1
|
Kanai R, Vilsen B, Cornelius F, Toyoshima C. Crystal structures of Na + ,K + -ATPase reveal the mechanism that converts the K + -bound form to Na + -bound form and opens and closes the cytoplasmic gate. FEBS Lett 2023; 597:1957-1976. [PMID: 37357620 DOI: 10.1002/1873-3468.14689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Na+ ,K+ -ATPase (NKA) plays a pivotal role in establishing electrochemical gradients for Na+ and K+ across the cell membrane by alternating between the E1 (showing high affinity for Na+ and low affinity for K+ ) and E2 (low affinity to Na+ and high affinity to K+ ) forms. Presented here are two crystal structures of NKA in E1·Mg2+ and E1·3Na+ states at 2.9 and 2.8 Å resolution, respectively. These two E1 structures fill a gap in our description of the NKA reaction cycle based on the atomic structures. We describe how NKA converts the K+ -bound E2·2K+ form to an E1 (E1·Mg2+ ) form, which allows high-affinity Na+ binding, eventually closing the cytoplasmic gate (in E1 ~ P·ADP·3Na+ ) after binding three Na+ , while keeping the extracellular ion pathway sealed. We now understand previously unknown functional roles for several parts of NKA and that NKA uses even the lipid bilayer for gating the ion pathway.
Collapse
Affiliation(s)
- Ryuta Kanai
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Denmark
| | | | - Chikashi Toyoshima
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
2
|
Rui H, Das A, Nakamoto R, Roux B. Proton Countertransport and Coupled Gating in the Sarcoplasmic Reticulum Calcium Pump. J Mol Biol 2018; 430:5050-5065. [PMID: 30539761 DOI: 10.1016/j.jmb.2018.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/25/2018] [Accepted: 10/20/2018] [Indexed: 10/28/2022]
Abstract
The calcium pump of the sarcoplasmic reticulum (SERCA) is an ATP-driven active transporter of Ca2+ ions that functions via an "alternating-access" cycle mechanism. In each cycle, SERCA transports two Ca2+ ions toward the lumen of the sarcoplasmic reticulum and two to three protons to the cytoplasm. How the latter conformational transition is coupled to cytoplasmic release of protons remains poorly understood. The present computational study shows how the mechanism of proton countertransport is coupled to the alternating access gating process in SERCA. Molecular dynamics simulation trajectories are generated starting from a series of configurations taken along the E2 to E1 transition pathway determined by the string method with swarms-of-trajectories. Simulations of different protonation configurations at the binding sites reveal how deprotonation events affect the opening of the cytoplasmic gate. The results show that there is a strong coupling between the chronological order of deprotonation, the entry of water molecules into the TM region, and the opening of the cytoplasmic gate. Deprotonation of E309 and E771 is sequential with E309 being the first to lose the proton. The deprotonation promotes the opening of the cytoplasmic gate but leads to a productive gating transition only if it occurs after the transmembrane domain has reached an intermediate conformation. Deprotonation of E309 and E771 is unproductive when it occurs too early because it causes the re-opening of the luminal gate.
Collapse
Affiliation(s)
- Huan Rui
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Avisek Das
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Robert Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, PO Box 800886, 480 Ray C. Hunt Drive, Charlottesville, VA 22908, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Fernández-de Gortari E, Espinoza-Fonseca LM. Structural basis for relief of phospholamban-mediated inhibition of the sarcoplasmic reticulum Ca 2+-ATPase at saturating Ca 2+ conditions. J Biol Chem 2018; 293:12405-12414. [PMID: 29934304 DOI: 10.1074/jbc.ra118.003752] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/21/2018] [Indexed: 11/06/2022] Open
Abstract
Sarcoplasmic reticulum Ca2+-ATPase (SERCA) is critical for cardiac Ca2+ transport. Reversal of phospholamban (PLB)-mediated SERCA inhibition by saturating Ca2+ conditions operates as a physiological rheostat to reactivate SERCA function in the absence of PLB phosphorylation. Here, we performed extensive atomistic molecular dynamics simulations to probe the structural mechanism of this process. Simulation of the inhibitory complex at superphysiological Ca2+ concentrations ([Ca2+] = 10 mm) revealed that Ca2+ ions interact primarily with SERCA and the lipid headgroups, but not with PLB's cytosolic domain or the cytosolic side of the SERCA-PLB interface. At this [Ca2+], a single Ca2+ ion was translocated from the cytosol to the transmembrane transport sites. We used this Ca2+-bound complex as an initial structure to simulate the effects of saturating Ca2+ at physiological conditions ([Ca2+]total ≈ 400 μm). At these conditions, ∼30% of the Ca2+-bound complexes exhibited structural features consistent with an inhibited state. However, in ∼70% of the Ca2+-bound complexes, Ca2+ moved to transport site I, recruited Glu771 and Asp800, and disrupted key inhibitory contacts involving the conserved PLB residue Asn34 Structural analysis showed that Ca2+ induces only local changes in interresidue inhibitory interactions, but does not induce repositioning or changes in PLB structural dynamics. Upon relief of SERCA inhibition, Ca2+ binding produced a site I configuration sufficient for subsequent SERCA activation. We propose that at saturating [Ca2+] and in the absence of PLB phosphorylation, binding of a single Ca2+ ion in the transport sites rapidly shifts the equilibrium toward a noninhibited SERCA-PLB complex.
