1
|
Dyson HJ, Wright PE. How does p53 work? Regulation by the intrinsically disordered domains. Trends Biochem Sci 2025; 50:9-17. [PMID: 39578215 PMCID: PMC11698644 DOI: 10.1016/j.tibs.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Defects in the tumor suppressor protein p53 are found in the majority of cancers. The p53 protein (393 amino acids long) contains the folded DNA-binding domain (DBD) and tetramerization domain (TET), with the remainder of the sequence being intrinsically disordered. Since cancer-causing mutations occur primarily in the DBD, this has been the focus of most of the research on p53. However, recent reports show that the disordered N-terminal activation domain (NTAD) and C-terminal regulatory domain (CTD) function synergistically with the DBD to regulate p53 activity. We propose a mechanistic model in which intermolecular and intramolecular interactions of the disordered regions, modulated by post-translational modifications, perform a central role in the regulation and activation of p53 in response to cellular stress.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Thayer KM, Stetson S, Caballero F, Chiu C, Han ISM. Navigating the complexity of p53-DNA binding: implications for cancer therapy. Biophys Rev 2024; 16:479-496. [PMID: 39309126 PMCID: PMC11415564 DOI: 10.1007/s12551-024-01207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/21/2024] [Indexed: 09/25/2024] Open
Abstract
Abstract The tumor suppressor protein p53, a transcription factor playing a key role in cancer prevention, interacts with DNA as its primary means of determining cell fate in the event of DNA damage. When it becomes mutated, it opens damaged cells to the possibility of reproducing unchecked, which can lead to formation of cancerous tumors. Despite its critical role, therapies at the molecular level to restore p53 native function remain elusive, due to its complex nature. Nevertheless, considerable information has been amassed, and new means of investigating the problem have become available. Objectives We consider structural, biophysical, and bioinformatic insights and their implications for the role of direct and indirect readout and how they contribute to binding site recognition, particularly those of low consensus. We then pivot to consider advances in computational approaches to drug discovery. Materials and methods We have conducted a review of recent literature pertinent to the p53 protein. Results Considerable literature corroborates the idea that p53 is a complex allosteric protein that discriminates its binding sites not only via consensus sequence through direct H-bond contacts, but also a complex combination of factors involving the flexibility of the binding site. New computational methods have emerged capable of capturing such information, which can then be utilized as input to machine learning algorithms towards the goal of more intelligent and efficient de novo allosteric drug design. Conclusions Recent improvements in machine learning coupled with graph theory and sector analysis hold promise for advances to more intelligently design allosteric effectors that may be able to restore native p53-DNA binding activity to mutant proteins. Clinical relevance The ideas brought to light by this review constitute a significant advance that can be applied to ongoing biophysical studies of drugs for p53, paving the way for the continued development of new methodologies for allosteric drugs. Our discoveries hold promise to provide molecular therapeutics which restore p53 native activity, thereby offering new insights for cancer therapies. Graphical Abstract Structural representation of the p53 DBD (PDBID 1TUP). DNA consensus sequence is shown in gray, and the protein is shown in blue. Red beads indicate hotspot residue mutations, green beads represent DNA interacting residues, and yellow beads represent both.
Collapse
Affiliation(s)
- Kelly M. Thayer
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06457 USA
- Department of Chemistry, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
- Molecular Biophysics Program, Wesleyan University, Middletown, CT 06457 USA
| | - Sean Stetson
- Department of Chemistry, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - Fernando Caballero
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - Christopher Chiu
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - In Sub Mark Han
- Molecular Biophysics Program, Wesleyan University, Middletown, CT 06457 USA
| |
Collapse
|
3
|
Bakker M, Sørensen HV, Skepö M. Exploring the Role of Globular Domain Locations on an Intrinsically Disordered Region of p53: A Molecular Dynamics Investigation. J Chem Theory Comput 2024; 20:1423-1433. [PMID: 38230670 PMCID: PMC10867847 DOI: 10.1021/acs.jctc.3c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
The pre-tetramerization loop (PTL) of the human tumor suppressor protein p53 is an intrinsically disordered region (IDR) necessary for the tetramerization process, and its flexibility contributes to the essential conformational changes needed. Although the IDR can be accurately simulated in the traditional manner of molecular dynamics (MD) with the end-to-end distance (EEdist) unhindered, we sought to explore the effects of restraining the EEdist to the values predicted by electron microscopy (EM) and other distances. Simulating the PTL trajectory with a restrained EEdist , we found an increased agreement of nuclear magnetic resonance (NMR) chemical shifts with experiments. Additionally, we observed a plethora of secondary structures and contacts that only appear when the trajectory is restrained. Our findings expand the understanding of the tetramerization of p53 and provide insight into how mutations could make the protein impotent. In particular, our findings demonstrate the importance of restraining the EEdist in studying IDRs and how their conformations change under different conditions. Our results provide a better understanding of the PTL and the conformational dynamics of IDRs in general, which are useful for further studies regarding mutations and their effects on the activity of p53.
Collapse
Affiliation(s)
- Michael
J. Bakker
- Faculty
of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Henrik V. Sørensen
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
- MAX
IV Laboratory, Lund Institute of Advanced
Neutron and X-ray Science, Scheelevägen 19, SE-223 770 Lund, Sweden
| | - Marie Skepö
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
- LINXS
- Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-233 70 Lund, Sweden
| |
Collapse
|
4
|
Al Masri C, Wan B, Yu J. Nonspecific vs. specific DNA binding free energetics of a transcription factor domain protein. Biophys J 2023; 122:4476-4487. [PMID: 37897044 PMCID: PMC10722393 DOI: 10.1016/j.bpj.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Transcription factor (TF) proteins regulate gene expression by binding to specific sites on the genome. In the facilitated diffusion model, an optimized search process is achieved by the TF alternating between 3D diffusion in the bulk and 1D diffusion along DNA. While undergoing 1D diffusion, the protein can switch from a search mode for fast diffusion along nonspecific DNA to a recognition mode for stable binding to specific DNA. It was recently noticed that, for a small TF domain protein, reorientations on DNA happen between the nonspecific and specific DNA binding. We here conducted all-atom molecular dynamics simulations with steering forces to reveal the protein-DNA binding free energetics, confirming that the search and recognition modes are distinguished primarily by protein orientations on the DNA. As the binding free energy difference between the specific and nonspecific DNA system slightly deviates from that being estimated directly from dissociation constants on 15-bp DNA constructs, we hypothesize that the discrepancy can come from DNA sequences flanking the 6-bp central binding sites that impact on the dissociation kinetics measurements. The hypothesis is supported by a simplified spherical protein-DNA model along with stochastic simulations and kinetic modeling.
Collapse
Affiliation(s)
- Carmen Al Masri
- Department of Physics and Astronomy, University of California, Irvine, California
| | - Biao Wan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jin Yu
- Department of Physics and Astronomy, University of California, Irvine, California; Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California.
| |
Collapse
|
5
|
Di Ianni A, Tüting C, Kipping M, Ihling CH, Köppen J, Iacobucci C, Arlt C, Kastritis PL, Sinz A. Structural assessment of the full-length wild-type tumor suppressor protein p53 by mass spectrometry-guided computational modeling. Sci Rep 2023; 13:8497. [PMID: 37231156 DOI: 10.1038/s41598-023-35437-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
The tetrameric tumor suppressor p53 represents a great challenge for 3D-structural analysis due to its high degree of intrinsic disorder (ca. 40%). We aim to shed light on the structural and functional roles of p53's C-terminal region in full-length, wild-type human p53 tetramer and their importance for DNA binding. For this, we employed complementary techniques of structural mass spectrometry (MS) in an integrated approach with computational modeling. Our results show no major conformational differences in p53 between DNA-bound and DNA-free states, but reveal a substantial compaction of p53's C-terminal region. This supports the proposed mechanism of unspecific DNA binding to the C-terminal region of p53 prior to transcription initiation by specific DNA binding to the core domain of p53. The synergies between complementary structural MS techniques and computational modeling as pursued in our integrative approach is envisioned to serve as general strategy for studying intrinsically disordered proteins (IDPs) and intrinsically disordered region (IDRs).
