1
|
Zargani M, Ramirez-Campillo R, Arabzadeh E. Swimming and L-arginine loaded chitosan nanoparticles ameliorates aging-induced neuron atrophy, autophagy marker LC3, GABA and BDNF-TrkB pathway in the spinal cord of rats. Pflugers Arch 2023; 475:621-635. [PMID: 36869900 DOI: 10.1007/s00424-023-02795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/05/2023]
Abstract
Aging is associated with muscle atrophy, and erosion and destruction of neuronal pathways in the spinal cord. The study aim was to assess the effect of swimming training (Sw) and L-arginine loaded chitosan nanoparticles (LA-CNPs) on the sensory and motor neuron population, autophagy marker LC3, total oxidant status/total antioxidant capacity, behavioural test, GABA and BDNF-TrkB pathway in the spinal cord of aging rats. The rats were randomized to five groups: young (8-weeks) control (n = 7), old control (n = 7), old Sw (n = 7), old LA-CNPs (n = 7) and old Sw + LA-CNPs (n = 7). Groups under LA-CNPs supplementation received 500 mg/kg/day. Sw groups performed a swimming exercise programme 5 days per week for 6 weeks. Upon the completion of the interventions the rats were euthanized and the spinal cord was fixed and frozen for histological assessment, IHC, and gene expression analysis. The old group had more atrophy in the spinal cord with higher changes in LC3 as an indicator of autophagy in the spinal cord compared to the young group (p < 0.0001). The old Sw + LA-CNPs group increased (improved) spinal cord GABA (p = 0.0187), BDNF (p = 0.0003), TrkB (p < 0.0001) gene expression, decreased autophagy marker LC3 protein (p < 0.0001), nerve atrophy and jumping/licking latency (p < 0.0001), improved sciatic functional index score and total oxidant status/total antioxidant capacity compared to the old group (p < 0.0001). In conclusion, swimming and LA-CNPs seems to ameliorate aging-induced neuron atrophy, autophagy marker LC3, oxidant-antioxidant status, functional restoration, GABA and BDNF-TrkB pathway in the spinal cord of aging rats. Our study provides experimental evidence for a possible positive role of swimming and L-arginine loaded chitosan nanoparticles to decrease complications of aging.
Collapse
Affiliation(s)
- Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Pleiotropic effects of BDNF on the cerebellum and hippocampus: Implications for neurodevelopmental disorders. Neurobiol Dis 2022; 163:105606. [PMID: 34974125 DOI: 10.1016/j.nbd.2021.105606] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the mammalian brain, essential not only to the development of the central nervous system but also to synaptic plasticity. BDNF is present in various brain areas, but highest levels of expression are seen in the cerebellum and hippocampus. After birth, BDNF acts in the cerebellum as a mitogenic and chemotactic factor, stimulating the cerebellar granule cell precursors to proliferate, migrate and maturate, while in the hippocampus BDNF plays a fundamental role in synaptic transmission and plasticity, representing a key regulator for the long-term potentiation, learning and memory. Furthermore, the expression of BDNF is highly regulated and changes of its expression are associated with both physiological and pathological conditions. The purpose of this review is to provide an overview of the current state of knowledge on the BDNF biology and its neurotrophic role in the proper development and functioning of neurons and synapses in two important brain areas of postnatal neurogenesis, the cerebellum and hippocampus. Dysregulation of BDNF expression and signaling, resulting in alterations in neuronal maturation and plasticity in both systems, is a common hallmark of several neurodevelopmental diseases, such as autism spectrum disorder, suggesting that neuronal malfunction present in these disorders is the result of excessive or reduced of BDNF support. We believe that the more the relevance of the pathophysiological actions of BDNF, and its downstream signals, in early postnatal development will be highlighted, the more likely it is that new neuroprotective therapeutic strategies will be identified in the treatment of various neurodevelopmental disorders.
Collapse
|
3
|
Lysine acetylation regulates the interaction between proteins and membranes. Nat Commun 2021; 12:6466. [PMID: 34753925 PMCID: PMC8578602 DOI: 10.1038/s41467-021-26657-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Lysine acetylation regulates the function of soluble proteins in vivo, yet it remains largely unexplored whether lysine acetylation regulates membrane protein function. Here, we use bioinformatics, biophysical analysis of recombinant proteins, live-cell fluorescent imaging and genetic manipulation of Drosophila to explore lysine acetylation in peripheral membrane proteins. Analysis of 50 peripheral membrane proteins harboring BAR, PX, C2, or EHD membrane-binding domains reveals that lysine acetylation predominates in membrane-interaction regions. Acetylation and acetylation-mimicking mutations in three test proteins, amphiphysin, EHD2, and synaptotagmin1, strongly reduce membrane binding affinity, attenuate membrane remodeling in vitro and alter subcellular localization. This effect is likely due to the loss of positive charge, which weakens interactions with negatively charged membranes. In Drosophila, acetylation-mimicking mutations of amphiphysin cause severe disruption of T-tubule organization and yield a flightless phenotype. Our data provide mechanistic insights into how lysine acetylation regulates membrane protein function, potentially impacting a plethora of membrane-related processes. Lysine acetylation regulates the function of soluble proteins in vivo, yet it remains largely unexplored whether lysine acetylation regulates the function of membrane proteins. Here, the authors map lysine acetylation predominantly in membrane-interaction regions in peripheral membrane proteins and show with three candidate proteins how lysine acetylation is a regulator of membrane protein function.
Collapse
|
4
|
Camblor-Perujo S, Kononenko NL. Brain-specific functions of the endocytic machinery. FEBS J 2021; 289:2219-2246. [PMID: 33896112 DOI: 10.1111/febs.15897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis is an essential cellular process required for multiple physiological functions, including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. In a broad sense, endocytosis is accomplished through either constitutive or ligand-induced invagination of the plasma membrane, which results in the formation of the plasma membrane-retrieved endocytic vesicles, which can either be sent for degradation to the lysosomes or recycled back to the PM. This additional function of endocytosis in membrane retrieval has been adopted by excitable cells, such as neurons, for membrane equilibrium maintenance at synapses. The last two decades were especially productive with respect to the identification of brain-specific functions of the endocytic machinery, which additionally include but not limited to regulation of neuronal differentiation and migration, maintenance of neuron morphology and synaptic plasticity, and prevention of neurotoxic aggregates spreading. In this review, we highlight the current knowledge of brain-specific functions of endocytic machinery with a specific focus on three brain cell types, neuronal progenitor cells, neurons, and glial cells.
Collapse
Affiliation(s)
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, University of Cologne, Germany.,Center for Physiology & Pathophysiology, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
5
|
Valencia M, Kim SR, Jang Y, Lee SH. Neuronal Autophagy: Characteristic Features and Roles in Neuronal Pathophysiology. Biomol Ther (Seoul) 2021; 29:605-614. [PMID: 33875624 PMCID: PMC8551733 DOI: 10.4062/biomolther.2021.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/02/2021] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
Autophagy is an important degradative pathway that eliminates misfolded proteins and damaged organelles from cells. Autophagy is crucial for neuronal homeostasis and function. A lack of or deficiency in autophagy leads to the accumulation of protein aggregates, which are associated with several neurodegenerative diseases. Compared with non-neuronal cells, neurons exhibit rapid autophagic flux because damaged organelles or protein aggregates cannot be diluted in post-mitotic cells; because of this, these cells exhibit characteristic features of autophagy, such as compartment-specific autophagy, which depends on polarized structures and rapid autophagy flux. In addition, neurons exhibit compartment-specific autophagy, which depends on polarized structures. Neuronal autophagy may have additional physiological roles other than amino acid recycling. In this review, we focus on the characteristics and regulatory factors of neuronal autophagy. We also describe intracellular selective autophagy in neurons and its association with neurodegenerative diseases.
Collapse
Affiliation(s)
- McNeil Valencia
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeseul Jang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Franco ML, García-Carpio I, Comaposada-Baró R, Escribano-Saiz JJ, Chávez-Gutiérrez L, Vilar M. TrkA-mediated endocytosis of p75-CTF prevents cholinergic neuron death upon γ-secretase inhibition. Life Sci Alliance 2021; 4:4/4/e202000844. [PMID: 33536237 PMCID: PMC7898468 DOI: 10.26508/lsa.202000844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The findings shed light into the adverse effects of GSIs observed in the Alzheimer’s field and explain, at least in part, the unexpected worsening in cognition observed in the semagacestat Phase 3 trial. γ-secretase inhibitors (GSI) were developed to reduce the generation of Aβ peptide to find new Alzheimer’s disease treatments. Clinical trials on Alzheimer’s disease patients, however, showed several side effects that worsened the cognitive symptoms of the treated patients. The observed side effects were partially attributed to Notch signaling. However, the effect on other γ-secretase substrates, such as the p75 neurotrophin receptor (p75NTR) has not been studied in detail. p75NTR is highly expressed in the basal forebrain cholinergic neurons (BFCNs) during all life. Here, we show that GSI treatment induces the oligomerization of p75CTF leading to the cell death of BFCNs, and that this event is dependent on TrkA activity. The oligomerization of p75CTF requires an intact cholesterol recognition sequence (CRAC) and the constitutive binding of TRAF6, which activates the JNK and p38 pathways. Remarkably, TrkA rescues from cell death by a mechanism involving the endocytosis of p75CTF. These results suggest that the inhibition of γ-secretase activity in aged patients, where the expression of TrkA in the BFCNs is already reduced, could accelerate cholinergic dysfunction and promote neurodegeneration.