Collapse
Affiliation(s)
- Eli Fernández-de Gortari
- From the Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - L Michel Espinoza-Fonseca
- From the Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
4
|
Zhekova HR, Ngo V, da Silva MC, Salahub D, Noskov S. Selective ion binding and transport by membrane proteins – A computational perspective. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Kobayashi C, Jung J, Matsunaga Y, Mori T, Ando T, Tamura K, Kamiya M, Sugita Y. GENESIS 1.1: A hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms. J Comput Chem 2017; 38:2193-2206. [PMID: 28718930 DOI: 10.1002/jcc.24874] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 01/09/2023]
Abstract
GENeralized-Ensemble SImulation System (GENESIS) is a software package for molecular dynamics (MD) simulation of biological systems. It is designed to extend limitations in system size and accessible time scale by adopting highly parallelized schemes and enhanced conformational sampling algorithms. In this new version, GENESIS 1.1, new functions and advanced algorithms have been added. The all-atom and coarse-grained potential energy functions used in AMBER and GROMACS packages now become available in addition to CHARMM energy functions. The performance of MD simulations has been greatly improved by further optimization, multiple time-step integration, and hybrid (CPU + GPU) computing. The string method and replica-exchange umbrella sampling with flexible collective variable choice are used for finding the minimum free-energy pathway and obtaining free-energy profiles for conformational changes of a macromolecule. These new features increase the usefulness and power of GENESIS for modeling and simulation in biological research. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chigusa Kobayashi
- Computational Biophysics Research Team, RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minamachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Jaewoon Jung
- Computational Biophysics Research Team, RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minamachi, Chuo-ku, Kobe, 650-0047, Japan.,Theoretical Molecular Science Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasuhiro Matsunaga
- Computational Biophysics Research Team, RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minamachi, Chuo-ku, Kobe, 650-0047, Japan.,JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Takaharu Mori
- Theoretical Molecular Science Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tadashi Ando
- Laboratory for Biomolecular Function Simulation, RIKEN Quantitative Biology Center Computational Biology Research Core, 1-6-5 Minatojima-minamachi, Chuo-ku, Kobe, 650-0047, Japan.,Department of Applied Electronics, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.,Water Frontier Science and Technology Research Center, Research Institute for Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.,Research Division of Multiscale Interfacial Thermofluid Dynamics, Research Institute for Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Koichi Tamura
- Computational Biophysics Research Team, RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minamachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Motoshi Kamiya
- Computational Biophysics Research Team, RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minamachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minamachi, Chuo-ku, Kobe, 650-0047, Japan.,Theoretical Molecular Science Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan.,Laboratory for Biomolecular Function Simulation, RIKEN Quantitative Biology Center Computational Biology Research Core, 1-6-5 Minatojima-minamachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
6
|
Protein–phospholipid interplay revealed with crystals of a calcium pump. Nature 2017; 545:193-198. [DOI: 10.1038/nature22357] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/12/2017] [Indexed: 11/08/2022]
|
7
|
Das A, Rui H, Nakamoto R, Roux B. Conformational Transitions and Alternating-Access Mechanism in the Sarcoplasmic Reticulum Calcium Pump. J Mol Biol 2017; 429:647-666. [PMID: 28093226 PMCID: PMC5467534 DOI: 10.1016/j.jmb.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/31/2016] [Accepted: 01/08/2017] [Indexed: 11/22/2022]
Abstract
Ion pumps are integral membrane proteins responsible for transporting ions against concentration gradients across biological membranes. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), a member of the P-type ATPases family, transports two calcium ions per hydrolyzed ATP molecule via an "alternating-access" mechanism. High-resolution crystallographic structures provide invaluable insight on the structural mechanism of the ion pumping process. However, to understand the molecular details of how ATP hydrolysis is coupled to calcium transport, it is necessary to gain knowledge about the conformational transition pathways connecting the crystallographically resolved conformations. Large-scale transitions in SERCA occur at time-scales beyond the current reach of unbiased molecular dynamics simulations. Here, we overcome this challenge by employing the string method, which represents a transition pathway as a chainofstates linking two conformational endpoints. Using a multiscale methodology, we have determined all-atom transition pathways for three main conformational transitions responsible for the alternating-access mechanism. The present pathways provide a clear chronology and ordering of the key events underlying the active transport of calcium ions by SERCA. Important conclusions are that the conformational transition that leads to occlusion with bound ATP and calcium is highly concerted and cooperative, the phosphorylation of Asp351 causes areorganization of the cytoplasmic domains that subsequently drives the opening of the luminal gate, and thereclosing of luminal gate induces a shift in the cytoplasmic domains that subsequently enables the dephosphorylation of Asp351-P. Formation of transient residue-residue contacts along the conformational transitions predicted by the computations provide an experimental route to test the general validity of the computational pathways.