Collapse
Affiliation(s)
- Alessio Di Ianni
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
| | - Christian Tüting
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Marc Kipping
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
| | - Janett Köppen
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100, L'Aquila, Italy
| | - Christian Arlt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany.
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany.
| | - Panagiotis L Kastritis
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany.
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany.
| |
Collapse
|
6
|
Aguilar A, Wang S. Therapeutic Strategies to Activate p53. Pharmaceuticals (Basel) 2022; 16:24. [PMID: 36678521 PMCID: PMC9866379 DOI: 10.3390/ph16010024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
The p53 protein has appropriately been named the "guardian of the genome". In almost all human cancers, the powerful tumor suppressor function of p53 is compromised by a variety of mechanisms, including mutations with either loss of function or gain of function and inhibition by its negative regulators MDM2 and/or MDMX. We review herein the progress made on different therapeutic strategies for targeting p53.
Collapse
Affiliation(s)
- Angelo Aguilar
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Krois AS, Park S, Martinez-Yamout MA, Dyson HJ, Wright PE. Mapping Interactions of the Intrinsically Disordered C-Terminal Regions of Tetrameric p53 by Segmental Isotope Labeling and NMR. Biochemistry 2022; 61:2709-2719. [PMID: 36380579 PMCID: PMC9788666 DOI: 10.1021/acs.biochem.2c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The C-terminal region of the tumor suppressor protein p53 contains three domains, nuclear localization signal (NLS), tetramerization domain (TET), and C-terminal regulatory domain (CTD), which are essential for p53 function. Characterization of the structure and interactions of these domains within full-length p53 has been limited by the overall size and flexibility of the p53 tetramer. Using trans-intein splicing, we have generated full-length p53 constructs in which the C-terminal region is isotopically labeled with 15N for NMR analysis, allowing us to obtain atomic-level information on the C-terminal domains in the context of the full-length protein. Resonances of NLS and CTD residues have narrow linewidths, showing that these regions are largely solvent-exposed and dynamically disordered, whereas resonances from the folded TET are broadened beyond detection. Two regions of the CTD, spanning residues 369-374 and 381-388 and with high lysine content, make dynamic and sequence-independent interactions with DNA in regions that flank the p53 recognition element. The population of DNA-bound states increases as the length of the flanking regions is extended up to approximately 20 base pairs on either side of the recognition element. Acetylation of K372, K373, and K382, using a construct of the transcriptional coactivator CBP containing the TAZ2 and acetyltransferase domains, inhibits interaction of the CTD with DNA. This work provides high-resolution insights into the behavior of the intrinsically disordered C-terminal regions of p53 within the full-length tetramer and the molecular basis by which the CTD mediates DNA binding and specificity.
Collapse
Affiliation(s)
- Alexander S Krois
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Sangho Park
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| |
Collapse
|
8
|
Patil MR, Bihari A. A comprehensive study of p53 protein. J Cell Biochem 2022; 123:1891-1937. [PMID: 36183376 DOI: 10.1002/jcb.30331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
The protein p53 has been extensively investigated since it was found 43 years ago and has become a "guardian of the genome" that regulates the division of cells by preventing the growth of cells and dividing them, that is, inhibits the development of tumors. Initial proof of protein existence by researchers in the mid-1970s was found by altering and regulating the SV40 big T antigen termed the A protein. Researchers demonstrated how viruses play a role in cancer by employing viruses' ability to create T-antigens complex with viral tumors, which was discovered in 1979 following a viral analysis and cancer analog research. Researchers later in the year 1989 explained that in Murine Friend, a virus-caused erythroleukemia, commonly found that p53 was inactivated to suggest that p53 could be a "tumor suppressor gene." The TP53 gene, encoding p53, is one of human cancer's most frequently altered genes. The protein-regulated biological functions of all p53s include cell cycles, apoptosis, senescence, metabolism of the DNA, angiogenesis, cell differentiation, and immunological response. We tried to unfold the history of the p53 protein, which was discovered long back in 1979, that is, 43 years of research on p53, and how p53's function has been developed through time in this article.
Collapse
Affiliation(s)
- Manisha R Patil
- Department of Computer-Applications, School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Bihari
- Department of Computational Intelligence, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
9
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|
10
|
Biancalana M, Natan E, Lenardo MJ, Fersht AR. NF-κB Rel subunit exchange on a physiological timescale. Protein Sci 2021; 30:1818-1832. [PMID: 34089216 PMCID: PMC8376415 DOI: 10.1002/pro.4134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
The Rel proteins of the NF-κB complex comprise one of the most investigated transcription factor families, forming a variety of hetero- or homodimers. Nevertheless, very little is known about the fundamental kinetics of NF-κB complex assembly, or the inter-conversion potential of dimerised Rel subunits. Here, we examined an unexplored aspect of NF-κB dynamics, focusing on the dissociation and reassociation of the canonical p50 and p65 Rel subunits and their ability to form new hetero- or homodimers. We employed a soluble expression system to enable the facile production of NF-κB Rel subunits, and verified these proteins display canonical NF-κB nucleic acid binding properties. Using a combination of biophysical techniques, we demonstrated that, at physiological temperatures, homodimeric Rel complexes routinely exchange subunits with a half-life of less than 10 min. In contrast, we found a dramatic preference for the formation of the p50/p65 heterodimer, which demonstrated a kinetic stability of at least an order of magnitude greater than either homodimer. These results suggest that specific DNA targets of either the p50 or p65 homodimers can only be targeted when these subunits are expressed exclusively, or with the intervention of additional post-translational modifications. Together, this work implies a new model of how cells can modulate NF-κB activity by fine-tuning the relative proportions of the p50 and p65 proteins, as well as their time of expression. This work thus provides a new quantitative interpretation of Rel dimer distribution in the cell, particularly for those who are developing mathematical models of NF-κB activity.
Collapse
Affiliation(s)
- Matthew Biancalana
- Medical Research Council Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | | | - Michael J. Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Alan R. Fersht
- Medical Research Council Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| |
Collapse
|
11
|
The Δ40p53 isoform inhibits p53-dependent eRNA transcription and enables regulation by signal-specific transcription factors during p53 activation. PLoS Biol 2021; 19:e3001364. [PMID: 34351910 PMCID: PMC8370613 DOI: 10.1371/journal.pbio.3001364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/17/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
The naturally occurring Δ40p53 isoform heterotetramerizes with wild-type p53 (WTp53) to regulate development, aging, and stress responses. How Δ40p53 alters WTp53 function remains enigmatic because their co-expression causes tetramer heterogeneity. We circumvented this issue with a well-tested strategy that expressed Δ40p53:WTp53 as a single transcript, ensuring a 2:2 tetramer stoichiometry. Human MCF10A cell lines expressing Δ40p53:WTp53, WTp53, or WTp53:WTp53 (as controls) from the native TP53 locus were examined with transcriptomics (precision nuclear run-on sequencing [PRO-seq] and RNA sequencing [RNA-seq]), metabolomics, and other methods. Δ40p53:WTp53 was transcriptionally active, and, although phenotypically similar to WTp53 under normal conditions, it failed to induce growth arrest upon Nutlin-induced p53 activation. This occurred via Δ40p53:WTp53-dependent inhibition of enhancer RNA (eRNA) transcription and subsequent failure to induce mRNA biogenesis, despite similar genomic occupancy to WTp53. A different stimulus (5-fluorouracil [5FU]) also showed Δ40p53:WTp53-specific changes in mRNA induction; however, other transcription factors (TFs; e.g., E2F2) could then drive the response, yielding similar outcomes vs. WTp53. Our results establish that Δ40p53 tempers WTp53 function to enable compensatory responses by other stimulus-specific TFs. Such modulation of WTp53 activity may be an essential physiological function for Δ40p53. Moreover, Δ40p53:WTp53 functional distinctions uncovered herein suggest an eRNA requirement for mRNA biogenesis and that human p53 evolved as a tetramer to support eRNA transcription. How does Δ40p53, a naturally occurring isoform of p53 that is linked to accelerated aging, alter WTp53 function? Using an innovative approach, this study reveals that Δ40p53 suppresses enhancer RNA transcription and allows other stimulus-specific transcription factors to modulate the p53 transcriptional response.
