1
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
2
|
Wang C, Du M, Jiang Z, Cong R, Wang W, Zhang T, Chen J, Zhang G, Li L. PI3K-AKT-mediated phosphorylation of Thr260 in CgCaspase-3/6/7 regulates heat-induced activation in oysters. Commun Biol 2024; 7:1459. [PMID: 39511363 PMCID: PMC11543851 DOI: 10.1038/s42003-024-07184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Cysteine-aspartic proteases (caspases) are critical drivers of apoptosis, exhibiting expansion and domain shuffling in mollusks. However, the functions and regulatory mechanisms of these caspases remain unclear. In this study, we identified a group of Caspase-3/6/7 in Bivalvia and Gastropoda with a long inter-subunit linker (IL) that inhibits cleavage activation. Within this region, we found that conserved phosphorylation at Thr260 in oysters, mediated by the PI3K-AKT pathway, suppresses heat-induced activation. This mechanism is involved in divergent temperature adaptation between two allopatric congeneric oyster species, the relatively cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata. Our study elucidates the role of these effector caspase members and their long IL in bivalves, revealing that the PI3K-AKT pathway phosphorylates Thr260 on CgCASP3/6/7's linker to inhibit heat-induced activation. These findings provide insights into the evolution and function of apoptotic regulatory mechanisms in bivalves.
Collapse
Affiliation(s)
- Chaogang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Mingyang Du
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxiang Jiang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Taiping Zhang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jincheng Chen
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| |
Collapse
|
3
|
Leya M, Jeong H, Yang D, Ton Nu Bao TH, Pandeya PR, Oh SI, Roh YS, Kim JW, Kim B. Hepatocyte-Specific Casein Kinase 1 Epsilon Ablation Ameliorates Metabolic Dysfunction-Associated Steatohepatitis by Up-Regulating Tumor Necrosis Factor Receptor-Associated Factor 3 in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2106-2127. [PMID: 39179201 DOI: 10.1016/j.ajpath.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Casein kinase 1 epsilon (CK1ε), a member of the serine/threonine protein kinase family, phosphorylates a broad range of substrates. However, its role in the development of chronic liver diseases remains elusive. This study aimed to investigate the role of CK1ε in the development and progression of metabolic dysfunction-associated steatohepatitis (MASH). Hepatocyte-specific CK1ε knockout (CK1εΔHEP) mice were generated by crossbreeding mice with floxed CK1ε alleles (CK1εfl/fl) and Cre-expressing albumin mice. Mice were fed either a Western diet (WD) or a methionine- and choline-deficient diet to induce MASH. CK1εΔHEP was associated with a decreased severity of WD- or methionine- and choline-deficient diet-induced MASH, as confirmed by reduced incidence of hepatic lesions and significantly lower levels of alanine aminotransferase, aspartate aminotransferase, and proinflammatory cytokine tumor necrosis factor (TNF)-α. CK1εΔHEP WD-fed mice exhibited significant amelioration of total cholesterol, triglycerides, and de novo lipogenic genes, indicating that CK1ε could influence lipid metabolism. CK1εΔHEP WD-fed mice showed significantly down-regulated TNF receptor-associated factor (TRAF) 3, phosphorylated (p) transforming growth factor-β-activated kinase 1, p-TRAF-associated NF-κB activator (TANK)-binding kinase 1 (TBK1), and p-AKT levels, thereby affecting downstream mitogen-activated protein kinase signaling, indicating a potential mechanism for the observed rescue. Finally, pharmacologic inhibition of CK1ε with PF670462 improved palmitic acid-induced steatohepatitis in vitro and attenuated WD-induced metabolic profile in vivo. In conclusion, CK1ε up-regulates TNF receptor-associated factor 3, which, in turn, causes transforming growth factor-β-activated kinase 1-dependent signaling, amplifies downstream mitogen-activated protein kinase signaling, modifies p-c-Jun levels, and exacerbates inflammation, all of which are factors in WD-induced metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Mwense Leya
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Republic of Korea; School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Hyuneui Jeong
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Republic of Korea
| | - Daram Yang
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Republic of Korea
| | - Tien Huyen Ton Nu Bao
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Republic of Korea
| | - Prakash Raj Pandeya
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky
| | - Sang-Ik Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Republic of Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Jong-Won Kim
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Republic of Korea.
| |
Collapse
|
4
|
Chen F, Peng S, Li C, Yang F, Yi Y, Chen X, Xu H, Cheng B, Xu Y, Xie X. Nitidine chloride inhibits mTORC1 signaling through ATF4-mediated Sestrin2 induction and targets IGF2R for lysosomal degradation. Life Sci 2024; 353:122918. [PMID: 39034027 DOI: 10.1016/j.lfs.2024.122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
AIMS Nitidine chloride (NC), a natural phytochemical alkaloid derived from Zanthoxylum nitidum (Roxb.) DC, exhibits multiple bioactivities, including antitumor, anti-inflammatory, and other therapeutic effects. However, the primary targets of NC and the mechanism of action (MOA) have not been explicitly defined. METHODS We explored the effects of NC on mTORC1 signaling by immunoblotting and fluorescence microscopy in wild-type and gene knockout cell lines generated by the CRISPR/Cas9 gene editing technique. We identified IGF2R as a direct target of NC via the drug affinity-responsive target stability (DARTS) method. We investigated the antitumor effects of NC using a mouse melanoma B16 tumor xenograft model. KEY FINDINGS NC inhibits mTORC1 activity by targeting amino acid-sensing signaling through activating transcription factor 4 (ATF4)-mediated Sestrin2 induction. NC directly binds to IGF2R and promotes its lysosomal degradation. Moreover, NC displayed potent cytotoxicity against various cancer cells and inhibited B16 tumor xenografts. SIGNIFICANCE NC inhibits mTORC1 signaling through nutrient sensing and directly targets IGF2R for lysosomal degradation, providing mechanistic insights into the MOA of NC.
Collapse
Affiliation(s)
- Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fan Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Baicheng Cheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yumin Xu
- Department of Infectious Diseases & Department of Hospital Infection Management, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
5
|
Tang X, Huang Y, Fu W, Wang P, Feng L, Yang J, Zhu H, Huang X, Ming Q, Li P. Digirseophene A promotes recovery in injured developing cerebellum via AMPK/AKT/GSK3β pathway-mediated neural stem cell proliferation. Biomed Pharmacother 2024; 177:117046. [PMID: 38981241 DOI: 10.1016/j.biopha.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Neural stem cells (NSCs) exhibit a remarkable capacity for self-renewal and have the potential to differentiate into various neural lineage cells, which makes them pivotal in the management of neurological disorders. Harnessing the inherent potential of endogenous NSCs for enhancing nerve repair and regeneration represents an optimal approach to addressing diseases of the nervous system. In this study, we explored the potential of a novel benzophenone derivative named Digirseophene A (DGA), which was isolated from the endophytic fungus Corydalis tomentella. Previous experiments have extensively identified and characterized DGA, revealing its unique properties. Our findings demonstrate the remarkable capability of DGA to stimulate neural stem cell proliferation, both in vitro and in vivo. Furthermore, we established a model of radiation-induced cerebellar injury to assess the effects of DGA on the distribution of different cell subpopulations within the damaged cerebellum, thereby suggesting its beneficial role in cerebellar repair. In addition, our observations on a primary NSCs model revealed that DGA significantly increased cellular oxygen consumption, indicating increased energy and metabolic demands. By utilizing various pathway inhibitors in combination with DGA, we successfully demonstrated its ability to counteract the suppressive impacts of AMPK and GSK3β inhibitors on NSC proliferation. Collectively, our research results strongly suggest that DGA, as an innovative compound, exerts its role in activating NSCs and promoting injury repair through the regulation of the AMPK/AKT/GSK3β pathway.
Collapse
Affiliation(s)
- Xiangyu Tang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Yuting Huang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Wenying Fu
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Pengbo Wang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Liyuan Feng
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Jie Yang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Hongyan Zhu
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Xiuning Huang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Qianliang Ming
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China.
| | - Peng Li
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China.
| |
Collapse
|
6
|
Li X, Cheng K, Shang MD, Yang Y, Hu B, Wang X, Wei XD, Han YC, Zhang XG, Dong MH, Yang ZL, Wang JQ. MARCH1 negatively regulates TBK1-mTOR signaling pathway by ubiquitinating TBK1. BMC Cancer 2024; 24:902. [PMID: 39061024 PMCID: PMC11282859 DOI: 10.1186/s12885-024-12667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND TBK1 positively regulates the growth factor-mediated mTOR signaling pathway by phosphorylating mTOR. However, it remains unclear how the TBK1-mTOR signaling pathway is regulated. Considering that STING not only interacts with TBK1 but also with MARCH1, we speculated that MARCH1 might regulate the mTOR signaling pathway by targeting TBK1. The aim of this study was to determine whether MARCH1 regulates the mTOR signaling pathway by targeting TBK1. METHODS The co-immunoprecipitation (Co-IP) assay was used to verify the interaction between MARCH1 with STING or TBK1. The ubiquitination of STING or TBK1 was analyzed using denatured co-immunoprecipitation. The level of proteins detected in the co-immunoprecipitation or denatured co-immunoprecipitation samples were determined by Western blotting. Stable knocked-down cells were constructed by infecting lentivirus bearing the related shRNA sequences. Scratch wound healing and clonogenic cell survival assays were used to detect the migration and proliferation of breast cancer cells. RESULTS We showed that MARCH1 played an important role in growth factor-induced the TBK1- mTOR signaling pathway. MARCH1 overexpression attenuated the growth factor-induced activation of mTOR signaling pathway, whereas its deficiency resulted in the opposite effect. Mechanistically, MARCH1 interacted with and promoted the K63-linked ubiquitination of TBK1. This ubiquitination of TBK1 then attenuated its interaction with mTOR, thereby inhibiting the growth factor-induced mTOR signaling pathway. Importantly, faster proliferation induced by MARCH1 deficiency was weakened by mTOR, STING, or TBK1 inhibition. CONCLUSION MARCH1 suppressed growth factors mediated the mTOR signaling pathway by targeting the STING-TBK1-mTOR axis.
