1
|
Loehr AR, Timmerman DM, Liu M, Gillis AJM, Matthews M, Bloom JC, Nicholls PK, Page DC, Miller AD, Looijenga LHJ, Weiss RS. Analysis of a mouse germ cell tumor model establishes pluripotency-associated miRNAs as conserved serum biomarkers for germ cell cancer detection. Sci Rep 2025; 15:4452. [PMID: 39910147 PMCID: PMC11799207 DOI: 10.1038/s41598-025-88554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
Malignant testicular germ cells tumors (TGCTs) are the most common solid cancers in young men. Current TGCT diagnostics include conventional serum protein markers, but these lack the sensitivity and specificity to serve as accurate markers across all TGCT subtypes. MicroRNAs (miRNAs) are small non-coding regulatory RNAs and informative biomarkers for several diseases. In humans, miRNAs of the miR-371-373 cluster are detectable in the serum of patients with malignant TGCTs and outperform existing serum protein markers for both initial diagnosis and subsequent disease monitoring. We previously developed a genetically engineered mouse model featuring malignant mixed TGCTs consisting of pluripotent embryonal carcinoma (EC) and differentiated teratoma that, like the corresponding human malignancies, originate in utero and are highly chemosensitive. Here, we report that miRNAs in the mouse miR-290-295 cluster, homologs of the human miR-371-373 cluster, were detectable in serum from mice with malignant TGCTs but not from tumor-free control mice or mice with benign teratomas. miR-291-293 were expressed and secreted specifically by pluripotent EC cells, and expression was lost following differentiation induced by the drug thioridazine. Notably, miR-291-293 levels were significantly higher in the serum of pregnant dams carrying tumor-bearing fetuses compared to that of control dams. These findings reveal that expression of the miR-290-295 and miR-371-373 clusters in mice and humans, respectively, is a conserved feature of malignant TGCTs, further validating the mouse model as representative of the human disease. These data also highlight the potential of serum miR-371-373 assays to improve patient outcomes through early TGCT detection, possibly even prenatally.
Collapse
Affiliation(s)
- Amanda R Loehr
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | - Michelle Liu
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Ad J M Gillis
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Melia Matthews
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | | | - David C Page
- Whitehead Institute, Cambridge, MA, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew D Miller
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Leendert H J Looijenga
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Pathology, University Medical Center, Utrecht, The Netherlands.
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
2
|
An HJ, Cho SH, Ryu CS, Ko EJ, Park HW, Kim YR, Ahn EH, Shin JE, Joo SS, Kim JH, Kim NK. Genetic associations of miRNA variants (miR-10a, miR-30c, miR-181a, miR-499b) with primary ovarian insufficiency in Korean women. Maturitas 2025; 191:108153. [PMID: 39536656 DOI: 10.1016/j.maturitas.2024.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES MicroRNAs (miRNAs) are pivotal in post-transcriptionally modulating gene expression in both animals and plants. This study investigates the relationship between microRNA polymorphisms and the occurrence of primary ovarian insufficiency in Korean women. Our hypothesis posits that polymorphisms in microRNAs-specifically miR-10aA > T, miR-30cA > G, miR-181aT > C, and miR-499bA > G-may be linked to primary ovarian insufficiency, influencing the risk of developing the condition. METHODS We conducted a case-control study of 141 Korean women with primary ovarian insufficiency and 281 control individuals with at least one live birth and no history of pregnancy loss. RESULTS Our findings indicate that various combinations of these four microRNA polymorphic sites are associated with an increased risk of primary ovarian insufficiency. The combination analysis indicated a significant decrease in the frequency of the miR-181a/miR-499b TC/AA allele combination in individuals with primary ovarian insufficiency (P < 0.05). Additionally, one-way analysis of variance of data from patients with primary ovarian insufficiency revealed that, in comparison with miR-181aTT, the miR-181aCC genotype was associated with significantly lower levels of both follicle-stimulating hormone and luteinizing hormone, suggesting potential protective effects. CONCLUSIONS Our data suggest that dysregulation of the miR-10aA > T, miR-30cA > G, miR-181aT > C, and miR-499bA > G polymorphisms in these microRNAs contributes to the regulation of target genes related to primary ovarian insufficiency.
Collapse
Affiliation(s)
- Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, South Korea; College of Life Science, Gangneung-Wonju National University, 7 Jukheon-Gil, Gangneung 25457, South Korea.
| | - Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, South Korea.