Collapse
Affiliation(s)
- María Luisa Franco
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Irmina García-Carpio
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Raquel Comaposada-Baró
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Juan J Escribano-Saiz
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| | - Lucía Chávez-Gutiérrez
- Vlaams Instituut voor Biotechnologie Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease, Leuven, Belgium
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), València, Spain
| |
Collapse
|
7
|
Tom EC, Mushtaq I, Mohapatra BC, Luan H, Bhat AM, Zutshi N, Chakraborty S, Islam N, Arya P, Bielecki TA, Iseka FM, Bhattacharyya S, Cypher LR, Goetz BT, Negi SK, Storck MD, Rana S, Barnekow A, Singh PK, Ying G, Guda C, Natarajan A, Band V, Band H. EHD1 and RUSC2 Control Basal Epidermal Growth Factor Receptor Cell Surface Expression and Recycling. Mol Cell Biol 2020; 40:e00434-19. [PMID: 31932478 PMCID: PMC7076251 DOI: 10.1128/mcb.00434-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/26/2019] [Accepted: 12/26/2019] [Indexed: 01/25/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a prototype receptor tyrosine kinase and an oncoprotein in many solid tumors. Cell surface display of EGFR is essential for cellular responses to its ligands. While postactivation endocytic trafficking of EGFR has been well elucidated, little is known about mechanisms of basal/preactivation surface display of EGFR. Here, we identify a novel role of the endocytic regulator EHD1 and a potential EHD1 partner, RUSC2, in cell surface display of EGFR. EHD1 and RUSC2 colocalize with EGFR in vesicular/tubular structures and at the Golgi compartment. Inducible EHD1 knockdown reduced the cell surface EGFR expression with accumulation at the Golgi compartment, a phenotype rescued by exogenous EHD1. RUSC2 knockdown phenocopied the EHD1 depletion effects. EHD1 or RUSC2 depletion impaired the EGF-induced cell proliferation, demonstrating that the novel, EHD1- and RUSC2-dependent transport of unstimulated EGFR from the Golgi compartment to the cell surface that we describe is functionally important, with implications for physiologic and oncogenic roles of EGFR and targeted cancer therapies.
Collapse
Affiliation(s)
- Eric C Tom
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Aaqib M Bhat
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sukanya Chakraborty
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Namista Islam
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Priyanka Arya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fany M Iseka
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sohinee Bhattacharyya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Luke R Cypher
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benjamin T Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Simarjeet K Negi
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Angelika Barnekow
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Guoguang Ying
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
8
|
SIPA1L2 controls trafficking and local signaling of TrkB-containing amphisomes at presynaptic terminals. Nat Commun 2019; 10:5448. [PMID: 31784514 PMCID: PMC6884526 DOI: 10.1038/s41467-019-13224-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
Amphisomes are organelles of the autophagy pathway that result from the fusion of autophagosomes with late endosomes. While biogenesis of autophagosomes and late endosomes occurs continuously at axon terminals, non-degradative roles of autophagy at boutons are barely described. Here, we show that in neurons BDNF/TrkB traffick in amphisomes that signal locally at presynaptic boutons during retrograde transport to the soma. This is orchestrated by the Rap GTPase-activating (RapGAP) protein SIPA1L2, which connects TrkB amphisomes to a dynein motor. The autophagosomal protein LC3 regulates RapGAP activity of SIPA1L2 and controls retrograde trafficking and local signaling of TrkB. Following induction of presynaptic plasticity, amphisomes dissociate from dynein at boutons enabling local signaling and promoting transmitter release. Accordingly, sipa1l2 knockout mice show impaired BDNF-dependent presynaptic plasticity. Taken together, the data suggest that in hippocampal neurons, TrkB-signaling endosomes are in fact amphisomes that during retrograde transport have local signaling capacity in the context of presynaptic plasticity. There is growing evidence that autophagy might serve specialized functions in neurons besides its role in protein homeostasis. In this study, authors demonstrate that axonal retrograde transport of BDNF/TrkB in neuronal amphisomes is involved in plasticity-relevant local signaling at presynaptic boutons and that SIPA1L2, a member of the SIPA1L family of neuronal RapGAPs, associates via LC3b to TrkB-containing amphisomes to regulate its motility and signaling at the axon terminals
Collapse
|
9
|
Lenoir S, Varangot A, Lebouvier L, Galli T, Hommet Y, Vivien D. Post-synaptic Release of the Neuronal Tissue-Type Plasminogen Activator (tPA). Front Cell Neurosci 2019; 13:164. [PMID: 31105531 PMCID: PMC6491899 DOI: 10.3389/fncel.2019.00164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
The neuronal serine protease tissue-type Plasminogen Activator (tPA) is an important player of the neuronal survival and of the synaptic plasticity. Thus, a better understanding the mechanisms regulating the neuronal trafficking of tPA is required to further understand how tPA can influence brain functions. Using confocal imaging including living cells and high-resolution cell imaging combined with an innovating labeling of tPA, we demonstrate that the neuronal tPA is contained in endosomal vesicles positives for Rabs and in exosomal vesicles positives for synaptobrevin-2 (VAMP2) in dendrites and axons. tPA-containing vesicles differ in their dynamics with the dendritic tPA containing-vesicles less mobile than the axonal tPA-containing vesicles, these laters displaying mainly a retrograde trafficking. Interestingly spontaneous exocytosis of tPA containing-vesicles occurs largely in dendrites.
Collapse
Affiliation(s)
- Sophie Lenoir
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France
| | - Alexandre Varangot
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France
| | - Laurent Lebouvier
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France
| | - Thierry Galli
- Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, Paris, France
| | - Yannick Hommet
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France
| | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders, UNICAEN, INSERM, UMR-S U1237, Normandie Université, Caen, France.,Department of Clinical Research, Caen University Hospital, CHU Caen, Caen, France
| |
Collapse
|
10
|
Villarroel-Campos D, Schiavo G, Lazo OM. The many disguises of the signalling endosome. FEBS Lett 2018; 592:3615-3632. [PMID: 30176054 PMCID: PMC6282995 DOI: 10.1002/1873-3468.13235] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023]
Abstract
Neurons are highly complex and polarised cells that must overcome a series of logistic challenges to maintain homeostasis across their morphological domains. A very clear example is the propagation of neurotrophic signalling from distal axons, where target-released neurotrophins bind to their receptors and initiate signalling, towards the cell body, where nuclear and cytosolic responses are integrated. The mechanisms of propagation of neurotrophic signalling have been extensively studied and, eventually, the model of a 'signalling endosome', transporting activated receptors and associated complexes, has emerged. Nevertheless, the exact nature of this organelle remains elusive. In this Review, we examine the evidence for the retrograde transport of neurotrophins and their receptors in endosomes, outline some of their diverse physiological and pathological roles, and discuss the main interactors, morphological features and trafficking destinations of a highly flexible endosomal signalling organelle with multiple molecular signatures.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK.,UK Dementia Research Institute at UCL, London, UK.,Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, UK
| | - Oscar Marcelo Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
11
|
Nogo-A interacts with TrkA to alter nerve growth factor signaling in Nogo-A-overexpressing PC12 cells. Cell Signal 2018; 44:20-27. [PMID: 29325876 DOI: 10.1016/j.cellsig.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/11/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
Abstract
The Nogo-A protein, originally discovered as a potent myelin-associated inhibitor of neurite outgrowth, is also expressed by certain neurons, especially during development and after injury, but its role in neuronal function is not completely known. In this report, we overexpressed Nogo-A in PC12 cells to use as a model to identify potential neuronal signaling pathways affected by endogenously expressed Nogo-A. Unexpectedly, our results show that viability of Nogo-A-overexpressing cells was reduced progressively due to apoptotic cell death following NGF treatment, but only after 24 h. Inhibitors of neutral sphingomyelinase prevented this loss of viability, suggesting that NGF induced the activation of a ceramide-dependent cell death pathway. Nogo-A over-expression also changed NGF-induced phosphorylation of TrkA at tyrosines 490 and 674/675 from sustained to transient, and prevented the regulated intramembrane proteolysis of p75NTR, indicating that Nogo-A was altering the function of the two neurotrophin receptors. Co-immunoprecipitation studies revealed that there was a physical association between TrkA and Nogo-A which appeared to be dependent on interactions in the Nogo-A-specific region of the protein. Taken together, our results indicate that Nogo-A influences NGF-mediated mechanisms involving the activation of TrkA and its interaction with p75NTR.
Collapse
|
12
|
Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's Disease. Free Radic Biol Med 2018; 114:40-51. [PMID: 28988799 PMCID: PMC5748263 DOI: 10.1016/j.freeradbiomed.2017.10.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Individuals with Down syndrome (DS) have an increased risk of early-onset Alzheimer's Disease (AD), largely owing to a triplication of the APP gene, located on chromosome 21. In DS and AD, defects in endocytosis and lysosomal function appear at the earliest stages of disease development and progress to widespread failure of intraneuronal waste clearance, neuritic dystrophy and neuronal cell death. The same genetic factors that cause or increase AD risk are also direct causes of endosomal-lysosomal dysfunction, underscoring the essential partnership between this dysfunction and APP metabolites in AD pathogenesis. The appearance of APP-dependent endosome anomalies in DS beginning in infancy and evolving into the full range of AD-related endosomal-lysosomal deficits provides a unique opportunity to characterize the earliest pathobiology of AD preceding the classical neuropathological hallmarks. Facilitating this characterization is the authentic recapitulation of this endosomal pathobiology in peripheral cells from people with DS and in trisomy mouse models. Here, we review current research on endocytic-lysosomal dysfunction in DS and AD, the emerging importance of APP/βCTF in initiating this dysfunction, and the potential roles of additional trisomy 21 genes in accelerating endosomal-lysosomal impairment in DS. Collectively, these studies underscore the growing value of investigating DS to probe the biological origins of AD as well as to understand and ameliorate the developmental disability of DS.