Collapse
Affiliation(s)
- Xiao Li
- The Second Clinical Medical College , Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Kai Cheng
- The Second Clinical Medical College , Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Meng-Di Shang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Yong Yang
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China
| | - Bin Hu
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China
| | - Xi Wang
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xiao-Dan Wei
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Yan-Chun Han
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xiao-Gang Zhang
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Meng-Hua Dong
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| | - Zhen-Lin Yang
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China.
| | - Jiu-Qiang Wang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| |
Collapse
|
7
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
8
|
Sun Y, Guo G, Zhang Y, Chen X, Lu Y, Hong R, Xiong J, Li J, Hu X, Wang S, Liu Y, Zhang Z, Yang X, Nan Y, Huang Q. IKBKE promotes the ZEB2-mediated EMT process by phosphorylating HMGA1a in glioblastoma. Cell Signal 2024; 116:111062. [PMID: 38242271 DOI: 10.1016/j.cellsig.2024.111062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
IKBKE (Inhibitor of Nuclear Factor Kappa-B Kinase Subunit Epsilon) is an important oncogenic protein in a variety of tumors, which can promote tumor growth, proliferation, invasion and drug resistance, and plays a critical regulatory role in the occurrence and progression of malignant tumors. HMGA1a (High Mobility Group AT-hook 1a) functions as a cofactor for proper transcriptional regulation and is highly expressed in multiple types of tumors. ZEB2 (Zinc finger E-box Binding homeobox 2) exerts active functions in epithelial mesenchymal transformation (EMT). In our current study, we confirmed that IKBKE can increase the proliferation, invasion and migration of glioblastoma cells. We then found that IKBKE can phosphorylate HMGA1a at Ser 36 and/or Ser 44 sites and inhibit the degradation process of HMGA1a, and regulate the nuclear translocation of HMGA1a. Crucially, we observed that HMGA1a can regulate ZEB2 gene expression by interacting with ZEB2 promoter region. Hence, HMGA1a was found to promote the ZEB2-related metastasis. Consequently, we demonstrated that IKBKE can exert its oncogenic functions via the IKBKE/HMGA1a/ZEB2 signalling axis, and IKBKE may be a prominent biomarker for the treatment of glioblastoma in the future.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Gaochao Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Rujun Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jinbiao Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Xue Hu
- Department of Clinical Nutrition, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China
| | - Shuaishuai Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Yang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Zhimeng Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315000, China
| | - Xuejun Yang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.
| |
Collapse
|
9
|
Phan Van T, Huyen Ton Nu Bao T, Leya M, Zhou Z, Jeong H, Lim CW, Kim B. Amlexanox attenuates LPS-induced neuroinflammatory responses in microglial cells via inhibition of NF-κB and STAT3 signaling pathways. Sci Rep 2024; 14:2744. [PMID: 38302598 PMCID: PMC10834963 DOI: 10.1038/s41598-024-53235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Amlexanox is an anti-inflammatory and anti-allergic agent used clinically for the treatment of aphthous ulcers, allergic rhinitis, and asthma. Recent studies have demonstrated that amlexanox, a selective inhibitor of IkB kinase epsilon (IKKε) and TANK-binding kinase 1 (TBK1), suppresses a range of diseases or inflammatory conditions, such as obesity-related metabolic dysfunction and type 2 diabetes. However, the effects of amlexanox on neuroinflammatory responses to amlexanox have not yet been comprehensively studied. In this study, we investigated the novel therapeutic effect of amlexanox on LPS-induced neuroinflammation in vivo, and intraperitoneal injection of amlexanox markedly reduced LPS-induced IKKε levels, proinflammatory cytokines, and microglial activation, as evidenced by ionized calcium-binding adapter molecule 1 (Iba1) immunostaining. Furthermore, amlexanox significantly reduced proinflammatory cytokines and chemokines in LPS-induced bone marrow-derived macrophages (BMDM), murine BV2, and human HMC3 microglial cells. This data provided considerable evidence that amlexanox can be used as a preventive and curative therapy for neuroinflammatory and neurodegenerative diseases. In terms of mechanism aspects, our results demonstrated that the anti-inflammatory action of amlexanox in BV2 microglial cells was through the downregulation of NF-κB and STAT3 signaling pathways. In addition, the combination of amlexanox and SPI (a STAT3 selective inhibitor) showed high efficiency in inhibiting the production of neurotoxic and pro-inflammatory mediators. Overall, our data provide rational insights into the mechanisms of amlexanox as a potential therapeutic strategy for neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Thach Phan Van
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea
- Department of Biotechnology, NTT Hi-tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Tien Huyen Ton Nu Bao
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea
| | - Mwense Leya
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea
| | - Zixiong Zhou
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Hyuneui Jeong
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea
| | - Chae-Woong Lim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea.
| |
Collapse
|
10
|
Ting KKY, Yu P, Iyayi M, Dow R, Hyduk SJ, Floro E, Ibrahim H, Karim S, Polenz CK, Winer DA, Woo M, Rocheleau J, Jongstra-Bilen J, Cybulsky MI. Oxidized Low-Density Lipoprotein Accumulation in Macrophages Impairs Lipopolysaccharide-Induced Activation of AKT2, ATP Citrate Lyase, Acetyl-Coenzyme A Production, and Inflammatory Gene H3K27 Acetylation. Immunohorizons 2024; 8:57-73. [PMID: 38193847 PMCID: PMC10835650 DOI: 10.4049/immunohorizons.2300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024] Open
Abstract
The accumulation of lipid and the formation of macrophage foam cells is a hallmark of atherosclerosis, a chronic inflammatory disease. To better understand the role of macrophage lipid accumulation in inflammation during atherogenesis, we studied early molecular events that follow the accumulation of oxidized low-density lipoprotein (oxLDL) in cultured mouse macrophages. We previously showed that oxLDL accumulation downregulates the inflammatory response in conjunction with downregulation of late-phase glycolysis. In this study, we show that within hours after LPS stimulation, macrophages with accumulated oxLDL maintain early-phase glycolysis but selectively downregulate activation of AKT2, one of three AKT isoforms. The inhibition of AKT2 activation reduced LPS-induced ATP citrate lyase activation, acetyl-CoA production, and acetylation of histone 3 lysine 27 (H3K27ac) in certain inflammatory gene promoters. In contrast to oxLDL, multiple early LPS-induced signaling pathways were inhibited in macrophages with accumulated cholesterol, including TBK1, AKT1, AKT2, MAPK, and NF-κB, and early-phase glycolysis. The selective inhibition of LPS-induced AKT2 activation was dependent on the generation of mitochondrial oxygen radicals during the accumulation of oxLDL in macrophages prior to LPS stimulation. This is consistent with increased oxidative phosphorylation, fatty acid synthesis, and oxidation pathways found by comparative transcriptomic analyses of oxLDL-loaded versus control macrophages. Our study shows a functional connection between oxLDL accumulation, inactivation of AKT2, and the inhibition of certain inflammatory genes through epigenetic changes that occur soon after LPS stimulation, independent of early-phase glycolysis.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Pei Yu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mudia Iyayi
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Riley Dow
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sharon J. Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Eric Floro
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Hisham Ibrahim
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Saraf Karim
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Chanele K. Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel A. Winer
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Rocheleau
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jenny Jongstra-Bilen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Myron I. Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Zhu L, Guo G, Jin Y, Hu A, Liu Y. IKBKE regulates angiogenesis by modulating VEGF expression and secretion in glioblastoma. Tissue Cell 2023; 84:102180. [PMID: 37573607 DOI: 10.1016/j.tice.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/11/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE As a noncanonical inflammatory kinase, IKBKE is frequently overexpressed and activated and has been identified as an oncogenic protein in glioblastoma. However, the potential function and underlying mechanism of IKBKE contributing to tumor angiogenesis remain elusive. METHODS First, we analyzed the correlation between IKBKE and VEGF expression in glioma samples by immunohistochemistry (IHC). Second, HUVEC-related assays and Western blot were used to detect the regulatory effect of IKBKE on angiogenesis by modulating VEGF expression. Third, IKBKE depletion could alleviate the influence of VEGF expression on IHC of intracranial glioma model. RESULTS We demonstrate that depletion of IKBKE markedly inhibits tumor growth and angiogenesis in glioblastoma. Mechanistically, IKBKE induces VEGF expression and secretion by regulating AKT/FOXO3a in glioblastoma. CONCLUSIONS This study reveals that IKBKE is a novel oncogenic molecule that induces angiogenesis through the promotion of VEGF expression and highlights the potential of targeting IKBKE for glioblastoma therapy.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Gaochao Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Yuwei Jin
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Aixia Hu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China.
| | - Yang Liu
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
12
|
Fallone L, Walzer T, Marçais A. Signaling Pathways Leading to mTOR Activation Downstream Cytokine Receptors in Lymphocytes in Health and Disease. Int J Mol Sci 2023; 24:12736. [PMID: 37628917 PMCID: PMC10454121 DOI: 10.3390/ijms241612736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
CD8+ T cells and Natural Killer (NK) cells are cytotoxic lymphocytes important in the response to intracellular pathogens and cancer. Their activity depends on the integration of a large set of intracellular and environmental cues, including antigenic signals, cytokine stimulation and nutrient availability. This integration is achieved by signaling hubs, such as the mechanistic target of rapamycin (mTOR). mTOR is a conserved protein kinase that controls cellular growth and metabolism in eukaryotic cells and, therefore, is essential for lymphocyte development and maturation. However, our current understanding of mTOR signaling comes mostly from studies performed in transformed cell lines, which constitute a poor model for comprehending metabolic pathway regulation. Therefore, it is only quite recently that the regulation of mTOR in primary cells has been assessed. Here, we review the signaling pathways leading to mTOR activation in CD8+ T and NK cells, focusing on activation by cytokines. We also discuss how this knowledge can contribute to immunotherapy development, particularly for cancer treatment.