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, South Korea.
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, South Korea.
| | - Hyeon Woo Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, South Korea.
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, South Korea.
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, South Korea.
| | - Ji Eun Shin
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, South Korea.
| | - Seong-Soo Joo
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-Gil, Gangneung 25457, South Korea.
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, South Korea.
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, South Korea.
| |
Collapse
|
3
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2024:10.1038/s41576-024-00792-0. [PMID: 39587307 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Ye J, Boileau RM, Parchem RJ, Judson-Torres RL, Blelloch R. The miR-290 and miR-302 clusters are essential for reprogramming of fibroblasts to induced pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610895. [PMID: 39282363 PMCID: PMC11398367 DOI: 10.1101/2024.09.02.610895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The miR-290 and miR-302 clusters of microRNAs are highly expressed in naïve and primed pluripotent stem cells, respectively. Ectopic expression of the embryonic stem cell-specific cell cycle regulating (ESCC) family of microRNAs arising from these two clusters dramatically enhances the reprogramming of both mouse and human somatic cells to induced pluripotency. Here, we used genetic knockouts to dissect the requirement for the miR-290 and miR-302 clusters during the reprogramming of mouse fibroblasts into induced pluripotent stem cells (iPSCs) with retrovirally introduced Oct4, Sox2, and Klf4. Knockout of either cluster alone did not negatively impact the efficiency of reprogramming. Resulting cells appeared identical to their embryonic stem cell microRNA cluster knockout counterparts. In contrast, the combined loss of both clusters blocked the formation of iPSCs. While rare double knockout clones could be isolated, they showed a dramatically reduced proliferation rate, a persistent inability to fully silence the exogenously introduced pluripotency factors, and a transcriptome distinct from individual miR-290 or miR-302 mutant ESC and iPSCs. Taken together, our data show that miR-290 and miR-302 are essential yet interchangeable in reprogramming to the induced pluripotent state. Impact Statement The process by which somatic cell reprogramming yields induced pluripotent stem cells (iPSCs) is incompletely understood. MicroRNAs from the miR-290 and miR-302 clusters have been shown to greatly increase reprogramming efficiency, but their requirement in the process has not been studied. Here, we examine this requirement by genetically removing the miRNA clusters in somatic cells. We discover that somatic cells lacking either, but not both, of these miRNA clusters can form iPSC cells. This work thus provides new important insight into mechanisms underlying reprogramming to pluripotency.
Collapse
Affiliation(s)
- Julia Ye
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, 94143, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Ryan M. Boileau
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, 94143, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Ronald J. Parchem
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robert L. Judson-Torres
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, 94143, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
5
|
Pasquariello R, Pennarossa G, Arcuri S, Fernandez-Fuertes B, Lonergan P, Brevini TAL, Gandolfi F. Sperm fertilizing ability in vitro influences bovine blastocyst miRNA content. Theriogenology 2024; 222:1-9. [PMID: 38581760 DOI: 10.1016/j.theriogenology.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that orchestrate a wide range of biological processes through post-transcriptional regulation of gene expression. During development, miRNAs play a key role in driving embryo patterning and morphogenesis in a specific and stage-dependent manner. Here, we investigated whether sperm from bulls with different fertilizing ability in vitro influence blastocyst quality and miRNA content. Results demonstrate that blastocysts obtained using sperm from high fertility sires (H group) display significantly greater cleavage and blastocyst development as well as greater transcript abundance in blastocysts for the developmental competence markers CDX2, KRT8, NANOG, OCT4, PLAC8, PTGS2, SOX17, and SOX2, compared to blastocysts generated using sperm from low fertility sires (L group). In parallel, high throughput deep sequencing and differential expression studies revealed that H blastocysts exhibit a greater miRNA content compared to L blastocysts, with hsa-miR-4755-5p and hsa-miR-548d-3p uniquely detected in the H group, and greater abundance of hsa-miR-1225-3p in the H group. Gene ontology (GO) and KEGG pathway analyses indicated that the 3 differentially expressed miRNAs identified are involved in the regulation of many biological mechanisms with a key role in aspects of early embryo development, including transcriptional regulation, cellular biosynthesis, nucleic acid metabolism, cellular differentiation, apoptosis, cytoskeleton remodeling, cell-to-cell interactions, and endocytosis. Overall, our results indicate that sperm fertilizing ability influences blastocyst developmental ability and miRNA content. In addition, we demonstrate an association between blastocyst quality and miRNA content, thus suggesting the possibility to score miRNA expression as biomarkers for improved routine embryo selection technologies to support assisted reproductive efforts.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy.
