the structural, dynamic, and free energy changes associated with it often remains unknown. Here, we report the molecular mechanism of adenosine triphosphate (ATP) hydrolysis in the ATP-binding cassette (ABC) transporter BtuCD-F. Free energy profiles obtained from hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations show that the hydrolysis reaction proceeds in a stepwise manner. First, nucleophilic attack of an activated lytic water molecule at the ATP γ-phosphate yields ADP + HPO4 2- as intermediate product. A conserved glutamate that is located very close to the γ-phosphate transiently accepts a proton and thus acts as catalytic base. In the second step, the proton is transferred back from the catalytic base to the γ-phosphate, yielding ADP + H2PO4 -. These two chemical reaction steps are followed by rearrangements of the hydrogen bond network and the coordination of the Mg2+ ion. The rate constant estimated from the computed free energy barriers is in very good agreement with experiments. The overall free energy change of the reaction is close to zero, suggesting that phosphate bond cleavage itself does not provide a power stroke for conformational changes. Instead, ATP binding is essential for tight dimerization of the nucleotide-binding domains and the transition of the transmembrane domains from inward- to outward-facing, whereas ATP hydrolysis resets the conformational cycle. The mechanism is likely relevant for all ABC transporters and might have implications also for other NTPases, as many residues involved in nucleotide binding and hydrolysis are strictly conserved.
Collapse
Affiliation(s)
- Marten Prieß
- Theoretical
Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Hendrik Göddeke
- Theoretical
Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Gerrit Groenhof
- Department
of Chemistry and Nanoscience Center, University
of Jyväskylä, P.O. Box
35, FI-40014 Jyväskylä, Finland
| | - Lars V. Schäfer
- Theoretical
Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
5
|
Sahu S, Das M, Bharti AK, Krishnamoorthy G. Proton transfer triggered proton transfer: a self-assisted twin excited state intramolecular proton transfer. Phys Chem Chem Phys 2018; 20:27131-27139. [DOI: 10.1039/c8cp03835j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The double excited state intramolecular proton transfer (ESIPT) of 3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazole (bis-HPTA) has been investigated and found to undergo a new type of proton transfer.
Collapse
Affiliation(s)
- Saugata Sahu
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Minati Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | | | - G. Krishnamoorthy
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| |
Collapse
|
6
|
Kou TC, Liu YT, Li M, Yang Y, Zhang W, Cui JH, Zhang XW, Dong SM, Xu S, You S, Yu DS, Pang ZY, Luo KJ. Identification of β-chain of F o F 1 -ATPase in apoptotic cell population induced by Microplitis bicoloratus bracovirus and its role in the development of Spodoptera litura. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 95:e21389. [PMID: 28557004 DOI: 10.1002/arch.21389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two physiological changes of Spodoptera litura parasitized by Microplitis bicoloratus are hemocyte-apoptosis and retarded immature development. β-Chain of Fo F1 -ATPase was found from a S. litura transcriptome. It belongs to a conserved P-loop NTPase superfamily, descending from a common ancestor of Lepidopteran clade. However, the characterization of β-chain of ATPase in apoptotic cells and its involvement in development remain unknown. Here, the ectopic expression and endogenous Fo F1 -ATPase β-chain occurred on S. litura cell membrane: in vivo, at the late stage of apoptotic hemocyte, endogenous Fo F1 -ATPase β-chain was stably expressed during M. bicoloratus larva development from 4 to 7 days post-parasitization; in vitro, at an early stage of pre-apoptotic Spli221 cells by infecting with M. bicoloratus bracovirus particles, the proteins were speedily recover expression. Furthermore, endogenous Fo F1 -ATPase β-chain was localized on the apoptotic cell membrane. RNA interference (RNAi) of Fo F1 -ATPase β-chain led to significantly decreased head capsule width. This suggested that Fo F1 -ATPase β-chain positively regulated the development of S. litura. The RNAi effect on the head capsule width was enhanced with parasitism. Our research found that Fo F1 -ATPase β-chain was expressed and localized on the cell membrane in the apoptotic cells, and involved in the development of S. litura.