Collapse
Affiliation(s)
| | | | - Antoine Marçais
- CIRI—Centre International de Recherche en Infectiologie (Team Lyacts), Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.F.); (T.W.)
| |
Collapse
|
13
|
IKKε positively regulates NF-κB, MAPK, and IRF3-mediated type I IFN signaling pathways in Japanese eel (Anguilla japonica). AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
14
|
Tian Y, Tian B, Wang M, Cai D, Cheng A, Zhang W, Wu Y, Yang Q, Ou X, Sun D, Zhang S, Mao S, Zhao X, Huang J, Gao Q, Zhu D, Jia R, Chen S, Liu M. BX795, a kinase inhibitor, inhibit duck plague virus infection via targeting US3 kinase. Poult Sci 2023; 102:102597. [PMID: 36931072 PMCID: PMC10027563 DOI: 10.1016/j.psj.2023.102597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Duck plague virus (DPV) is a typical DNA virus of waterfowl, it causes huge economic losses to the duck industry due to the higher mortality and lower egg production. The disease is one of the frequent epidemics and outbreaks on duck farms because present vaccines could not provide complete immunity and there are no specific antiviral drugs available. Therefore, the development of antiviral drugs is urgently needed. In this study, we evaluated the antiviral activity of BX795, a specific kinase inhibitor of 3-phosphoinositide-dependent kinase 1 (PDK1), protein kinase B (AKT) and Tank binding kinase 1 (TBK1), against DPV in different duck cells. Our study demonstrated that BX795 reveals prominent antiviral activity in a dose-dependent manner in different types of duck cells. Time-addition and antiviral duration analysis uncovered that BX795 inhibits viral infection therapeutically and its antiviral activity lasts longer than 96 h. Further studies have shown that BX795 prevents cell-to-cell spread of the DPV rather than affects other stage of viral life cycle. Mechanistically, BX795 can inhibit DPV US3 kinase activity, reduce the phosphorylation of US3 substrates, and prevent the interaction between US3 and UL47. Taking together, our study demonstrated BX795, which disrupts the viral kinase activity, is a candidate antiviral agent for DPV.
Collapse
Affiliation(s)
- Yanming Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China.
| | - Wei Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan 611130, PR China
| |
Collapse
|
15
|
Alshafie W, Fotouhi M, Shlaifer I, Ayoubi R, Edwards AM, Durcan TM, McPherson PS, Laflamme C. Identification of highly specific antibodies for Serine/threonine-protein kinase TBK1 for use in immunoblot, immunoprecipitation and immunofluorescence. F1000Res 2022; 11:977. [PMID: 36415206 PMCID: PMC9647147 DOI: 10.12688/f1000research.124632.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
TBK1 is a serine-threonine protein kinase that has been linked to a number of diseases including amyotrophic lateral sclerosis and frontotemporal dementia. Reproducible research on TBK1 has been hampered by the lack of well characterized antibodies. In this study, we characterized 11 commercial antibodies for TBK1 for use in immunoblot, immunofluorescence and immunoprecipitation, using an isogeneic knock-out cell line as a control. We identify antibodies that appear specific for all three applications but invite the readers to interpret the present findings based on their own scientific expertise and use this report as a guide to select the most appropriate antibody for their specific needs.
Collapse
Affiliation(s)
- Walaa Alshafie
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Irina Shlaifer
- The Neuro's Early Drug Discovery Unit (EDDU), Structural Genomics Consortium, McGill University, Montreal, Quebec, Canada
| | - Riham Ayoubi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Aled M. Edwards
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Thomas M. Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), Structural Genomics Consortium, McGill University, Montreal, Quebec, Canada
| | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Carl Laflamme
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada,
| |
Collapse
|
16
|
NAD/NAMPT and mTOR Pathways in Melanoma: Drivers of Drug Resistance and Prospective Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179985. [PMID: 36077374 PMCID: PMC9456568 DOI: 10.3390/ijms23179985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive behavior and high metastatic potential. The introduction of BRAF/MEK inhibitors and immune-checkpoint inhibitors (ICIs) in the clinic has dramatically improved patient survival over the last decade. However, many patients either display primary (i.e., innate) or develop secondary (i.e., acquired) resistance to systemic treatments. Therapeutic resistance relies on the rewiring of multiple processes, including cancer metabolism, epigenetics, gene expression, and interactions with the tumor microenvironment that are only partially understood. Therefore, reliable biomarkers of resistance or response, capable of facilitating the choice of the best treatment option for each patient, are currently missing. Recently, activation of nicotinamide adenine dinucleotide (NAD) metabolism and, in particular, of its rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) have been identified as key drivers of targeted therapy resistance and melanoma progression. Another major player in this context is the mammalian target of rapamycin (mTOR) pathway, which plays key roles in the regulation of melanoma cell anabolic functions and energy metabolism at the switch between sensitivity and resistance to targeted therapy. In this review, we summarize known resistance mechanisms to ICIs and targeted therapy, focusing on metabolic adaptation as one main mechanism of drug resistance. In particular, we highlight the roles of NAD/NAMPT and mTOR signaling axes in this context and overview data in support of their inhibition as a promising strategy to overcome treatment resistance.
Collapse
|
17
|
Alshafie W, Fotouhi M, Shlaifer I, Ayoubi R, Edwards AM, Durcan TM, McPherson PS, Laflamme C. Identification of highly specific antibodies for Serine/threonine-protein kinase TBK1 for use in immunoblot, immunoprecipitation and immunofluorescence. F1000Res 2022; 11:977. [PMID: 36415206 PMCID: PMC9647147 DOI: 10.12688/f1000research.124632.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 08/08/2023] Open
Abstract
TBK1 is a serine-threonine protein kinase that has been linked to a number of diseases including amyotrophic lateral sclerosis and frontotemporal dementia. Reproducible research on TBK1 has been hampered by the lack of well characterized antibodies. In this study, we characterized 11 commercial antibodies for TBK1 for use in immunoblot, immunofluorescence and immunoprecipitation, using an isogeneic knock-out cell line as a control. We identify antibodies that appear specific for all three applications but invite the readers to interpret the present findings based on their own scientific expertise and use this report as a guide to select the most appropriate antibody for their specific needs.
Collapse
Affiliation(s)
- Walaa Alshafie
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Irina Shlaifer
- The Neuro's Early Drug Discovery Unit (EDDU), Structural Genomics Consortium, McGill University, Montreal, Quebec, Canada
| | - Riham Ayoubi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Aled M. Edwards
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Thomas M. Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), Structural Genomics Consortium, McGill University, Montreal, Quebec, Canada
| | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Carl Laflamme
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Erol A. Genotoxicity-Stimulated and CYLD-Driven Malignant Transformation. Cancer Manag Res 2022; 14:2339-2356. [PMID: 35958947 PMCID: PMC9362849 DOI: 10.2147/cmar.s373557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress, which can cause DNA damage, can both activate TNF-R1 directly in the absence of TNF stimulation and phosphorylate c-Abl, thus promoting its cytoplasmic translocation. Persistent cytoplasmic localization of c-Abl has been associated with cellular transformation. c-Abl phosphorylates OTULIN at tyrosine 56, thereby disrupting its relationship with LUBAC. OTULIN-released LUBAC interacts with SPATA2 and is recruited to the TNF-R1sc, facilitating SPATA2-CYLD interaction. All these interactions are required for the activation of IKKβ to stimulate NF-κB transcriptional activity following genotoxic stress. IKKβ also induces the critical phosphorylation of CYLD at serine 568 to increase its deubiquitinating (DUB) activity required for the termination of signaling cascades. Contrary to the widespread belief that CYLD is an absolute tumor suppressor, CYLD initiates and terminates NF-κB activity by alternately using its oncoprotein and tumor suppressor activities, respectively. If IKKβ fails to achieve the DUB activity-inducing phosphorylation at serine 568, CYLD would operate in a sustained mode of oncogenic activity. The resulting dysregulated NF-κB activation and other accompanying pathologies will disrupt cellular homeostasis in favor of transformation.
Collapse
Affiliation(s)
- Adnan Erol
- Independent Researcher, Istanbul, Turkey
| |
Collapse
|
19
|
Xie W, Jiang Q, Wu X, Wang L, Gao B, Sun Z, Zhang X, Bu L, Lin Y, Huang Q, Li J, Guo J. IKBKE phosphorylates and stabilizes Snail to promote breast cancer invasion and metastasis. Cell Death Differ 2022; 29:1528-1540. [PMID: 35066576 PMCID: PMC9345937 DOI: 10.1038/s41418-022-00940-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
IKBKE, a non-canonical inflammatory kinase, is frequently amplified or activated, and plays predominantly oncogenic roles in human cancers, especially in breast cancer. However, the potential function and underlying mechanism of IKBKE contributing to breast cancer metastasis remain largely elusive. Here, we report that depletion of Ikbke markedly decreases polyoma virus middle T antigen (PyVMT)-induced mouse mammary tumorigenesis and subsequent lung metastasis. Biologically, ectopic expression of IKBKE accelerates, whereas depletion of IKBKE attenuates breast cancer invasiveness and migration in vitro and tumor metastasis in vivo. Mechanistically, IKBKE tightly controls the stability of transcriptional factor Snail in different layers, in particular by directly phosphorylating Snail, which markedly blocks the E3 ligase β-TRCP1-mediated Snail degradation, resulting in breast cancer epithelial-mesenchymal transition (EMT) and metastasis. These findings together reveal a novel oncogenic function of IKBKE in promoting breast cancer metastasis by governing Snail abundance, and highlight the potential of targeting IKBKE for metastatic breast cancer therapies.
Collapse
|
20
|
Khatoon F, Kumar V, Anjum F, Shafie A, Adnan M, Hassan MI. Frustration analysis of TBK1 missense mutations reported in ALS/FTD and cancer patients. 3 Biotech 2022; 12:174. [PMID: 35845111 PMCID: PMC9283588 DOI: 10.1007/s13205-022-03240-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Tank-binding kinase 1 (TBK1) is a multifunctional kinase having essential roles in cellular processes, autophagy/mitophagy, and selective clearance of damaged proteins. More than 90 mutations in the TBK1 gene are linked with multiple cancer types, amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Some of these missense mutations disrupt the abilities of TBK1 to dimerize, associate with the mitophagy receptor optineurin (OPTN), autoactivate, or catalyze phosphorylation. Some mutations may cause severe dysregulation of the pathway, while others induce a limited disruption. Here, we have studied those mutations reported in cancer, ALS and FTD, and subsequently investigated the effect of missense mutations on the structure and function of TBK1 for localized residual frustration change. Out of 33 ALS/FTD causing mutations and 28 oncogenic mutations, 10 mutations and 12 oncogenic mutations showed significant change in the residual frustration. The local frustration plays an important role in the conformation of protein structure in active and inactive kinases. Our analysis reports the change in residual frustration state, conformational change and effect on active and inactive TBK1 function due to ALS/FTD causing and oncogenic missense mutations. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03240-0.