Collapse
Affiliation(s)
- Daniel J Colacurcio
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anna Pensalfini
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
13
|
Terenzio M, Schiavo G, Fainzilber M. Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience. Neuron 2017; 96:667-679. [PMID: 29096079 DOI: 10.1016/j.neuron.2017.10.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
Neurons are the largest known cells, with complex and highly polarized morphologies. As such, neuronal signaling is highly compartmentalized, requiring sophisticated transfer mechanisms to convey and integrate information within and between sub-neuronal compartments. Here, we survey different modes of compartmentalized signaling in neurons, highlighting examples wherein the fundamental cell biological processes of protein synthesis and degradation, membrane trafficking, and organelle transport are employed to enable the encoding and integration of information, locally and globally within a neuron. Comparisons to other cell types indicate that neurons accentuate widely shared mechanisms, providing invaluable models for the compartmentalization and transfer mechanisms required and used by most eukaryotic cells.
Collapse
Affiliation(s)
- Marco Terenzio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK; Discoveries Centre for Regenerative and Precision Medicine at UCL, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
14
|
Abstract
In the last few years, exciting properties have emerged regarding the activation, signaling, mechanisms of action, and therapeutic targeting of the two types of neurotrophin receptors: the p75NTR with its intracellular and extracellular peptides, the Trks, their precursors and their complexes. This review summarizes these new developments, with particular focus on neurodegenerative diseases. Based on the evolving knowledge, innovative concepts have been formulated regarding the pathogenesis of these diseases, especially the Alzheimer's and two other, the Parkinson's and Huntington's diseases. The medical progresses include original procedures of diagnosis, started from studies in mice and now investigated for human application, based on innovative classes of receptor agonists and blockers. In parallel, comprehensive studies have been and are being carried out for the development of drugs. The relevance of these studies is based on the limitations of the therapies employed until recently, especially for the treatment of Alzheimer's patients. Starting from well known drugs, previously employed for non-neurodegenerative diseases, the ongoing progress has lead to the development of small molecules that cross rapidly the blood-brain barrier. Among these molecules the most promising are specific blockers of the p75NTR receptor. Additional drugs, that activate Trk receptors, were shown effective against synaptic loss and memory deficits. In the near future such approaches, coordinated with treatments with monoclonal antibodies and with developments in the microRNA field, are expected to improve the therapy of neurodegenerative diseases, and may be relevant also for other human disease conditions.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Department of Neuroscience, Vita-Salute San Raffaele University and Scientific Institute San Raffaele, via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
15
|
Kononenko NL, Claßen GA, Kuijpers M, Puchkov D, Maritzen T, Tempes A, Malik AR, Skalecka A, Bera S, Jaworski J, Haucke V. Retrograde transport of TrkB-containing autophagosomes via the adaptor AP-2 mediates neuronal complexity and prevents neurodegeneration. Nat Commun 2017; 8:14819. [PMID: 28387218 PMCID: PMC5385568 DOI: 10.1038/ncomms14819] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/06/2017] [Indexed: 12/29/2022] Open
Abstract
Autophagosomes primarily mediate turnover of cytoplasmic proteins or organelles to provide nutrients and eliminate damaged proteins. In neurons, autophagosomes form in distal axons and are trafficked retrogradely to fuse with lysosomes in the soma. Although defective neuronal autophagy is associated with neurodegeneration, the function of neuronal autophagosomes remains incompletely understood. We show that in neurons, autophagosomes promote neuronal complexity and prevent neurodegeneration in vivo via retrograde transport of brain-derived neurotrophic factor (BDNF)-activated TrkB receptors. p150Glued/dynactin-dependent transport of TrkB-containing autophagosomes requires their association with the endocytic adaptor AP-2, an essential protein complex previously thought to function exclusively in clathrin-mediated endocytosis. These data highlight a novel non-canonical function of AP-2 in retrograde transport of BDNF/TrkB-containing autophagosomes in neurons and reveal a causative link between autophagy and BDNF/TrkB signalling. The endocytic adaptor protein complex AP-2 is mostly known for its role in endocytosis and in synaptic vesicle reformation. Here the authors show that AP-2 also mediates retrograde transport of TrkB-containing autophagosomes in neurons; this process promotes neuronal complexity and prevents the degeneration of cortical and thalamic neurons.
Collapse
Affiliation(s)
- Natalia L Kononenko
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| | - Gala A Claßen
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Marijn Kuijpers
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Tanja Maritzen
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Aleksandra Tempes
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Anna R Malik
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Agnieszka Skalecka
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Sujoy Bera
- CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Volker Haucke
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.,Freie Universität Berlin, Faculty of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| |
Collapse
|
16
|
Barford K, Deppmann C, Winckler B. The neurotrophin receptor signaling endosome: Where trafficking meets signaling. Dev Neurobiol 2017; 77:405-418. [PMID: 27503831 DOI: 10.1002/dneu.22427] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/05/2016] [Accepted: 08/04/2016] [Indexed: 11/08/2022]
Abstract
Neurons are the largest cells in the body and form subcellular compartments such as axons and dendrites. During both development and adulthood building blocks must be continually trafficked long distances to maintain the different regions of the neuron. Beyond building blocks, signaling complexes are also transported, allowing for example, axons to communicate with the soma. The critical roles of signaling via ligand-receptor complexes is perhaps best illustrated in the context of development, where they are known to regulate polarization, survival, axon outgrowth, dendrite development, and synapse formation. However, knowing 'when' and 'how much' signaling is occurring does not provide the complete story. The location of signaling has a significant impact on the functional outcomes. There are therefore complex and functionally important trafficking mechanisms in place to control the precise spatial and temporal aspects of many signal transduction events. In turn, many of these signaling events affect trafficking mechanisms, setting up an intricate connection between trafficking and signaling. In this review we will use neurotrophin receptors, specifically TrkA and TrkB, to illustrate the cell biology underlying the links between trafficking and signaling. Briefly, we will discuss the concepts of how trafficking and signaling are intimately linked for functional and diverse signaling outputs, and how the same protein can play different roles for the same receptor depending on its localization. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| |
Collapse
|
17
|
Structural insights into the activation mechanism of dynamin-like EHD ATPases. Proc Natl Acad Sci U S A 2017; 114:5629-5634. [PMID: 28228524 DOI: 10.1073/pnas.1614075114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Eps15 (epidermal growth factor receptor pathway substrate 15)-homology domain containing proteins (EHDs) comprise a family of dynamin-related mechano-chemical ATPases involved in cellular membrane trafficking. Previous studies have revealed the structure of the EHD2 dimer, but the molecular mechanisms of membrane recruitment and assembly have remained obscure. Here, we determined the crystal structure of an amino-terminally truncated EHD4 dimer. Compared with the EHD2 structure, the helical domains are 50° rotated relative to the GTPase domain. Using electron paramagnetic spin resonance (EPR), we show that this rotation aligns the two membrane-binding regions in the helical domain toward the lipid bilayer, allowing membrane interaction. A loop rearrangement in GTPase domain creates a new interface for oligomer formation. Our results suggest that the EHD4 structure represents the active EHD conformation, whereas the EHD2 structure is autoinhibited, and reveal a complex series of domain rearrangements accompanying activation. A comparison with other peripheral membrane proteins elucidates common and specific features of this activation mechanism.
Collapse
|
18
|
Carlos AJ, Tong L, Prieto GA, Cotman CW. IL-1β impairs retrograde flow of BDNF signaling by attenuating endosome trafficking. J Neuroinflammation 2017; 14:29. [PMID: 28153028 PMCID: PMC5290618 DOI: 10.1186/s12974-017-0803-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/23/2017] [Indexed: 01/25/2023] Open
Abstract
Background Pro-inflammatory cytokines accumulate in the brain with age and Alzheimer’s disease and can impair neuron health and cognitive function. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin that supports neuron health, function, and synaptic plasticity. The pro-inflammatory cytokine interleukin-1β (IL-1β) impairs BDNF signaling but whether it affects BDNF signaling endosome trafficking has not been studied. Methods This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1β on BDNF signaling endosome trafficking. Neurons were cultured in microfluidic chambers that separate the environments of the cell body and its axon terminal, enabling us to specifically treat in axon compartments and trace vesicle trafficking in real-time. Results We found that IL-1β attenuates BDNF signaling endosomes throughout networks in cultures. In IL-1β-treated cells, overall BDNF endosomal density was decreased, and the colocalization of BDNF endosomes with presynaptic terminals was found to be more than two times higher than in control cultures. Selective IL-1β treatment to the presynaptic compartment in microfluidic chamber attenuated BDNF endosome flux, as measured by reduced BDNF-GFP endosome counts in the somal compartment. Further, IL-1β decreased the BDNF-induced phosphorylation of Erk5, a known BDNF retrograde trafficking target. Mechanistically, the deficiency in trafficking was not due to impaired endocytosis of the BDNF-TrkB complex, or impaired transport rate, since BDNF endosomes traveled at the same rate in both control and IL-1β treatment groups. Among the regulators of presynaptic endosome sorting is the post-translational modification, ubiquitination. In support of this possibility, the IL-1β-mediated suppression of BDNF-induced Erk5 phosphorylation can be rescued by exogenous ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that regulates ubiquitin and endosomal trafficking. Conclusions We observed a state of neurotrophic resistance whereby, in the prolonged presence of IL-1β, BDNF is not effective in delivering long-distance signaling via the retrograde transport of signaling endosomes. Since IL-1β accumulation is an invariant feature across many neurodegenerative diseases, our study suggest that compromised BDNF retrograde transport-dependent signaling may have important implications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Anthony J Carlos
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA.,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA. .,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
| | - G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA.,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA.,Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
19
|
BDNF trafficking and signaling impairment during early neurodegeneration is prevented by moderate physical activity. IBRO Rep 2016; 1:19-31. [PMID: 30135925 PMCID: PMC6084862 DOI: 10.1016/j.ibror.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
Physical exercise can attenuate the effects of aging on the central nervous system by increasing the expression of neurotrophins such as brain-derived neurotrophic factor (BDNF), which promotes dendritic branching and enhances synaptic machinery, through interaction with its receptor TrkB. TrkB receptors are synthesized in the cell body and are transported to the axonal terminals and anchored to plasma membrane, through SLP1, CRMP2 and Rab27B, associated with KIF1B. Retrograde trafficking is made by EDH-4 together with dynactin and dynein molecular motors. In the present study it was found that early neurodegeneration is accompanied by decrease in BDNF signaling, in the absence of hyperphosphorylated tau aggregation, in hippocampus of 11 months old Lewis rats exposed to rotenone. It was also demonstrated that moderate physical activity (treadmill running, during 6 weeks, concomitant to rotenone exposure) prevents the impairment of BDNF system in aged rats, which may contribute to delay neurodegeneration. In conclusion, decrease in BDNF and TrkB vesicles occurs before large aggregate-like p-Tau are formed and physical activity applied during early neurodegeneration may be of relevance to prevent BDNF system decay.