Collapse
Affiliation(s)
- Avisek Das
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago,IL 60637, USA
| | - Huan Rui
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago,IL 60637, USA
| | - Robert Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, PO Box 800886, 480Ray C. Hunt Drive, Charlottesville, VA 22908, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago,IL 60637, USA.
| |
Collapse
|
8
|
Espinoza-Fonseca LM, Autry JM, Ramírez-Salinas GL, Thomas DD. Atomic-level mechanisms for phospholamban regulation of the calcium pump. Biophys J 2016; 108:1697-1708. [PMID: 25863061 DOI: 10.1016/j.bpj.2015.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/25/2015] [Accepted: 03/04/2015] [Indexed: 12/29/2022] Open
Abstract
We performed protein pKa calculations and molecular dynamics (MD) simulations of the calcium pump (sarcoplasmic reticulum Ca(2+)-ATPase (SERCA)) in complex with phospholamban (PLB). X-ray crystallography studies have suggested that PLB locks SERCA in a low-Ca(2+)-affinity E2 state that is incompatible with metal-ion binding, thereby blocking the conversion toward a high-Ca(2+)-affinity E1 state. Estimation of pKa values of the acidic residues in the transport sites indicates that at normal intracellular pH (7.1-7.2), PLB-bound SERCA populates an E1 state that is deprotonated at residues E309 and D800 yet protonated at residue E771. We performed three independent microsecond-long MD simulations to evaluate the structural dynamics of SERCA-PLB in a solution containing 100 mM K(+) and 3 mM Mg(2+). Principal component analysis showed that PLB-bound SERCA lies exclusively along the structural ensemble of the E1 state. We found that the transport sites of PLB-bound SERCA are completely exposed to the cytosol and that K(+) ions bind transiently (≤5 ns) and nonspecifically (nine different positions) to the two transport sites, with a total occupancy time of K(+) in the transport sites of 80%. We propose that PLB binding to SERCA populates a novel (to our knowledge) E1 intermediate, E1⋅H(+)771. This intermediate serves as a kinetic trap that controls headpiece dynamics and depresses the structural transitions necessary for Ca(2+)-dependent activation of SERCA. We conclude that PLB-mediated regulation of SERCA activity in the heart results from biochemical and structural transitions that occur primarily in the E1 state of the pump.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota.
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - G Lizbeth Ramírez-Salinas
- Laboratorio de Modelado Molecular y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
9
|
Komuro Y, Re S, Kobayashi C, Muneyuki E, Sugita Y. CHARMM Force-Fields with Modified Polyphosphate Parameters Allow Stable Simulation of the ATP-Bound Structure of Ca(2+)-ATPase. J Chem Theory Comput 2015; 10:4133-42. [PMID: 26588553 DOI: 10.1021/ct5004143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adenosine triphosphate (ATP) is an indispensable energy source in cells. In a wide variety of biological phenomena like glycolysis, muscle contraction/relaxation, and active ion transport, chemical energy released from ATP hydrolysis is converted to mechanical forces to bring about large-scale conformational changes in proteins. Investigation of structure-function relationships in these proteins by molecular dynamics (MD) simulations requires modeling of ATP in solution and ATP bound to proteins with accurate force-field parameters. In this study, we derived new force-field parameters for the triphosphate moiety of ATP based on the high-precision quantum calculations of methyl triphosphate. We tested our new parameters on membrane-embedded sarcoplasmic reticulum Ca(2+)-ATPase and four soluble proteins. The ATP-bound structure of Ca(2+)-ATPase remains stable during MD simulations, contrary to the outcome in shorter simulations using original parameters. Similar results were obtained with the four ATP-bound soluble proteins. The new force-field parameters were also tested by investigating the range of conformations sampled during replica-exchange MD simulations of ATP in explicit water. Modified parameters allowed a much wider range of conformational sampling compared with the bias toward extended forms with original parameters. A diverse range of structures agrees with the broad distribution of ATP conformations in proteins deposited in the Protein Data Bank. These simulations suggest that the modified parameters will be useful in studies of ATP in solution and of the many ATP-utilizing proteins.
Collapse
Affiliation(s)
- Yasuaki Komuro
- Graduate School of Science and Engineering, Chuo University , 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.,RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan.,RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Suyong Re
- RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Chigusa Kobayashi
- RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Eiro Muneyuki
- Graduate School of Science and Engineering, Chuo University , 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuji Sugita
- RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan.,RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Quantitative Biology Center, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN iTHES , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Mechanism of the αβ conformational change in F1-ATPase after ATP hydrolysis: free-energy simulations. Biophys J 2015; 108:85-97. [PMID: 25564855 DOI: 10.1016/j.bpj.2014.11.1853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
One of the motive forces for F1-ATPase rotation is the conformational change of the catalytically active β subunit due to closing and opening motions caused by ATP binding and hydrolysis, respectively. The closing motion is accomplished in two steps: the hydrogen-bond network around ATP changes and then the entire structure changes via B-helix sliding, as shown in our previous study. Here, we investigated the opening motion induced by ATP hydrolysis using all-atom free-energy simulations, combining the nudged elastic band method and umbrella sampling molecular-dynamics simulations. Because hydrolysis requires residues in the α subunit, the simulations were performed with the αβ dimer. The results indicate that the large-scale opening motion is also achieved by the B-helix sliding (in the reverse direction). However, the sliding mechanism is different from that of ATP binding because sliding is triggered by separation of the hydrolysis products ADP and Pi. We also addressed several important issues: 1), the timing of the product Pi release; 2), the unresolved half-closed β structure; and 3), the ADP release mechanism. These issues are fundamental for motor function; thus, the rotational mechanism of the entire F1-ATPase is also elucidated through this αβ study. During the conformational change, conserved residues among the ATPase proteins play important roles, suggesting that the obtained mechanism may be shared with other ATPase proteins. When combined with our previous studies, these results provide a comprehensive view of the β-subunit conformational change that drives the ATPase.