Collapse
|
21
|
Xiao QA, He Q, Li L, Song Y, Chen YR, Zeng J, Xia X. Role of IKKε in the Metabolic Diseases: Physiology, Pathophysiology, and Pharmacology. Front Pharmacol 2022; 13:888588. [PMID: 35662709 PMCID: PMC9162805 DOI: 10.3389/fphar.2022.888588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
IKKε (inhibitor of nuclear factor kappa-B kinase ε) is a member of the noncanonical NF-κB pathway. It participates in the inflammatory response and innate immunity against bacteria. In recent decades, IKKε has been closely associated with metabolic regulation. Inhibition of the IKKε pathway can improve fat deposition in the liver, reduce subcutaneous fat inflammation, and improve liver gluconeogenesis in obesity. IKKε is expected to be a new therapeutic target for metabolic diseases such as nonalcoholic fatty liver disease, diabetes, and obesity. Herein, we summarize the structural characterization, physiological function, and pathological role of IKKε in metabolic diseases and small molecule inhibitors of IKKε.
Collapse
Affiliation(s)
- Qing-Ao Xiao
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, China.,Third-grade Pharmacological Laboratory on Traditional Chinese MedicineState Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Qian He
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, China.,National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lun Li
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, China.,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, China
| | - Yinhong Song
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, China.,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, China
| | - Yue-Ran Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese MedicineState Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Department of Physiology and Pathophysiology, Medical College, China Three Gorges University, Yichang, China
| | - Jun Zeng
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, China
| | - Xuan Xia
- Third-grade Pharmacological Laboratory on Traditional Chinese MedicineState Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Department of Physiology and Pathophysiology, Medical College, China Three Gorges University, Yichang, China
| |
Collapse
|
22
|
Therapeutic targeting of TANK-binding kinase signaling towards anticancer drug development: Challenges and opportunities. Int J Biol Macromol 2022; 207:1022-1037. [PMID: 35358582 DOI: 10.1016/j.ijbiomac.2022.03.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
TANK-binding kinase 1 (TBK1) plays a fundamental role in regulating the cellular responses and controlling several signaling cascades. It regulates inflammatory, interferon, NF-κB, autophagy, and Akt pathways. Post-translational modifications (PTM) of TBK1 control its action and subsequent cellular signaling. The dysregulation of the TBK1 pathway is correlated to many pathophysiological conditions, including cancer, that implicates the promising therapeutic advantage for targeting TBK1. The present study summarizes current updates on the molecular mechanisms and cancer-inducing roles of TBK1. Designed inhibitors of TBK1 are considered a potential therapeutic agent for several diseases, including cancer. Data from pre-clinical tumor models recommend that the targeting of TBK1 could be an attractive strategy for anti-tumor therapy. This review further highlighted the therapeutic potential of potent and selective TBK1 inhibitors, including Amlexanox, Compound II, BX795, MRT67307, SR8185 AZ13102909, CYT387, GSK8612, BAY985, and Domainex. These inhibitors may be implicated to facilitate therapeutic management of cancer and TBK1-associated diseases in the future.
Collapse
|
23
|
Zhang D, Liu Y, Zhu Y, Zhang Q, Guan H, Liu S, Chen S, Mei C, Chen C, Liao Z, Xi Y, Ouyang S, Feng XH, Liang T, Shen L, Xu P. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nat Cell Biol 2022; 24:766-782. [PMID: 35501370 DOI: 10.1038/s41556-022-00894-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
Innate DNA sensing via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) mechanism surveys microbial invasion and cellular damage and thus participates in various human infectious diseases, autoimmune diseases and cancers. However, how DNA sensing rapidly and adaptively shapes cellular physiology is incompletely known. Here we identify the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway, a previously unknown cGAS-STING mechanism, enabling an innate immunity control of cap-dependent messenger RNA translation. Upon cGAMP binding, STING at the ER binds and directly activates the ER-located kinase PERK via their intracellular domains, which precedes TBK1-IRF3 activation and is irrelevant to the unfolded protein response. The activated PERK phosphorylates eIF2α, forming an inflammatory- and survival-preferred translation program. Notably, this STING-PERK-eIF2α pathway is evolutionarily primitive and physiologically critical to cellular senescence and organ fibrosis. Pharmacologically or genetically targeting this non-canonical cGAS-STING pathway attenuated lung and kidney fibrosis. Collectively, the findings identify an alternative innate immune pathway and its critical role in organ fibrosis, report an innate immunity-directed translation program and suggest the therapeutic potential for targeting the STING-PERK pathway in treating fibrotic diseases.
Collapse
Affiliation(s)
- Dan Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yutong Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Hongxing Guan
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Shengduo Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Shasha Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chen Mei
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chen Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ying Xi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Cancer Center, Zhejiang University, Hangzhou, China.
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China. .,Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China. .,Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Runde AP, Mack R, S J PB, Zhang J. The role of TBK1 in cancer pathogenesis and anticancer immunity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:135. [PMID: 35395857 PMCID: PMC8994244 DOI: 10.1186/s13046-022-02352-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
The TANK-binding kinase 1 (TBK1) is a serine/threonine kinase belonging to the non-canonical inhibitor of nuclear factor-κB (IκB) kinase (IKK) family. TBK1 can be activated by pathogen-associated molecular patterns (PAMPs), inflammatory cytokines, and oncogenic kinases, including activated K-RAS/N-RAS mutants. TBK1 primarily mediates IRF3/7 activation and NF-κB signaling to regulate inflammatory cytokine production and the activation of innate immunity. TBK1 is also involved in the regulation of several other cellular activities, including autophagy, mitochondrial metabolism, and cellular proliferation. Although TBK1 mutations have not been reported in human cancers, aberrant TBK1 activation has been implicated in the oncogenesis of several types of cancer, including leukemia and solid tumors with KRAS-activating mutations. As such, TBK1 has been proposed to be a feasible target for pharmacological treatment of these types of cancer. Studies suggest that TBK1 inhibition suppresses cancer development not only by directly suppressing the proliferation and survival of cancer cells but also by activating antitumor T-cell immunity. Several small molecule inhibitors of TBK1 have been identified and interrogated. However, to this point, only momelotinib (MMB)/CYT387 has been evaluated as a cancer therapy in clinical trials, while amlexanox (AMX) has been evaluated clinically for treatment of type II diabetes, nonalcoholic fatty liver disease, and obesity. In this review, we summarize advances in research into TBK1 signaling pathways and regulation, as well as recent studies on TBK1 in cancer pathogenesis. We also discuss the potential molecular mechanisms of targeting TBK1 for cancer treatment. We hope that our effort can help to stimulate the development of novel strategies for targeting TBK1 signaling in future approaches to cancer therapy.
Collapse
Affiliation(s)
- Austin P Runde
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
25
|
Distinct Epileptogenic Mechanisms Associated with Seizures in Wolf-Hirschhorn Syndrome. Mol Neurobiol 2022; 59:3159-3169. [DOI: 10.1007/s12035-022-02792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
|
26
|
Göktuna SI. IKBKE-driven TPL2 and MEK1 phosphorylations sustain constitutive ERK1/2 activation in tumor cells. EXCLI JOURNAL 2022; 21:436-453. [PMID: 35391917 PMCID: PMC8983855 DOI: 10.17179/excli2021-4578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
IKBKE have been associated with numerous cancers. As a result, IKBKE have emerged as potential target for cancer therapy. Accumulating evidence support that IKBKE orchestrate tumor cell survival in cancers. Here we evaluated the possible link between IKBKE and ERK phosphorylation. The effects of IKBKE silencing on MAPK activation in tumor vs. normal cells were evaluated via WB and RT-PCR. Ectopically expressed IKBKE, TPL2 or MEK1 constructs were used to examine the possible interactions among them via co-IP. In vitro kinase assays were performed to understand nature of the observed interactions. In tumors, IKBKE regulates MEK/ERK constitutive activations in vitro and in vivo. IKBKE and TPL2 physically interact and this interaction leads to TPL2 phosphorylation. We describe here a novel regulatory link between IKBKE and constitutive ERK1/2 activation in tumor cells. This new circuitry may be relevant for tumor cell survival in various malignancies.
Collapse
Affiliation(s)
- Serkan Ismail Göktuna
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey,National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey,Laboratory of Medical Chemistry, Interdisciplinary Genomics and Genoproteomics Research Center (GIGA), University of Liege, Liege, Belgium,*To whom correspondence should be addressed: Serkan Ismail Göktuna, Department of Molecular Biology and Genetics, Bilkent University, 06800 Bilkent, Ankara, Turkey, E-mail:
| |
Collapse
|
27
|
Lee MSJ, Inoue T, Ise W, Matsuo-Dapaah J, Wing JB, Temizoz B, Kobiyama K, Hayashi T, Patil A, Sakaguchi S, Simon AK, Bezbradica JS, Nagatoishi S, Tsumoto K, Inoue JI, Akira S, Kurosaki T, Ishii KJ, Coban C. B cell-intrinsic TBK1 is essential for germinal center formation during infection and vaccination in mice. J Exp Med 2022; 219:212912. [PMID: 34910106 PMCID: PMC8679780 DOI: 10.1084/jem.20211336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
The germinal center (GC) is a site where somatic hypermutation and clonal selection are coupled for antibody affinity maturation against infections. However, how GCs are formed and regulated is incompletely understood. Here, we identified an unexpected role of Tank-binding kinase-1 (TBK1) as a crucial B cell–intrinsic factor for GC formation. Using immunization and malaria infection models, we show that TBK1-deficient B cells failed to form GC despite normal Tfh cell differentiation, although some malaria-infected B cell–specific TBK1-deficient mice could survive by GC-independent mechanisms. Mechanistically, TBK1 phosphorylation elevates in B cells during GC differentiation and regulates the balance of IRF4/BCL6 expression by limiting CD40 and BCR activation through noncanonical NF-κB and AKTT308 signaling. In the absence of TBK1, CD40 and BCR signaling synergistically enhanced IRF4 expression in Pre-GC, leading to BCL6 suppression, and therefore failed to form GCs. As a result, memory B cells generated from TBK1-deficient B cells fail to confer sterile immunity upon reinfection, suggesting that TBK1 determines B cell fate to promote long-lasting humoral immunity.