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Beatriz Fernandez-Fuertes
- Animal Reproduction Department, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Rispoli P, Scandiuzzi Piovesan T, Decorti G, Stocco G, Lucafò M. iPSCs as a groundbreaking tool for the study of adverse drug reactions: A new avenue for personalized therapy. WIREs Mech Dis 2024; 16:e1630. [PMID: 37770042 DOI: 10.1002/wsbm.1630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Induced pluripotent stem cells (iPSCs), obtained by reprogramming different somatic cell types, represent a promising tool for the study of drug toxicities, especially in the context of personalized medicine. Indeed, these cells retain the same genetic heritage of the donor, allowing the development of personalized models. In addition, they represent a useful tool for the study of adverse drug reactions (ADRs) in special populations, such as pediatric patients, which are often poorly represented in clinical trials due to ethical issues. Particularly, iPSCs can be differentiated into any tissue of the human body, following several protocols which use different stimuli to induce specific differentiation processes. Differentiated cells also maintain the genetic heritage of the donor, and therefore are suitable for personalized pharmacological studies; moreover, iPSC-derived differentiated cells are a valuable tool for the investigation of the mechanisms underlying the physiological differentiation processes. iPSCs-derived organoids represent another important tool for the study of ADRs. Precisely, organoids are in vitro 3D models which better represent the native organ, both from a structural and a functional point of view. Moreover, in the same way as iPSC-derived 2D models, iPSC-derived organoids are appropriate personalized models since they retain the genetic heritage of the donor. In comparison to other in vitro models, iPSC-derived organoids present advantages in terms of versatility, patient-specificity, and ethical issues. This review aims to provide an updated report of the employment of iPSCs, and 2D and 3D models derived from these, for the study of ADRs. This article is categorized under: Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- Paola Rispoli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Gabriele Stocco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
7
|
Cui Y, Qi Y, Ding L, Ding S, Han Z, Wang Y, Du P. miRNA dosage control in development and human disease. Trends Cell Biol 2024; 34:31-47. [PMID: 37419737 DOI: 10.1016/j.tcb.2023.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 07/09/2023]
Abstract
In mammals, miRNAs recognize target mRNAs via base pairing, which leads to a complex 'multiple-to-multiple' regulatory network. Previous studies have focused on the regulatory mechanisms and functions of individual miRNAs, but alterations of many individual miRNAs do not strongly disturb the miRNA regulatory network. Recent studies revealed the important roles of global miRNA dosage control events in physiological processes and pathogenesis, suggesting that miRNAs can be considered as a 'cellular buffer' that controls cell fate. Here, we review the current state of research on how global miRNA dosage is tightly controlled to regulate development, tumorigenesis, neurophysiology, and immunity. We propose that methods of controlling global miRNA dosage may serve as effective therapeutic tools to cure human diseases.
Collapse
Affiliation(s)
- Yingzi Cui
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ye Qi
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Li Ding
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shuangjin Ding
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Zonglin Han
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Klees C, Alexandri C, Demeestere I, Lybaert P. The Role of microRNA in Spermatogenesis: Is There a Place for Fertility Preservation Innovation? Int J Mol Sci 2023; 25:460. [PMID: 38203631 PMCID: PMC10778981 DOI: 10.3390/ijms25010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Oncological treatments have dramatically improved over the last decade, and as a result, survival rates for cancer patients have also improved. Quality of life, including concerns about fertility, has become a major focus for both oncologists and patients. While oncologic treatments are often highly effective at suppressing neoplastic growth, they are frequently associated with severe gonadotoxicity, leading to infertility. For male patients, the therapeutic option to preserve fertility is semen cryopreservation. In prepubertal patients, immature testicular tissue can be sampled and stored to allow post-cure transplantation of the tissue, immature germ cells, or in vitro spermatogenesis. However, experimental techniques have not yet been proven effective for restoring sperm production for these patients. MicroRNAs (miRNAs) have emerged as promising molecular markers and therapeutic tools in various diseases. These small regulatory RNAs possess the unique characteristic of having multiple gene targets. MiRNA-based therapeutics can, therefore, be used to modulate the expression of different genes involved in signaling pathways dysregulated by changes in the physiological environment (disease, temperature, ex vivo culture, pharmacological agents). This review discusses the possible role of miRNA as an innovative treatment option in male fertility preservation-restoration strategies and describes the diverse applications where these new therapeutic tools could serve as fertility protection agents.