Collapse
|
12
|
Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Structural and Drug Targeting Insights on Mutant p53. Cancers (Basel) 2021; 13:3344. [PMID: 34283062 PMCID: PMC8268744 DOI: 10.3390/cancers13133344] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.S.G.); (H.R.)
| |
Collapse
|
13
|
Leach A, Miller A, Bentley E, Mattiuzzo G, Thomas J, McAndrew C, Van Montfort R, Rabbitts T. Implementing a method for engineering multivalency to substantially enhance binding of clinical trial anti-SARS-CoV-2 antibodies to wildtype spike and variants of concern proteins. Sci Rep 2021; 11:10475. [PMID: 34006961 PMCID: PMC8131632 DOI: 10.1038/s41598-021-89887-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19 disease. Therapeutic antibodies are being developed that interact with the viral spike proteins to limit viral infection of epithelium. We have applied a method to dramatically improve the performance of anti-SARS-CoV-2 antibodies by enhancing avidity through multimerization using simple engineering to yield tetrameric antibodies. We have re-engineered six anti-SARS-CoV-2 antibodies using the human p53 tetramerization domain, including three clinical trials antibodies casirivimab, imdevimab and etesevimab. The method yields tetrameric antibodies, termed quads, that retain efficient binding to the SARS-CoV-2 spike protein, show up to two orders of magnitude enhancement in neutralization of pseudovirus infection and retain potent interaction with virus variant of concern spike proteins. The tetramerization method is simple, general and its application is a powerful methodological development for SARS-CoV-2 antibodies that are currently in pre-clinical and clinical investigation.
Collapse
Affiliation(s)
- Adam Leach
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Ami Miller
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
- Evotec, 114 Innovation Dr, Milton Park, Abingdon, OX14 4RZ, UK
| | - Emma Bentley
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Giada Mattiuzzo
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Jemima Thomas
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Craig McAndrew
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Rob Van Montfort
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Terence Rabbitts
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London, SM2 5NG, UK.
| |
Collapse
|
14
|
Liou SH, Singh SK, Singer RH, Coleman RA, Liu WL. Structure of the p53/RNA polymerase II assembly. Commun Biol 2021; 4:397. [PMID: 33767390 PMCID: PMC7994806 DOI: 10.1038/s42003-021-01934-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor p53 protein activates expression of a vast gene network in response to stress stimuli for cellular integrity. The molecular mechanism underlying how p53 targets RNA polymerase II (Pol II) to regulate transcription remains unclear. To elucidate the p53/Pol II interaction, we have determined a 4.6 Å resolution structure of the human p53/Pol II assembly via single particle cryo-electron microscopy. Our structure reveals that p53's DNA binding domain targets the upstream DNA binding site within Pol II. This association introduces conformational changes of the Pol II clamp into a further-closed state. A cavity was identified between p53 and Pol II that could possibly host DNA. The transactivation domain of p53 binds the surface of Pol II's jaw that contacts downstream DNA. These findings suggest that p53's functional domains directly regulate DNA binding activity of Pol II to mediate transcription, thereby providing insights into p53-regulated gene expression.
Collapse
Affiliation(s)
- Shu-Hao Liou
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sameer K Singh
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert H Singer
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Robert A Coleman
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Wei-Li Liu
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
15
|
Chen Y, Zhao G, Zahumensky J, Honey S, Futcher B. Differential Scaling of Gene Expression with Cell Size May Explain Size Control in Budding Yeast. Mol Cell 2020; 78:359-370.e6. [PMID: 32246903 DOI: 10.1016/j.molcel.2020.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 12/14/2019] [Accepted: 03/10/2020] [Indexed: 01/25/2023]
Abstract
Yeast cells must grow to a critical size before committing to division. It is unknown how size is measured. We find that as cells grow, mRNAs for some cell-cycle activators scale faster than size, increasing in concentration, while mRNAs for some inhibitors scale slower than size, decreasing in concentration. Size-scaled gene expression could cause an increasing ratio of activators to inhibitors with size, triggering cell-cycle entry. Consistent with this, expression of the CLN2 activator from the promoter of the WHI5 inhibitor, or vice versa, interfered with cell size homeostasis, yielding a broader distribution of cell sizes. We suggest that size homeostasis comes from differential scaling of gene expression with size. Differential regulation of gene expression as a function of cell size could affect many cellular processes.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Gang Zhao
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Jakub Zahumensky
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic
| | - Sangeet Honey
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Bruce Futcher
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA.
| |
Collapse
|
16
|
Ghosh R, Kaypee S, Shasmal M, Kundu TK, Roy S, Sengupta J. Tumor Suppressor p53-Mediated Structural Reorganization of the Transcriptional Coactivator p300. Biochemistry 2019; 58:3434-3443. [DOI: 10.1021/acs.biochem.9b00333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raka Ghosh
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | | | - Tapas K. Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Jayati Sengupta
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
17
|
Disordered domains in chromatin-binding proteins. Essays Biochem 2019; 63:147-156. [PMID: 30940742 DOI: 10.1042/ebc20180068] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 02/08/2023]
Abstract
Chromatin comprises proteins, DNA and RNA, and its function is to condense and package the genome in a way that allows the necessary transactions such as transcription, replication and repair to occur in a highly organised and regulated manner. The packaging of chromatin is often thought of in a hierarchical fashion starting from the most basic unit of DNA packaging, the nucleosome, to the condensation of nucleosomal 'beads on a string' by linker histones to form the 30-nm fibre and eventually large chromatin domains. However, a picture of a more heterogeneous, dynamic and liquid-like assembly is emerging, in which intrinsically disordered proteins (IDPs) and proteins containing intrinsically disordered regions (IDRs) play a central role. Disorder features at all levels of chromatin organisation, from the histone tails, which are sites of extensive post-translational modification (PTM) that change the fate of the underlying genomic information, right through to transcription hubs, and the recently elucidated roles of IDPs and IDRs in the condensation of large regions of the genome through liquid-liquid phase separation.
Collapse
|
18
|
Liang Y, Dearnaley WJ, Alden NA, Solares MJ, Gilmore BL, Pridham KJ, Varano AC, Sheng Z, Alli E, Kelly DF. Correcting errors in the BRCA1 warning system. DNA Repair (Amst) 2018; 73:120-128. [PMID: 30503669 DOI: 10.1016/j.dnarep.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
Given its important role in human health and disease, remarkably little is known about the full-length three-dimensional (3D) molecular architecture of the breast cancer type 1 susceptibility protein (BRCA1), or its mechanisms to engage the tumor suppressor, TP53 (p53). Here, we show how a prevalent cancer-related mutation in the C-terminal region of the full-length protein, BRCA15382insC, affects its structural properties, yet can be biochemically corrected to restore its functional capacity. As a downstream consequence of restoring the ubiquitin ligase activity of mutated BRCA15382insC, the DNA repair response of p53 was enhanced in cellular extracts naturally deficient in BRCA1 protein expression. Complementary structural insights of p53 tetramers bound to DNA in different stage of the repair process support these biochemical findings in the context of human cancer cells. Equally important, we show how this knowledge can be used to lower the viability of breast cancer cells by modulating the stability of the BRCA1 protein and its associated players.