Collapse
Affiliation(s)
- Michelle S J Lee
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Julia Matsuo-Dapaah
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - James B Wing
- Laboratory of Human Immunology (Single Cell Immunology), Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Human Single Cell Immunology Team, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - A Katharina Simon
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jelena S Bezbradica
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Satoru Nagatoishi
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichiro Inoue
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shizuo Akira
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan.,International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
CRHBP is degraded via autophagy and exerts anti-hepatocellular carcinoma effects by reducing cyclin B2 expression and dissociating cyclin B2-CDK1 complex. Cancer Gene Ther 2022; 29:1217-1227. [PMID: 35082401 DOI: 10.1038/s41417-021-00423-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Autophagy is the predominant self-eating catabolic pathway activated in response to nutrient starvation and hypoxia within the microenvironment of varied malignancies, including hepatocellular carcinoma (HCC). SQSTM1/p62 links its cargos to autophagosomes for degradation, and reportedly acts as a contributor for hepatocarcinogenesis. Five GEO gene microarrays identified corticotropin releasing hormone (CRH) binding protein (CRHBP) as a significantly downregulated gene in HCC (log2 Fold change < -3 and p < 0.001), and an earlier human interactome study indicated that CRHBP may interact with p62. This study aimed to explore (1) the role of CRHBP in HCC development, and (2) whether p62-mediated autophagy was responsible for low CRHBP expression within HCC tissue. Following functional experiments first revealed an anti-proliferative, anti-metastatic, and anti-angiogenic role of CRHBP in HCC cells (Huh-7, Li-7 and HCCLM3) and xenografts. CRHBP negatively regulated cyclin B2 expression, and dissociated cyclin B2-CDK1 complex in HCC cells, thereby leading to cell cycle arrest at G2 phase. To simulate HCC microenvironment in vitro, Huh-7 cells were incubated in Earle's Balanced Salt Solution (nutrient starvation) or exposed to 1% O2 (hypoxic exposure). In addition to activating autophagy, nutrient starvation and hypoxic exposure also induced CRHBP degradation. Interestingly, CRHBP was demonstrated as a novel cargo targeted by p62 for degradation in autophagosomes. Blocking autophagy with 3-MA, chloroquine or siSQSTM1 prevented CRHBP degradation in HCC cells. Collectively, our study uncovers a role for CRHBP in retarding HCC development, reducing cyclin B2 expression and impairing cyclin B2-CDK1 interaction. CRHBP downregulation in HCC may attribute to p62-mediated autophagy.
Collapse
|
29
|
The potential value of amlexanox in the treatment of cancer: Molecular targets and therapeutic perspectives. Biochem Pharmacol 2021; 197:114895. [PMID: 34968491 DOI: 10.1016/j.bcp.2021.114895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Amlexanox (AMX) is an azoxanthone drug used for decades for the treatment of mouth aphthous ulcers and now considered for the treatment of diabetes and obesity. The drug is usually viewed as a dual inhibitor of the non-canonical IκB kinases IKK-ɛ (inhibitor-kappaB kinase epsilon) and TBK1 (TANK-binding kinase 1). But a detailed target profile analysis indicated that AMX binds directly to twelve protein targets, including different enzymes (IKK-ɛ, TBK1, GRK1, GRK5, PDE4B, 5- and 12-lipoxygenases) and non-enzyme proteins (FGF-1, HSP90, S100A4, S100A12, S100A13). AMX has been demonstrated to have marked anticancer effects in multiple models of xenografted tumors in mice, including breast, colon, lung and gastric cancers and in onco-hematological models. The anticancer potency is generally modest but largely enhanced upon combination with cytotoxic (temozolide, docetaxel), targeted (selumetinib) or biotherapeutic agents (anti-PD-1 and anti-CTLA4 antibodies). The multiple targets participate in the anticancer effects, chiefly IKK-ɛ/TBK1 but also S100A proteins and PDE4B. The review presents the molecular basis of the antitumor effects of AMX. The capacity of the drug to block nonsense-mediated mRNA decay (NMD) is also discussed, as well as AMX-induced reduction of cancer-related pain. Altogether, the analysis provides a survey of the anticancer action of AMX, with the implicated protein targets. The use of this well-tolerated drug to treat cancer should be further considered and the design of newer analogues encouraged.
Collapse
|
30
|
Liu Y, Guo G, Lu Y, Chen X, Zhu L, Zhao L, Li C, Zhang Z, Jin X, Dong J, Yang X, Huang Q. Silencing IKBKE inhibits the migration and invasion of glioblastoma by promoting Snail1 degradation. Clin Transl Oncol 2021; 24:816-828. [PMID: 34741724 DOI: 10.1007/s12094-021-02726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors in adults and has high mortality and relapse rates. Over the past few years, great advances have been made in the diagnosis and treatment of GBM, but unfortunately, the five-year overall survival rate of GBM patients is approximately 5.1%. Inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKBKE) is a major oncogenic protein in tumors and can promote evil development of GBM. Snail1, a key inducer of the epithelial-mesenchymal transition (EMT) transcription factor, is subjected to ubiquitination and degradation, but the mechanism by which Snail1 is stabilized in tumors remains unclear. Our study aimed to investigate the mechanism of IKBKE regulating Snail1 in GBM. METHODS First, we analyzed the correlation between the expression of IKBKE and the tumor grade and prognosis through public databases and laboratory specimen libraries. Second, immunohistochemistry (IHC) and western blot were used to detect the correlation between IKBKE and Snail expression in glioma samples and cell lines. Western blot and immunofluorescence (IF) experiments were used to detect the quality and distribution of IKBKE and Snail1 proteins. Third, In situ animal model of intracranial glioma to detect the regulatory effect of IKBKE on intracranial tumors. RESULTS In this study, Our study reveals a new connection between IKBKE and Snail1, where IKBKE can directly bind to Snail1, translocate Snail1 into the nucleus from the cytoplasm. Downregulation of IKBKE results in Snail1 destabilization and impairs the tumor cell migration and invasion capabilities. CONCLUSION Our studies suggest that the IKBKE-Snail1 axis may serve as a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Y Liu
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China.,Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - G Guo
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China.,Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Y Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - X Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - L Zhu
- Department of Pathology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - L Zhao
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China.,Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - C Li
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China.,Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Z Zhang
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, 315000, Zhejiang, China
| | - X Jin
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300052, China
| | - J Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - X Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Q Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China. .,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China. .,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| |
Collapse
|
31
|
Shaw LM. TBK1 has a new Akt. J Biol Chem 2021; 297:101244. [PMID: 34563542 PMCID: PMC8498460 DOI: 10.1016/j.jbc.2021.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
TANK-binding kinase 1 (TBK1) is a noncanonical IκB kinase that plays an essential role in the innate immune response to foreign pathogens. Recent studies have highlighted additional roles for TBK1 in the regulation of metabolism, although the mechanisms of this regulation have not been well characterized. In a recent issue, Tooley et al. demonstrated that TBK1-dependent activation of downstream kinase Akt is mediated via mechanistic target of rapamycin complex 2. This novel action of TBK1 reveals a key role for this kinase in the regulation of cellular metabolism and growth by diverse environmental inputs.
Collapse
Affiliation(s)
- Leslie M Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
32
|
Kwon YM, Kim SH, Jung YS, Kwak JH. Synthesis and Biological Evaluation of ( S)-2-(Substituted arylmethyl)-1-oxo-1,2,3,4-tetrahydropyrazino[1,2- a]indole-3-carboxamide Analogs and Their Synergistic Effect against PTEN-Deficient MDA-MB-468 Cells. Pharmaceuticals (Basel) 2021; 14:ph14100974. [PMID: 34681198 PMCID: PMC8537755 DOI: 10.3390/ph14100974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
A series of twenty-six compounds of furfuryl or benzyl tetrahydropyrazino[1,2-a]indole analogs were synthesized and evaluated for cytotoxic activity against the estrogen receptor (ER)-positive breast cancer cell line (MCF-7) and the epidermal growth factor receptor (EGFR) over-expressed triple-negative breast cancer cell line (MDA-MB-468). Among them, compounds 2b, 2f and 2i showed more potent activity and selectivity against MDA-MB-468 cells than gefitinib, as an EGFR- tyrosine kinase inhibitor. In addition, it was confirmed by means of isobologram analysis of combinational treatment with gefitinib that they have a synergistic effect, especially compounds 2b and 2f, which inhibit Akt T308 phosphorylation. Moreover, it was confirmed that 2-benzyl-1-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indole-3-carboxamide analogs (2b, 2f, and Ref 2) tend to selectively inhibit PI3Kβ, which is involved in the phosphorylation of Akt.
