1
|
Jaiswal MK, Gupta A, Ansari FJ, Pandey VK, Tiwari VK. Recent Progress on Synthesis of Functionalized 1,5-Disubstituted Triazoles. Curr Org Synth 2024; 21:513-558. [PMID: 38804327 DOI: 10.2174/1570179420666230418123350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2024]
Abstract
Immediately after the invention of 'Click Chemistry' in 2002, the regioselective 1,2,3- triazole scaffolds resulted from respective organic azides and terminal alkynes under Cu(I) catalysis have been well recognized as the functional heterocyclic core at the centre of modern organic chemistry, medicinal chemistry, and material sciences. This CuAAC reaction has several notable features including excellent regioselectivity, high-to-excellent yields, easy to execute, short reaction time, modular in nature, mild condition, readily available starting materials, etc. Moreover, the resulting regioselective triazoles can serve as amide bond isosteres, a privileged functional group in drug discovery and development. More than hundreds of reviews had been devoted to the 'Click Chemistry' in special reference to 1,4-disubstituted triazoles, while only little efforts were made for an opposite regioisomer i.e., 1,5-disubstituted triazole. Herein, we have presented various classical approaches for an expeditious synthesis of a wide range of biologically relevant 1,5- disubstituted 1,2,3-triazole analogues. The syntheses of such a class of diversly functionalized triazoles have emerged as a crucial investigation in the domain of chemistry and biology. This tutorial review covers the literature assessment on the development of various synthetic protocols for the functionalized 1,5-disubstituted triazoles reported during the last 12 years.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faisal J Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
2
|
Jaiswal MK, Tiwari VK. Growing Impact of Intramolecular Click Chemistry in Organic Synthesis. CHEM REC 2023; 23:e202300167. [PMID: 37522634 DOI: 10.1002/tcr.202300167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Click Chemistry, a modular, rapid, and one of the most reliable tool for the regioselective 1,2,3-triazole forming [3+2] reaction of organic azide and terimal alkyne is widely explored in various emerging domains of research ranging from chemical biology to catalysis and medicinal chemistry to material science. This regioselective reaction from a diverse range of azido-alkyne scaffolds has been well performed in both intermolecular as well as intramolecular fashions. In comparison to the intermolecular metal (Cu/Ru/Ni) variant of 'Click Chemistry', the intramolecular click tool is little addressed. The intramolecular click chemistry is exemplified as a mordern tool of cyclization which involves metal-catalyzed (CuAAC/RuAAC) cyclization, organo-catalyzed cyclization, and thermal-induced topochemical reaction. Thus, we report herein the recent approaches on intramolecular azide-alkyne cycloaddition 'Click Chemistry' with their wide-spread emerging applications in the developement of a diverse range of molecules including fused-heterocycles, well-defined peptidomemics, and macrocyclic architectures of various notable features.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
3
|
Karale UB, Shinde A, Gaikwad VR, Kalari S, Gourishetti K, Radhakrishnan M, Poornachandra Y, Amanchy R, Chakravarty S, Andugulapati SB, Rode HB. Iron mediated reductive cyclization/oxidation for the generation of chemically diverse scaffolds: An approach in drug discovery. Bioorg Chem 2023; 139:106698. [PMID: 37418784 DOI: 10.1016/j.bioorg.2023.106698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Chemically diverse scaffolds represent a main source of biologically important starting points in drug discovery. Herein, we report the development of such diverse scaffolds from nitroarene/ nitro(hetero)arenes using a key synthetic strategy. In a pilot-scale study, the synthesis of 10 diverse scaffolds was achieved. The 1,7-phenanthroline, thiazolo[5,4-f]quinoline, 2,3-dihydro-1H-pyrrolo[2,3-g]quinoline, pyrrolo[3,2-f]quinoline, 1H-[1,4]oxazino[3,2-g]quinolin-2(3H)-one, [1,2,5]oxadiazolo[3,4-h]quinoline, 7H-pyrido[2,3-c]carbazole, 3H-pyrazolo[4,3-f]quinoline, pyrido[3,2-f]quinoxaline were obtained from nitro hetero arenes in ethanol using iron-acetic acid treatment followed by reaction under oxygen atmosphere. This diverse library is compliant with the rule of five for drug-likeness. The mapping of chemical space represented by these scaffolds revealed a significant contribution to the underrepresented chemical diversity. Crucial to the development of this approach was the mapping of biological space covered by these scaffolds which revealed neurotropic and prophylactic anti-inflammatory activities. In vitro, neuro-biological assays revealed that compounds 14a and 15a showed excellent neurotropic potential and neurite growth compared to controls. Further, anti-inflammatory assays (in vitro and in vivo models) exhibited that Compound 16 showed significant anti-inflammatory activity by attenuating the LPS-induced TNF-α and CD68 levels by modulating the NFkB pathway. In addition, treatment with compound 16 significantly ameliorated the LPS-induced sepsis conditions, and pathological abnormalities (in lung and liver tissues) and improved the survival of the rats compared to LPS control. Owing to their chemical diversity along with bioactivities, it is envisaged that new quality pre-clinical candidates will be generated in the above therapeutic areas using identified leads.
Collapse
Affiliation(s)
- Uttam B Karale
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Akash Shinde
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Vikas R Gaikwad
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Saradhi Kalari
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Karthik Gourishetti
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Mydhili Radhakrishnan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Yedla Poornachandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Ramars Amanchy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Sumana Chakravarty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Sai Balaji Andugulapati
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Haridas B Rode
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
4
|
Chaudhuri R, Prasanth T, Dash J. Expanding the Toolbox of Target Directed Bio-Orthogonal Synthesis: In Situ Direct Macrocyclization by DNA Templates. Angew Chem Int Ed Engl 2023; 62:e202215245. [PMID: 36437509 DOI: 10.1002/anie.202215245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Herein, we demonstrate for the first time that noncanonical DNA can direct macrocyclization-like challenging reactions to synthesize gene modulators. The planar G-quartets present in DNA G-quadruplexes (G4s) provide a size complementary reaction platform for the bio-orthogonal macrocyclization of bifunctional azide and alkyne fragments over oligo- and polymerization. G4s immobilized on gold-coated magnetic nanoparticles have been used as target templates to enable easy identification of a selective peptidomimetic macrocycle. Structurally similar macrocycles have been synthesized to understand their functional role in the modulation of gene function. The innate fluorescence of the in situ formed macrocycle has been utilized to monitor its cellular localization using a G4 antibody and its in cell formation from the corresponding azide and alkyne fragments. The successful execution of in situ macrocyclization in vitro and in cells would open up a new dimension for target-directed therapeutic applications.