Collapse
Affiliation(s)
- Tian-Chao Kou
- School of Life Sciences, Yunnan University, Kunming, P.R. China and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P.R. China
| | - Yue-Tong Liu
- School of Life Sciences, Yunnan University, Kunming, P.R. China and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P.R. China
| | - Ming Li
- School of Life Sciences, Yunnan University, Kunming, P.R. China and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P.R. China
| | - Yang Yang
- School of Life Sciences, Yunnan University, Kunming, P.R. China and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P.R. China
| | - Wei Zhang
- School of Life Sciences, Yunnan University, Kunming, P.R. China and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P.R. China
| | - Ji-Hui Cui
- School of Life Sciences, Yunnan University, Kunming, P.R. China and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P.R. China
| | - Xue-Wen Zhang
- School of Life Sciences, Yunnan University, Kunming, P.R. China and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P.R. China
| | - Shu-Mei Dong
- School of Life Sciences, Yunnan University, Kunming, P.R. China and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P.R. China
| | - Sha Xu
- School of Life Sciences, Yunnan University, Kunming, P.R. China and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P.R. China
| | - Shan You
- School of Life Sciences, Yunnan University, Kunming, P.R. China and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P.R. China
| | - Dong-Shuai Yu
- School of Life Sciences, Yunnan University, Kunming, P.R. China and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P.R. China
| | - Zun-Yu Pang
- School of Life Sciences, Yunnan University, Kunming, P.R. China and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P.R. China
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, P.R. China and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, P.R. China
| |
Collapse
|
7
|
AKUTSU H. Dynamic mechanisms driving conformational conversions of the β and ε subunits involved in rotational catalysis of F 1-ATPase. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:630-647. [PMID: 29021512 PMCID: PMC5743862 DOI: 10.2183/pjab.93.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/16/2017] [Indexed: 05/26/2023]
Abstract
F-type ATPase is a ubiquitous molecular motor. Investigations on thermophilic F1-ATPase and its subunits, β and ε, by NMR were reviewed. Using specific isotope labeling, pKa of the putative catalytic carboxylate in β was estimated. Segmental isotope-labeling enabled us to monitor most residues of β, revealing that the conformational conversion from open to closed form of β on nucleotide binding found in ATPase was an intrinsic property of β and could work as a driving force of the rotational catalysis. A stepwise conformational change was driven by switching of the hydrogen bond networks involving Walker A and B motifs. Segmentally labeled ATPase provided a well resolved NMR spectra, revealing while the open form of β was identical for β monomer and ATPase, its closed form could be different. ATP-binding was also a critical factor in the conformational conversion of ε, an ATP hydrolysis inhibitor. Its structural elucidation was described.
Collapse
Affiliation(s)
- Hideo AKUTSU
- Institute for Protein Research, Osaka University, Osaka, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
8
|
Reymer A, Babik S, Takahashi M, Nordén B, Beke-Somfai T. ATP Hydrolysis in the RecA-DNA Filament Promotes Structural Changes at the Protein-DNA Interface. Biochemistry 2015. [PMID: 26196253 DOI: 10.1021/acs.biochem.5b00614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To address the mechanistic roles of ATP hydrolysis in RecA-promoted strand exchange reaction in homologous recombination, quantum mechanical calculations are performed on key parts of the RecA-DNA complex. We find that ATP hydrolysis may induce changes at the protein-DNA interface, resulting in the rearrangement of the hydrogen bond network connecting the ATP and the DNA binding sites.