Collapse
Affiliation(s)
- Ye-Mi Kwon
- College of Pharmacy, Kyungsung University, Busan 48434, Korea;
| | - Sou Hyun Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea;
| | - Young-Suk Jung
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea;
- Correspondence: (Y.-S.J.); (J.-H.K.); Tel.: +82-51-510-2816 (Y.-S.J.); +82-51-663-4889 (J.-H.K.)
| | - Jae-Hwan Kwak
- College of Pharmacy, Kyungsung University, Busan 48434, Korea;
- Correspondence: (Y.-S.J.); (J.-H.K.); Tel.: +82-51-510-2816 (Y.-S.J.); +82-51-663-4889 (J.-H.K.)
| |
Collapse
|
33
|
Pang Y, Ma M, Wang D, Li X, Jiang L. TANK Promotes Pressure Overload Induced Cardiac Hypertrophy via Activating AKT Signaling Pathway. Front Cardiovasc Med 2021; 8:687540. [PMID: 34540911 PMCID: PMC8446676 DOI: 10.3389/fcvm.2021.687540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/19/2021] [Indexed: 01/14/2023] Open
Abstract
Background: TANK (TRAF family member associated NF-κB activator) acts as a member of scaffold proteins participated in the development of multiple diseases. However, its function in process of cardiac hypertrophy is still unknown. Methods and Results: In this study, we observed an increased expression of TANK in murine hypertrophic hearts after aortic banding, suggesting that TANK may be involved in the pathogenesis of cardiac hypertrophy. We generated cardiac-specific TANK knockout mice, and subsequently subjected to aortic banding for 4–8 weeks. TANK knockout mice showed attenuated cardiac hypertrophy and dysfunction compared to the control group. In contrast, cardiac-specific TANK transgenic mice showed opposite signs. Consistently, in vitro experiments revealed that TANK knockdown decreased the cell size and expression of hypertrophic markers. Mechanistically, AKT signaling was inhibited in TANK knockout mice, but activated in TANK transgenic mice after aortic banding. Blocking AKT signaling with a pharmacological AKT inhibitor alleviated the cardiac hypertrophy and dysfunction in TANK transgenic mice. Conclusions: Collectively, we identified TANK accelerates the progression of pathological cardiac hypertrophy and is a potential therapeutic target.
Collapse
Affiliation(s)
- Yanan Pang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minglu Ma
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Wang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Li
- Department of Cardiology, The First Affliated Hospital of Soochow University, Suzhou, China
| | - Li Jiang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Hua H, Zhang H, Chen J, Wang J, Liu J, Jiang Y. Targeting Akt in cancer for precision therapy. J Hematol Oncol 2021; 14:128. [PMID: 34419139 PMCID: PMC8379749 DOI: 10.1186/s13045-021-01137-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Biomarkers-guided precision therapeutics has revolutionized the clinical development and administration of molecular-targeted anticancer agents. Tailored precision cancer therapy exhibits better response rate compared to unselective treatment. Protein kinases have critical roles in cell signaling, metabolism, proliferation, survival and migration. Aberrant activation of protein kinases is critical for tumor growth and progression. Hence, protein kinases are key targets for molecular targeted cancer therapy. The serine/threonine kinase Akt is frequently activated in various types of cancer. Activation of Akt promotes tumor progression and drug resistance. Since the first Akt inhibitor was reported in 2000, many Akt inhibitors have been developed and evaluated in either early or late stage of clinical trials, which take advantage of liquid biopsy and genomic or molecular profiling to realize personalized cancer therapy. Two inhibitors, capivasertib and ipatasertib, are being tested in phase III clinical trials for cancer therapy. Here, we highlight recent progress of Akt signaling pathway, review the up-to-date data from clinical studies of Akt inhibitors and discuss the potential biomarkers that may help personalized treatment of cancer with Akt inhibitors. In addition, we also discuss how Akt may confer the vulnerability of cancer cells to some kinds of anticancer agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingzhu Chen
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieya Liu
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Tooley AS, Kazyken D, Bodur C, Gonzalez IE, Fingar DC. The innate immune kinase TBK1 directly increases mTORC2 activity and downstream signaling to Akt. J Biol Chem 2021; 297:100942. [PMID: 34245780 PMCID: PMC8342794 DOI: 10.1016/j.jbc.2021.100942] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
TBK1 responds to microbes to initiate cellular responses critical for host innate immune defense. We found previously that TBK1 phosphorylates mTOR (mechanistic target of rapamycin) on S2159 to increase mTOR complex 1 (mTORC1) signaling in response to the growth factor EGF and the viral dsRNA mimetic poly(I:C). mTORC1 and the less well studied mTORC2 respond to diverse cues to control cellular metabolism, proliferation, and survival. Although TBK1 has been linked to Akt phosphorylation, a direct relationship between TBK1 and mTORC2, an Akt kinase, has not been described. By studying MEFs lacking TBK1, as well as MEFs, macrophages, and mice bearing an Mtor S2159A knock-in allele (MtorA/A) using in vitro kinase assays and cell-based approaches, we demonstrate here that TBK1 activates mTOR complex 2 (mTORC2) directly to increase Akt phosphorylation. We find that TBK1 and mTOR S2159 phosphorylation promotes mTOR-dependent phosphorylation of Akt in response to several growth factors and poly(I:C). Mechanistically, TBK1 coimmunoprecipitates with mTORC2 and phosphorylates mTOR S2159 within mTORC2 in cells. Kinase assays demonstrate that TBK1 and mTOR S2159 phosphorylation increase mTORC2 intrinsic catalytic activity. Growth factors failed to activate TBK1 or increase mTOR S2159 phosphorylation in MEFs. Thus, basal TBK1 activity cooperates with growth factors in parallel to increase mTORC2 (and mTORC1) signaling. Collectively, these results reveal cross talk between TBK1 and mTOR, key regulatory nodes within two major signaling networks. As TBK1 and mTOR contribute to tumorigenesis and metabolic disorders, these kinases may work together in a direct manner in a variety of physiological and pathological settings.
Collapse
Affiliation(s)
- Aaron Seth Tooley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Cagri Bodur
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ian E Gonzalez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Diane C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
36
|
Carrasco-Navarro U, Aguirre J. H 2O 2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans. J Fungi (Basel) 2021; 7:624. [PMID: 34436163 PMCID: PMC8399174 DOI: 10.3390/jof7080624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) regulate several aspects of cell physiology in filamentous fungi including the antioxidant response and development. However, little is known about the signaling pathways involved in these processes. Here, we report Aspergillus nidulans global phosphoproteome during mycelial growth and show that under these conditions, H2O2 induces major changes in protein phosphorylation. Among the 1964 phosphoproteins we identified, H2O2 induced the phosphorylation of 131 proteins at one or more sites as well as the dephosphorylation of a larger set of proteins. A detailed analysis of these phosphoproteins shows that H2O2 affected the phosphorylation of critical regulatory nodes of phosphoinositide, MAPK, and TOR signaling as well as the phosphorylation of multiple proteins involved in the regulation of gene expression, primary and secondary metabolism, and development. Our results provide a novel and extensive protein phosphorylation landscape in A. nidulans, indicating that H2O2 induces a shift in general metabolism from anabolic to catabolic, and the activation of multiple stress survival pathways. Our results expand the significance of H2O2 in eukaryotic cell signaling.
Collapse
Affiliation(s)
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Ciudad de México 04510, Mexico;
| |
Collapse
|
37
|
Akt Isoforms: A Family Affair in Breast Cancer. Cancers (Basel) 2021; 13:cancers13143445. [PMID: 34298660 PMCID: PMC8306188 DOI: 10.3390/cancers13143445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Breast cancer is the second leading cause of cancer-related death in women in the United States. The Akt signaling pathway is deregulated in approximately 70% of patients with breast cancer. While targeting Akt is an effective therapeutic strategy for the treatment of breast cancer, there are several members in the Akt family that play distinct roles in breast cancer. However, the function of Akt isoforms depends on many factors. This review analyzes current progress on the isoform-specific functions of Akt isoforms in breast cancer. Abstract Akt, also known as protein kinase B (PKB), belongs to the AGC family of protein kinases. It acts downstream of the phosphatidylinositol 3-kinase (PI3K) and regulates diverse cellular processes, including cell proliferation, cell survival, metabolism, tumor growth and metastasis. The PI3K/Akt signaling pathway is frequently deregulated in breast cancer and plays an important role in the development and progression of breast cancer. There are three closely related members in the Akt family, namely Akt1(PKBα), Akt2(PKBβ) and Akt3(PKBγ). Although Akt isoforms share similar structures, they exhibit redundant, distinct as well as opposite functions. While the Akt signaling pathway is an important target for cancer therapy, an understanding of the isoform-specific function of Akt is critical to effectively target this pathway. However, our perception regarding how Akt isoforms contribute to the genesis and progression of breast cancer changes as we gain new knowledge. The purpose of this review article is to analyze current literatures on distinct functions of Akt isoforms in breast cancer.
Collapse
|
38
|
Alam M, Hasan GM, Hassan MI. A review on the role of TANK-binding kinase 1 signaling in cancer. Int J Biol Macromol 2021; 183:2364-2375. [PMID: 34111484 DOI: 10.1016/j.ijbiomac.2021.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
TANK-binding kinase 1 (TBK1) regulates various biological processes including, NF-κB signaling, immune response, autophagy, cell division, Ras-mediated oncogenesis, and AKT pro-survival signaling. Enhanced TBK1 activity is associated with autoimmune diseases and cancer, suggesting its role in therapeutic targeting of interferonopathies. In addition, dysregulation of TBK1 activity promotes several inflammatory disorders and oncogenesis. Structural and biochemical study reports provide the molecular process of TBK1 activation and recap the substrate selection about TBK1. This review summarizes recent findings on the molecular mechanisms by which TBK1 is involved in cancer signaling. The IKK-ε and TBK1 are together associated with inflammatory diseases by inducing type I IFNs. Furthermore, TBK1 signaling regulates radiation-induced epithelial-mesenchymal transition by controlling phosphorylation of GSK-3β and expression of Zinc finger E-box-binding homeobox 1, suggesting, TBK1 could be targeted for radiotherapy-induced metastasis therapy. Despite a considerable increase in the list of TBK1 inhibitors, only a few has potential to control cancer. Among them, a compound BX795 is considered a potent and selective inhibitor of TBK1. We discussed the therapeutic potential of small-molecule inhibitors of TBK1, particularly those with high selectivity, which will enable further exploration in the therapeutic management of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
39
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
40
|
Antonia RJ, Hagan RS, Baldwin AS. Expanding the View of IKK: New Substrates and New Biology. Trends Cell Biol 2021; 31:166-178. [PMID: 33422358 DOI: 10.1016/j.tcb.2020.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 01/07/2023]
Abstract
The inhibitor of kappa B kinase (IKK) family consists of IKKα, IKKβ, and the IKK-related kinases TBK1 and IKKε. These kinases are considered master regulators of inflammation and innate immunity via their control of the transcription factors NF-κB, IRF3, and IRF7. Novel phosphorylated substrates have been attributed to these kinases, a subset of which is not directly related to either inflammation or innate immunity. These findings have greatly expanded the perspectives on the biological activities of these kinases. In this review we highlight some of the novel substrates for this kinase family and discuss the biological implications of these phosphorylation events.