Collapse
|
11
|
Abstract
![]()
To
characterize the conformational dynamics of sarcoplasmic reticulum
(SR) calcium pump (SERCA) we performed molecular dynamics simulations
beginning with several different high-resolution structures. We quantified
differences in structural disorder and dynamics for an open conformation
of SERCA versus closed structures and observed that dynamic motions
of SERCA cytoplasmic domains decreased with decreasing domain–domain
separation distance. The results are useful for interpretation of
recent intramolecular Förster resonance energy transfer (FRET)
distance measurements obtained for SERCA fused to fluorescent protein
tags. Those previous physical measurements revealed several discrete
structural substates and suggested open conformations of SERCA are
more dynamic than compact conformations. The present simulations support
this hypothesis and provide additional details of SERCA molecular
mechanisms. Specifically, all-atoms simulations revealed large-scale
translational and rotational motions of the SERCA N-domain relative
to the A- and P-domains during the transition from an open to a closed
headpiece conformation over the course of a 400 ns trajectory. The
open-to-closed structural transition was accompanied by a disorder-to-order
transition mediated by an initial interaction of an N-domain loop
(Nβ5-β6, residues 426–436) with residues 133–139
of the A-domain. Mutation of three negatively charged N-domain loop
residues abolished the disorder-to-order transition and prevented
the initial domain–domain interaction and subsequent closure
of the cytoplasmic headpiece. Coarse-grained molecular dynamics simulations
were in harmony with all-atoms simulations and physical measurements
and revealed a close communication between fluorescent protein tags
and the domain to which they were fused. The data indicate that previous
intramolecular FRET distance measurements report SERCA structure changes
with high fidelity and suggest a structural mechanism that facilitates
the closure of the SERCA cytoplasmic headpiece.
Collapse
Affiliation(s)
- Nikolai Smolin
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| | | |
Collapse
|
12
|
Mahmmoud YA, Kopec W, Khandelia H. K+ congeners that do not compromise Na+ activation of the Na+,K+-ATPase: hydration of the ion binding cavity likely controls ion selectivity. J Biol Chem 2014; 290:3720-31. [PMID: 25533461 DOI: 10.1074/jbc.m114.577486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Na(+),K(+)-ATPase is essential for ionic homeostasis in animal cells. The dephosphoenzyme contains Na(+) selective inward facing sites, whereas the phosphoenzyme contains K(+) selective outward facing sites. Under normal physiological conditions, K(+) inhibits cytoplasmic Na(+) activation of the enzyme. Acetamidinium (Acet(+)) and formamidinium (Form(+)) have been shown to permeate the pump through the outward facing sites. Here, we show that these cations, unlike K(+), are unable to enter the inward facing sites in the dephosphorylated enzyme. Consistently, the organic cations exhibited little to no antagonism to cytoplasmic Na(+) activation. Na(+),K(+)-ATPase structures revealed a previously undescribed rotamer transition of the hydroxymethyl side chain of the absolutely conserved Thr(772) of the α-subunit. The side chain contributes its hydroxyl to Na(+) in site I in the E1 form and rotates to contribute its methyl group toward K(+) in the E2 form. Molecular dynamics simulations to the E1·AlF4 (-)·ADP·3Na(+) structure indicated that 1) bound organic cations differentially distorted the ion binding sites, 2) the hydroxymethyl of Thr(772) rotates to stabilize bound Form(+) through water molecules, and 3) the rotamer transition is mediated by water traffic into the ion binding cavity. Accordingly, dehydration induced by osmotic stress enhanced the interaction of the congeners with the outward facing sites and profoundly modified the organization of membrane domains of the α-subunit. These results assign a catalytic role for water in pump function, and shed light on a backbone-independent but a conformation-dependent switch between H-bond and dispersion contact as part of the catalytic mechanism of the Na(+),K(+)-ATPase.
Collapse
Affiliation(s)
- Yasser A Mahmmoud
- From the Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C and
| | - Wojciech Kopec
- the MEMPHYS, Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Himanshu Khandelia
- the MEMPHYS, Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
13
|
Deriu MA, Grasso G, Licandro G, Danani A, Gallo D, Tuszynski JA, Morbiducci U. Investigation of the Josephin Domain protein-protein interaction by molecular dynamics. PLoS One 2014; 9:e108677. [PMID: 25268243 PMCID: PMC4182536 DOI: 10.1371/journal.pone.0108677] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/23/2014] [Indexed: 11/18/2022] Open
Abstract
Spinocerebellar ataxia (SCA) 3, the most common form of SCA, is a neurodegenerative rare disease characterized by polyglutamine tract expansion and self-assembly of Ataxin3 (At3) misfolded proteins into highly organized fibrillar aggregates. The At3 N-terminal Josephin Domain (JD) has been suggested as being responsible for mediating the initial phase of the At3 double-step fibrillogenesis. Several issues concerning the residues involved in the JD's aggregation and, more generally, the JD clumping mechanism have not been clarified yet. In this paper we present an investigation focusing on the JD protein-protein interaction by means of molecular modeling. Our results suggest possible aminoacids involved in JD contact together with local and non-local effects following JD dimerization. Surprisingly, JD conformational changes following the binding may involve ubiquitin binding sites and hairpin region even though they do not pertain to the JD interaction surfaces. Moreover, the JD binding event has been found to alter the hairpin open-like conformation toward a closed-like arrangement over the simulated timescale. Finally, our results suggest that the JD aggregation might be a multi-step process, with an initial fast JD-JD binding mainly driven by Arg101, followed by slower structural global rearrangements involving the exposure to the solvent of Leu84-Trp87, which might play a role in a second step of JD aggregation.