Collapse
Affiliation(s)
- Anna Reymer
- †Department of Chemistry and Molecular Biology, Gothenburg University, SE-405 30 Gothenburg, Sweden
| | - Sándor Babik
- ‡Department of Chemical and Biological Engineering, Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Masayuki Takahashi
- §School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1-M6-14 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Bengt Nordén
- ‡Department of Chemical and Biological Engineering, Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Tamás Beke-Somfai
- ‡Department of Chemical and Biological Engineering, Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,∥Institute of Materials Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| |
Collapse
|
9
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 780] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
10
|
Hammarson M, Nilsson J, Li S, Beke-Somfai T, Andréasson J. Characterization of the thermal and photoinduced reactions of photochromic spiropyrans in aqueous solution. J Phys Chem B 2013; 117:13561-71. [PMID: 24143951 PMCID: PMC3814652 DOI: 10.1021/jp408781p] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/30/2013] [Indexed: 12/25/2022]
Abstract
Six water-soluble spiropyran derivatives have been characterized with respect to the thermal and photoinduced reactions over a broad pH-interval. A comprehensive kinetic model was formulated including the spiro- and the merocyanine isomers, the respective protonated forms, and the hydrolysis products. The experimental studies on the hydrolysis reaction mechanism were supplemented by calculations using quantum mechanical (QM) models employing density functional theory. The results show that (1) the substitution pattern dramatically influences the pKa-values of the protonated forms as well as the rates of the thermal isomerization reactions, (2) water is the nucleophile in the hydrolysis reaction around neutral pH, (3) the phenolate oxygen of the merocyanine form plays a key role in the hydrolysis reaction. Hence, the nonprotonated merocyanine isomer is susceptible to hydrolysis, whereas the corresponding protonated form is stable toward hydrolytic degradation.
Collapse
Affiliation(s)
- Martin Hammarson
- Department of Chemical and
Biological Engineering, Physical Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Jesper
R. Nilsson
- Department of Chemical and
Biological Engineering, Physical Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Shiming Li
- Department of Chemical and
Biological Engineering, Physical Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Tamás Beke-Somfai
- Department of Chemical and
Biological Engineering, Physical Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Joakim Andréasson
- Department of Chemical and
Biological Engineering, Physical Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
11
|
McGrath MJ, Kuo IFW, Hayashi S, Takada S. Adenosine triphosphate hydrolysis mechanism in kinesin studied by combined quantum-mechanical/molecular-mechanical metadynamics simulations. J Am Chem Soc 2013; 135:8908-19. [PMID: 23751065 DOI: 10.1021/ja401540g] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Kinesin is a molecular motor that hydrolyzes adenosine triphosphate (ATP) and moves along microtubules against load. While motility and atomic structures have been well-characterized for various members of the kinesin family, not much is known about ATP hydrolysis inside the active site. Here, we study ATP hydrolysis mechanisms in the kinesin-5 protein Eg5 by using combined quantum mechanics/molecular mechanics metadynamics simulations. Approximately 200 atoms at the catalytic site are treated by a dispersion-corrected density functional and, in total, 13 metadynamics simulations are performed with their cumulative time reaching ~0.7 ns. Using the converged runs, we compute free energy surfaces and obtain a few hydrolysis pathways. The pathway with the lowest free energy barrier involves a two-water chain and is initiated by the Pγ-Oβ dissociation concerted with approach of the lytic water to PγO3-. This immediately induces a proton transfer from the lytic water to another water, which then gives a proton to the conserved Glu270. Later, the proton is transferred back from Glu270 to HPO(4)2- via another hydrogen-bonded chain. We find that the reaction is favorable when the salt bridge between Glu270 in switch II and Arg234 in switch I is transiently broken, which facilitates the ability of Glu270 to accept a proton. When ATP is placed in the ADP-bound conformation of Eg5, the ATP-Mg moiety is surrounded by many water molecules and Thr107 blocks the water chain, which together make the hydrolysis reaction less favorable. The observed two-water chain mechanisms are rather similar to those suggested in two other motors, myosin and F1-ATPase, raising the possibility of a common mechanism.
Collapse
Affiliation(s)
- Matthew J McGrath
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
12
|
Rate of hydrolysis in ATP synthase is fine-tuned by α-subunit motif controlling active site conformation. Proc Natl Acad Sci U S A 2013; 110:2117-22. [PMID: 23345443 DOI: 10.1073/pnas.1214741110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate.