Collapse
Affiliation(s)
- Ricardo J Antonia
- Department of Surgery, Division of Surgical Oncology, and The Hellen Diller Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Xiong J, Guo G, Guo L, Wang Z, Chen Z, Nan Y, Cao Y, Li R, Yang X, Dong J, Jin X, Yang W, Huang Q. Amlexanox Enhances Temozolomide-Induced Antitumor Effects in Human Glioblastoma Cells by Inhibiting IKBKE and the Akt-mTOR Signaling Pathway. ACS OMEGA 2021; 6:4289-4299. [PMID: 33644550 PMCID: PMC7906592 DOI: 10.1021/acsomega.0c05399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/04/2021] [Indexed: 05/05/2023]
Abstract
Temozolomide (TMZ), as the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM), often fails to improve the prognosis of GBM patients due to the quick development of resistance. The need for more effective management of GBM is urgent. The aim of this study is to evaluate the efficacy of combined therapy with TMZ and amlexanox, a selective inhibitor of IKBKE, for GBM. We found that the combined treatment resulted in significant induction of cellular apoptosis and the inhibition of cell viability, migration, and invasion in primary glioma cells and in the human glioma cell line, U87 MG. As expected, TMZ enhanced the expression of p-AMPK and amlexanox led to the reduction of IKBKE, with no impact on p-AMPK. Furthermore, we demonstrated that compared to other groups treated with each component alone, TMZ combined with amlexanox effectively reversed the TMZ-induced activation of Akt and inhibited the phosphorylation of mTOR. In addition, the combination treatment also clearly reduced in vivo tumor volume and prolonged median survival time in the xenograft mouse model. These results suggest that amlexanox sensitized the primary glioma cells and U87 MG cells to TMZ at least partially through the suppression of IKBKE activation and the attenuation of TMZ-induced Akt activation. Overall, combined treatment with TMZ and amlexanox may provide a promising possibility for improving the prognosis of glioblastoma patients in clinical practice.
Collapse
Affiliation(s)
- Jinbiao Xiong
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
| | - Gaochao Guo
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Lianmei Guo
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Zengguang Wang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Zhijuan Chen
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Yang Nan
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Yiyao Cao
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
| | - Ruilong Li
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Xuejun Yang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Jun Dong
- Department
of Neurosurgery, The Second Affiliated Hospital
of Soochow University, Suzhou 215004, China
| | - Xun Jin
- Tianjin
Medical University Cancer Institute and Hospital, Tianjin 300052, China
- National
Clinical Research Center for Cancer, Tianjin 300052, China
- Key
Laboratory of Cancer Prevention and Therapy, Tianjin 300052, China
- Tianjin’s
Clinical Research Center for Cancer, Tianjin 300052, China
| | - Weidong Yang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- . Tel: (+86)13820763396
| | - Qiang Huang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
- . Tel: (+86)13820689221
| |
Collapse
|
42
|
Titus S, Szymanska KJ, Musul B, Turan V, Taylan E, Garcia-Milian R, Mehta S, Oktay K. Individual-oocyte transcriptomic analysis shows that genotoxic chemotherapy depletes human primordial follicle reserve in vivo by triggering proapoptotic pathways without growth activation. Sci Rep 2021; 11:407. [PMID: 33431979 PMCID: PMC7801500 DOI: 10.1038/s41598-020-79643-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Gonadotoxic chemotherapeutics, such as cyclophosphamide, can cause early menopause and infertility in women. Earlier histological studies showed ovarian reserve depletion via severe DNA damage and apoptosis, but others suggested activation of PI3K/PTEN/Akt pathway and follicle ‘burn-out’ as a cause. Using a human ovarian xenograft model, we performed single-cell RNA-sequencing on laser-captured individual primordial follicle oocytes 12 h after a single cyclophosphamide injection to determine the mechanisms of acute follicle loss after gonadotoxic chemotherapy. RNA-sequencing showed 190 differentially expressed genes between the cyclophosphamide- and vehicle-exposed oocytes. Ingenuity Pathway Analysis predicted a significant decrease in the expression of anti-apoptotic pro-Akt PECAM1 (p = 2.13E-09), IKBKE (p = 0.0001), and ANGPT1 (p = 0.003), and reduced activation of PI3K/PTEN/Akt after cyclophosphamide. The qRT-PCR and immunostaining confirmed that in primordial follicle oocytes, cyclophosphamide did not change the expressions of Akt (p = 0.9), rpS6 (p = 0.3), Foxo3a (p = 0.12) and anti-apoptotic Bcl2 (p = 0.17), nor affect their phosphorylation status. There was significantly increased DNA damage by γH2AX (p = 0.0002) and apoptosis by active-caspase-3 (p = 0.0001) staining in the primordial follicles and no change in the growing follicles 12 h after chemotherapy. These data support that the mechanism of acute follicle loss by cyclophosphamide is via apoptosis, rather than growth activation of primordial follicle oocytes in the human ovary.
Collapse
Affiliation(s)
- S Titus
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - K J Szymanska
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - B Musul
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - V Turan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - E Taylan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - R Garcia-Milian
- Bioinformatics Support Program, Yale School of Medicine, New Haven, CT, USA
| | - S Mehta
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - K Oktay
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
43
|
Khan KA, Marineau A, Doyon P, Acevedo M, Durette É, Gingras AC, Servant MJ. TRK-Fused Gene (TFG), a protein involved in protein secretion pathways, is an essential component of the antiviral innate immune response. PLoS Pathog 2021; 17:e1009111. [PMID: 33411856 PMCID: PMC7790228 DOI: 10.1371/journal.ppat.1009111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response. Antiviral innate immune response is the first line of defence against the invading viruses through type I interferon (IFN) signaling. However, viruses have devised ways to target signaling molecules for aberrant IFN response and worsen the disease outcome. As such, deciphering the roles of new regulators of innate immunity could transform the antiviral treatment paradigm by introducing novel panviral therapeutics designed to reinforce antiviral host responses. This could be of great use in fighting recent outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome MERS-CoV, and the more recent SARS-CoV-2 causing the COVID-19 pandemic. However, aberrant activation of such pathways can lead to detrimental consequences, including autoimmune diseases. Regulation of type I IFN responses is thus of paramount importance. To prevent an uncontrolled response, signaling events happen in discrete subcellular compartments, therefore, distinguishing sites involved in recognition of pathogens and those permitting downstream signaling. Here, we show TFG as a new regulator of type I IFN response allowing the efficient organization of signaling molecules. TFG, thus, further substantiates the importance of the protein trafficking machinery in the regulation of optimal antiviral responses. Our findings have implications for both antiviral immunity and autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Priscilla Doyon
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Mariana Acevedo
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Étienne Durette
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
44
|
Zhu L, Yang H, Chao Y, Gu Y, Zhang J, Wang F, Yu W, Ye P, Chu P, Kong X, Chen S. Akt phosphorylation regulated by IKKε in response to low shear stress leads to endothelial inflammation via activating IRF3. Cell Signal 2020; 80:109900. [PMID: 33370582 DOI: 10.1016/j.cellsig.2020.109900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Low shear stress (LSS) plays a critical role in the development of atherosclerotic plaques and vascular inflammation. Previous studies have reported Akt phosphorylation induced by LSS. However, the mechanism and role of Akt activation remains unclear in LSS-induced endothelial dysfunction. In this study, our results demonstrated the increased phosphorylation of IKKε, TBK1 and Akt in HUVECs exposed to LSS. Furthermore, IKKε silencing using small interfering RNAs significantly reduced LSS-induced Akt phosphorylation. In contrast, silencing of TBK1 or inhibition of PI3K and mTORC2 had no effect on LSS-induced Akt phosphorylation. Notably, Akt inhibition markedly diminished LSS-induced expression of ICAM-1, VCAM-1 and MCP-1, as well as LSS-induced IRF3 phosphorylation and nuclear translocation, without affecting the activation of NF-κB and STAT1. Moreover, endothelial cell specific Akt overexpression mediated by adeno-associated virus markedly increased intimal ICAM-1 and IRF3 expression at LSS area of partially ligated carotid artery in mice. In brief, our findings suggest that LSS-induced Akt phosphorylation is positively regulated by IKKε and promotes IRF3 activation, leading to endothelial inflammation.