Collapse
Affiliation(s)
- Ritapa Chaudhuri
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099, India
| | - Thumpati Prasanth
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Chunilal Bhawan,168, Maniktala Main Road, P.O. Bengal Chemicals, P.S. Phoolbagan, Kolkata, 700054, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099, India
| |
Collapse
|
5
|
Ikeda K, Maezawa Y, Yonezawa T, Shimizu Y, Tashiro T, Kanai S, Sugaya N, Masuda Y, Inoue N, Niimi T, Masuya K, Mizuguchi K, Furuya T, Osawa M. DLiP-PPI library: An integrated chemical database of small-to-medium-sized molecules targeting protein-protein interactions. Front Chem 2023; 10:1090643. [PMID: 36700083 PMCID: PMC9868583 DOI: 10.3389/fchem.2022.1090643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Protein-protein interactions (PPIs) are recognized as important targets in drug discovery. The characteristics of molecules that inhibit PPIs differ from those of small-molecule compounds. We developed a novel chemical library database system (DLiP) to design PPI inhibitors. A total of 32,647 PPI-related compounds are registered in the DLiP. It contains 15,214 newly synthesized compounds, with molecular weight ranging from 450 to 650, and 17,433 active and inactive compounds registered by extracting and integrating known compound data related to 105 PPI targets from public databases and published literature. Our analysis revealed that the compounds in this database contain unique chemical structures and have physicochemical properties suitable for binding to the protein-protein interface. In addition, advanced functions have been integrated with the web interface, which allows users to search for potential PPI inhibitor compounds based on types of protein-protein interfaces, filter results by drug-likeness indicators important for PPI targeting such as rule-of-4, and display known active and inactive compounds for each PPI target. The DLiP aids the search for new candidate molecules for PPI drug discovery and is available online (https://skb-insilico.com/dlip).
Collapse
Affiliation(s)
- Kazuyoshi Ikeda
- HPC—and AI-driven Drug Development Platform Division, Center for Computational Science, Yokohama, Kanagawa, Japan,Division of Physics for Life Functions, Keio University Faculty of Pharmacy, Tokyo, Japan,*Correspondence: Kazuyoshi Ikeda,
| | | | - Tomoki Yonezawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Yugo Shimizu
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, Tokyo, Japan
| | | | | | | | | | - Naoko Inoue
- PeptiDream Inc., Chiyoda-Ku, Kanagawa, Japan
| | | | | | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan,Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Masanori Osawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, Tokyo, Japan
| |
Collapse
|
6
|
Synthesis and inverse virtual screening of new bi-cyclic structures towards cancer-relevant cellular targets. Struct Chem 2022. [DOI: 10.1007/s11224-022-01889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractWe report here synthetic approaches to access new classes of small molecules based on three heterocyclic scaffolds, i.e. 3,7-dihydropyrimido[4,5-d]pyridazine-4,8-dione, 1,8-naphthyridin-4(1H)-one and 4H-pyrido[1,2-a]pyrimidin-4-one. The bi-cyclic structure 3,7-dihydropyrimido[4,5-d]pyridazine-4,8-dione is a new heterocycle, described here for the first time. In silico methodologies of inverse virtual screening have been used to preliminary analyse the molecules, in order to explore their potential as hits for chemical biology investigations. Our computational study has been conducted with 43 synthetically accessible small molecules towards 31 cellular proteins involved in cancer pathogenesis. Binding energies were quantified using molecular docking calculations, allowing to define the relative affinities of the ligands for the cellular targets. Through this methodology, 16 proteins displayed effective interactions with distinct small molecules within the matrix. In addition, 23 ligands have demonstrated high affinity for at least one cellular protein, using as reference the co-crystallised ligand in the X-ray structure. The evaluation of ADME and drug score for selected hits also highlights that these new molecular series can serve as sources of lead candidates for further structure optimisation and biological studies.
Collapse
|
7
|
Alfano AI, Buommino E, Ferraro MG, Irace C, Zampella A, Lange H, Brindisi M. Coupling Interrupted Fischer and Multicomponent Joullié-Ugi to Chase Chemical Diversity: from Batch to Sustainable Flow Synthesis of Peptidomimetics. ChemMedChem 2021; 16:3795-3809. [PMID: 34585536 PMCID: PMC9297956 DOI: 10.1002/cmdc.202100474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/28/2021] [Indexed: 12/28/2022]
Abstract
The generation of peptidomimetic substructures for medicinal chemistry purposes requires effective and divergent synthetic methods. We present in this work an efficient flow process that allows quick modulation of reagents for Joullié-Ugi multicomponent reaction, using spiroindolenines as core motifs. This sterically hindered imine equivalent could successfully be diversified using various isocyanides and amino acids in generally good space-time yields. A telescoped flow process combining interrupted Fischer reaction for spiroindolenine synthesis and subsequent Joullié-Ugi-type modification resulted in product formation in very good overall yield in less than 2 hours compared to 48 hours required in batch mode. The developed protocol can be seen as a general tool for rapid and facile generation of peptidomimetic compounds. We also showcase preliminary biological assessments for the prepared compounds.
Collapse
Affiliation(s)
- Antonella Ilenia Alfano
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryDepartment of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Elisabetta Buommino
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Maria Grazia Ferraro
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Carlo Irace
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Angela Zampella
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Heiko Lange
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryDepartment of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
- Current affiliation: Department of Environmental and Earth ScienceUniversity of Milano-BicoccaPiazza della Scienza 120126MilanItaly
| | - Margherita Brindisi
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryDepartment of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| |
Collapse
|
8
|
Xu W, Brown LE, Porco JA. Divergent, C-C Bond Forming Macrocyclizations Using Modular Sulfonylhydrazone and Derived Substrates. J Org Chem 2021; 86:16485-16510. [PMID: 34730970 PMCID: PMC8783553 DOI: 10.1021/acs.joc.1c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A divergent approach to C-C bond forming macrocycle construction is described. Modular sulfonylhydrazone and derived pyridotriazole substrates with three key building blocks have been constructed and cyclized to afford diverse macrocyclic frameworks. Broad substrate scope and functional group tolerance have been demonstrated. In addition, site-selective postfunctionalization allowed for further diversification of macrocyclic cores.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
9
|
Balachandra C, Padhi D, Govindaraju T. Cyclic Dipeptide: A Privileged Molecular Scaffold to Derive Structural Diversity and Functional Utility. ChemMedChem 2021; 16:2558-2587. [PMID: 33938157 DOI: 10.1002/cmdc.202100149] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Cyclic dipeptides (CDPs) are the simplest form of cyclic peptides with a wide range of applications from therapeutics to biomaterials. CDP is a versatile molecular platform endowed with unique properties such as conformational rigidity, intermolecular interactions, structural diversification through chemical synthesis, bioavailability and biocompatibility. A variety of natural products with the CDP core exhibit anticancer, antifungal, antibacterial, and antiviral activities. The inherent bioactivities have inspired the development of synthetic analogues as drug candidates and drug delivery systems. CDP plays a crucial role as conformation and molecular assembly directing core in the design of molecular receptors, peptidomimetics and fabrication of functional material architectures. In recent years, CDP has rapidly become a privileged scaffold for the design of advanced drug candidates, drug delivery agents, bioimaging, and biomaterials to mitigate numerous disease conditions. This review describes the structural diversification and multifarious biomedical applications of the CDP scaffold, discusses challenges, and provides future directions for the emerging field.