Collapse
|
20
|
Gonzalez A, Moya-Alvarado G, Gonzalez-Billaut C, Bronfman FC. Cellular and molecular mechanisms regulating neuronal growth by brain-derived neurotrophic factor. Cytoskeleton (Hoboken) 2016; 73:612-628. [PMID: 27223597 DOI: 10.1002/cm.21312] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptors TrkB and p75 regulate dendritic and axonal growth during development and maintenance of the mature nervous system; however, the cellular and molecular mechanisms underlying this process are not fully understood. In recent years, several advances have shed new light on the processes behind the regulation of BDNF-mediated structural plasticity including control of neuronal transcription, local translation of proteins, and regulation of cytoskeleton and membrane dynamics. In this review, we summarize recent advances in the field of BDNF signaling in neurons to induce neuronal growth. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andres Gonzalez
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Moya-Alvarado
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Gonzalez-Billaut
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile and Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Francisca C Bronfman
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
21
|
Kalirin is required for BDNF-TrkB stimulated neurite outgrowth and branching. Neuropharmacology 2016; 107:227-238. [PMID: 27036892 DOI: 10.1016/j.neuropharm.2016.03.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/03/2016] [Accepted: 03/28/2016] [Indexed: 01/19/2023]
Abstract
Exogenous brain-derived neurotrophic factor (BDNF), acting through TrkB, is known to promote neurite formation and branching. This response to BDNF was eliminated by inhibition of TrkB kinase and by specific inhibition of the GEF1 domain of Kalirin, which activates Rac1. Neurons from Kalrn knockout mice were unable to activate Rac1 in response to BDNF. BDNF-triggered neurite outgrowth was abolished when Kalrn expression was reduced using shRNA that targets all of the major Kalrn isoforms, and reduced in neurons from Kalrn knockout mice. The Kalrn isoforms expressed early in development also include a GEF2 domain that activates RhoA. However, BDNF-stimulated neurite outgrowth in Kalrn knockout neurons was rescued by expression of Kalirin-7, which includes only the GEF1 domain but lacks the GEF2 domain. Dendritic morphogenesis, which requires spatially restricted, coordinated changes in the actin cytoskeleton and in the organization of microtubules, involves essential contributions from multiple Rho GEFs. Since Tiam1, another Rho GEF, is also required for BDNF-stimulated neurite outgrowth, an inhibitory fragment of Tiam1 (PHn-CC-EX) was tested and found to interfere with both Kalirin and Tiam1 GEF activity. The prolonged TrkB activation observed in response to BDNF in Kalrn knockout neurons and the altered time course and extent of ERK, CREB and Akt activation observed in the absence of Kalrn would be expected to alter the response of these neurons to other regulatory factors.
Collapse
|
22
|
Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, Valmier J, Copeland NG, Jenkins NA, Richard S, Marmigère F. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. eLife 2016; 5. [PMID: 26857994 PMCID: PMC4760953 DOI: 10.7554/elife.11627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
Although cardio-vascular incidents and sudden cardiac death (SCD) are among the leading causes of premature death in the general population, the origins remain unidentified in many cases. Genome-wide association studies have identified Meis1 as a risk factor for SCD. We report that Meis1 inactivation in the mouse neural crest leads to an altered sympatho-vagal regulation of cardiac rhythmicity in adults characterized by a chronotropic incompetence and cardiac conduction defects, thus increasing the susceptibility to SCD. We demonstrated that Meis1 is a major regulator of sympathetic target-field innervation and that Meis1 deficient sympathetic neurons die by apoptosis from early embryonic stages to perinatal stages. In addition, we showed that Meis1 regulates the transcription of key molecules necessary for the endosomal machinery. Accordingly, the traffic of Rab5+ endosomes is severely altered in Meis1-inactivated sympathetic neurons. These results suggest that Meis1 interacts with various trophic factors signaling pathways during postmitotic neurons differentiation. DOI:http://dx.doi.org/10.7554/eLife.11627.001 Nerve cells called sympathetic neurons can control the activity of almost all of our organs without any conscious thought on our part. For example, these nerve cells are responsible for accelerating the heart rate during exercise. In a developing embryo, there are initially more of these neurons than are needed, and only those that develop correctly and form a connection with a target cell will survive. This is because the target cells provide the growing neurons with vital molecules called neurotrophins, which are trafficked back along the nerve fiber and into the main body of the nerve cell to ensure its survival. However, it is largely unknown which proteins or genes are also involved in this developmental process. Now, Bouilloux, Thireau et al. show that if a gene called Meis1 is inactivated in mice, the sympathetic neurons start to develop and grow nerve fibers, but then fail to establish connections with their target cells and finally die. The Meis1 gene encodes a transcription factor, which is a protein that regulates gene activity. Therefore, Bouilloux, Thireau et al. looked for the genes that are regulated by this transcription factor in sympathetic neurons. This search uncovered several genes that are involved in the packaging and trafficking of molecules within cells. Other experiments then revealed that the trafficking of molecules back along the nerve fiber was altered in mutant neurons in which the Meis1 gene had been inactivated. Furthermore, Meis1 mutant mice had problems with their heart rate, especially during exercise, and an increased risk of dying from a sudden cardiac arrest. These findings reveal a transcription factor that helps to establish a connection between a neuron and its target, and that activates a pattern of gene expression that works alongside the neurotrophin-based signals. Since all neurons undergo similar processes during development, future work could ask if comparable patterns of gene expression exist in other types of neurons, and if problems with such processes contribute to some neurodegenerative diseases. DOI:http://dx.doi.org/10.7554/eLife.11627.002
Collapse
Affiliation(s)
- Fabrice Bouilloux
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Jérôme Thireau
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Charlotte Farah
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Sarah Karam
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Yves Dauvilliers
- Sleep Unit, Department of Neurology, Gui-de-Chauliac hospital, Montpellier, France
| | - Jean Valmier
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| | - Neal G Copeland
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, United States
| | - Nancy A Jenkins
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, United States
| | - Sylvain Richard
- Physiologie et Médecine Expérimentale du cœur et des Muscles, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Frédéric Marmigère
- Institute for Neurosciences of Montpellier, Institut national de la santé et de la recherche médicale, Montpellier, France
| |
Collapse
|
23
|
Tam SY, Lilla JN, Chen CC, Kalesnikoff J, Tsai M. RabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells. PLoS One 2015; 10:e0142935. [PMID: 26588713 PMCID: PMC4654474 DOI: 10.1371/journal.pone.0142935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/28/2015] [Indexed: 01/15/2023] Open
Abstract
Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NGF-dependent sustained knockdown of RabGEF1 protein expression in stable PC12 transfectants. We show that RabGEF1 is a negative regulator of NGF-induced neurite outgrowth and modulates other cellular and signaling processes that are activated by the interaction of NGF with TrkA receptors, such as cell cycle progression, cessation of proliferation, and activation of NGF-mediated downstream signaling responses. Moreover, RabGEF1 can bind to Rac1, and the activation of Rac1 upon NGF treatment is significantly enhanced in AS transfectants, suggesting that RabGEF1 is a negative regulator of NGF-induced Rac1 activation in PC12 cells. Furthermore, we show that RabGEF1 can also interact with NMDA receptors by binding to the NR2B subunit and its associated binding partner SynGAP, and negatively regulates activation of nitric oxide synthase activity induced by NMDA receptor stimulation in NGF-differentiated PC12 cells. Our data suggest that RabGEF1 is a negative regulator of TrkA-dependent neuronal differentiation and of NMDA receptor-mediated signaling activation in NGF-differentiated PC12 cells.
Collapse
Affiliation(s)
- See-Ying Tam
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Jennifer N. Lilla
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ching-Cheng Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Janet Kalesnikoff
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
24
|
Abstract
Peripheral axonal regeneration requires surface-expanding membrane addition. The continuous incorporation of new membranes into the axolemma allows the pushing force of elongating microtubules to drive axonal growth cones forwards. Hence, a constant supply of membranes and cytoskeletal building blocks is required, often for many weeks. In human peripheral nerves, axonal tips may be more than 1 m away from the neuronal cell body. Therefore, in the initial phase of regeneration, membranes are derived from pre-existing vesicles or synthesised locally. Only later stages of axonal regeneration are supported by membranes and proteins synthesised in neuronal cell bodies, considering that the fastest anterograde transport mechanisms deliver cargo at 20 cm/day. Whereas endocytosis and exocytosis of membrane vesicles are balanced in intact axons, membrane incorporation exceeds membrane retrieval during regeneration to compensate for the loss of membranes distal to the lesion site. Physiological membrane turnover rates will not be established before the completion of target reinnervation. In this review, the current knowledge on membrane traffic in axonal outgrowth is summarised, with a focus on endosomal vesicles as the providers of membranes and carriers of growth factor receptors required for initiating signalling pathways to promote the elongation and branching of regenerating axons in lesioned peripheral nerves.