Collapse
Affiliation(s)
- Yanping Liang
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA
| | - William J Dearnaley
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Nick A Alden
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA
| | - Maria J Solares
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Brian L Gilmore
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA
| | - Kevin J Pridham
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - A Cameron Varano
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhi Sheng
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA
| | - Elizabeth Alli
- Comprehensive Cancer Center, Wake Forest School of Medicine, Wake Forest, NC, 27157, USA
| | - Deborah F Kelly
- Virgina Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia, 24016, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA; Center for Structural Oncology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
19
|
p53 Isoforms and Their Implications in Cancer. Cancers (Basel) 2018; 10:cancers10090288. [PMID: 30149602 PMCID: PMC6162399 DOI: 10.3390/cancers10090288] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 01/10/2023] Open
Abstract
In this review we focus on the major isoforms of the tumor-suppressor protein p53, dysfunction of which often leads to cancer. Mutations of the TP53 gene, particularly in the DNA binding domain, have been regarded as the main cause for p53 inactivation. However, recent reports demonstrating abundance of p53 isoforms, especially the N-terminally truncated ones, in the cancerous tissues suggest their involvement in carcinogenesis. These isoforms are ∆40p53, ∆133p53, and ∆160p53 (the names indicate their respective N-terminal truncation). Due to the lack of structural and functional characterizations the modes of action of the p53 isoforms are still unclear. Owing to the deletions in the functional domains, these isoforms can either be defective in DNA binding or more susceptive to altered ‘responsive elements’ than p53. Furthermore, they may exert a ‘dominant negative effect’ or induce more aggressive cancer by the ‘gain of function’. One possible mechanism of p53 inactivation can be through tetramerization with the ∆133p53 and ∆160p53 isoforms—both lacking part of the DNA binding domain. A recent report and unpublished data from our laboratory also suggest that these isoforms may inactivate p53 by fast aggregation—possibly due to ectopic overexpression. We further discuss the evolutionary significance of the p53 isoforms.
Collapse
|
20
|
Kim YJ, Lee YJ, Kim HJ, Kim HS, Kang MS, Lee SK, Park MK, Murata K, Kim HL, Seo YR. A molecular mechanism of nickel (II): reduction of nucleotide excision repair activity by structural and functional disruption of p53. Carcinogenesis 2018; 39:1157-1164. [DOI: 10.1093/carcin/bgy070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/29/2018] [Indexed: 01/23/2023] Open
Affiliation(s)
- Yeo Jin Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young Ju Lee
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo Jeong Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Mi-Sun Kang
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sung-Keun Lee
- Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kazuyoshi Murata
- Section of Electron Microscopy, Section of Brain Structure Information, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hye Lim Kim
- Forensic DNA Division, Gwangju Institute of National Forensic Service, Jangseong-gun, Jeonnam, Republic of Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
21
|
Diverse p53/DNA binding modes expand the repertoire of p53 response elements. Proc Natl Acad Sci U S A 2017; 114:10624-10629. [PMID: 28912355 DOI: 10.1073/pnas.1618005114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tumor suppressor protein p53 acts as a transcription factor, binding sequence-specifically to defined DNA sites, thereby activating the expression of genes leading to diverse cellular outcomes. Canonical p53 response elements (REs) are made of two decameric half-sites separated by a variable number of base pairs (spacers). Fifty percent of all validated p53 REs contain spacers between 1 and 18 bp; however, their functional significance is unclear at present. Here, we show that p53 forms two different tetrameric complexes with consensus or natural REs, both with long spacers: a fully specific complex where two p53 dimers bind to two specific half-sites, and a hemispecific complex where one dimer binds to a specific half-site and the second binds to an adjacent spacer sequence. The two types of complexes have comparable binding affinity and specificity, as judged from binding competition against bulk genomic DNA. Structural analysis of the p53 REs in solution shows that these sites are not bent in both their free and p53-bound states when the two half-sites are either abutting or separated by spacers. Cell-based assay supports the physiological relevance of our findings. We propose that p53 REs with long spacers comprise separate specific half-sites that can lead to several different tetrameric complexes. This finding expands the universe of p53 binding sites and demonstrates that even isolated p53 half-sites can form tetrameric complexes. Moreover, it explains the manner in which p53 binds to clusters of more than one canonical binding site, common in many natural REs.
Collapse
|
22
|
Murata A, Itoh Y, Mano E, Kanbayashi S, Igarashi C, Takahashi H, Takahashi S, Kamagata K. One-Dimensional Search Dynamics of Tumor Suppressor p53 Regulated by a Disordered C-Terminal Domain. Biophys J 2017; 112:2301-2314. [PMID: 28591603 DOI: 10.1016/j.bpj.2017.04.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/06/2017] [Accepted: 04/25/2017] [Indexed: 11/15/2022] Open
Abstract
Tumor suppressor p53 slides along DNA and finds its target sequence in drastically different and changing cellular conditions. To elucidate how p53 maintains efficient target search at different concentrations of divalent cations such as Ca2+ and Mg2+, we prepared two mutants of p53, each possessing one of its two DNA-binding domains, the CoreTet mutant having the structured core domain plus the tetramerization (Tet) domain, and the TetCT mutant having Tet plus the disordered C-terminal domain. We investigated their equilibrium and kinetic dissociation from DNA and search dynamics along DNA at various [Mg2+]. Although binding of CoreTet to DNA becomes markedly weaker at higher [Mg2+], binding of TetCT depends slightly on [Mg2+]. Single-molecule fluorescence measurements revealed that the one-dimensional diffusion of CoreTet along DNA consists of fast and slow search modes, the ratio of which depends strongly on [Mg2+]. In contrast, diffusion of TetCT consisted of only the fast mode. The disordered C-terminal domain can associate with DNA irrespective of [Mg2+], and can maintain an equilibrium balance of the two search modes and the p53 search distance. These results suggest that p53 modulates the quaternary structure of the complex between p53 and DNA under different [Mg2+] and that it maintains the target search along DNA.
Collapse
Affiliation(s)
- Agato Murata
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Chihiro Igarashi
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan.
| | - Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
23
|
Abstract
To prevent tumorigenesis, p53 stimulates transcription by facilitating the recruitment of the transcription machinery on target gene promoters. Cryo-Electron Microscopy studies on p53-bound RNA Polymerase II (Pol II) reveal that p53 structurally regulates Pol II to affect its DNA binding and elongation, providing new insights into p53-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Wei-Li Liu
- a Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Robert A Coleman
- a Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Sameer K Singh
- a Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology , Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
24
|
Subekti DRG, Murata A, Itoh Y, Fukuchi S, Takahashi H, Kanbayashi S, Takahashi S, Kamagata K. The Disordered Linker in p53 Participates in Nonspecific Binding to and One-Dimensional Sliding along DNA Revealed by Single-Molecule Fluorescence Measurements. Biochemistry 2017; 56:4134-4144. [DOI: 10.1021/acs.biochem.7b00292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dwiky Rendra Graha Subekti
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Agato Murata
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuji Itoh
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Fukuchi
- Faculty
of Engineering, Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Hiroto Takahashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Saori Kanbayashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Satoshi Takahashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kiyoto Kamagata
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
25
|
Chen Y, Gao T, Wang Y, Yang G. Investigating the Influence of Magnesium Ions on p53-DNA Binding Using Atomic Force Microscopy. Int J Mol Sci 2017; 18:ijms18071585. [PMID: 28754018 PMCID: PMC5536072 DOI: 10.3390/ijms18071585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022] Open
Abstract
p53 is a tumor suppressor protein that plays a significant role in apoptosis and senescence, preserving genomic stability, and preventing oncogene expression. Metal ions, such as magnesium and zinc ions, have important influences on p53–DNA interactions for stabilizing the structure of the protein and enhancing its affinity to DNA. In the present study, we systematically investigated the interaction of full length human protein p53 with DNA in metal ion solution by atomic force microscopy (AFM). The p53–DNA complexes at various p53 concentrations were scanned by AFM and their images are used to measure the dissociation constant of p53–DNA binding by a statistical method. We found that the dissociation constant of p53 binding DNA is 328.02 nmol/L in physiological buffer conditions. The influence of magnesium ions on p53–DNA binding was studied by AFM at various ion strengths through visualization. We found that magnesium ions significantly stimulate the binding of the protein to DNA in a sequence-independent manner, different from that stimulated by zinc. Furthermore, the high concentrations of magnesium ions can promote p53 aggregation and even lead to the formation of self-assembly networks of DNA and p53 proteins. We propose an aggregation and self-assembly model based on the present observation and discuss its biological meaning.