Collapse
Affiliation(s)
- Marco A. Deriu
- Institute of Computer Integrated Manufacturing for Sustainable Innovation, Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
- * E-mail:
| | - Gianvito Grasso
- Institute of Computer Integrated Manufacturing for Sustainable Innovation, Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | - Ginevra Licandro
- Institute of Computer Integrated Manufacturing for Sustainable Innovation, Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | - Andrea Danani
- Institute of Computer Integrated Manufacturing for Sustainable Innovation, Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | - Diego Gallo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
14
|
Espinoza-Fonseca LM, Autry JM, Thomas DD. Microsecond molecular dynamics simulations of Mg²⁺- and K⁺-bound E1 intermediate states of the calcium pump. PLoS One 2014; 9:e95979. [PMID: 24760008 PMCID: PMC3997511 DOI: 10.1371/journal.pone.0095979] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/31/2014] [Indexed: 12/31/2022] Open
Abstract
We have performed microsecond molecular dynamics (MD) simulations to characterize the structural dynamics of cation-bound E1 intermediate states of the calcium pump (sarcoendoplasmic reticulum Ca²⁺-ATPase, SERCA) in atomic detail, including a lipid bilayer with aqueous solution on both sides. X-ray crystallography with 40 mM Mg²⁺ in the absence of Ca²⁺ has shown that SERCA adopts an E1 structure with transmembrane Ca²⁺-binding sites I and II exposed to the cytosol, stabilized by a single Mg²⁺ bound to a hybrid binding site I'. This Mg²⁺-bound E1 intermediate state, designated E1•Mg²⁺, is proposed to constitute a functional SERCA intermediate that catalyzes the transition from E2 to E1•2Ca²⁺ by facilitating H⁺/Ca²⁺ exchange. To test this hypothesis, we performed two independent MD simulations based on the E1•Mg²⁺ crystal structure, starting in the presence or absence of initially-bound Mg²⁺. Both simulations were performed for 1 µs in a solution containing 100 mM K⁺ and 5 mM Mg²⁺ in the absence of Ca²⁺, mimicking muscle cytosol during relaxation. In the presence of initially-bound Mg²⁺, SERCA site I' maintained Mg²⁺ binding during the entire MD trajectory, and the cytosolic headpiece maintained a semi-open structure. In the absence of initially-bound Mg²⁺, two K⁺ ions rapidly bound to sites I and I' and stayed loosely bound during most of the simulation, while the cytosolic headpiece shifted gradually to a more open structure. Thus MD simulations predict that both E1•Mg²⁺ and E•2K+ intermediate states of SERCA are populated in solution in the absence of Ca²⁺, with the more open 2K+-bound state being more abundant at physiological ion concentrations. We propose that the E1•2K⁺ state acts as a functional intermediate that facilitates the E2 to E1•2Ca²⁺ transition through two mechanisms: by pre-organizing transport sites for Ca²⁺ binding, and by partially opening the cytosolic headpiece prior to Ca²⁺ activation of nucleotide binding.
Collapse
Affiliation(s)
- L. Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Joseph M. Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
15
|
Toyoshima C, Cornelius F. New crystal structures of PII-type ATPases: excitement continues. Curr Opin Struct Biol 2013; 23:507-14. [PMID: 23871101 DOI: 10.1016/j.sbi.2013.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022]
Abstract
P-type ATPases are ATP-powered ion pumps, classified into five subfamilies (PI-PV). Of these, PII-type ATPases, including Ca2+-ATPase, Na+,K+-ATPase and gastric H+,K+-ATPase, among others, have been the most intensively studied. Best understood structurally and biochemically is Ca2+-ATPase from sarcoplasmic reticulum of fast twitch skeletal muscle (sarco(endo)plasmic reticulum Ca2+-ATPase 1a, SERCA1a). Since publication of the first crystal structure in 2000, it has continuously been a source of excitement, as crystal structures for new reaction intermediates always show large structural changes. Crystal structures now exist for most of the reaction intermediates, almost covering the entire reaction cycle. This year the crystal structure of a missing link, the E1·Mg2+ state, finally appeared, bringing another surprise: bound sarcolipin (SLN). The current status of two other important PII-type ATPases, Na+,K+-ATPase and H+,K+-ATPase, is also briefly described.