Collapse
Affiliation(s)
- Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Hongfeng Yang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Department of Intensive Care Unit, the Affiliated People(')s Hospital of Jiangsu University, Zhenjiang, China
| | - Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junxia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wande Yu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Chu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangquan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Lin S, Zhao XL, Wang Z. TANK-binding kinase 1 mediates osteoclast differentiation by regulating NF-κB, MAPK and Akt signaling pathways. Immunol Cell Biol 2020; 99:223-233. [PMID: 32896936 DOI: 10.1111/imcb.12401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/02/2019] [Accepted: 09/06/2020] [Indexed: 12/16/2022]
Abstract
TANK-binding kinase 1 (TBK1) belongs to the noncanonical IκB kinase (IKK) family. The ubiquitously expressed protein is well known to play a pivotal role in innate immune response and inflammation. Although excessive inflammatory activities have been shown to affect osteoclast (OC) differentiation and function, direct relevance of TBK1 in bone turnover is not known. In this work, we specifically altered the TBK1 protein level by knocking down or overexpressing it without affecting its homologous protein IKKε expression, and demonstrated the effect of TBK1 on OC differentiation in bone marrow macrophages (BMMs) and RAW264.7 cells upon induction by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). TBK1 knockdown was found to markedly inhibit the OC differentiation and function, while TBK1 overexpression enhanced OC formation. Downregulation of TBK1 greatly suppressed RANKL-induced gene expression of Mmp9, Atp6v0d2, Acp5, Ctsk andNfatc1 involved in the regulation of OC formation and function in both BMM and RAW264.7 cells. Mechanistic studies indicated that TBK1 affected the NF-κB signaling pathway as well as mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt) activation during OC differentiation. Moreover, the protein level of TNF receptor-associated factor 6 (TRAF6) was increased, and the interaction of TRAF6 with TBK1 was potentiated, by RANKL. Collectively, we provide direct evidence showing that TBK1 effectively mediates OC differentiation and function by regulating NF-κB, MAPKs and Akt signals. A TBK1-targeted therapeutic strategy may be useful for the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Shuai Lin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Li Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Microbial Imidazole Propionate Affects Responses to Metformin through p38γ-Dependent Inhibitory AMPK Phosphorylation. Cell Metab 2020; 32:643-653.e4. [PMID: 32783890 PMCID: PMC7546034 DOI: 10.1016/j.cmet.2020.07.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Metformin is the first-line therapy for type 2 diabetes, but there are large inter-individual variations in responses to this drug. Its mechanism of action is not fully understood, but activation of AMP-activated protein kinase (AMPK) and changes in the gut microbiota appear to be important. The inhibitory role of microbial metabolites on metformin action has not previously been investigated. Here, we show that concentrations of the microbial metabolite imidazole propionate are higher in subjects with type 2 diabetes taking metformin who have high blood glucose. We also show that metformin-induced glucose lowering is not observed in mice pretreated with imidazole propionate. Furthermore, we demonstrate that imidazole propionate inhibits AMPK activity by inducing inhibitory AMPK phosphorylation, which is dependent on imidazole propionate-induced basal Akt activation. Finally, we identify imidazole propionate-activated p38γ as a novel kinase for Akt and demonstrate that p38γ kinase activity mediates the inhibitory action of imidazole propionate on metformin.
Collapse
|
47
|
Bu L, Wang H, Hou P, Guo S, He M, Xiao J, Li P, Zhong Y, Jia P, Cao Y, Liang G, Yang C, Chen L, Guo D, Li CM. The Ubiquitin E3 Ligase Parkin Inhibits Innate Antiviral Immunity Through K48-Linked Polyubiquitination of RIG-I and MDA5. Front Immunol 2020; 11:1926. [PMID: 32983119 PMCID: PMC7492610 DOI: 10.3389/fimmu.2020.01926] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/17/2020] [Indexed: 01/02/2023] Open
Abstract
Innate immunity is the first-line defense against antiviral or antimicrobial infection. RIG-I and MDA5, which mediate the recognition of pathogen-derived nucleic acids, are essential for production of type I interferons (IFN). Here, we identified mitochondrion depolarization inducer carbonyl cyanide 3-chlorophenylhydrazone (CCCP) inhibited the response and antiviral activity of type I IFN during viral infection. Furthermore, we found that the PTEN-induced putative kinase 1 (PINK1) and the E3 ubiquitin-protein ligase Parkin mediated mitophagy, thus negatively regulating the activation of RIG-I and MDA5. Parkin directly interacted with and catalyzed the K48-linked polyubiquitination and subsequent degradation of RIG-I and MDA5. Thus, we demonstrate that Parkin limits RLR-triggered innate immunity activation, suggesting Parkin as a potential therapeutic target for the control of viral infection.
Collapse
Affiliation(s)
- Lang Bu
- MOE Key Laboratory of Tropical Disease Control, the Infection and Immunity Center (TIIC), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Huan Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Panpan Hou
- MOE Key Laboratory of Tropical Disease Control, the Infection and Immunity Center (TIIC), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Shuting Guo
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Miao He
- MOE Key Laboratory of Tropical Disease Control, the Infection and Immunity Center (TIIC), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jingshu Xiao
- MOE Key Laboratory of Tropical Disease Control, the Infection and Immunity Center (TIIC), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Ping Li
- MOE Key Laboratory of Tropical Disease Control, the Infection and Immunity Center (TIIC), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yongheng Zhong
- MOE Key Laboratory of Tropical Disease Control, the Infection and Immunity Center (TIIC), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, the Infection and Immunity Center (TIIC), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yuanyuan Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Guanzhan Liang
- MOE Key Laboratory of Tropical Disease Control, the Infection and Immunity Center (TIIC), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Chenwei Yang
- MOE Key Laboratory of Tropical Disease Control, the Infection and Immunity Center (TIIC), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Lang Chen
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Deyin Guo
- MOE Key Laboratory of Tropical Disease Control, the Infection and Immunity Center (TIIC), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Chun-Mei Li
- MOE Key Laboratory of Tropical Disease Control, the Infection and Immunity Center (TIIC), School of Medicine, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
48
|
A Novel Molecular Mechanism of IKK ε-Mediated Akt/mTOR Inhibition in the Cardiomyocyte Autophagy after Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7046923. [PMID: 32724494 PMCID: PMC7382748 DOI: 10.1155/2020/7046923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022]
Abstract
Autophagy of cardiomyocytes after myocardial infarction (MI) is an important factor affecting the prognosis of MI. Excessive autophagy can lead to massive death of cardiomyocytes, which will seriously affect cardiac function. IKKε plays a crucial role in the occurrence of autophagy, but the functional role in MI remains largely unknown. To evaluate the impact of IKKε on the autophagy of cardiomyocytes after MI, MI was induced by surgical left anterior descending coronary artery ligation in IKKε knockout (KO) mice and wild-type (WT) mice. Starvation of H9c2 cells with IKKε siRNA and rescued with IKKε overexpressed afterwards to test the mechanism of IKKε in autophagy in vitro. Our results demonstrated that the expression of IKKε was upregulated in mice myocardial tissues which were consistent with cardiomyocyte autophagy after MI. Significantly, the IKKε KO mice showed increased infarct size, decreased viable cardiomyocytes, and exacerbated cardiac dysfunction when compared with the wild-type mice. Western blot and electron micrography analysis also revealed that loss of IKKε induces excessive cardiomyocyte autophagy and reduced the expression of p-Akt and p-mTOR. Similar results were observed in IKKε siRNA H9c2 cells in vitro which were under starvation injury. Notably, the levels of p-Akt and p-mTOR can restore in IKKε rescued cells. In conclusion, our results indicated that IKKε protects cardiomyocyte survival by reduced autophagy following MI via regulation of the Akt/mTOR signaling pathway. Thus, our study suggests that IKKε might represent a potential therapeutic target for the treatment of MI.
Collapse
|
49
|
Zhou R, Zhang Q, Xu P. TBK1, a central kinase in innate immune sensing of nucleic acids and beyond. Acta Biochim Biophys Sin (Shanghai) 2020; 52:757-767. [PMID: 32458982 DOI: 10.1093/abbs/gmaa051] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 12/13/2022] Open
Abstract
Sensing of intracellular and extracellular environments is one of the fundamental processes of cell. Surveillance of aberrant nucleic acids, derived either from invading pathogens or damaged organelle, is conducted by pattern recognition receptors (PRRs) including RIG-I-like receptors, cyclic GMP-AMP synthase, absent in melanoma 2, and a few members of toll-like receptors. TANK-binding kinase 1 (TBK1), along with its close analogue I-kappa-B kinase epsilon, is a central kinase in innate adaptor complexes linking activation of PRRs to mobilization of transcriptional factors that transcribe proinflammatory cytokines, type I interferon (IFN-α/β), and myriads interferon stimulated genes. However, it still remains elusive for the precise mechanisms of activation and execution of TBK1 in signaling platforms formed by innate adaptors mitochondrial antiviral signaling protein (MAVS), stimulator of interferon genes protein (STING), and TIR-domain-containing adapter-inducing interferon-β (TRIF), as well as its complex regulations. An atlas of TBK1 substrates is in constant expanding, setting TBK1 as a key node of signaling network and a dominant player in contexts of cell biology, animal models, and human diseases. Here, we review recent advancements of activation, regulations, and functions of TBK1 under these physiological and pathological contexts.
Collapse
Affiliation(s)
- Ruyuan Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
50
|
Möller M, Wasel J, Schmetzer J, Weiß U, Meissner M, Schiffmann S, Weigert A, Möser CV, Niederberger E. The Specific IKKε/TBK1 Inhibitor Amlexanox Suppresses Human Melanoma by the Inhibition of Autophagy, NF-κB and MAP Kinase Pathways. Int J Mol Sci 2020; 21:E4721. [PMID: 32630674 PMCID: PMC7369692 DOI: 10.3390/ijms21134721] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Inhibitor-kappaB kinase epsilon (IKKε) and TANK-binding kinase 1 (TBK1) are non-canonical IκB kinases, both described as contributors to tumor growth and metastasis in different cancer types. Several hints indicate that they are also involved in the pathogenesis of melanoma; however, the impact of their inhibition as a potential therapeutic measure in this "difficult-to-treat" cancer type has not been investigated so far. We assessed IKKε and TBK1 expression in human malignant melanoma cells, primary tumors and the metastasis of melanoma patients. Both kinases were expressed in the primary tumor and in metastasis and showed a significant overexpression in tumor cells in comparison to melanocytes. The pharmacological inhibition of IKKε/TBK1 by the approved drug amlexanox reduced cell proliferation, migration and invasion. Amlexanox did not affect the cell cycle progression nor apoptosis induction but significantly suppressed autophagy in melanoma cells. The analysis of potential functional downstream targets revealed that NF-кB and ERK pathways might be involved in kinase-mediated effects. In an in vivo xenograft model in nude mice, amlexanox treatment significantly reduced tumor growth. In conclusion, amlexanox was able to suppress tumor progression potentially by the inhibition of autophagy as well as NF-кB and MAP kinase pathways and might therefore constitute a promising candidate for melanoma therapy.
Collapse
Affiliation(s)
- Moritz Möller
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Julia Wasel
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Julia Schmetzer
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Ulrike Weiß
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany;
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Translational Medicine and Pharmacology TMP, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany;
| | - Christine V. Möser
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| | - Ellen Niederberger
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (J.W.); (J.S.); (U.W.); (C.V.M.)
| |
Collapse
|