Collapse
Affiliation(s)
- Yang Chen
- School of Physics and Electronic Information, Wenzhou University, Wenzhou 325035, China.
| | - Tianyong Gao
- School of Physics and Electronic Information, Wenzhou University, Wenzhou 325035, China.
| | - Yanwei Wang
- School of Physics and Electronic Information, Wenzhou University, Wenzhou 325035, China.
| | - Guangcan Yang
- School of Physics and Electronic Information, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
26
|
Chillemi G, Kehrloesser S, Bernassola F, Desideri A, Dötsch V, Levine AJ, Melino G. Structural Evolution and Dynamics of the p53 Proteins. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a028308. [PMID: 27091942 DOI: 10.1101/cshperspect.a028308] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The family of the p53 tumor suppressive transcription factors includes p73 and p63 in addition to p53 itself. Given the high degree of amino-acid-sequence homology and structural organization shared by the p53 family members, they display some common features (i.e., induction of cell death, cell-cycle arrest, senescence, and metabolic regulation in response to cellular stress) as well as several distinct properties. Here, we describe the structural evolution of the family members with recent advances on the molecular dynamic studies of p53 itself. A crucial role of the carboxy-terminal domain in regulating the properties of the DNA-binding domain (DBD) supports an induced-fit mechanism, in which the binding of p53 on individual promoters is preferentially regulated by the KOFF over KON.
Collapse
Affiliation(s)
- Giovanni Chillemi
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome 00185, Italy
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," 00133 Rome, Italy
| | | | - Volker Dötsch
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Arnold J Levine
- Institute for Advanced Study, Princeton, New Jersey 08540.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
27
|
Kamagata K, Murata A, Itoh Y, Takahashi S. Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
H3K4me3 induces allosteric conformational changes in the DNA-binding and catalytic regions of the V(D)J recombinase. Proc Natl Acad Sci U S A 2017; 114:1904-1909. [PMID: 28174273 DOI: 10.1073/pnas.1615727114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
V(D)J recombination is initiated by the recombination-activating gene (RAG) recombinase, consisting of RAG-1 and RAG-2 subunits. The susceptibility of gene segments to cleavage by RAG is associated with histone modifications characteristic of active chromatin, including trimethylation of histone H3 at lysine 4 (H3K4me3). Binding of H3K4me3 by a plant homeodomain (PHD) in RAG-2 stimulates substrate binding and catalysis, which are functions of RAG-1. This has suggested an allosteric mechanism in which information regarding occupancy of the RAG-2 PHD is transmitted to RAG-1. To determine whether the conformational distribution of RAG is altered by H3K4me3, we mapped changes in solvent accessibility of cysteine thiols by differential isotopic chemical footprinting. Binding of H3K4me3 to the RAG-2 PHD induces conformational changes in RAG-1 within a DNA-binding domain and in the ZnH2 domain, which acts as a scaffold for the catalytic center. Thus, engagement of H3K4me3 by the RAG-2 PHD is associated with dynamic conformational changes in RAG-1, consistent with allosteric control by active chromatin.
Collapse
|
29
|
Singh SK, Qiao Z, Song L, Jani V, Rice W, Eng E, Coleman RA, Liu WL. Structural visualization of the p53/RNA polymerase II assembly. Genes Dev 2016; 30:2527-2537. [PMID: 27920087 PMCID: PMC5159667 DOI: 10.1101/gad.285692.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/18/2016] [Indexed: 01/03/2023]
Abstract
Singh et al. dissected the human p53/Pol II interaction via single-particle cryo-electron microscopy, structural docking, and biochemical analyses. These findings indicate that p53 may structurally regulate DNA-binding functions of Pol II via the clamp domain, thereby providing insights into p53-regulated Pol II transcription. The master tumor suppressor p53 activates transcription in response to various cellular stresses in part by facilitating recruitment of the transcription machinery to DNA. Recent studies have documented a direct yet poorly characterized interaction between p53 and RNA polymerase II (Pol II). Therefore, we dissected the human p53/Pol II interaction via single-particle cryo-electron microscopy, structural docking, and biochemical analyses. This study reveals that p53 binds Pol II via the Rpb1 and Rpb2 subunits, bridging the DNA-binding cleft of Pol II proximal to the upstream DNA entry site. In addition, the key DNA-binding surface of p53, frequently disrupted in various cancers, remains exposed within the assembly. Furthermore, the p53/Pol II cocomplex displays a closed conformation as defined by the position of the Pol II clamp domain. Notably, the interaction of p53 and Pol II leads to increased Pol II elongation activity. These findings indicate that p53 may structurally regulate DNA-binding functions of Pol II via the clamp domain, thereby providing insights into p53-regulated Pol II transcription.
Collapse
Affiliation(s)
- Sameer K Singh
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Zhen Qiao
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Lihua Song
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Vijay Jani
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - William Rice
- New York Structural Biology Center, Manhattan, New York 10027, USA
| | - Edward Eng
- New York Structural Biology Center, Manhattan, New York 10027, USA
| | - Robert A Coleman
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Wei-Li Liu
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
30
|
Martin TG, Bharat TAM, Joerger AC, Bai XC, Praetorius F, Fersht AR, Dietz H, Scheres SHW. Design of a molecular support for cryo-EM structure determination. Proc Natl Acad Sci U S A 2016; 113:E7456-E7463. [PMID: 27821763 PMCID: PMC5127339 DOI: 10.1073/pnas.1612720113] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the recent rapid progress in cryo-electron microscopy (cryo-EM), there still exist ample opportunities for improvement in sample preparation. Macromolecular complexes may disassociate or adopt nonrandom orientations against the extended air-water interface that exists for a short time before the sample is frozen. We designed a hollow support structure using 3D DNA origami to protect complexes from the detrimental effects of cryo-EM sample preparation. For a first proof-of-principle, we concentrated on the transcription factor p53, which binds to specific DNA sequences on double-stranded DNA. The support structures spontaneously form monolayers of preoriented particles in a thin film of water, and offer advantages in particle picking and sorting. By controlling the position of the binding sequence on a single helix that spans the hollow support structure, we also sought to control the orientation of individual p53 complexes. Although the latter did not yet yield the desired results, the support structures did provide partial information about the relative orientations of individual p53 complexes. We used this information to calculate a tomographic 3D reconstruction, and refined this structure to a final resolution of ∼15 Å. This structure settles an ongoing debate about the symmetry of the p53 tetramer bound to DNA.