Collapse
|
13
|
Abstract
Phosphoryl transfer plays key roles in signaling, energy transduction, protein synthesis, and maintaining the integrity of the genetic material. On the surface, it would appear to be a simple nucleophile displacement reaction. However, this simplicity is deceptive, as, even in aqueous solution, the low-lying d-orbitals on the phosphorus atom allow for eight distinct mechanistic possibilities, before even introducing the complexities of the enzyme catalyzed reactions. To further complicate matters, while powerful, traditional experimental techniques such as the use of linear free-energy relationships (LFER) or measuring isotope effects cannot make unique distinctions between different potential mechanisms. A quarter of a century has passed since Westheimer wrote his seminal review, 'Why Nature Chose Phosphate' (Science 235 (1987), 1173), and a lot has changed in the field since then. The present review revisits this biologically crucial issue, exploring both relevant enzymatic systems as well as the corresponding chemistry in aqueous solution, and demonstrating that the only way key questions in this field are likely to be resolved is through careful theoretical studies (which of course should be able to reproduce all relevant experimental data). Finally, we demonstrate that the reason that nature really chose phosphate is due to interplay between two counteracting effects: on the one hand, phosphates are negatively charged and the resulting charge-charge repulsion with the attacking nucleophile contributes to the very high barrier for hydrolysis, making phosphate esters among the most inert compounds known. However, biology is not only about reducing the barrier to unfavorable chemical reactions. That is, the same charge-charge repulsion that makes phosphate ester hydrolysis so unfavorable also makes it possible to regulate, by exploiting the electrostatics. This means that phosphate ester hydrolysis can not only be turned on, but also be turned off, by fine tuning the electrostatic environment and the present review demonstrates numerous examples where this is the case. Without this capacity for regulation, it would be impossible to have for instance a signaling or metabolic cascade, where the action of each participant is determined by the fine-tuned activity of the previous piece in the production line. This makes phosphate esters the ideal compounds to facilitate life as we know it.
Collapse
|
14
|
Hayashi S, Ueno H, Shaikh AR, Umemura M, Kamiya M, Ito Y, Ikeguchi M, Komoriya Y, Iino R, Noji H. Molecular mechanism of ATP hydrolysis in F1-ATPase revealed by molecular simulations and single-molecule observations. J Am Chem Soc 2012; 134:8447-54. [PMID: 22548707 DOI: 10.1021/ja211027m] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Enzymatic hydrolysis of nucleotide triphosphate (NTP) plays a pivotal role in protein functions. In spite of its biological significance, however, the chemistry of the hydrolysis catalysis remains obscure because of the complex nature of the reaction. Here we report a study of the molecular mechanism of hydrolysis of adenosine triphosphate (ATP) in F(1)-ATPase, an ATP-driven rotary motor protein. Molecular simulations predicted and single-molecule observation experiments verified that the rate-determining step (RDS) is proton transfer (PT) from the lytic water molecule, which is strongly activated by a metaphosphate generated by a preceding P(γ)-O(β) bond dissociation (POD). Catalysis of the POD that triggers the chain activation of the PT is fulfilled by hydrogen bonds between Walker motif A and an arginine finger, which commonly exist in many NTPases. The reaction mechanism unveiled here indicates that the protein can regulate the enzymatic activity for the function in both the POD and PT steps despite the fact that the RDS is the PT step.
Collapse
Affiliation(s)
- Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Electrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase. Proc Natl Acad Sci U S A 2011; 108:20550-5. [PMID: 22143769 DOI: 10.1073/pnas.1117024108] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Understanding the nature of energy transduction in life processes requires a quantitative description of the energetics of the conversion of ATP to ADP by ATPases. Previous attempts to do so have provided an interesting insight but could not account for the rotary mechanism by a nonphenomenological structure/energy description. In particular it has been very challenging to account for the observations of the 80° and 40° rotational substates, without any prior information about such states in the simulation procedure. Here we use a coarse-grained model of F1-ATPase and generate, without the adjustment of phenomenological parameters, a structure-based free energy landscape that reproduces the energetics of the mechanochemical process. It is found that the landscape along the relevant rotary path is determined by the electrostatic free energy and not by steric effects. Furthermore, the generated surface and the corresponding Langevin dynamics simulations identify a hidden conformational barrier that provides a new fundamental interpretation of the catalytic dwell and illuminate the nature of the energy conversion process.
Collapse
|