Collapse
Affiliation(s)
- Charlotte Klees
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Chrysanthi Alexandri
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
- Fertility Clinic, HUB-Erasme Hospital, 1070 Brussels, Belgium
| | - Pascale Lybaert
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| |
Collapse
|
9
|
Biondic S, Petropoulos S. Evidence for Functional Roles of MicroRNAs in Lineage Specification During Mouse and Human Preimplantation Development. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:481-494. [PMID: 38161584 PMCID: PMC10751869 DOI: 10.59249/fosi4358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proper formation of the blastocyst, including the specification of the first embryonic cellular lineages, is required to ensure healthy embryo development and can significantly impact the success of assisted reproductive technologies (ARTs). However, the regulatory role of microRNAs in early development, particularly in the context of preimplantation lineage specification, remains largely unknown. Taking a cross-species approach, this review aims to summarize the expression dynamics and functional significance of microRNAs in the differentiation and maintenance of lineage identity in both the mouse and the human. Findings are consolidated from studies conducted using in vitro embryonic stem cell models representing the epiblast, trophectoderm, and primitive endoderm lineages (modeled by naïve embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm stem cells, respectively) to provide insight on what may be occurring in the embryo. Additionally, studies directly conducted in both mouse and human embryos are discussed, emphasizing similarities to the stem cell models and the gaps in our understanding, which will hopefully lead to further investigation of these areas. By unraveling the intricate mechanisms by which microRNAs regulate the specification and maintenance of cellular lineages in the blastocyst, we can leverage this knowledge to further optimize stem cell-based models such as the blastoids, enhance embryo competence, and develop methods of non-invasive embryo selection, which can potentially increase the success rates of assisted reproductive technologies and improve the experiences of those receiving fertility treatments.
Collapse
Affiliation(s)
- Savana Biondic
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, Axe Immunopathologie, Montréal, Canada
- Faculty of Medicine, Molecular Biology Program,
Université de Montréal, Montréal, Canada
| | - Sophie Petropoulos
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, Axe Immunopathologie, Montréal, Canada
- Faculty of Medicine, Molecular Biology Program,
Université de Montréal, Montréal, Canada
- Division of Obstetrics and Gynecology, Department of
Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm,
Sweden
| |
Collapse
|
10
|
Loehr AR, Timmerman DM, Liu M, Gillis AJ, Matthews M, Bloom JC, Nicholls PK, Page DC, Miller AD, Looijenga LH, Weiss RS. Analysis of a mouse germ cell tumor model establishes pluripotency-associated miRNAs as conserved serum biomarkers for germ cell cancer detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.09.556995. [PMID: 37745561 PMCID: PMC10515752 DOI: 10.1101/2023.09.09.556995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Malignant testicular germ cells tumors (TGCTs) are the most common solid cancers in young men. Current TGCT diagnostics include conventional serum protein markers, but these lack the sensitivity and specificity to serve as accurate markers across all TGCT subtypes. MicroRNAs (miRNAs) are small non-coding regulatory RNAs and informative biomarkers for several diseases. In humans, miRNAs of the miR-371-373 cluster are detectable in the serum of patients with malignant TGCTs and outperform existing serum protein markers for both initial diagnosis and subsequent disease monitoring. We previously developed a genetically engineered mouse model featuring malignant mixed TGCTs consisting of pluripotent embryonal carcinoma (EC) and differentiated teratoma that, like the corresponding human malignancies, originate in utero and are highly chemosensitive. Here, we report that miRNAs in the mouse miR-290-295 cluster, homologs of the human miR-371-373 cluster, were detectable in serum from mice with malignant TGCTs but not from tumor-free control mice or mice with benign teratomas. miR-291-293 were expressed and secreted specifically by pluripotent EC cells, and expression was lost following differentiation induced by the drug thioridazine. Notably, miR-291-293 levels were significantly higher in the serum of pregnant dams carrying tumor-bearing fetuses compared to that of control dams. These findings reveal that expression of the miR-290-295 and miR-371-373 clusters in mice and humans, respectively, is a conserved feature of malignant TGCTs, further validating the mouse model as representative of the human disease. These data also highlight the potential of serum miR-371-373 assays to improve patient outcomes through early TGCT detection, possibly even prenatally.