Collapse
Affiliation(s)
- Thomas G Martin
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Tanmay A M Bharat
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Andreas C Joerger
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
- German Cancer Consortium (DKTK), Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany
| | - Xiao-Chen Bai
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Florian Praetorius
- Physik Department, Walter Schottky Institute, Technische Universität München, 85748 Garching near Munich, Germany
| | - Alan R Fersht
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Hendrik Dietz
- Physik Department, Walter Schottky Institute, Technische Universität München, 85748 Garching near Munich, Germany
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom;
| |
Collapse
|
31
|
Kim YJ, Kim HJ, Kim HL, Kim HJ, Kim HS, Lee TR, Shin DW, Seo YR. A Protective Mechanism of Visible Red Light in Normal Human Dermal Fibroblasts: Enhancement of GADD45A-Mediated DNA Repair Activity. J Invest Dermatol 2016; 137:466-474. [PMID: 27729279 DOI: 10.1016/j.jid.2016.07.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/16/2016] [Accepted: 07/21/2016] [Indexed: 01/21/2023]
Abstract
The phototherapeutic effects of visible red light on skin have been extensively investigated, but the underlying biological mechanisms remain poorly understood. We aimed to elucidate the protective mechanism of visible red light in terms of DNA repair of UV-induced oxidative damage in normal human dermal fibroblasts. The protective effect of visible red light on UV-induced DNA damage was identified by several assays in both two-dimensional and three-dimensional cell culture systems. With regard to the protective mechanism of visible red light, our data showed alterations in base excision repair mediated by growth arrest and DNA damage inducible, alpha (GADD45A). We also observed an enhancement of the physical activity of GADD45A and apurinic/apyrimidinic endonuclease 1 (APE1) by visible red light. Moreover, UV-induced DNA damages were diminished by visible red light in an APE1-dependent manner. On the basis of the decrease in GADD45A-APE1 interaction in the activating transcription factor-2 (ATF2)-knockdown system, we suggest a role for ATF2 modulation in GADD45A-mediated DNA repair upon visible red light exposure. Thus, the enhancement of GADD45A-mediated base excision repair modulated by ATF2 might be a potential protective mechanism of visible red light.
Collapse
Affiliation(s)
- Yeo Jin Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hye Lim Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyo Jeong Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
32
|
Costa DCF, de Oliveira GAP, Cino EA, Soares IN, Rangel LP, Silva JL. Aggregation and Prion-Like Properties of Misfolded Tumor Suppressors: Is Cancer a Prion Disease? Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023614. [PMID: 27549118 DOI: 10.1101/cshperspect.a023614] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Prion diseases are disorders that share several characteristics that are typical of many neurodegenerative diseases. Recently, several studies have extended the prion concept to pathological aggregation in malignant tumors involving misfolded p53, a tumor-suppressor protein. The aggregation of p53 and its coaggregation with p53 family members, p63 and p73, have been shown. Certain p53 mutants exert a dominant-negative regulatory effect on wild-type (WT) p53. The basis for this dominant-negative effect is that amyloid-like mutant p53 converts WT p53 into an aggregated species, leading to a gain-of-function (GoF) phenotype and the loss of its tumor-suppressor function. Recently, it was shown that p53 aggregates can be internalized by cells and can coaggregate with endogenous p53, corroborating the prion-like properties of p53 aggregates. The prion-like behavior of oncogenic p53 mutants provides an explanation for its dominant-negative and GoF properties, including the high metastatic potential of cancer cells carrying p53 mutations. The inhibition of p53 aggregation appears to represent a promising target for therapeutic intervention in patients with malignant tumors.
Collapse
Affiliation(s)
- Danielly C F Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20550-013, Brazil
| | - Guilherme A P de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Elio A Cino
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Iaci N Soares
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Luciana P Rangel
- Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Jerson L Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil Instituto Nacional de Ciência e Tecnologia (INCT) de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
33
|
Laptenko O, Tong DR, Manfredi J, Prives C. The Tail That Wags the Dog: How the Disordered C-Terminal Domain Controls the Transcriptional Activities of the p53 Tumor-Suppressor Protein. Trends Biochem Sci 2016; 41:1022-1034. [PMID: 27669647 DOI: 10.1016/j.tibs.2016.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/22/2023]
Abstract
The p53 tumor suppressor is a transcription factor (TF) that exerts antitumor functions through its ability to regulate the expression of multiple genes. Within the p53 protein resides a relatively short unstructured C-terminal domain (CTD) that remarkably participates in virtually every aspect of p53 performance as a TF. Because these aspects are often interdependent and it is not always possible to dissect them experimentally, there has been a great deal of controversy about the CTD. In this review we evaluate the significance and key features of this interesting region of p53 and its impact on the many aspects of p53 function in light of previous and more recent findings.
Collapse
Affiliation(s)
- Oleg Laptenko
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - David R Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - James Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
34
|
Full-length p53 tetramer bound to DNA and its quaternary dynamics. Oncogene 2016; 36:1451-1460. [PMID: 27641333 DOI: 10.1038/onc.2016.321] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/15/2016] [Indexed: 01/04/2023]
Abstract
P53 is a major tumor suppressor that is mutated and inactivated in ~50% of all human cancers. Thus, reactivation of mutant p53 using small molecules has been a long sought-after anticancer therapeutic strategy. Full structural characterization of the full-length oligomeric p53 is challenging because of its complex architecture and multiple highly flexible regions. To explore p53 structural dynamics, here we developed a series of atomistic integrative models with available crystal structures of the full-length p53 (fl-p53) tetramer bound to three different DNA sequences: a p21 response element, a puma response element and a nonspecific DNA sequence. Explicitly solvated, all-atom molecular dynamics simulations of the three complexes (totaling nearly 1 μs of aggregate simulation time) yield final structures consistent with electron microscopy maps and, for the first time, show the direct interactions of the p53 C-terminal with DNA. Through a collective principal component analysis, we identify sequence-dependent differential quaternary binding modes of the p53 tetramer interfacing with DNA. Additionally, L1 loop dynamics of fl-p53 in the presence of DNA is revealed, and druggable pockets of p53 are identified via solvent mapping to aid future drug discovery studies.
Collapse
|
35
|
Itoh Y, Murata A, Sakamoto S, Nanatani K, Wada T, Takahashi S, Kamagata K. Activation of p53 Facilitates the Target Search in DNA by Enhancing the Target Recognition Probability. J Mol Biol 2016; 428:2916-30. [DOI: 10.1016/j.jmb.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/23/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022]
|
36
|
Kearns S, Lurz R, Orlova EV, Okorokov AL. Two p53 tetramers bind one consensus DNA response element. Nucleic Acids Res 2016; 44:6185-99. [PMID: 27034469 PMCID: PMC5291249 DOI: 10.1093/nar/gkw215] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/20/2016] [Indexed: 01/28/2023] Open
Abstract
p53 tumor suppressor is a transcription factor that controls cell cycle and genetic integrity. In response to genotoxic stress p53 activates DNA repair, cell cycle arrest, apoptosis or senescence, which are initiated via p53 binding to its specific DNA response elements (RE). The consensus p53 DNA RE consists of two decameric palindromic half-site sequences. Crystallographic studies have demonstrated that two isolated p53 DNA-binding core domains interact with one half-site of the p53 DNA REs suggesting that one p53 tetramer is bound to one RE. However, our recent 3D cryo-EM studies showed that the full-length p53 tetramer is bound to only one half-site of RE. Here, we have used biochemical and electron microscopy (EM) methods to analyze DNA-binding of human and murine p53 tetramers to various p53 DNA REs. Our new results demonstrate that two p53 tetramers can interact sequence-specifically with one DNA RE at the same time. In particular, the EM structural analysis revealed that two p53 tetramers bind one DNA RE simultaneously with DNA positioned between them. These results demonstrate a mode different from that assumed previously for the p53-DNA interaction and suggest important biological implications on p53 activity as a transcriptional regulator of cellular response to stress.