Collapse
Affiliation(s)
- Chenikkayala Balachandra
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India
| |
Collapse
|
10
|
Kharchenko SH, Iampolska AD, Radchenko DS, Vashchenko BV, Voitenko ZV, Grygorenko OO. A Diversity‐Oriented Approach to Large Libraries of Artificial Macrocycles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Anna D. Iampolska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmytro S. Radchenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Zoia V. Voitenko
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
11
|
Cuevas F, Saavedra CJ, Romero‐Estudillo I, Boto A, Ordóñez M, Vergara I. Structural Diversity using Hyp “Customizable Units”: Proof‐of‐Concept Synthesis of Sansalvamide‐Related Antitumoral Peptides. European J Org Chem 2021; 2021:933-943. [DOI: 10.1002/ejoc.202001427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 01/06/2025]
Abstract
AbstractThe potential of “customizable units” to generate structural diversity for biological screenings is highlighted in this proof‐of‐concept synthesis of new peptides related to the potent antitumoral Sansalvamide A. Using L‐4‐hydroxyproline (Hyp) as a customizable unit in a linear parent peptide, an improved procedure for selective peptide modification was developed. A divergent Hyp scission‐reductive amination process was carried out, affording five linear peptides with cationic residues, and notably, an N‐alkyl moiety that affected the conformation of the peptide. After two steps (saponification and macrocyclization), sixteen differently N1‐substituted linear and cyclic peptides were obtained. For the first time, the activity of the linear and cyclic compounds was compared. Not only some linear analogs but also cyclic compounds with scarcely studied cationic residues were active against MCF7 breast cancer line. Thus, the structural diversity generated from customizable units can be valuable in drug discovery.
Collapse
Affiliation(s)
- Fernando Cuevas
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
| | - Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC Avda. Astrofísico Francisco Sánchez 3 38206- La Laguna Tenerife Spain
- BIOSIGMA SL c/Antonio Dominguez Afonso 16 38003- S/C Tenerife Spain
| | - Ivan Romero‐Estudillo
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
- Catedrático CONACYT-CIQ-UAEM México
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC Avda. Astrofísico Francisco Sánchez 3 38206- La Laguna Tenerife Spain
| | - Mario Ordóñez
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
| | - Irene Vergara
- Departamento de Ciencias Químico-Biológicas Universidad de las Américas Puebla, ExHda Sta. Catarina Mártir s/n San Andrés Cholula Puebla 72820 México
| |
Collapse
|
12
|
Hippman RS, Pavlinov I, Gao Q, Mavlyanova MK, Gerlach EM, Aldrich LN. Multiple Chemical Features Impact Biological Performance Diversity of a Highly Active Natural Product-Inspired Library. Chembiochem 2020; 21:3137-3145. [PMID: 32558167 DOI: 10.1002/cbic.202000356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 12/12/2022]
Abstract
A systematic, diversity-oriented synthesis approach was employed to access a natural product-inspired flavonoid library with diverse chemical features, including chemical properties, scaffold, stereochemistry, and appendages. Using Cell Painting, the effects of these diversity elements were evaluated, and multiple chemical features that predict biological performance diversity were identified. Scaffold identity appears to be the dominant predictor of performance diversity, but stereochemistry and appendages also contribute to a lesser degree. In addition, the diversity of chemical properties contributed to performance diversity, and the driving chemical property was dependent on the scaffold. These results highlight the importance of key chemical features that may inform the creation of small-molecule, performance-diverse libraries to improve the efficiency and success of high-throughput screening campaigns.
Collapse
Affiliation(s)
- Ryan S Hippman
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607, USA
| | - Ivan Pavlinov
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607, USA
| | - Qiwen Gao
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607, USA
| | - Michelle K Mavlyanova
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607, USA
| | - Erica M Gerlach
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607, USA
| | - Leslie N Aldrich
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607, USA
| |
Collapse
|
13
|
Al-Tel TH, Srinivasulu V, Ramanathan M, Soares NC, Sebastian A, Bolognesi ML, Abu-Yousef IA, Majdalawieh A. Stereocontrolled transformations of cyclohexadienone derivatives to access stereochemically rich and natural product-inspired architectures. Org Biomol Chem 2020; 18:8526-8571. [PMID: 33043327 DOI: 10.1039/d0ob01550d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The last two decades or so have witnessed an upsurge in defining the art of designing complex natural products and nature-inspired molecules. Throughout these decades, fundamental insights into stereocontrolled, step-economic and atom-economical synthesis principles were achieved by the numerous synthetic accomplishments particularly in diversity-oriented synthesis (DOS). This has empowered the visualization of the third dimension in synthetic design and thus has resulted in a dramatic increase with today's diversity-oriented synthesis (DOS) at the forefront enabling access to diverse scaffolds with a high degree of stereochemical and skeletal complexity. To this end, a starting material-based approach is one of the powerful tools utilized in DOS that allows rapid access to molecular architectures with a high sp3 content. Skeletal and stereochemical diversity is often paramount for the selective modulation of the biological function of a complementary protein in the biological space. In this context, stereocontrolled transformation of cyclohexadienone scaffolds has positioned itself as a powerful platform for the rapid generation of stereochemically enriched and natural product-inspired compound collections. In this review, we cover multidirectional synthetic strategies that utilized cyclohexadienone derivatives as pluripotent building blocks en route for the construction of novel chemical space.
Collapse
Affiliation(s)
- Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Mani Ramanathan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Anusha Sebastian
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Maria L Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - Università di Bologna, Via Belmeloro, 6, 40126 Bologna, Italy
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Amin Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Amador-Sánchez YA, Aguilar-Granda A, Flores-Cruz R, González-Calderón D, Orta C, Rodríguez-Molina B, Jiménez-Sánchez A, Miranda LD. Diversity-Oriented Synthesis of Highly Fluorescent Fused Isoquinolines for Specific Subcellular Localization. J Org Chem 2019; 85:633-649. [PMID: 31830777 DOI: 10.1021/acs.joc.9b02712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A multicomponent diversity-oriented synthesis of new highly emissive tetracyclic isoquinolines that target specific organelles is described. The title compounds were prepared via a three-step protocol starting with an Ugi four-component reaction, followed by either an intramolecular alkyne hydroarylation and subsequent alkene isomerization or through a Pomeranz-Fritsch-type cyclization with a final intramolecular Heck reaction. Subcellular localization studies of these compounds using green channel confocal microscopy revealed remarkable and distinctive distribution patterns in live cells, showing an unprecedented high selectivity and imaging contrast. The differentiated organelle visualization-including localizers for mitochondria, lysosomes, Golgi apparatus, endoplasmic reticulum, and plasma membrane-was achieved by varying the nature of the tetracyclic system and substituent pattern, changing the original four-component set in the starting Ugi reaction.