Collapse
Affiliation(s)
- Amanda R. Loehr
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | | | - Michelle Liu
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Ad J.M. Gillis
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Melia Matthews
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | | | | | - David C. Page
- Whitehead Institute, Cambridge, MA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Andrew D. Miller
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | | | - Robert S. Weiss
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| |
Collapse
|
11
|
Chen J, Han C. In vivo functions of miRNAs in mammalian spermatogenesis. Front Cell Dev Biol 2023; 11:1154938. [PMID: 37215089 PMCID: PMC10196063 DOI: 10.3389/fcell.2023.1154938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
MicroRNAs (miRNAs) are believed to play important roles in mammalian spermatogenesis mainly because spermatogenesis is more or less disrupted when genes encoding key enzymes for miRNA biogenesis are mutated. However, it is challenging to study the functions of individual miRNAs due to their family-wise high sequence similarities and the clustered genomic distributions of their genes, both of which expose difficulties in using genetic methods. Accumulating evidence shows that a number of miRNAs indeed play important roles in mammalian spermatogenesis and the underlying mechanisms start to be understood. In this mini review, we focus on highlighting the roles of miRNAs in mammalian spermatogenesis elucidated mainly by using in vivo genetic methods and on discussing the underlying mechanisms. We propose that studies on the roles of miRNAs in spermatogenesis should and can be conducted in a more fruitful way given the progress in traditional methods and the birth of new technologies.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Jian O, MengXia N, Shiyu X, QingXia M, QinYan Z, Jie D, Wei W, Jiaojiao W, Hong L, Yining H. MiR-145 is upregulated in the retarded preimplantation embryos and modulates cholesterol levels in mice preimplantation embryos through targeting Abca1. Reprod Biol Endocrinol 2022; 20:168. [PMID: 36510317 PMCID: PMC9743540 DOI: 10.1186/s12958-022-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Preimplantation embryonic lethality is a driver of female infertility. Certain microRNAs (miRNAs) have previously been demonstrated to play important roles in the regulation of embryogenesis. METHODS Normally developing blastocysts and arrested embryos were collected from patients undergoing intracytoplasmic sperm injection (ICSI), and the expression of specific miRNAs therein was evaluated by qPCR. The overexpression of target molecule miR-145 in early mice embryos was achieved via oocyte microinjection, enabling the subsequent monitoring of how such overexpression impacted embryonic development. Bioinformatics approaches were utilized to identify putative miR-145 target mRNAs, and luciferase reporter assessments were implemented to confirm the ability of miR-145 to regulate Abca1 in HEK293T cells. The functional relationship between miR-145 and Abca1 in the mice's embryonic development was then confirmed through rescue assays. RESULTS Abnormally increased miR-145 expression was observed in patients' arrested embryos, and the exogenous overexpression of this miRNA significantly suppressed mural blastocyst formation. Mechanistically, miR-145 was found to bind to the 3'-untranslated area of the Abca1 mRNA in HK293T cells, thus suppressing its expression and increasing embryonic cholesterol levels. In line with the importance of these cholesterol levels to embryogenesis, the upregulation of Abca1 was sufficient to rescue the observed change in cholesterol levels and the associated retardation of mice embryonic development that occurred in response to the overexpression of miR-145. CONCLUSION The regulatory dynamics of the miR-145/Abca1 axis play an important role in shaping normal embryonic development.
Collapse
Affiliation(s)
- Ou Jian
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Ni MengXia
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Xing Shiyu
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Meng QingXia
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Zou QinYan
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Ding Jie
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Wang Wei
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Wan Jiaojiao
- Peking Jabrehoo Med-Tech Co., Ltd, No. 19 Tianrong Road, Daxing Bio-medicine Industry Park, Daxing District, Peking, 102629, China
| | - Li Hong
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China.
| | - Huang Yining
- Peking Jabrehoo Med-Tech Co., Ltd, No. 19 Tianrong Road, Daxing Bio-medicine Industry Park, Daxing District, Peking, 102629, China.