Collapse
Affiliation(s)
- Sinéad Kearns
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London WC1E 7HX, UK Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Rudi Lurz
- Max Planck Institute for Molecular Genetics, Ihnestrasse, Berlin 14195, Germany
| | - Elena V Orlova
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London WC1E 7HX, UK
| | - Andrei L Okorokov
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London WC1E 6BT, UK
| |
Collapse
|
37
|
Twist-open mechanism of DNA damage recognition by the Rad4/XPC nucleotide excision repair complex. Proc Natl Acad Sci U S A 2016; 113:E2296-305. [PMID: 27035942 DOI: 10.1073/pnas.1514666113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
DNA damage repair starts with the recognition of damaged sites from predominantly normal DNA. In eukaryotes, diverse DNA lesions from environmental sources are recognized by the xeroderma pigmentosum C (XPC) nucleotide excision repair complex. Studies of Rad4 (radiation-sensitive 4; yeast XPC ortholog) showed that Rad4 "opens" up damaged DNA by inserting a β-hairpin into the duplex and flipping out two damage-containing nucleotide pairs. However, this DNA lesion "opening" is slow (˜5-10 ms) compared with typical submillisecond residence times per base pair site reported for various DNA-binding proteins during 1D diffusion on DNA. To address the mystery as to how Rad4 pauses to recognize lesions during diffusional search, we examine conformational dynamics along the lesion recognition trajectory using temperature-jump spectroscopy. Besides identifying the ˜10-ms step as the rate-limiting bottleneck towards opening specific DNA site, we uncover an earlier ˜100- to 500-μs step that we assign to nonspecific deformation (unwinding/"twisting") of DNA by Rad4. The β-hairpin is not required to unwind or to overcome the bottleneck but is essential for full nucleotide-flipping. We propose that Rad4 recognizes lesions in a step-wise "twist-open" mechanism, in which preliminary twisting represents Rad4 interconverting between search and interrogation modes. Through such conformational switches compatible with rapid diffusion on DNA, Rad4 may stall preferentially at a lesion site, offering time to open DNA. This study represents the first direct observation, to our knowledge, of dynamical DNA distortions during search/interrogation beyond base pair breathing. Submillisecond interrogation with preferential stalling at cognate sites may be common to various DNA-binding proteins.
Collapse
|
38
|
Nuttall P, Lee K, Ciccarella P, Carminati M, Ferrari G, Kim KB, Albrecht T. Single-Molecule Studies of Unlabeled Full-Length p53 Protein Binding to DNA. J Phys Chem B 2016; 120:2106-14. [DOI: 10.1021/acs.jpcb.5b11076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Philippa Nuttall
- Imperial College London, Department of Chemistry, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Kidan Lee
- Department
of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
| | - Pietro Ciccarella
- Dipartimento
di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.za Leonardo da Vinci 32, Milano, Italy
| | - Marco Carminati
- Dipartimento
di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.za Leonardo da Vinci 32, Milano, Italy
| | - Giorgio Ferrari
- Dipartimento
di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.za Leonardo da Vinci 32, Milano, Italy
| | - Ki-Bum Kim
- Department
of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea
| | - Tim Albrecht
- Imperial College London, Department of Chemistry, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
39
|
Hauser K, Essuman B, He Y, Coutsias E, Garcia-Diaz M, Simmerling C. A human transcription factor in search mode. Nucleic Acids Res 2015; 44:63-74. [PMID: 26673724 PMCID: PMC4705650 DOI: 10.1093/nar/gkv1091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology.
Collapse
Affiliation(s)
- Kevin Hauser
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Yiqing He
- Great Neck South High School, Great Neck, NY 11023, USA
| | - Evangelos Coutsias
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Carlos Simmerling
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
40
|
Lau WCY, Li Y, Zhang Q, Huen MSY. Molecular architecture of the Ub-PCNA/Pol η complex bound to DNA. Sci Rep 2015; 5:15759. [PMID: 26503230 PMCID: PMC4621508 DOI: 10.1038/srep15759] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/29/2015] [Indexed: 01/13/2023] Open
Abstract
Translesion synthesis (TLS) is the mechanism by which DNA polymerases replicate through unrepaired DNA lesions. TLS is activated by monoubiquitination of the homotrimeric proliferating cell nuclear antigen (PCNA) at lysine-164, followed by the switch from replicative to specialized polymerases at DNA damage sites. Pol η belongs to the Y-Family of specialized polymerases that can efficiently bypass UV-induced lesions. Like other members of the Y-Family polymerases, its recruitment to the damaged sites is mediated by the interaction with monoubiquitinated PCNA (Ub-PCNA) via its ubiquitin-binding domain and non-canonical PCNA-interacting motif in the C-terminal region. The structural determinants underlying the direct recognition of Ub-PCNA by Pol η, or Y-Family polymerases in general, remain largely unknown. Here we report a structure of the Ub-PCNA/Pol η complex bound to DNA determined by single-particle electron microscopy (EM). The overall obtained structure resembles that of the editing PCNA/PolB complex. Analysis of the map revealed the conformation of ubiquitin that binds the C-terminal domain of Pol η. Our present study suggests that the Ub-PCNA/Pol η interaction requires the formation of a structured binding interface, which is dictated by the inherent flexibility of Ub-PCNA.
Collapse
Affiliation(s)
- Wilson C Y Lau
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Yinyin Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinfen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Michael S Y Huen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain. Oncogene 2015; 35:3272-81. [PMID: 26477317 PMCID: PMC4929483 DOI: 10.1038/onc.2015.388] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/08/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022]
Abstract
The Trp53 gene is the most frequently mutated gene in all human cancers. Its protein product p53 is a very powerful transcription factor that can activate different biochemical pathways and affect the regulation of metabolism, senescence, DNA damage response, cell cycle and cell death. The understanding of its function at the molecular level could be of pivotal relevance for therapy. Investigation of long-range intra- and interdomain communications in the p53 tetramer–DNA complex was performed by means of an atomistic model that included the tetramerization helices in the C-terminal domain, the DNA-binding domains and a consensus DNA-binding site of 18 base pairs. Nonsymmetric dynamics are illustrated in the four DNA-binding domains, with loop L1 switching from inward to outward conformations with respect to the DNA major groove. Direct intra- and intermonomeric long-range communications between the tetramerization and DNA-binding domains are noted. These long-distance conformational changes link the C terminus with the DNA-binding domain and provide a biophysical rationale for the reported functional regulation of the p53 C-terminal region. A fine characterization of the DNA deformation caused by p53 binding is obtained, with ‘static' deformations always present and measured by the slide parameter in the central thymine–adenine base pairs; we also detect ‘dynamic' deformations switched on and off by particular p53 tetrameric conformations and measured by the roll and twist parameters in the same base pairs. These different conformations can indeed modulate the electrostatic potential isosurfaces of the whole p53–DNA complex. These results provide a molecular/biophysical understanding of the evident role of the C terminus in post-translational modification that regulates the transcriptional function of p53. Furthermore, the unstructured C terminus is able to facilitate contacts between the core DNA-binding domains of the tetramer.
Collapse
|
42
|
Murata A, Ito Y, Kashima R, Kanbayashi S, Nanatani K, Igarashi C, Okumura M, Inaba K, Tokino T, Takahashi S, Kamagata K. One-Dimensional Sliding of p53 Along DNA Is Accelerated in the Presence of Ca2+ or Mg2+ at Millimolar Concentrations. J Mol Biol 2015; 427:2663-78. [DOI: 10.1016/j.jmb.2015.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/27/2015] [Accepted: 06/25/2015] [Indexed: 01/08/2023]
|
43
|
de Oliveira GAP, Rangel LP, Costa DC, Silva JL. Misfolding, Aggregation, and Disordered Segments in c-Abl and p53 in Human Cancer. Front Oncol 2015; 5:97. [PMID: 25973395 PMCID: PMC4413674 DOI: 10.3389/fonc.2015.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/10/2015] [Indexed: 01/31/2023] Open
Abstract
The current understanding of the molecular mechanisms that lead to cancer is not sufficient to explain the loss or gain of function in proteins related to tumorigenic processes. Among them, more than 100 oncogenes, 20-30 tumor-suppressor genes, and hundreds of genes participating in DNA repair and replication have been found to play a role in the origins of cancer over the last 25 years. The phosphorylation of serine, threonine, or tyrosine residues is a critical step in cellular growth and development and is achieved through the tight regulation of protein kinases. Phosphorylation plays a major role in eukaryotic signaling as kinase domains are found in 2% of our genes. The deregulation of kinase control mechanisms has disastrous consequences, often leading to gains of function, cell transformation, and cancer. The c-Abl kinase protein is one of the most studied targets in the fight against cancer and is a hotspot for drug development because it participates in several solid tumors and is the hallmark of chronic myelogenous leukemia. Tumor suppressors have the opposite effects. Their fundamental role in the maintenance of genomic integrity has awarded them a role as the guardians of DNA. Among the tumor suppressors, p53 is the most studied. The p53 protein has been shown to be a transcription factor that recognizes and binds to specific DNA response elements and activates gene transcription. Stress triggered by ionizing radiation or other mutagenic events leads to p53 phosphorylation and cell-cycle arrest, senescence, or programed cell death. The p53 gene is the most frequently mutated gene in cancer. Mutations in the DNA-binding domain are classified as class I or class II depending on whether substitutions occur in the DNA contact sites or in the protein core, respectively. Tumor-associated p53 mutations often lead to the loss of protein function, but recent investigations have also indicated gain-of-function mutations. The prion-like aggregation of mutant p53 is associated with loss-of-function, dominant-negative, and gain-of-function effects. In the current review, we focused on the most recent insights into the protein structure and function of the c-Abl and p53 proteins that will provide us guidance to understand the loss and gain of function of these misfolded tumor-associated proteins.