Collapse
Affiliation(s)
- Yoarhy A Amador-Sánchez
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Andrés Aguilar-Granda
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Ricardo Flores-Cruz
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Davir González-Calderón
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Cynthia Orta
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Braulio Rodríguez-Molina
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Arturo Jiménez-Sánchez
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Luis D Miranda
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| |
Collapse
|
15
|
Kale SS, Bergeron-Brlek M, Wu Y, Kumar MG, Pham MV, Bortoli J, Vesin J, Kong XD, Machado JF, Deyle K, Gonschorek P, Turcatti G, Cendron L, Angelini A, Heinis C. Thiol-to-amine cyclization reaction enables screening of large libraries of macrocyclic compounds and the generation of sub-kilodalton ligands. SCIENCE ADVANCES 2019; 5:eaaw2851. [PMID: 31457083 PMCID: PMC6703864 DOI: 10.1126/sciadv.aaw2851] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Macrocyclic compounds are an attractive modality for drug development, but the limited availability of large, structurally diverse macrocyclic libraries hampers the discovery of leads. Here, we describe the discovery of efficient macrocyclization reactions based on thiol-to-amine ligations using bis-electrophiles, their application to synthesize and screen large libraries of macrocyclic compounds, and the identification of potent small macrocyclic ligands. The thiol-to-amine cyclization reactions showed unexpectedly high yields for a wide substrate range, which obviated product purification and enabled the generation and screening of an 8988 macrocycle library with a comparatively small effort. X-ray structure analysis of an identified thrombin inhibitor (K i = 42 ± 5 nM) revealed a snug fit with the target, validating the strategy of screening large libraries with a high skeletal diversity. The approach provides a route for screening large sub-kilodalton macrocyclic libraries and may be applied to many challenging drug targets.
Collapse
Affiliation(s)
- S. S. Kale
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. Bergeron-Brlek
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Y. Wu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. G. Kumar
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. V. Pham
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - J. Bortoli
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - J. Vesin
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - X.-D. Kong
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - J. Franco Machado
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - K. Deyle
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - P. Gonschorek
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - G. Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - L. Cendron
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - A. Angelini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, Venezia Mestre, Venice 30172, Italy
- European Centre for Living Technologies (ECLT), Ca’ Bottacin, Dorsoduro 3911, Calle Crosera, Venice 30124, Italy
| | - C. Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Mortensen KT, Osberger TJ, King TA, Sore HF, Spring DR. Strategies for the Diversity-Oriented Synthesis of Macrocycles. Chem Rev 2019; 119:10288-10317. [DOI: 10.1021/acs.chemrev.9b00084] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kim T. Mortensen
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Thomas J. Osberger
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Thomas A. King
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Hannah F. Sore
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - David R. Spring
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
17
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|
18
|
Leonardi M, Estévez V, Villacampa M, Menéndez JC. Diversity‐Oriented Synthesis of Complex Pyrrole‐Based Architectures from Very Simple Starting Materials. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco Leonardi
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de FarmaciaUniversidad Complutense 28040 Madrid Spain
| | - Verónica Estévez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de FarmaciaUniversidad Complutense 28040 Madrid Spain
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de FarmaciaUniversidad Complutense 28040 Madrid Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de FarmaciaUniversidad Complutense 28040 Madrid Spain
| |
Collapse
|
19
|
Srinivasulu V, Shehadeh I, Khanfar MA, Malik OG, Tarazi H, Abu-Yousef IA, Sebastian A, Baniowda N, O’Connor MJ, Al-Tel TH. One-Pot Synthesis of Diverse Collections of Benzoxazepine and Indolopyrazine Fused to Heterocyclic Systems. J Org Chem 2018; 84:934-948. [DOI: 10.1021/acs.joc.8b02878] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | | | - Imad A. Abu-Yousef
- College of Arts and Sciences, Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | | | | | | | | |
Collapse
|
20
|
Srinivasulu V, Schilf P, Ibrahim S, Khanfar MA, Sieburth SM, Omar H, Sebastian A, AlQawasmeh RA, O'Connor MJ, Al-Tel TH. Multidirectional desymmetrization of pluripotent building block en route to diastereoselective synthesis of complex nature-inspired scaffolds. Nat Commun 2018; 9:4989. [PMID: 30478283 PMCID: PMC6255838 DOI: 10.1038/s41467-018-07521-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022] Open
Abstract
Octahydroindolo[2,3-a]quinolizine ring system forms the basic framework comprised of more than 2000 distinct family members of natural products. Despite the potential applications of this privileged substructure in drug discovery, efficient, atom-economic and modular strategies for its assembly, is underdeveloped. Here we show a one-step build/couple/pair strategy that uniquely allows access to diverse octahydroindolo[2,3-a]quinolizine scaffolds with more than three contiguous chiral centers and broad distribution of molecular shapes via desymmetrization of the oxidative-dearomatization products of phenols. The cascade demonstrates excellent diastereoselectivity, and the enantioselectivity exceeded 99% when amino acids are used as chiral reagents. Furthermore, two diastereoselective reactions for the synthesis of oxocanes and piperazinones, is reported. Phenotypic screening of the octahydroindolo[2,3-a]quinolizine library identifies small molecule probes that selectively suppress mitochondrial membrane potential, ATP contents and elevate the ROS contents in hepatoma cells (Hepa1-6) without altering the immunological activation or reprogramming of T- and B-cells, a promising approach to cancer therapy.