| |
Collapse
|
13
|
Sugawara T, Kawamoto Y, Kawasaki T, Umezawa A, Akutsu H. A single allele of the hsa-miR-302/367 cluster maintains human pluripotent stem cells. Regen Ther 2022; 21:37-45. [PMID: 35702483 PMCID: PMC9162946 DOI: 10.1016/j.reth.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 05/15/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction In a diploid organism, two alleles from a single genetic locus are expressed to generate a normal phenotype. Heterozygous deleterious mutation causes a reduction of functional proteins to a half dose and insufficient amounts of functional proteins can occur to generate an in–normal phenotype, namely haploinsufficiency. Heterozygous deleterious mutation of microRNAs (miRs), non-coding RNAs that regulate the expression level of target transcripts, is still not well understood. The hsa-miR-302/367 cluster is the most abundant and specifically up-regulated miR cluster in human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) and plays an important role in the maintenance of pluripotency. Methods We targeted the hsa-miR-302/367 region via a Cas9 nuclease complex with guide RNA and replaced that region with green fluorescent protein (GFP). Using a homologous donor, consisting of left and right arms and GFP, we confirmed deletion of the hsa-miR-302/367 cluster by homologous recombination without cellular destruction by microscopy. We sub-cloned GFP-positive colonies and checked the genotype of each sub-clone by genomic PCR. We then analyzed the pluripotency of heterozygous knockout cells with a hsa-miR-302/367 cluster by assessing cell proliferation ratio, morphology, and undifferentiated marker gene expression. We also used an embryoid body formation assay and transplanted wild-type and heterozygous knockout cells into immune-deficient mice. Furthermore, to analyze the lineage-specific differentiation potential of heterozygous knockout cells, we differentiated both wild-type and heterozygous knockout cells into neural stem cells. Results Here, we show that the half dose of mature miRs from the hsa-miR-302/367 cluster loci was sufficient for the continued self-renewal of hiPSCs. All GFP-positive clones were revealed to be heterozygous knockout cells, suggesting hsa-miR-302/367 cluster homozygous knockout cells were not maintained. The cell proliferation ratio, morphology, and expression of undifferentiated marker genes were comparable between wild-type and heterozygous knockout of undifferentiated human iPSCs. In addition, we found that heterozygous knockout human iPSCs have the capacity to differentiate into three germ layers, including neural stem cells. Conclusions Taken together, a single allele of the hsa-miR-302/367 cluster expresses a sufficient amount of miRs to maintain the pluripotent properties of human stem cells. hsa-miR-302/367 cluster was deleted with CRISPR/Cas9 in human pluripotent stem cells. Homozygous hsa-miR-302/367 knockout cell was not generated.
Collapse
Affiliation(s)
| | | | | | | | - Hidenori Akutsu
- Corresponding author. Department of Reproductive Medicine, Center for Regenerative Medicine, National Center for Child Health and Development (NCCHD), Okura 2-10-1, Setagaya, Tokyo, 157-8535, Japan. Tel: +81-3-5494-7047, Fax: +81-3-5494-7048.
| |
Collapse
|
14
|
Paloviita P, Vuoristo S. The non-coding genome in early human development - Recent advancements. Semin Cell Dev Biol 2022; 131:4-13. [PMID: 35177347 DOI: 10.1016/j.semcdb.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Not that long ago, the human genome was discovered to be mainly non-coding, that is comprised of DNA sequences that do not code for proteins. The initial paradigm that non-coding is also non-functional was soon overturned and today the work to uncover the functions of non-coding DNA and RNA in human early embryogenesis has commenced. Early human development is characterized by large-scale changes in genomic activity and the transcriptome that are partly driven by the coordinated activation and repression of repetitive DNA elements scattered across the genome. Here we provide examples of recent novel discoveries of non-coding DNA and RNA interactions and mechanisms that ensure accurate non-coding activity during human maternal-to-zygotic transition and lineage segregation. These include studies on small and long non-coding RNAs, transposable element regulation, and RNA tailing in human oocytes and early embryos. High-throughput approaches to dissect the non-coding regulatory networks governing early human development are a foundation for functional studies of specific genomic elements and molecules that has only begun and will provide a wider understanding of early human embryogenesis and causes of infertility.