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana P. Rangel
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielly C. Costa
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014; 114:6844-79. [PMID: 24830552 PMCID: PMC4100540 DOI: 10.1021/cr400713r] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Prerna Malaney
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Steven J. Metallo
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Ravi Ramesh Pathak
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
45
|
Kotnala A, Gordon R. Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins. BIOMEDICAL OPTICS EXPRESS 2014; 5:1886-94. [PMID: 24940547 PMCID: PMC4052917 DOI: 10.1364/boe.5.001886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/17/2014] [Accepted: 05/19/2014] [Indexed: 05/05/2023]
Abstract
Here we report on the use of double-nanohole (DNH) optical tweezers as a label-free and free-solution single-molecule probe for protein-DNA interactions. Using this approach, we demonstrate the unzipping of individual 10 base pair DNA-hairpins, and quantify how tumor suppressor p53 protein delays the unzipping. From the Arrhenius behavior, we find the energy barrier to unzipping introduced by p53 to be 2 × 10(-20) J, whereas cys135ser mutant p53 does not show suppression of unzipping, which gives clues to its functional inability to suppress tumor growth. This transformative approach to single molecule analysis allows for ultra-sensitive detection and quantification of protein-DNA interactions to revolutionize the fight against genetic diseases.
Collapse
|
46
|
Mackay J. Transcription factor seeks DNA-cognate site preferred. J Mol Biol 2014; 426:1370-2. [PMID: 24333952 DOI: 10.1016/j.jmb.2013.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joel Mackay
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| |
Collapse
|
47
|
Abstract
The design of a broad-spectrum cancer drug would provide enormous clinical benefits to treat cancer patients. Most of cancerous cells have a mutation in the p53 gene that results in an inactive mutant p53 protein. For this reason, p53 is a prime target for the development of a broad-spectrum cancer drug. To provide the atomic information to rationally design a drug to recover p53 activity is the main goal of the structural studies on mutant p53. We review three mechanisms that influence p53 activity and provide information about how reactivation of mutant p53 can be achieved: stabilization of the active conformation of the DNA-binding domain of the protein, suppression of missense mutations in the DNA-binding domain by a second-site mutation, and increased transactivation.
Collapse
Affiliation(s)
- Hector Viadiu
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, D.F., Mexico,
| | | | | |
Collapse
|
48
|
Wallentine BD, Wang Y, Tretyachenko-Ladokhina V, Tan M, Senear DF, Luecke H. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2146-56. [PMID: 24100332 PMCID: PMC3792646 DOI: 10.1107/s0907444913020830] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/25/2013] [Indexed: 11/10/2022]
Abstract
To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol(-1) (15.1 kJ mol(-1)). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the β-sandwich scaffold. On the other hand, the substitution N239Y creates an advantageous hydrophobic contact between the aromatic ring of this tyrosine and the adjacent Leu137. Surprisingly, the rescued cancer mutant shows much larger structural deviations than the cancer mutant alone when compared with wild-type p53. These suppressor mutations appear to rescue p53 function by creating novel intradomain interactions that stabilize the core domain, allowing compensation for the destabilizing V157F mutation.
Collapse
Affiliation(s)
- Brad D. Wallentine
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ying Wang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Martha Tan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Donald F. Senear
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Hartmut Luecke
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
- Center for Biomembrane Systems, University of California, Irvine, Irvine, CA 92697, USA
- Unidad de Biofisica (CSIC, UPV/EHU) and Departamento de Bioquimica, Universidad del Pais Vasco, 48940 Leioa, Spain
| |
Collapse
|
49
|
Chillemi G, Davidovich P, D'Abramo M, Mametnabiev T, Garabadzhiu AV, Desideri A, Melino G. Molecular dynamics of the full-length p53 monomer. Cell Cycle 2013; 12:3098-108. [PMID: 23974096 DOI: 10.4161/cc.26162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The p53 protein is frequently mutated in a very large proportion of human tumors, where it seems to acquire gain-of-function activity that facilitates tumor onset and progression. A possible mechanism is the ability of mutant p53 proteins to physically interact with other proteins, including members of the same family, namely p63 and p73, inactivating their function. Assuming that this interaction might occurs at the level of the monomer, to investigate the molecular basis for this interaction, here, we sample the structural flexibility of the wild-type p53 monomeric protein. The results show a strong stability up to 850 ns in the DNA binding domain, with major flexibility in the N-terminal transactivations domains (TAD1 and TAD2) as well as in the C-terminal region (tetramerization domain). Several stable hydrogen bonds have been detected between N-terminal or C-terminal and DNA binding domain, and also between N-terminal and C-terminal. Essential dynamics analysis highlights strongly correlated movements involving TAD1 and the proline-rich region in the N-terminal domain, the tetramerization region in the C-terminal domain; Lys120 in the DNA binding region. The herein presented model is a starting point for further investigation of the whole protein tetramer as well as of its mutants.
Collapse
|
50
|
Vargas J, Otón J, Marabini R, Jonic S, de la Rosa-Trevín JM, Carazo JM, Sorzano COS. FASTDEF: fast defocus and astigmatism estimation for high-throughput transmission electron microscopy. J Struct Biol 2012; 181:136-48. [PMID: 23261401 DOI: 10.1016/j.jsb.2012.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
In this work we present a fast and automated algorithm for estimating the contrast transfer function (CTF) of a transmission electron microscope. The approach is very suitable for High Throughput work because: (a) it does not require any initial defocus estimation, (b) it is almost an order of magnitude faster than existing approaches, (c) it opens the way to well-defined extensions to the estimation of higher order aberrations, at the same time that provides defocus and astigmatism estimations comparable in accuracy to well established methods, such as Xmipp and CTFFIND3 approaches. The new algorithm is based on obtaining the wrapped modulating phase of the power spectra density pattern by the use of a quadrature filter. This phase is further unwrapped in order to obtain the continuous and smooth absolute phase map; then a Zernike polynomial fitting is performed and the defocus and astigmatism parameters are determined. While the method does not require an initial estimation of the defocus parameters or any non-linear optimization procedure, these approaches can be used if further refinement is desired. Results of the CTF estimation method are presented for standard negative stained images, cryo-electron microscopy images in the absence of carbon support, as well as micrographs with only ice. Additionally, we have also tested the proposed method with micrographs acquired from tilted and untilted samples, obtaining good results. The algorithm is freely available as a part of the Xmipp package [http://xmipp.cnb.csic.es].
Collapse
Affiliation(s)
- J Vargas
- Biocomputing Unit, Centro Nacional de Biotecnología-CSIC, C/ Darwin 3, 28049 Cantoblanco, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|