Collapse
Affiliation(s)
- Barbara Hausott
- Division of Neuroanatomy, Department of Anatomy, Histology and Embryology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Lars Klimaschewski
- Division of Neuroanatomy, Department of Anatomy, Histology and Embryology, Medical University Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
25
|
Thiede-Stan NK, Schwab ME. Attractive and repulsive factors act through multi-subunit receptor complexes to regulate nerve fiber growth. J Cell Sci 2015; 128:2403-14. [PMID: 26116576 DOI: 10.1242/jcs.165555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the nervous system, attractive and repulsive factors guide neuronal growth, pathfinding and target innervation during development, learning and regeneration after injury. Repulsive and growth-inhibitory factors, such as some ephrins, semaphorins, netrins and myelin-associated growth inhibitors, restrict nerve fiber growth, whereas neurotrophins, and other ephrins, semaphorins and netrins attract fibers and promote neurite growth. Several of these guidance molecules also play crucial roles in vasculogenesis, and regulate cell migration and tissue formation in different organs. Precise and highly specific signal transduction in space and time is required in all these cases, which primarily depends on the presence and function of specific receptors. Interestingly, many of these ligands act through multi-subunit receptor complexes. In this Commentary, we review the current knowledge of how complexes of the receptors for attractive and repulsive neurite growth regulatory factors are reorganized in a spatial and temporal manner, and reveal the implications that such dynamics have on the signaling events that coordinate neurite fiber growth.
Collapse
Affiliation(s)
- Nina K Thiede-Stan
- Brain Research Institute, University of Zurich, Department of Health Sciences & Technology, ETH Zurich, Zurich 8057, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Department of Health Sciences & Technology, ETH Zurich, Zurich 8057, Switzerland
| |
Collapse
|
26
|
Ceriani M, Amigoni L, D'Aloia A, Berruti G, Martegani E. The deubiquitinating enzyme UBPy/USP8 interacts with TrkA and inhibits neuronal differentiation in PC12 cells. Exp Cell Res 2015; 333:49-59. [PMID: 25662281 DOI: 10.1016/j.yexcr.2015.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 11/19/2022]
Abstract
The tropomyosin-related kinase (Trk) family of receptor tyrosine kinases controls synaptic function, plasticity and sustains differentiation, morphology, and neuronal cell survival. Understanding Trk receptors down-regulation and recycling is a crucial step to point out sympathetic and sensory neuron function and survival. PC12 cells derived from pheochromocytoma of the rat adrenal medulla have been widely used as a model system for studies of neuronal differentiation as they respond to nerve growth factor (NGF) with a dramatic change in phenotype and acquire a number of properties characteristic of sympathetic neurons. In this study we demonstrated that in PC12 cells the TrkA receptor interacts with the deubiquitinating enzyme USP8/UBPy in a NGF-dependent manner and that it is deubiquitinated in vivo and in vitro by USP8. USP8 overexpression blocked NGF-induced neurites outgrowth while the overexpression of the catalytically inactive mutant USP8/UBPy(C748A) caused a marked increase of cell differentiation. Localization and biochemical experiments have point out that USP8 and TrkA partially co-localize in endosomes after NGF stimulation. Finally we have studied the role played by USP8 on TrkA turnover; using specific siRNA for USP8 we found that USP8 knockdown increases TrkA half-life, suggesting that the deubiquitinating activity of USP8 promotes TrkA degradation.
Collapse
Affiliation(s)
- Michela Ceriani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Loredana Amigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Alessia D'Aloia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Giovanna Berruti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Enzo Martegani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
27
|
Marlin MC, Li G. Biogenesis and function of the NGF/TrkA signaling endosome. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:239-57. [PMID: 25619719 DOI: 10.1016/bs.ircmb.2014.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Target-derived neurotrophin nerve growth factor (NGF) and its receptor TrkA are well known for retrograde signaling to promote survival and innervation of sympathetic and sensory neurons. In recent years, the signaling endosome model has been used to describe the sustained NGF/TrkA retrograde signaling as a process of endocytosis and retrograde transport of NGF/TrkA-containing endosomes from the axon terminal to the cell body for activation of NGF-inducible gene expression responsible for neuronal survival and development. Here, we review the biogenesis and function of NGF, TrkA, and the signaling endosome and discuss possible roles of Rab GTPases in the biogenesis and trafficking of signaling endosomes.
Collapse
Affiliation(s)
- M Caleb Marlin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
28
|
Lou J, Low-Nam ST, Kerkvliet JG, Hoppe AD. Delivery of CSF-1R to the lumen of macropinosomes promotes its destruction in macrophages. J Cell Sci 2014; 127:5228-39. [PMID: 25335894 DOI: 10.1242/jcs.154393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the macrophage colony stimulating factor-1 receptor (CSF-1R) by CSF-1 stimulates pronounced macropinocytosis and drives proliferation of macrophages. Although the role of macropinocytosis in CSF-1R signaling remains unknown, we show here that, despite internalizing large quantities of plasma membrane, macropinosomes contribute little to the internalization of the CSF-1-CSF-1R complex. Rather, internalization of the CSF-1R in small endocytic vesicles that are sensitive to clathrin disruption, outcompetes macropinosomes for CSF-1R endocytosis. Following internalization, small vesicles carrying the CSF-1R underwent homotypic fusion and then trafficked to newly formed macropinosomes bearing Rab5. As these macropinosomes matured, acquiring Rab7, the CSF-1R was transported into their lumen and degraded. Inhibition of macropinocytosis delayed receptor degradation despite no disruption to CSF-1R endocytosis. These data indicate that CSF-1-stimulated macropinosomes are sites of multivesicular body formation and accelerate CSF-1R degradation. Furthermore, we demonstrate that macropinocytosis and cell growth have a matching dose dependence on CSF-1, suggesting that macropinosomes might be a central mechanism coupling CSF-1R signaling and macrophage growth.
Collapse
Affiliation(s)
- Jieqiong Lou
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, 57007 SD, USA
| | - Shalini T Low-Nam
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, 57007 SD, USA
| | - Jason G Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, 57007 SD, USA
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, 57007 SD, USA
| |
Collapse
|
29
|
The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. MEMBRANES 2014; 4:642-77. [PMID: 25295627 PMCID: PMC4289860 DOI: 10.3390/membranes4040642] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC) and p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways.
Collapse
|
30
|
Liu X, Obianyo O, Chan CB, Huang J, Xue S, Yang JJ, Zeng F, Goodman M, Ye K. Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the TrkB receptor. J Biol Chem 2014; 289:27571-84. [PMID: 25143381 DOI: 10.1074/jbc.m114.562561] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
7,8-dihydroxyflavone (7,8-DHF), a newly identified small molecular TrkB receptor agonist, rapidly activates TrkB in both primary neurons and the rodent brain and mimics the physiological functions of the cognate ligand BDNF. Accumulating evidence supports that 7,8-DHF exerts neurotrophic effects in a TrkB-dependent manner. Nonetheless, the differences between 7,8-DHF and BDNF in activating TrkB remain incompletely understood. Here we show that 7,8-DHF and BDNF exhibit different TrkB activation kinetics in which TrkB maturation may be implicated. Employing two independent biophysical approaches, we confirm that 7,8-DHF interacts robustly with the TrkB extracellular domain, with a Kd of ∼10 nm. Although BDNF transiently activates TrkB, leading to receptor internalization and ubiquitination/degradation, in contrast, 7,8-DHF-triggered TrkB phosphorylation lasts for hours, and the internalized receptors are not degraded. Notably, primary neuronal maturation may be required for 7,8-DHF but not for BDNF to elicit the full spectrum of TrkB signaling cascades. Hence, 7,8-DHF interacts robustly with the TrkB receptor, and its agonistic effect may be mediated by neuronal development and maturation.
Collapse
Affiliation(s)
- Xia Liu
- From the Departments of Pathology and Laboratory Medicine and
| | | | - Chi Bun Chan
- From the Departments of Pathology and Laboratory Medicine and
| | - Junjian Huang
- From the Departments of Pathology and Laboratory Medicine and
| | - Shenghui Xue
- the Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, Georgia 30303
| | - Jenny J Yang
- the Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, Georgia 30303
| | - Fanxing Zeng
- Radiology and Imaging Sciences, Psychiatry, and Hematology and Oncology, Center for Systems Imaging, Wesley Woods Health Centers, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Mark Goodman
- Radiology and Imaging Sciences, Psychiatry, and Hematology and Oncology, Center for Systems Imaging, Wesley Woods Health Centers, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | - Keqiang Ye
- From the Departments of Pathology and Laboratory Medicine and
| |
Collapse
|
31
|
Vermehren-Schmaedick A, Krueger W, Jacob T, Ramunno-Johnson D, Balkowiec A, Lidke KA, Vu TQ. Heterogeneous intracellular trafficking dynamics of brain-derived neurotrophic factor complexes in the neuronal soma revealed by single quantum dot tracking. PLoS One 2014; 9:e95113. [PMID: 24732948 PMCID: PMC3986401 DOI: 10.1371/journal.pone.0095113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/23/2014] [Indexed: 01/19/2023] Open
Abstract
Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide understanding of how the molecular mechanisms underlying intracellular ligand-receptor trafficking shape cell signaling under conditions of both healthy and dysfunctional neurological disease models.