Collapse
Affiliation(s)
- Chikashi Toyoshima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.
| | | |
Collapse
|
16
|
Kekenes-Huskey PM, Metzger VT, Grant BJ, Andrew McCammon J. Calcium binding and allosteric signaling mechanisms for the sarcoplasmic reticulum Ca²+ ATPase. Protein Sci 2013; 21:1429-43. [PMID: 22821874 DOI: 10.1002/pro.2129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The sarcoplasmic reticulum Ca²⁺ ATPase (SERCA) is a membrane-bound pump that utilizes ATP to drive calcium ions from the myocyte cytosol against the higher calcium concentration in the sarcoplasmic reticulum. Conformational transitions associated with Ca²⁺-binding are important to its catalytic function. We have identified collective motions that partition SERCA crystallographic structures into multiple catalytically-distinct states using principal component analysis. Using Brownian dynamics simulations, we demonstrate the important contribution of surface-exposed, polar residues in the diffusional encounter of Ca²⁺. Molecular dynamics simulations indicate the role of Glu309 gating in binding Ca²⁺, as well as subsequent changes in the dynamics of SERCA's cytosolic domains. Together these data provide structural and dynamical insights into a multistep process involving Ca²⁺ binding and catalytic transitions.
Collapse
Affiliation(s)
- Peter M Kekenes-Huskey
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | |
Collapse
|
17
|
Molecular dynamics simulations reveal proton transfer pathways in cytochrome C-dependent nitric oxide reductase. PLoS Comput Biol 2012; 8:e1002674. [PMID: 22956904 PMCID: PMC3431322 DOI: 10.1371/journal.pcbi.1002674] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/22/2012] [Indexed: 01/25/2023] Open
Abstract
Nitric oxide reductases (NORs) are membrane proteins that catalyze the reduction of nitric oxide (NO) to nitrous oxide (N2O), which is a critical step of the nitrate respiration process in denitrifying bacteria. Using the recently determined first crystal structure of the cytochrome c-dependent NOR (cNOR) [Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, et al. (2010) Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330: 1666–70.], we performed extensive all-atom molecular dynamics (MD) simulations of cNOR within an explicit membrane/solvent environment to fully characterize water distribution and dynamics as well as hydrogen-bonded networks inside the protein, yielding the atomic details of functionally important proton channels. Simulations reveal two possible proton transfer pathways leading from the periplasm to the active site, while no pathways from the cytoplasmic side were found, consistently with the experimental observations that cNOR is not a proton pump. One of the pathways, which was newly identified in the MD simulation, is blocked in the crystal structure and requires small structural rearrangements to allow for water channel formation. That pathway is equivalent to the functional periplasmic cavity postulated in cbb3 oxidase, which illustrates that the two enzymes share some elements of the proton transfer mechanisms and confirms a close evolutionary relation between NORs and C-type oxidases. Several mechanisms of the critical proton transfer steps near the catalytic center are proposed. Denitrification is an anaerobic process performed by several bacteria as an alternative to aerobic respiration. A key intermediate step is catalyzed by the nitric oxide reductase (NOR) enzyme, which is situated in the cytoplasmic membrane. Proton delivery to the catalytic site inside NOR is an important part of its functioning. In this work we use molecular dynamics simulations to describe water distribution and to identify proton transfer pathways in cNOR. Our results reveal two channels from the periplasmic side of the membrane and none from the cytoplasmic side, indicating that cNOR is not a proton pump. It is our hope that these results will provide a basis for further experimental and computational studies aimed to understand details of the NOR mechanism. Furthermore, this work sheds light on the molecular evolution of respiratory enzymes.
Collapse
|
18
|
Eriksson ESE, Eriksson LA. Identifying the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) as a potential target for hypericin--a theoretical study. Phys Chem Chem Phys 2012; 14:12637-46. [PMID: 22892582 DOI: 10.1039/c2cp42237a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exact cellular target for the potent anti-cancer agent hypericin has not yet been determined; this thus encourages the application of computational chemistry tools to be employed in order to provide insights that can be employed in further drug development studies. In the present study computational docking and molecular dynamics simulations are applied to investigate possible interactions between hypericin and the Ca(2+) pump SERCA as proposed in the literature. Hypericin was found to bind strongly both in pockets within the transmembrane region and in the cytosolic region of the protein, although the two studied isoforms of SERCA differ slightly in their preferred binding sites. The calculated binding energies for hypericin in the four investigated sites were of the same magnitude as for thapsigargin (TG), the most potent SERCA inhibitor, or in the range between TG and di-tert-butylhydroquinone (BHQ), which is also known to possess inhibitory activity. The hydrophobic character of hypericin indicates that the molecule initially binds in the ER membrane from which it diffuses into the transmembrane region of the protein and to binding pockets therein. The transmembrane TG and BHQ binding pockets provide suitable locations for hypericin as they allow for favourable interactions with the lipid tails that surround these. High binding energies were noted for hypericin in these pockets and are expected to constitute highly possible binding sites due to their accessibility from the ER membrane. Hypericin most likely binds to both isoforms of SERCA and acts as an inhibitor or, under light irradiation, as a singlet oxygen generator that in turn degrades the protein or induces lipid peroxidation.
Collapse
Affiliation(s)
- Emma S E Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Göteborg, Sweden.
| | | |
Collapse
|
19
|
Mouritsen OG, Khandelia H. Molecular mechanism of the allosteric enhancement of the umami taste sensation. FEBS J 2012; 279:3112-20. [PMID: 22764741 DOI: 10.1111/j.1742-4658.2012.08690.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fifth taste quality, umami, arises from binding of glutamate to the umami receptor T1R1/T1R3. The umami taste is enhanced several-fold upon addition of free nucleotides such as guanosine-5'-monophosphate (GMP) to glutamate-containing food. GMP may operate via binding to the ligand-binding domain of the T1R1 part of the umami receptor at an allosteric site. Using molecular dynamics simulations, we show that GMP can stabilize the closed (active) state of T1R1 by binding to the outer vestibule of the so-called Venus flytrap domain of the receptor. The transition between the closed and open conformations was accessed in the simulations. Using principal component analysis, we show that the dynamics of the Venus flytrap domain along the hinge-bending motion that activates signaling is dampened significantly upon binding of glutamate, and further slows down upon binding of GMP at an allosteric site, thus suggesting a molecular mechanism of cooperativity between GMP and glutamate.