Collapse
Affiliation(s)
- Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Paul Schilf
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160 23538, Lübeck, Germany
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160 23538, Lübeck, Germany.
| | | | - Scott McN Sieburth
- Department of Chemistry, Temple University, 201 Beury Hall, Philadelphia, PA, 19122, USA
| | - Hany Omar
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- College of Pharmacy, University of Sharjah, P.O. Box, 27272, Sharjah, UAE
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | | | | | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- College of Pharmacy, University of Sharjah, P.O. Box, 27272, Sharjah, UAE.
| |
Collapse
|
21
|
Cilibrizzi A, Floresta G, Abbate V, Giovannoni MP. iVS analysis to evaluate the impact of scaffold diversity in the binding to cellular targets relevant in cancer. J Enzyme Inhib Med Chem 2018; 34:44-50. [PMID: 30362379 PMCID: PMC6211261 DOI: 10.1080/14756366.2018.1518960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study reports the application of inverse virtual screening (iVS) methodologies to identify cellular proteins as suitable targets for a library of heterocyclic small-molecules, with potential pharmacological implications. Standard synthetic procedures allow facile generation of these ligands showing a high degree of core scaffold diversity. Specifically, we have computationally investigated the binding efficacy of the new series for target proteins which are involved in cancer pathogenesis. As a result, nine macromolecules demonstrated efficient binding interactions for the molecular dataset, in comparison to the co-crystallised ligand for each target. Moreover, the iVS analysis led us to confirm that 27 analogues have high affinity for one or more examined cellular proteins. The additional evaluation of ADME and drug score for selected hits also highlights their capability as drug candidates, demonstrating valuable leads for further structure optimisation and biological studies.
Collapse
Affiliation(s)
- Agostino Cilibrizzi
- a Institute of Pharmaceutical Science , King's College London , London , UK.,b King's Forensics, School of Population Health & Environmental Sciences , King's College London , London , UK
| | - Giuseppe Floresta
- a Institute of Pharmaceutical Science , King's College London , London , UK.,c Department of Drug Sciences , University of Catania , Catania , Italy
| | - Vincenzo Abbate
- b King's Forensics, School of Population Health & Environmental Sciences , King's College London , London , UK
| | - Maria Paola Giovannoni
- d NEUROFARBA, Sezione di Farmaceutica e Nutraceutica , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| |
Collapse
|
22
|
42 members new hydroquinone bridged supramolecular macrocycle and its tetra-nuclear mixed ligands Pt(II) complex: A synthetic, structural and spectroscopic investigation. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Kidd SL, Osberger TJ, Mateu N, Sore HF, Spring DR. Recent Applications of Diversity-Oriented Synthesis Toward Novel, 3-Dimensional Fragment Collections. Front Chem 2018; 6:460. [PMID: 30386766 PMCID: PMC6198038 DOI: 10.3389/fchem.2018.00460] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/14/2018] [Indexed: 12/23/2022] Open
Abstract
Fragment-based drug discovery (FBDD) is a well-established approach for the discovery of novel medicines, illustrated by the approval of two FBBD-derived drugs. This methodology is based on the utilization of small "fragment" molecules (<300 Da) as starting points for drug discovery and optimization. Organic synthesis has been identified as a significant obstacle in FBDD, however, in particular owing to the lack of novel 3-dimensional (3D) fragment collections that feature useful synthetic vectors for modification of hit compounds. Diversity-oriented synthesis (DOS) is a synthetic strategy that aims to efficiently produce compound collections with high levels of structural diversity and three-dimensionality and is therefore well-suited for the construction of novel fragment collections. This Mini-Review highlights recent studies at the intersection of DOS and FBDD aiming to produce novel libraries of diverse, polycyclic, fragment-like compounds, and their application in fragment-based screening projects.
Collapse
Affiliation(s)
| | | | | | | | - David R. Spring
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Hamdan F, Tahoori F, Balalaie S. Synthesis of novel cyclopeptides containing heterocyclic skeletons. RSC Adv 2018; 8:33893-33926. [PMID: 35548835 PMCID: PMC9086729 DOI: 10.1039/c8ra03899f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/14/2018] [Indexed: 01/13/2023] Open
Abstract
Cyclopeptides can be considered as naturally biologically active compounds. Over the last several decades, many attempts have been made to synthesize complex naturally occurring cyclopeptides, and great progress has been achieved to advance the field of total synthesis. Moreover, cyclopeptides containing heterocyclic skeletons have been recently developed into powerful reactions and approaches. This review aims to highlight recent advances in the synthesis of cyclopeptides containing heterocyclic skeletons such as triazole, oxazole, thiazole, and tetrazole.
Collapse
Affiliation(s)
- Fatima Hamdan
- Peptide Chemistry Research Center, K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Fatemeh Tahoori
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO) Karaj Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
25
|
Abstract
During the last two decades, the pharmaceutical industry has progressed from detecting small molecules to designing biologic-based therapeutics. Amino acid-based drugs are a group of biologic-based therapeutics that can effectively combat the diseases caused by drug resistance or molecular deficiency. Computational techniques play a key role to design and develop the amino acid-based therapeutics such as proteins, peptides and peptidomimetics. In this study, it was attempted to discuss the various elements for computational design of amino acid-based therapeutics. Protein design seeks to identify the properties of amino acid sequences that fold to predetermined structures with desirable structural and functional characteristics. Peptide drugs occupy a middle space between proteins and small molecules and it is hoped that they can target "undruggable" intracellular protein-protein interactions. Peptidomimetics, the compounds that mimic the biologic characteristics of peptides, present refined pharmacokinetic properties compared to the original peptides. Here, the elaborated techniques that are developed to characterize the amino acid sequences consistent with a specific structure and allow protein design are discussed. Moreover, the key principles and recent advances in currently introduced computational techniques for rational peptide design are spotlighted. The most advanced computational techniques developed to design novel peptidomimetics are also summarized.