Collapse
Affiliation(s)
- Anke Vermehren-Schmaedick
- Department of Biomedical Engineering and Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Wesley Krueger
- Department of Physics & Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Thomas Jacob
- Department of Biomedical Engineering and Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Damien Ramunno-Johnson
- Department of Biomedical Engineering and Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Agnieszka Balkowiec
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Keith A. Lidke
- Department of Physics & Astronomy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Tania Q. Vu
- Department of Biomedical Engineering and Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
32
|
Matusica D, Coulson EJ. Local versus long-range neurotrophin receptor signalling: endosomes are not just carriers for axonal transport. Semin Cell Dev Biol 2014; 31:57-63. [PMID: 24709025 DOI: 10.1016/j.semcdb.2014.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 01/25/2023]
Abstract
Neurotrophins play a critical role in neuronal development and survival, as well as maintenance of the adult nervous system. Neurotrophins can mediate their effects by signalling locally at the nerve terminal, or signalling retrogradely from the axonal terminal to the cell soma to regulate gene expression. Given that the axon terminals of many nerve cells can be up to a metre away from their soma, neurons have evolved specialized long-range signalling platforms that depend on a highly regulated network of intracellular membrane compartments termed "signalling endosomes". Endosomal trafficking of activated receptors controls not only the axonal retrograde signals but also local receptor recycling and degradation. Endosomal trafficking involving the sorting and compartmentalizing of different signals, which are subsequently distributed to the appropriate cellular destination, can at least partially explain how neurotrophins generate a diverse array of signalling outcomes. Although signalling endosomes provide a useful model for understanding how different cell surface receptor-mediated signals are generated and transported, the precise role, identity and functional definition of a signalling endosome remains unclear. In this review we will discuss the regulation of local versus long-range neurotrophin signalling, with a specific focus on recent developments in the role of endosomes in regulating the fate of Trk receptors.
Collapse
Affiliation(s)
- Dusan Matusica
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072 Qld, Australia
| | - Elizabeth J Coulson
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072 Qld, Australia.
| |
Collapse
|
33
|
Youssef G, Gillett C, Agbaje O, Crompton T, Montano X. Phosphorylation of NTRK1 at Y674/Y675 induced by TP53-dependent repression of PTPN6 expression: a potential novel prognostic marker for breast cancer. Mod Pathol 2014; 27:361-74. [PMID: 23948750 DOI: 10.1038/modpathol.2013.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 12/29/2022]
Abstract
We have identified a ligand-independent mechanism whereby the tumor suppressor, TP53, induces nerve growth factor receptor, NTRK1, phosphorylation at Y674/Y675 (NTRK1-pY674/pY675), via the repression of the NTRK1-phosphatase, PTPN6. This results in suppression of breast cancer cell proliferation. In this investigation, we aimed to establish whether perturbation of the wild-type TP53-NTRK1-pY674/pY675-PTPN6 pathway has an impact on disease-free survival of breast cancer patients without neo-adjuvant treatment. A total of 308 tumor samples were stained for NTRK1, NTRK1-pY674/pY675, PTPN6, and TP53 expression. Association between expression levels and disease-free survival was determined by the univariate/multivariate and Kaplan-Meir methods of analysis. DNA from tumors was sequenced to identify mutant or wild-type TP53. Tumors expressing NTRK1-pY674/pY675 but with undetectable or low levels of PTPN6 and TP53 were associated with prolonged 5, 10, and 15 years' disease-free survival by 48%, 36%, and 37%, respectively, in the multivariate analysis (P<0.05). A similar result was observed in tumors expressing wild-type TP53, NTRK1-pY674/pY675, and low or undetectable levels of PTPN6. Given that estrogen receptor-positive breast cancers encode wild-type TP53, we analyzed this expression pattern in these tumors. Multivariate analysis showed that it was significantly and independently predictive of prolonged survival by 66%, 70%, and 84%, respectively, (P<0.05). The Kaplan-Meir method demonstrated that NTRK1-pY674/pY675 together with undetectable or low levels of PTPN6 correlated with 59% probability of disease-free survival (median survival 15 years), compared with 7% probability of disease-free survival (median survival 4.5 years) when absent. In luminal A tumors, the presence of this pattern was estimated to have a 61% probability of disease-free survival (median survival 15 years), compared with 6% probability of disease-free survival (median survival 3 years) when it was absent. These results strongly suggest that expression of NTRK1-pY674/pY675 together with wild-type TP53 and low levels of PTPN6 expression are predictors of improved disease-free survival and that they could be useful biomarkers to predict clinical outcome.
Collapse
Affiliation(s)
- Gehad Youssef
- 1] Immunobiology Unit, UCL, Institute of Child Health, London, UK [2] Molecular Hematology and Cancer Biology Unit, UCL, Institute of Child Health, London, UK
| | - Cheryl Gillett
- Breast Tissue & Data Bank, Division of Cancer Studies, King's College London, Guys Hospital, London, UK
| | - Orunsola Agbaje
- Cancer Epidemiology Group, Division of Cancer Studies, King's College London, Guys Hospital, London, UK
| | - Tessa Crompton
- Immunobiology Unit, UCL, Institute of Child Health, London, UK
| | - Ximena Montano
- 1] Immunobiology Unit, UCL, Institute of Child Health, London, UK [2] Molecular Hematology and Cancer Biology Unit, UCL, Institute of Child Health, London, UK [3] School of Health and Social Work, Department of Allied Health Professions and Midwifery University of Hertfordshire, Hatfield, UK
| |
Collapse
|
34
|
Suo D, Park J, Harrington AW, Zweifel LS, Mihalas S, Deppmann CD. Coronin-1 is a neurotrophin endosomal effector that is required for developmental competition for survival. Nat Neurosci 2014; 17:36-45. [PMID: 24270184 PMCID: PMC3962792 DOI: 10.1038/nn.3593] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/01/2013] [Indexed: 12/13/2022]
Abstract
Retrograde communication from axonal targets to neuronal cell bodies is critical for both the development and function of the nervous system. Much progress has been made in recent years linking long-distance, retrograde signaling to a signaling endosome, yet the mechanisms governing the trafficking and signaling of these endosomes remain mostly uncharacterized. Here we report that in mouse sympathetic neurons, the target-derived nerve growth factor (NGF)-tropomyosin-related kinase type 1 (TrkA, also called Ntrk1) signaling endosome, on arrival at the cell body, induces the expression and recruitment of a new effector protein known as Coronin-1 (also called Coro1a). In the absence of Coronin-1, the NGF-TrkA signaling endosome fuses to lysosomes sixfold to tenfold faster than when Coronin-1 is intact. We also define a new Coronin-1-dependent trafficking event in which signaling endosomes recycle and re-internalize on arrival at the cell body. Beyond influencing endosomal trafficking, Coronin-1 is also required for several NGF-TrkA-dependent signaling events, including calcium release, calcineurin activation and phosphorylation of cAMP responsive element binding protein (CREB). These results establish Coronin-1 as an essential component of a feedback loop that mediates NGF-TrkA endosome stability, recycling and signaling as a critical mechanism governing developmental competition for survival.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- CREB-Binding Protein/genetics
- CREB-Binding Protein/metabolism
- Cell Survival/genetics
- Cell Survival/physiology
- Cells, Cultured
- Electroporation
- Endosomes/physiology
- Female
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Developmental/physiology
- Immunoprecipitation
- In Vitro Techniques
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microfilament Proteins/deficiency
- Microfilament Proteins/metabolism
- Nerve Growth Factor/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/physiology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, trkA/deficiency
- Signal Transduction/genetics
- Signal Transduction/physiology
- Spinal Cord/cytology
- Spinal Cord/growth & development
- Spinal Cord/metabolism
- Superior Cervical Ganglion/cytology
- Transfection
- bcl-2-Associated X Protein/deficiency
Collapse
Affiliation(s)
- Dong Suo
- Department. of Biology, Univ. of Virginia, Charlottesville, VA, 22903, USA
| | - Juyeon Park
- Department. of Biology, Univ. of Virginia, Charlottesville, VA, 22903, USA
| | - Anthony W. Harrington
- The Solomon Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Larry S. Zweifel
- The Solomon Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | | | |
Collapse
|
35
|
Spatiotemporal intracellular dynamics of neurotrophin and its receptors. Implications for neurotrophin signaling and neuronal function. Handb Exp Pharmacol 2014; 220:33-65. [PMID: 24668469 DOI: 10.1007/978-3-642-45106-5_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurons possess a polarized morphology specialized to contribute to neuronal networks, and this morphology imposes an important challenge for neuronal signaling and communication. The physiology of the network is regulated by neurotrophic factors that are secreted in an activity-dependent manner modulating neuronal connectivity. Neurotrophins are a well-known family of neurotrophic factors that, together with their cognate receptors, the Trks and the p75 neurotrophin receptor, regulate neuronal plasticity and survival and determine the neuronal phenotype in healthy and regenerating neurons. Is it now becoming clear that neurotrophin signaling and vesicular transport are coordinated to modify neuronal function because disturbances of vesicular transport mechanisms lead to disturbed neurotrophin signaling and to diseases of the nervous system. This chapter summarizes our current understanding of how the regulated secretion of neurotrophin, the distribution of neurotrophin receptors in different locations of neurons, and the intracellular transport of neurotrophin-induced signaling in distal processes are achieved to allow coordinated neurotrophin signaling in the cell body and axons.
Collapse
|
36
|
Miaczynska M. Effects of membrane trafficking on signaling by receptor tyrosine kinases. Cold Spring Harb Perspect Biol 2013; 5:a009035. [PMID: 24186066 DOI: 10.1101/cshperspect.a009035] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intracellular trafficking machinery contributes to the spatial and temporal control of signaling by receptor tyrosine kinases (RTKs). The primary role in this process is played by endocytic trafficking, which regulates the localization of RTKs and their downstream effectors, as well as the duration and the extent of their activity. The key regulatory points along the endocytic pathway are internalization of RTKs from the plasma membrane, their sorting to degradation or recycling, and their residence in various endosomal compartments. Here I will review factors and mechanisms that modulate RTK signaling by (1) affecting receptor internalization, (2) regulating the balance between degradation and recycling of RTK, and (3) compartmentalization of signals in endosomes and other organelles. Cumulatively, these mechanisms illustrate a multilayered control of RTK signaling exerted by the trafficking machinery.