Collapse
Affiliation(s)
- Ole G Mouritsen
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
20
|
Musgaard M, Thøgersen L, Schiøtt B, Tajkhorshid E. Tracing cytoplasmic Ca(2+) ion and water access points in the Ca(2+)-ATPase. Biophys J 2012; 102:268-77. [PMID: 22339863 DOI: 10.1016/j.bpj.2011.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/17/2011] [Accepted: 12/05/2011] [Indexed: 11/28/2022] Open
Abstract
Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) transports two Ca(2+) ions across the membrane of the sarco(endo)plasmic reticulum against the concentration gradient, harvesting the required energy by hydrolyzing one ATP molecule during each transport cycle. Although SERCA is one of the best structurally characterized membrane transporters, it is still largely unknown how the transported Ca(2+) ions reach their transmembrane binding sites in SERCA from the cytoplasmic side. Here, we performed extended all-atom molecular dynamics simulations of SERCA. The calculated electrostatic potential of the protein reveals a putative mechanism by which cations may be attracted to and bind to the Ca(2+)-free state of the transporter. Additional molecular dynamics simulations performed on a Ca(2+)-bound state of SERCA reveal a water-filled pathway that may be used by the Ca(2+) ions to reach their buried binding sites from the cytoplasm. Finally, several residues that are involved in attracting and guiding the cations toward the possible entry channel are identified. The results point to a single Ca(2+) entry site close to the kinked part of the first transmembrane helix, in a region loaded with negatively charged residues. From this point, a water pathway outlines a putative Ca(2+) translocation pathway toward the transmembrane ion-binding sites.
Collapse
Affiliation(s)
- Maria Musgaard
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | | | | |
Collapse
|
21
|
Papp B, Brouland JP, Arbabian A, Gélébart P, Kovács T, Bobe R, Enouf J, Varin-Blank N, Apáti A. Endoplasmic reticulum calcium pumps and cancer cell differentiation. Biomolecules 2012; 2:165-86. [PMID: 24970132 PMCID: PMC4030869 DOI: 10.3390/biom2010165] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a major intracellular calcium storage pool and a multifunctional organelle that accomplishes several calcium-dependent functions involved in many homeostatic and signaling mechanisms. Calcium is accumulated in the ER by Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA)-type calcium pumps. SERCA activity can determine ER calcium content available for intra-ER functions and for calcium release into the cytosol, and can shape the spatiotemporal characteristics of calcium signals. SERCA function therefore constitutes an important nodal point in the regulation of cellular calcium homeostasis and signaling, and can exert important effects on cell growth, differentiation and survival. In several cell types such as cells of hematopoietic origin, mammary, gastric and colonic epithelium, SERCA2 and SERCA3-type calcium pumps are simultaneously expressed, and SERCA3 expression levels undergo significant changes during cell differentiation, activation or immortalization. In addition, SERCA3 expression is decreased or lost in several tumor types when compared to the corresponding normal tissue. These observations indicate that ER calcium homeostasis is remodeled during cell differentiation, and may present defects due to decreased SERCA3 expression in tumors. Modulation of the state of differentiation of the ER reflected by SERCA3 expression constitutes an interesting new aspect of cell differentiation and tumor biology.
Collapse
Affiliation(s)
- Béla Papp
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR U978, UFR SMBH Université Paris 13-Paris Nord, 74, rue Marcel Cachin 93000 Bobigny, France.
| | - Jean-Philippe Brouland
- Service d'Anatomie et Cytologie Pathologique, Hôpital Lariboisière, 1, rue Ambroise Paré, 75010 Paris, France.
| | - Atousa Arbabian
- Inserm UMR U 940, IUH Université Paris 7-Paris Diderot, 16, rue de la Grange aux Belles, 75010 Paris, France.
| | - Pascal Gélébart
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute and University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Tünde Kovács
- Semmelweis University, Department of Medical Biochemistry, Tűzoltó u. 37-47, H-1094-Budapest, Hungary.
| | - Régis Bobe
- Inserm UMR U770, Université Paris-Sud 11. 80, rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France.
| | - Jocelyne Enouf
- Inserm UMR U689, Université Paris 7-Paris Diderot, Hôpital Lariboisière, 1, rue Ambroise Paré, 75010 Paris, France.