Collapse
Affiliation(s)
- Tayebeh Farhadi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed MohammadReza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Curtin BH, Manoni F, Park J, Sisto LJ, Lam YH, Gravel M, Roulston A, Harran PG. Assembly of Complex Macrocycles by Incrementally Amalgamating Unprotected Peptides with a Designed Four-Armed Insert. J Org Chem 2018; 83:3090-3108. [DOI: 10.1021/acs.joc.7b02958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brice H. Curtin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Francesco Manoni
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jiyong Park
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Luke J. Sisto
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Yu-hong Lam
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michel Gravel
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Anne Roulston
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Patrick G. Harran
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
27
|
Srinivasulu V, Mazitschek R, Kariem NM, Reddy A, Rabeh WM, Li L, O'Connor MJ, Al-Tel TH. Modular Bi-Directional One-Pot Strategies for the Diastereoselective Synthesis of Structurally Diverse Collections of Constrained β-Carboline-Benzoxazepines. Chemistry 2017; 23:14182-14192. [DOI: 10.1002/chem.201702495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Vunnam Srinivasulu
- Sharjah Institute for Medical Research; University of Sharjah; P.O.Box 27272 Sharjah UAE
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital; Harvard Medical School; 185 Cambridge Street Boston MA 02114 USA
- Harvard T.H. Chan School of Public Health; Department of Immunology and Infectious Disease; Boston MA 02115 USA
| | - Noor M. Kariem
- Sharjah Institute for Medical Research; University of Sharjah; P.O.Box 27272 Sharjah UAE
| | - Amarnath Reddy
- Sharjah Institute for Medical Research; University of Sharjah; P.O.Box 27272 Sharjah UAE
| | - Wael M. Rabeh
- Core Technologies Platform; New York University Abu Dhabi; P O Box 129188 Saadiyat Island Abu Dhabi UAE
| | - Liang Li
- Core Technologies Platform; New York University Abu Dhabi; P O Box 129188 Saadiyat Island Abu Dhabi UAE
| | - Matthew John O'Connor
- Core Technologies Platform; New York University Abu Dhabi; P O Box 129188 Saadiyat Island Abu Dhabi UAE
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Research; University of Sharjah; P.O.Box 27272 Sharjah UAE
- College of Pharmacy; University of Sharjah; P.O. Box 27272 Sharjah UAE
| |
Collapse
|
28
|
Maurya SK, Rana R. An eco-compatible strategy for the diversity-oriented synthesis of macrocycles exploiting carbohydrate-derived building blocks. Beilstein J Org Chem 2017; 13:1106-1118. [PMID: 28684990 PMCID: PMC5480360 DOI: 10.3762/bjoc.13.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/12/2017] [Indexed: 12/15/2022] Open
Abstract
An efficient, eco-compatible diversity-oriented synthesis (DOS) approach for the generation of library of sugar embedded macrocyclic compounds with various ring size containing 1,2,3-triazole has been developed. This concise strategy involves the iterative use of readily available sugar-derived alkyne/azide-alkene building blocks coupled through copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction followed by pairing of the linear cyclo-adduct using greener reaction conditions. The eco-compatibility, mild reaction conditions, greener solvents, easy purification and avoidance of hazards and toxic solvents are advantages of this protocol to access this important structural class. The diversity of the macrocycles synthesized (in total we have synthesized 13 macrocycles) using a set of standard reaction protocols demonstrate the potential of the new eco-compatible approach for the macrocyclic library generation.
Collapse
Affiliation(s)
- Sushil K Maurya
- Natural Product Chemistry and Process Development Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Academy of Scientific and Innovative Research, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
| | - Rohit Rana
- Natural Product Chemistry and Process Development Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Academy of Scientific and Innovative Research, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India
| |
Collapse
|
29
|
Cilibrizzi A, Fedorova M, Collins J, Leatherbarrow R, Woscholski R, Vilar R. A tri-functional vanadium(iv) complex to detect cysteine oxidation. Dalton Trans 2017; 46:6994-7004. [PMID: 28513686 DOI: 10.1039/c7dt00076f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of effective molecular probes to detect and image the levels of oxidative stress in cells remains a challenge. Herein we report the design, synthesis and preliminary biological evaluation of a novel optical probe to monitor oxidation of thiol groups in cysteine-based phosphatases (CBPs). Following orthogonal protecting approaches we synthesised a new vanadyl complex designed to bind to CBPs. This complex is functionalised with a well-known dimedone derivative (to covalently trap sulfenic acids, SOHs) and a coumarin-based fluorophore for optical visualization. We show that this new probe efficiently binds to a range of phosphatases in vitro with nanomolar affinity. Moreover, preliminary flow cytometry and microscopy studies in live HCT116 cells show that this probe can successfully image cellular levels of sulfenic acids - one of the species resulting from protein oxidative damage.
Collapse
|
30
|
Ciardiello JJ, Stewart HL, Sore HF, Galloway WRJD, Spring DR. A novel complexity-to-diversity strategy for the diversity-oriented synthesis of structurally diverse and complex macrocycles from quinine. Bioorg Med Chem 2017; 25:2825-2843. [PMID: 28283333 DOI: 10.1016/j.bmc.2017.02.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/26/2017] [Indexed: 01/15/2023]
Abstract
Recent years have witnessed a global decline in the productivity and advancement of the pharmaceutical industry. A major contributing factor to this is the downturn in drug discovery successes. This can be attributed to the lack of structural (particularly scaffold) diversity and structural complexity exhibited by current small molecule screening collections. Macrocycles have been shown to exhibit a diverse range of biological properties, with over 100 natural product-derived examples currently marketed as FDA-approved drugs. Despite this, synthetic macrocycles are widely considered to be a poorly explored structural class within drug discovery, which can be attributed to their synthetic intractability. Herein we describe a novel complexity-to-diversity strategy for the diversity-oriented synthesis of novel, structurally complex and diverse macrocyclic scaffolds from natural product starting materials. This approach exploits the inherent structural (including functional) and stereochemical complexity of natural products in order to rapidly generate diversity and complexity. Readily-accessible natural product-derived intermediates serve as structural templates which can be divergently functionalized with different building blocks to generate a diverse range of acyclic precursors. Subsequent macrocyclisation then furnishes compounds that are each based around a distinct molecular scaffold. Thus, high levels of library scaffold diversity can be rapidly achieved. In this proof-of-concept study, the natural product quinine was used as the foundation for library synthesis, and six novel structurally diverse, highly complex and functionalized macrocycles were generated.
Collapse
Affiliation(s)
- J J Ciardiello
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - H L Stewart
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - H F Sore
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - W R J D Galloway
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - D R Spring
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| |
Collapse
|
31
|
Baud LG, Manning MA, Arkless HL, Stephens TC, Unsworth WP. Ring-Expansion Approach to Medium-Sized Lactams and Analysis of Their Medicinal Lead-Like Properties. Chemistry 2017; 23:2225-2230. [PMID: 27935197 DOI: 10.1002/chem.201605615] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 12/20/2022]
Abstract
Medium-sized rings are widely considered to be under-represented in biological screening libraries for lead identification in medicinal chemistry. To help address this, a library of medium-sized lactams has been generated by using a simple, scalable and versatile ring-expansion protocol. Analysis of the library by using open-access computational tool LLAMA suggested that these lactams and their derivatives have highly promising physicochemical and 3D spatial properties and thus have much potential in drug discovery.