Collapse
Affiliation(s)
- Marta Miaczynska
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 02-109 Warsaw, Poland
| |
Collapse
|
37
|
Ouyang Q, Lizarraga SB, Schmidt M, Yang U, Gong J, Ellisor D, Kauer JA, Morrow EM. Christianson syndrome protein NHE6 modulates TrkB endosomal signaling required for neuronal circuit development. Neuron 2013; 80:97-112. [PMID: 24035762 DOI: 10.1016/j.neuron.2013.07.043] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2013] [Indexed: 12/21/2022]
Abstract
Neuronal arborization is regulated by cell-autonomous and nonautonomous mechanisms including endosomal signaling via BDNF/TrkB. The endosomal Na⁺/H⁺ exchanger 6 (NHE6) is mutated in a new autism-related disorder. NHE6 functions to permit proton leak from endosomes, yet the mechanisms causing disease are unknown. We demonstrate that loss of NHE6 results in overacidification of the endosomal compartment and attenuated TrkB signaling. Mouse brains with disrupted NHE6 display reduced axonal and dendritic branching, synapse number, and circuit strength. Site-directed mutagenesis shows that the proton leak function of NHE6 is required for neuronal arborization. We find that TrkB receptor colocalizes to NHE6-associated endosomes. TrkB protein and phosphorylation are reduced in NHE6 mutant neurons in response to BDNF signaling. Finally, exogenous BDNF rescues defects in neuronal arborization. We propose that NHE6 mutation leads to circuit defects that are in part due to impoverished neuronal arborization that may be treatable by enhanced TrkB signaling.
Collapse
Affiliation(s)
- Qing Ouyang
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA
| | - Michael Schmidt
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA
| | - Unikora Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA
| | - Jingyi Gong
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA
| | - Debra Ellisor
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA
| | - Julie A Kauer
- Departments of Molecular Pharmacology, Physiology and Biotechnology, and Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, and Institute for Brain Science, Brown University, Laboratory for Molecular Medicine, 70 Ship Street, Providence, RI 02903, USA.,Developmental Disorders Genetics Research Program, Emma Pendleton Bradley Hospital and Department of Psychiatry and Human Behavior, Brown University Medical School, 1011 Veteran Memorial Pkwy., East Providence, RI 02915, USA
| |
Collapse
|
38
|
Poon WW, Carlos AJ, Aguilar BL, Berchtold NC, Kawano CK, Zograbyan V, Yaopruke T, Shelanski M, Cotman CW. β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1. J Biol Chem 2013; 288:16937-16948. [PMID: 23599427 DOI: 10.1074/jbc.m113.463711] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We previously found that BDNF-dependent retrograde trafficking is impaired in AD transgenic mouse neurons. Utilizing a novel microfluidic culture chamber, we demonstrate that Aβ oligomers compromise BDNF-mediated retrograde transport by impairing endosomal vesicle velocities, resulting in impaired downstream signaling driven by BDNF/TrkB, including ERK5 activation, and CREB-dependent gene regulation. Our data suggest that a key mechanism mediating the deficit involves ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that functions to regulate cellular ubiquitin. Aβ-induced deficits in BDNF trafficking and signaling are mimicked by LDN (an inhibitor of UCH-L1) and can be reversed by increasing cellular UCH-L1 levels, demonstrated here using a transducible TAT-UCH-L1 strategy. Finally, our data reveal that UCH-L1 mRNA levels are decreased in the hippocampi of AD brains. Taken together, our data implicate that UCH-L1 is important for regulating neurotrophin receptor sorting to signaling endosomes and supporting retrograde transport. Further, our results support the idea that in AD, Aβ may down-regulate UCH-L1 in the AD brain, which in turn impairs BDNF/TrkB-mediated retrograde signaling, compromising synaptic plasticity and neuronal survival.
Collapse
Affiliation(s)
- Wayne W Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697.
| | - Anthony J Carlos
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Brittany L Aguilar
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Nicole C Berchtold
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Crystal K Kawano
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Vahe Zograbyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Tim Yaopruke
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Michael Shelanski
- Department of Pathology and the Taub Institute, Columbia University, New York, New York 10032
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| |
Collapse
|
39
|
Yoon TD, Lee HW, Kim YS, Choi HJ, Moon JO, Yoon S. Identification and analysis of expressed genes using a cDNA library from rat thymus during regeneration following cyclophosphamide-induced T cell depletion. Int J Mol Med 2013; 31:731-9. [PMID: 23314113 DOI: 10.3892/ijmm.2013.1238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/12/2012] [Indexed: 11/05/2022] Open
Abstract
Understanding the mechanisms of thymus regeneration is necessary for designing strategies to enhance host immunity when immune function is suppressed due to T cell depletion. In this study, expressed sequence tag (EST) analysis was performed following generation of a regenerating thymus cDNA library to identify genes expressed in thymus regeneration. A total of 1,000 ESTs were analyzed, of which 770 (77%) matched to known genes, 178 matched to unknown genes (17.8%) and 52 (5.2%) did not match any known sequences. The ESTs matched to known genes were grouped into eight functional categories: gene/protein synthesis (28%), metabolism (24%), cell signaling and communication (17%), cell structure and motility (6%), cell/organism defense and homeostasis (6%), cell division (3%), cell death/apoptosis (2%), and unclassified genes (14%). Based on the data of RT-PCR analysis, the expression of TLP, E2IG2, pincher, Paip2, TGF-β1, 4-1BB and laminin α3 genes was increased during thymus regeneration. These results provide extensive molecular information, for the first time, on thymus regeneration indicating that the regenerating thymus cDNA library may be a useful source for identifying various genes expressed during thymus regeneration.
Collapse
Affiliation(s)
- Tae-Deuk Yoon
- Department of Anatomy, Pusan National University, School of Medicine, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea
| | | | | | | | | | | |
Collapse
|
40
|
Signalling Complexes: Protein-Protein Interactions and Lipid Rafts. Mol Pharmacol 2012. [DOI: 10.1002/9781118451908.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Wu P, Wee P, Jiang J, Chen X, Wang Z. Differential regulation of transcription factors by location-specific EGF receptor signaling via a spatio-temporal interplay of ERK activation. PLoS One 2012; 7:e41354. [PMID: 22984397 PMCID: PMC3440385 DOI: 10.1371/journal.pone.0041354] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/20/2012] [Indexed: 12/18/2022] Open
Abstract
It is well established that EGFR signals from both the plasma membrane (PM) and endosome (EN). However, very little is known about whether and how the EGFR signals at the PM and EN to differentially regulate various signaling pathways and the physiological outcomes. In this communication, we established a system that allowed the specific activations of EGFR at different cell locations: PM and EN. PM activation of EGFR is achieved by activation of endocytosis-deficient mutant EGFR1010LL/AA stably expressed in CHO cells (CHO-LL/AA cell). EN activation of EGFR is achieved by activating the wild type EGFR stably expressed in CHO cells (CHO-EGFR cell) after its internalization into EN with a previously reported protocol. We showed that both EGFR activations at PM and EN activated ERK to a similar level, but differentially stimulated transcriptional factors c-jun and c-fos. We further showed that EGFR activations at PM and EN resulted in differential spatio-temporal dynamics of phosphorylated ERK which caused the differential activation of two downstream substrates ELK1 and RSK. Finally we showed that EGFR signaling from PM and EN led to different physiological outcomes. CHO-LL/AA cells that only generate PM EGFR signals have a larger cell size and slower proliferation rate than CHO-EGFR cells. We conclude that location-specific EGFR activation differentially regulates cell functions through a spatio-temporal interplay of ERK activation.
Collapse
Affiliation(s)
- Peng Wu
- The Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ping Wee
- The Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer Jiang
- The Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xinmei Chen
- The Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zhixiang Wang
- The Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
42
|
Pryor S, McCaffrey G, Young LR, Grimes ML. NGF causes TrkA to specifically attract microtubules to lipid rafts. PLoS One 2012; 7:e35163. [PMID: 22496904 PMCID: PMC3319630 DOI: 10.1371/journal.pone.0035163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/13/2012] [Indexed: 11/18/2022] Open
Abstract
Membrane protein sorting is mediated by interactions between proteins and lipids. One mechanism that contributes to sorting involves patches of lipids, termed lipid rafts, which are different from their surroundings in lipid and protein composition. Although the nerve growth factor (NGF) receptors, TrkA and p75(NTR) collaborate with each other at the plasma membrane to bind NGF, these two receptors are endocytosed separately and activate different cellular responses. We hypothesized that receptor localization in membrane rafts may play a role in endocytic sorting. TrkA and p75(NTR) both reside in detergent-resistant membranes (DRMs), yet they responded differently to a variety of conditions. The ganglioside, GM1, caused increased association of NGF, TrkA, and microtubules with DRMs, but a decrease in p75(NTR). When microtubules were induced to polymerize and attach to DRMs by in vitro reactions, TrkA, but not p75(NTR), was bound to microtubules in DRMs and in a detergent-resistant endosomal fraction. NGF enhanced the interaction between TrkA and microtubules in DRMs, yet tyrosine phosphorylated TrkA was entirely absent in DRMs under conditions where activated TrkA was detected in detergent-sensitive membranes and endosomes. These data indicate that TrkA and p75(NTR) partition into membrane rafts by different mechanisms, and that the fraction of TrkA that associates with DRMs is internalized but does not directly form signaling endosomes. Rather, by attracting microtubules to lipid rafts, TrkA may mediate other processes such as axon guidance.