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR U978, UFR SMBH Université Paris 13-Paris Nord, 74, rue Marcel Cachin 93000 Bobigny, France.
| | - Agota Apáti
- Membrane Research Group of the Hungarian Academy of Sciences, Diószegi út 64, H-1113-Budapest, Hungary.
| |
Collapse
|
22
|
Lervik A, Bresme F, Kjelstrup S. Molecular dynamics simulations of the Ca2+-pump: a structural analysis. Phys Chem Chem Phys 2012; 14:3543-53. [PMID: 22306929 DOI: 10.1039/c2cp23002j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report large scale molecular dynamics computer simulations, ∼100 ns, of the ion pump Ca(2+)-ATPase immersed in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer. The structure simulated here, E1, one of the several conformations resolved using X-ray diffraction techniques, hosts two Ca(2+)-ions in the hydrophobic domain. Our results indicate that protonated residues lead to stronger ion-residue interactions, supporting previous conclusions regarding the sensitivity of the Ca(2+) behaviour to the protonated state of the amino acid binding sites. We also investigate how the protein perturbs the bilayer structure. We show that the POPC bilayer is ∼12% thinner than the pure bilayer, near the protein surface. This perturbation decays exponentially with the distance from the protein with a characteristic decay length of 0.8 nm. We find that the projected area per lipid also decreases near the protein. Using an analytical model we show that this change in the area is only apparent and it can be explained by considering the local curvature of the membrane. Our results indicate that the real area per lipid near the protein is not significantly modified with respect to the pure bilayer result. Further our results indicate that the local deformation of the membrane around the protein might be compatible with the enhanced protein activity observed in experiments over a narrow range of membrane thicknesses.
Collapse
Affiliation(s)
- Anders Lervik
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | |
Collapse
|
23
|
Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data. BMC BIOPHYSICS 2011; 4:21. [PMID: 22168953 PMCID: PMC3747235 DOI: 10.1186/2046-1682-4-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/14/2011] [Indexed: 11/30/2022]
Abstract
Background Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. Results To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. Conclusions We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function.
Collapse
|
24
|
Musgaard M, Thøgersen L, Schiøtt B. Protonation states of important acidic residues in the central Ca²⁺ ion binding sites of the Ca²⁺-ATPase: a molecular modeling study. Biochemistry 2011; 50:11109-20. [PMID: 22082179 DOI: 10.1021/bi201164b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P-type ATPases are responsible for the transport of cations across cell membranes. The sarco(endo)plasmic reticulum Ca²⁺-ATPase (SERCA) transports two Ca²⁺ ions from the cytoplasm to the lumen of the sarco(endo)plasmic reticulum and countertransports two or three protons per catalytic cycle. Two binding sites for Ca²⁺ ions have been located via protein crystallography, including four acidic amino acid residues that are essential to the ion coordination. In this study, we present molecular dynamics (MD) simulations examining the protonation states of these amino acid residues in a Ca²⁺-free conformation of SERCA. Such knowledge will be important for an improved understanding of atomistic details of the transport mechanism of protons and Ca²⁺ ions. Eight combinations of the protonation of four central acidic residues, Glu309, Glu771, Asp800, and Glu908, are tested from 10 ns MD simulations with respect to protein stability and ability to maintain a structure similar to the crystal structure. The trajectories for the most prospective combinations of protonation states were elongated to 50 ns and subjected to more detailed analysis, including prediction of pK(a) values of the four acidic residues over the trajectories. From the simulations we find that the combination leaving only Asp800 as charged is most likely. The results are compared to available experimental data and explain the observed destabilization upon full deprotonation, resulting in the entry of cytoplasmic K⁺ ions into the Ca²⁺ binding sites during the simulation in which Ca²⁺ ions are absent. Furthermore, a hypothesis for the exchange of protons from the central binding cavity is proposed.
Collapse
Affiliation(s)
- Maria Musgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
25
|
Atomic-level characterization of the activation mechanism of SERCA by calcium. PLoS One 2011; 6:e26936. [PMID: 22046418 PMCID: PMC3203174 DOI: 10.1371/journal.pone.0026936] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/06/2011] [Indexed: 11/23/2022] Open
Abstract
We have performed molecular dynamics (MD) simulations to elucidate, in atomic detail, the mechanism by which the sarcoplasmic reticulum Ca2+-ATPase (SERCA) is activated by Ca2+. Crystal structures suggest that activation of SERCA occurs when the cytoplasmic head-piece, in an open (E1) conformation stabilized by Ca2+, undergoes a large-scale open-to-closed (E1 to E2) transition that is induced by ATP binding. However, spectroscopic measurements in solution suggest that these structural states (E1 and E2) are not tightly coupled to biochemical states (defined by bound ligands); the closed E2 state predominates even in the absence of ATP, in both the presence and absence of Ca2+. How is this loose coupling consistent with the high efficiency of energy transduction in the Ca2+-ATPase? To provide insight into this question, we performed long (500 ns) all-atom MD simulations starting from the open crystal structure, including a lipid bilayer and water. In both the presence and absence of Ca2+, we observed a large-scale open-to-closed conformational transition within 400 ns, supporting the weak coupling between structural and biochemical states. However, upon closer inspection, it is clear that Ca2+ is necessary and sufficient for SERCA to reach the precise geometrical arrangement necessary for activation of ATP hydrolysis. Contrary to suggestions from crystal structures, but in agreement with solution spectroscopy, the presence of ATP is not required for this activating transition. Principal component analysis showed that Ca2+ reshapes the free energy landscape of SERCA to create a path between the open conformation and the activated closed conformation. Thus the malleability of the free energy landscape is essential for SERCA efficiency, ensuring that ATP hydrolysis is tightly coupled to Ca2+ transport. These results demonstrate the importance of real-time dynamics in the formation of catalytically competent conformations of SERCA, with broad implications for understanding enzymatic catalysis in atomic detail.
Collapse
|