Collapse
|
32
|
Zhang J, Mulumba M, Ong H, Lubell WD. Diversity-Oriented Synthesis of Cyclic Azapeptides by A3-Macrocyclization Provides High-Affinity CD36-Modulating Peptidomimetics. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jinqiang Zhang
- Département de Chimie; Université de Montréal; C.P. 6128, Succursale Centre-Ville Montréal Québec H3C 3J7 Canada
- Present address: School of Pharmaceutical Science; Chongqing University; Chongqing 401331 China
| | - Mukandila Mulumba
- Faculté de Pharmacie; Université de Montréal; C.P. 6128, Succursale Centre-Ville Montréal Québec H3C 3J7 Canada
| | - Huy Ong
- Faculté de Pharmacie; Université de Montréal; C.P. 6128, Succursale Centre-Ville Montréal Québec H3C 3J7 Canada
| | - William D. Lubell
- Département de Chimie; Université de Montréal; C.P. 6128, Succursale Centre-Ville Montréal Québec H3C 3J7 Canada
| |
Collapse
|
33
|
Zhang J, Mulumba M, Ong H, Lubell WD. Diversity-Oriented Synthesis of Cyclic Azapeptides by A 3 -Macrocyclization Provides High-Affinity CD36-Modulating Peptidomimetics. Angew Chem Int Ed Engl 2017; 56:6284-6288. [PMID: 28090719 DOI: 10.1002/anie.201611685] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/14/2016] [Indexed: 11/11/2022]
Abstract
Macrocyclization has enabled the use of peptides in drug discovery creating a need for methods to synthesize diverse peptide macrocycles. Azapeptides have advanced to clinically used drugs, however, few cyclic azapeptides have been studied. A multiple component "A3 -macrocyclization" strategy is described for the preparation of diverse cyclic azapeptides and is demonstrated by the synthesis of 15 growth hormone releasing hormone-6 (GHRP-6) analogs. Certain cyclic aza-GHRP-6 analogs exhibited unprecedented affinity for the CD36 receptor, and capacity to modulate Toll-like receptor agonist-induced overproduction of nitric oxide, and reduce pro-inflammatory cytokine and chemokine production in macrophages.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada.,Present address: School of Pharmaceutical Science, Chongqing University, Chongqing, 401331, China
| | - Mukandila Mulumba
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - Huy Ong
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
34
|
G-Dayanandan N, Scocchera EW, Keshipeddy S, Jones HF, Anderson AC, Wright DL. Direct Substitution of Arylalkynyl Carbinols Provides Access to Diverse Terminal Acetylene Building Blocks. Org Lett 2017; 19:142-145. [PMID: 27959567 DOI: 10.1021/acs.orglett.6b03438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To develop next generation antifolates for the treatment of trimethoprim-resistant bacteria, synthetic methods were needed to prepare a diverse array of 3-aryl-propynes with various substitutions at the propargyl position. A direct route was sought whereby nucleophilic addition of acetylene to aryl carboxaldehydes would be followed by reduction or substitution of the resulting propargyl alcohol. The direct reduction, methylation, and dimethylation of these readily available alcohols provide efficient access to this uncommon functional array. In addition, an unusual silane exchange reaction was observed in the reduction of the propargylic alcohols.
Collapse
Affiliation(s)
- Narendran G-Dayanandan
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Eric W Scocchera
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Santosh Keshipeddy
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Heather F Jones
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Amy C Anderson
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Dennis L Wright
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, Connecticut 06269, United States.,Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
35
|
Pérez-Labrada K, Cruz-Mendoza MA, Chávez-Riveros A, Hernández-Vázquez E, Torroba T, Miranda LD. Diversity-oriented synthesis and cytotoxic activity evaluation of biaryl-containing macrocycles. Org Biomol Chem 2017; 15:2450-2458. [DOI: 10.1039/c6ob02726a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Synthesis of biaryl-containing macrocycles has been carried out through a four-step approach comprising two Ugi four component reactions and a Suzuki–Miyaura macrocyclization.
Collapse
Affiliation(s)
- Karell Pérez-Labrada
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior S.N
- Ciudad Universitaria
- Coyoacán
| | - Marco A. Cruz-Mendoza
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior S.N
- Ciudad Universitaria
- Coyoacán
| | - Alejandra Chávez-Riveros
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior S.N
- Ciudad Universitaria
- Coyoacán
| | - Eduardo Hernández-Vázquez
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior S.N
- Ciudad Universitaria
- Coyoacán
| | - Tomás Torroba
- Department of Chemistry
- Faculty of Science
- University of Burgos
- 09001 Burgos
- Spain
| | - Luis D. Miranda
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior S.N
- Ciudad Universitaria
- Coyoacán
| |
Collapse
|
36
|
Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem Rev 2016; 116:14726-14768. [DOI: 10.1021/acs.chemrev.6b00466] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan R. Johansson
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-43183 Mölndal, Sweden
| | - Tamás Beke-Somfai
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
krt. 2, H-1117 Budapest, Hungary
| | - Anna Said Stålsmeden
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Nina Kann
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
37
|
Nie F, Kunciw DL, Wilcke D, Stokes JE, Galloway WRJD, Bartlett S, Sore HF, Spring DR. A Multidimensional Diversity-Oriented Synthesis Strategy for Structurally Diverse and Complex Macrocycles. Angew Chem Int Ed Engl 2016; 55:11139-43. [PMID: 27484830 PMCID: PMC5025730 DOI: 10.1002/anie.201605460] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Indexed: 12/11/2022]
Abstract
Synthetic macrocycles are an attractive area in drug discovery. However, their use has been hindered by a lack of versatile platforms for the generation of structurally (and thus shape) diverse macrocycle libraries. Herein, we describe a new concept in library synthesis, termed multidimensional diversity-oriented synthesis, and its application towards macrocycles. This enabled the step-efficient generation of a library of 45 novel, structurally diverse, and highly-functionalized macrocycles based around a broad range of scaffolds and incorporating a wide variety of biologically relevant structural motifs. The synthesis strategy exploited the diverse reactivity of aza-ylides and imines, and featured eight different macrocyclization methods, two of which were novel. Computational analyses reveal a broad coverage of molecular shape space by the library and provides insight into how the various diversity-generating steps of the synthesis strategy impact on molecular shape.
Collapse
Affiliation(s)
- Feilin Nie
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Dominique L Kunciw
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - David Wilcke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jamie E Stokes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Warren R J D Galloway
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sean Bartlett
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Hannah F Sore
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
38
|
A Multidimensional Diversity-Oriented Synthesis Strategy for Structurally Diverse and Complex Macrocycles. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Ciardiello JJ, Galloway WR, O'Connor CJ, Sore HF, Stokes JE, Wu Y, Spring DR. An expedient strategy for the diversity-oriented synthesis of macrocyclic compounds with natural product-like characteristics. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.10.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Garcia-Castro M, Zimmermann S, Sankar MG, Kumar K. Gerüstdiversitätsbasierte Synthese und ihre Anwendung bei der Sonden- und Wirkstoffsuche. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201508818] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Miguel Garcia-Castro
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Stefan Zimmermann
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Muthukumar G. Sankar
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| | - Kamal Kumar
- Abteilung Chemische Biologie; Max-Planck-Institut für molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Deutschland
| |
Collapse
|
41
|
Garcia-Castro M, Zimmermann S, Sankar MG, Kumar K. Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery. Angew Chem Int Ed Engl 2016; 55:7586-605. [DOI: 10.1002/anie.201508818] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/19/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Miguel Garcia-Castro
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Stefan Zimmermann
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Muthukumar G. Sankar
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Kamal Kumar
- Department of Chemical Biology; Max Planck Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| |
Collapse
|
42
|
Liu XW, Shi JL, Wei JB, Yang C, Yan JX, Peng K, Dai L, Li CG, Wang BQ, Shi ZJ. Diversified syntheses of multifunctionalized thiazole derivatives via regioselective and programmed C-H activation. Chem Commun (Camb) 2016; 51:4599-602. [PMID: 25687354 DOI: 10.1039/c4cc10419f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The sequential construction of diversified multifunctionalized thiazole derivatives through Pd-catalyzed regioselective C-H alkenylation has been accomplished. This versatile approach provides the diversified thiazole derivatives featuring orthogonal substitution patterns at the C-2, C-4 and C-5 positions from mono-substituted (2- or 4-substituted) thiazole derivatives or even more challenging simple thiazole.