Collapse
Affiliation(s)
- Shona Pryor
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | - Gretchen McCaffrey
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Lindsay R. Young
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | - Mark L. Grimes
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
- * E-mail:
| |
Collapse
|
43
|
Abstract
Neurotrophins are a family of target-derived growth factors that support survival, development, and maintenance of innervating neurons. Owing to the unique architecture of neurons, neurotrophins that act locally on the axonal terminals must convey their signals across the entire axon for subsequent regulation of gene transcription in the cell nucleus. This long-distance retrograde signaling, a motor-driven process that can take hours or days, has been a subject of intense interest. In the last decade, live-cell imaging with high sensitivity has significantly increased our capability to track the transport of neurotrophins, their receptors, and subsequent signals in real time. This review summarizes recent research progress in understanding neurotrophin-receptor interactions at the axonal terminal and their transport dynamics along the axon. We emphasize high-resolution studies at the single-molecule level and also discuss recent technical advances in the field.
Collapse
|
44
|
Steketee MB, Goldberg JL. Signaling endosomes and growth cone motility in axon regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:35-73. [PMID: 23211459 DOI: 10.1016/b978-0-12-407178-0.00003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development and regeneration, growth cones guide neurites to their targets by altering their motility in response to extracellular guidance cues. One class of cues critical to nervous system development is the neurotrophins. Neurotrophin binding to their cognate receptors stimulates their endocytosis into signaling endosomes. Current data indicate that the spatiotemporal localization of signaling endosomes can direct diverse processes regulating cell motility, including membrane trafficking, cytoskeletal remodeling, adhesion dynamics, and local translation. Recent experiments manipulating signaling endosome localization in neuronal growth cones support these views and place the neurotrophin signaling endosome in a central role regulating growth cone motility during axon growth and regeneration.
Collapse
|
45
|
Hausott B, Vallant N, Hochfilzer M, Mangger S, Irschick R, Haugsten EM, Klimaschewski L. Leupeptin enhances cell surface localization of fibroblast growth factor receptor 1 in adult sensory neurons by increased recycling. Eur J Cell Biol 2011; 91:129-38. [PMID: 22169219 DOI: 10.1016/j.ejcb.2011.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factors (FGFs) act as trophic factors during development and regeneration of the nervous system. FGFs mediate their responses by activation of four types of FGF receptors (FGFR1-4). FGFR1 is expressed in adult sensory neurons of dorsal root ganglia (DRG), and overexpression of FGFR1 enhances FGF-2-induced elongative axon growth in vitro. Ligand-induced activation of FGFR1 is followed by endocytosis and rapid lysosomal degradation. We previously reported that the lysosomal inhibitor leupeptin prevents degradation of FGFR1 and promotes FGF-2-induced elongative axon growth of DRG neurons overexpressing FGFR1. Therefore, we analyzed the effects of leupeptin on intracellular sorting of FGFR1 in PC12 pheochromocytoma cells and DRG neurons. Leupeptin increased colocalization of FGFR1 with lysosomes. Furthermore, leupeptin enhanced the cell surface localization of FGFR1 by increased receptor recycling and this effect was abolished by the recycling inhibitor monensin. In addition, a lysine mutant of FGFR1, which is preferentially recycled back to the cell surface, promoted elongative axon growth of DRG neurons similar to leupeptin. In contrast, the lysosomal inhibitor bafilomycin had no effect on surface localization of FGFR1, inhibited axon growth of DRG neurons and abolished the effects of leupeptin on receptor recycling. Together, our results strongly imply that increased recycling of FGFR1 promotes axon elongation, but not axonal branching, of adult DRG neurons in vitro.
Collapse
Affiliation(s)
- Barbara Hausott
- Division of Neuroanatomy, Innsbruck Medical University, Muellerstrasse 59, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
46
|
Harrington AW, St Hillaire C, Zweifel LS, Glebova NO, Philippidou P, Halegoua S, Ginty DD. Recruitment of actin modifiers to TrkA endosomes governs retrograde NGF signaling and survival. Cell 2011; 146:421-34. [PMID: 21816277 DOI: 10.1016/j.cell.2011.07.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/02/2011] [Accepted: 07/09/2011] [Indexed: 12/15/2022]
Abstract
The neurotrophins NGF and NT3 collaborate to support development of sympathetic neurons. Although both promote axonal extension via the TrkA receptor, only NGF activates retrograde transport of TrkA endosomes to support neuronal survival. Here, we report that actin depolymerization is essential for initiation of NGF/TrkA endosome trafficking and that a Rac1-cofilin signaling module associated with TrkA early endosomes supports their maturation to retrograde transport-competent endosomes. These actin-regulatory endosomal components are absent from NT3/TrkA endosomes, explaining the failure of NT3 to support retrograde TrkA transport and survival. The inability of NT3 to activate Rac1-GTP-cofilin signaling is likely due to the labile nature of NT3/TrkA complexes within the acidic environment of TrkA early endosomes. Thus, TrkA endosomes associate with actin-modulatory proteins to promote F-actin disassembly, enabling their maturation into transport-competent signaling endosomes. Differential control of this process explains how NGF but not NT3 supports retrograde survival of sympathetic neurons.
Collapse
Affiliation(s)
- Anthony W Harrington
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Proper vascular regulation is of paramount importance for the control of blood flow to tissues. In particular, the regulation of peripheral resistance arteries is essential for several physiological processes, including control of blood pressure, thermoregulation and increase of blood flow to central nervous system and heart under stress conditions such as hypoxia. Arterial tone is regulated by the periarterial autonomic nervous plexus, as well as by endothelium-dependent, myogenic and humoral mechanisms. Underscoring the importance of proper vascular regulation, defects in these processes can lead to diseases such as hypertension, orthostatic hypotension, Raynaud's phenomenon, defective thermoregulation, hand-foot syndrome, migraine and congestive heart failure. Here, we review the molecular mechanisms controlling the development of the periarterial nerve plexus, retrograde and localized signalling at neuro-effector junctions, the molecular and cellular mechanisms of vascular regulation and adult plasticity and maintenance of periarterial innervation. We particularly highlight a newly discovered role for vascular endothelial growth factor in the structural and functional maintenance of arterial neuro-effector junctions. Finally, we discuss how defects in neuronal vascular regulation can lead to disease.
Collapse
Affiliation(s)
- E Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany.
| | | |
Collapse
|
48
|
Fu X, Yang Y, Xu C, Niu Y, Chen T, Zhou Q, Liu JJ. Retrolinkin cooperates with endophilin A1 to mediate BDNF-TrkB early endocytic trafficking and signaling from early endosomes. Mol Biol Cell 2011; 22:3684-98. [PMID: 21849472 PMCID: PMC3183022 DOI: 10.1091/mbc.e11-04-0308] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Both retrolinkin and its interaction partner endophilin A1 are required for BDNF-induced dendrite outgrowth of cultured hippocampal neurons. They function sequentially in an early endocytic trafficking pathway for BDNF-activated TrkB, which provides spatiotemporal control of downstream ERK signaling from endosomes. Brain-derived neurotrophic factor (BDNF) binds to its cell surface receptor TrkB to regulate differentiation, development, synaptic plasticity, and functional maintenance of neuronal cells. Binding of BDNF triggers TrkB dimerization and autophosphorylation, which provides docking sites for adaptor proteins to recruit and activate downstream signaling molecules. The molecular mechanisms underlying BDNF–TrkB endocytic trafficking crucial for spatiotemporal control of signaling pathways remain to be elucidated. Here we show that retrolinkin, a transmembrane protein, interacts with endophilin A1 and mediates BDNF-activated TrkB (pTrk) trafficking and signaling in CNS neurons. We find that activated TrkB colocalizes and interacts with the early endosome marker APPL1. Both retrolinkin and endophilin A1 are required for BDNF-induced dendrite development and acute extracellular signal-regulated kinase activation from early endosomes. Suppression of retrolinkin expression not only blocks BDNF-triggered TrkB internalization, but also prevents recruitment of endophilin A1 to pTrk vesicles trafficking through APPL1-positive endosomes. These findings reveal a novel mechanism for BDNF–TrkB to regulate signaling both in time and space through a specific membrane trafficking pathway.
Collapse
Affiliation(s)
- Xiuping Fu
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Winckler B, Yap CC. Endocytosis and endosomes at the crossroads of regulating trafficking of axon outgrowth-modifying receptors. Traffic 2011; 12:1099-108. [PMID: 21535338 DOI: 10.1111/j.1600-0854.2011.01213.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In neurons, many receptors must be localized correctly to axons or dendrites for proper function. During development, receptors for nerve growth and guidance are targeted to axons and localized to growth cones where receptor activation by ligands results in promotion or inhibition of axon growth. Signaling outcomes downstream of ligand binding are determined by the location, levels and residence times of receptors on the neuronal plasma membrane. Therefore, the mechanisms controlling the trafficking of these receptors are crucial to the proper wiring of circuits. Membrane proteins accumulate on the axonal surface by multiple routes, including polarized sorting in the trans Golgi network, sorting in endosomes and removal by endocytosis. Endosomes also play important roles in the signaling pathways for both growth-promoting and -inhibiting molecules: signaling endosomes derived from endocytosis are important for signaling from growth cones to cell bodies. Growth-promoting neurotrophins and growth-inhibiting Nogo-A can use EHD4/Pincher-dependent endocytosis at the growth cone for their respective retrograde signaling. In addition to retrograde transport of endosomes, anterograde transport to axons in endosomes also occurs for several receptors, including the axon outgrowth-promoting cell adhesion molecule L1/NgCAM and TrkA. L1/NgCAM also depends on EHD4/Pincher-dependent endocytosis for its axonal polarization. In this review, we will focus on receptors whose trafficking has been reported to be modulated by the EHD4/Pincher family of endosomal regulators, namely L1/NgCAM, Trk and Nogo-A. We will first summarize the pathways underlying the axonal transport of these proteins and then discuss the potential roles of EHD4/Pincher in mediating their endocytosis.
Collapse
Affiliation(s)
- Bettina Winckler
- Department of Neuroscience, University of Virginia Medical School, MR4-6115, 409 Lane Road Ext., Charlottesville, VA 22936, USA.
| | | |
Collapse
|