Collapse
Affiliation(s)
- Xiang-Wei Liu
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mocilac P, Gallagher JF. Halogenated tennimides and trezimides: impact of halogen bonding and solvent role on porous network formation and inclusion. CrystEngComm 2016. [DOI: 10.1039/c5ce02052b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The role of halogenated and aprotic solvents in macrocyclic structures is assessed in terms of halogen and hydrogen bonding interactions.
Collapse
Affiliation(s)
- P. Mocilac
- School of Chemical Sciences
- Dublin City University
- , Ireland
| | | |
Collapse
|
44
|
Kitsiou C, Hindes JJ, I'Anson P, Jackson P, Wilson TC, Daly EK, Felstead HR, Hearnshaw P, Unsworth WP. The Synthesis of Structurally Diverse Macrocycles By Successive Ring Expansion. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Kitsiou C, Hindes JJ, I'Anson P, Jackson P, Wilson TC, Daly EK, Felstead HR, Hearnshaw P, Unsworth WP. The Synthesis of Structurally Diverse Macrocycles By Successive Ring Expansion. Angew Chem Int Ed Engl 2015; 54:15794-8. [PMID: 26768697 DOI: 10.1002/anie.201509153] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/28/2015] [Indexed: 11/10/2022]
Abstract
Structurally diverse macrocycles and medium-sized rings (9-24 membered scaffolds, 22 examples) can be generated through a telescoped acylation/ring-expansion sequence, leading to the insertion of linear fragments into cyclic β-ketoesters without performing a discrete macrocyclization step. The key β-ketoester motif is regenerated in the ring-expanded product, meaning that the same sequence of steps can then be repeated (in theory indefinitely) with other linear fragments, allowing macrocycles with precise substitution patterns to be "grown" from smaller rings using the successive ring-expansion (SuRE) method.
Collapse
|
46
|
Fuchs JE, Bender A, Glen RC. Cheminformatics Research at the Unilever Centre for Molecular Science Informatics Cambridge. Mol Inform 2015; 34:626-633. [PMID: 26435758 PMCID: PMC4583778 DOI: 10.1002/minf.201400166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/16/2014] [Indexed: 11/12/2022]
Abstract
The Centre for Molecular Informatics, formerly Unilever Centre for Molecular Science Informatics (UCMSI), at the University of Cambridge is a world-leading driving force in the field of cheminformatics. Since its opening in 2000 more than 300 scientific articles have fundamentally changed the field of molecular informatics. The Centre has been a key player in promoting open chemical data and semantic access. Though mainly focussing on basic research, close collaborations with industrial partners ensured real world feedback and access to high quality molecular data. A variety of tools and standard protocols have been developed and are ubiquitous in the daily practice of cheminformatics. Here, we present a retrospective of cheminformatics research performed at the UCMSI, thereby highlighting historical and recent trends in the field as well as indicating future directions.
Collapse
Affiliation(s)
- Julian E Fuchs
- Centre for Molecular Informatics, Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW, UK phone/fax: +44 (0)1223 336472/+44 (0)1223 763076
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW, UK phone/fax: +44 (0)1223 336472/+44 (0)1223 763076
| | - Robert C Glen
- Centre for Molecular Informatics, Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW, UK phone/fax: +44 (0)1223 336472/+44 (0)1223 763076
| |
Collapse
|
47
|
Martí-Centelles V, Pandey MD, Burguete MI, Luis SV. Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chem Rev 2015; 115:8736-834. [DOI: 10.1021/acs.chemrev.5b00056] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Mrituanjay D. Pandey
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - M. Isabel Burguete
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - Santiago V. Luis
- Departament de Química
Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| |
Collapse
|
48
|
Jithin Raj P, Bahulayan D. An efficient click-multicomponent strategy for the diversity oriented synthesis of 15–18 membered macrocyclic peptidomimetic fluorophores. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Isidro-Llobet A, Hadje Georgiou K, Galloway WRJD, Giacomini E, Hansen MR, Méndez-Abt G, Tan YS, Carro L, Sore HF, Spring DR. A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds. Org Biomol Chem 2015; 13:4570-80. [PMID: 25778821 PMCID: PMC4441267 DOI: 10.1039/c5ob00371g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/11/2015] [Indexed: 01/23/2023]
Abstract
Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity.
Collapse
Affiliation(s)
- Albert Isidro-Llobet
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rose TE, Lawson KV, Harran PG. Large ring-forming alkylations provide facile access to composite macrocycles. Chem Sci 2015; 6:2219-2223. [PMID: 28694951 PMCID: PMC5485560 DOI: 10.1039/c4sc03848g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/05/2015] [Indexed: 11/21/2022] Open
Abstract
Macrocyclic compounds have potential to enable drug discovery for protein targets with extended, solvent-exposed binding sites. Crystallographic structures of peptides bound at such sites show strong surface complementarity and frequent aromatic side-chain contacts. In an effort to capture these features in stabilized small molecules, we describe a method to convert linear peptides into constrained macrocycles based upon their aromatic content. Designed templates initiate the venerable Friedel-Crafts alkylation to form large rings efficiently at room temperature - routinely within minutes - and unimpeded by polar functional groups. No protecting groups, metals, or air-free techniques are required. Regiochemistry can be tuned electronically to explore diverse macrocycle connectivities. Templates with additional reaction capabilities can further manipulate macrocycle structure. The chemistry lays a foundation to extend studies of how the size, shape and constitution of peptidyl macrocycles correlate with their pharmacological properties.
Collapse
Affiliation(s)
- Tristan E Rose
- Department of Chemistry and Biochemistry , University of California Los Angeles , 607 Charles E. Young Drive East , Los Angeles , USA .
| | - Kenneth V Lawson
- Department of Chemistry and Biochemistry , University of California Los Angeles , 607 Charles E. Young Drive East , Los Angeles , USA .
| | - Patrick G Harran
- Department of Chemistry and Biochemistry , University of California Los Angeles , 607 Charles E. Young Drive East , Los Angeles , USA .
| |
Collapse
|