Collapse
Affiliation(s)
- Pauliina Paloviita
- Department of Obstetrics and Gynaecology, University of Helsinki, 00014 Helsinki, Finland
| | - Sanna Vuoristo
- Department of Obstetrics and Gynaecology, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
15
|
An HJ, Cho SH, Park HS, Kim JH, Kim YR, Lee WS, Lee JR, Joo SS, Ahn EH, Kim NK. Genetic Variations miR-10aA>T, miR-30cA>G, miR-181aT>C, and miR-499bA>G and the Risk of Recurrent Pregnancy Loss in Korean Women. Biomedicines 2022; 10:biomedicines10102395. [PMID: 36289656 PMCID: PMC9598437 DOI: 10.3390/biomedicines10102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
This study investigated the genetic association between recurrent pregnancy loss (RPL) and microRNA (miRNA) polymorphisms in miR-10aA>T, miR-30cA>G, miR-181aT>C, and miR-499bA>G in Korean women. Blood samples were collected from 381 RPL patients and 281 control participants, and genotyping of miR-10aA>T, miR-30cA>G, miR-181aT>C, and miR-499bA>G was carried out by TaqMan miRNA RT-Real Time polymerase chain reaction (PCR). Four polymorphisms were identified, including miR-10aA>T, miR-30cA>G, miR-181aT>C, and miR-499bA>G. MiR-10a dominant model (AA vs. AT + TT) and miR-499bGG genotypes were associated with increased RPL risk (adjusted odds ratio [AOR] = 1.520, 95% confidence interval [CI] = 1.038−2.227, p = 0.032; AOR = 2.956, 95% CI = 1.168−7.482, p = 0.022, respectively). Additionally, both miR-499 dominant (AA vs. AG + GG) and recessive (AA + AG vs. GG) models were significantly associated with increased RPL risk (AOR = 1.465, 95% CI = 1.062−2.020, p = 0.020; AOR = 2.677, 95% CI = 1.066−6.725, p = 0.036, respectively). We further propose that miR-10aA>T, miR-30cA>G, and miR-499bA>G polymorphisms effects could contribute to RPL and should be considered during RPL patient evaluation.
Collapse
Affiliation(s)
- Hui-Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Sung-Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
| | - Han-Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Ji-Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13488, Korea
| | - Young-Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13488, Korea
| | - Woo-Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea
| | - Jung-Ryeol Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Seong-Soo Joo
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Eun-Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13488, Korea
- Correspondence: (E.-H.A.); (N.-K.K.)
| | - Nam-Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- Correspondence: (E.-H.A.); (N.-K.K.)
| |
Collapse
|
16
|
Schaefer M, Nabih A, Spies D, Hermes V, Bodak M, Wischnewski H, Stalder P, Ngondo RP, Liechti LA, Sajic T, Aebersold R, Gatfield D, Ciaudo C. Global and precise identification of functional
miRNA
targets in
mESCs
by integrative analysis. EMBO Rep 2022; 23:e54762. [PMID: 35899551 PMCID: PMC9442311 DOI: 10.15252/embr.202254762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNA (miRNA) loaded Argonaute (AGO) complexes regulate gene expression via direct base pairing with their mRNA targets. Previous works suggest that up to 60% of mammalian transcripts might be subject to miRNA‐mediated regulation, but it remains largely unknown which fraction of these interactions are functional in a specific cellular context. Here, we integrate transcriptome data from a set of miRNA‐depleted mouse embryonic stem cell (mESC) lines with published miRNA interaction predictions and AGO‐binding profiles. Using this integrative approach, combined with molecular validation data, we present evidence that < 10% of expressed genes are functionally and directly regulated by miRNAs in mESCs. In addition, analyses of the stem cell‐specific miR‐290‐295 cluster target genes identify TFAP4 as an important transcription factor for early development. The extensive datasets developed in this study will support the development of improved predictive models for miRNA‐mRNA functional interactions.
Collapse
Affiliation(s)
- Moritz Schaefer
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Amena Nabih
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Daniel Spies
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Victoria Hermes
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Maxime Bodak
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Harry Wischnewski
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Patrick Stalder
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
- Life Science Zurich Graduate School University of Zürich Zurich Switzerland
| | - Richard Patryk Ngondo
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| | - Luz Angelica Liechti
- Center for Integrative Genomics (CIG) University of Lausanne Lausanne Switzerland
| | - Tatjana Sajic
- Swiss Federal Institute of Technology Zurich, IMSB Zürich Switzerland
| | - Ruedi Aebersold
- Swiss Federal Institute of Technology Zurich, IMSB Zürich Switzerland
| | - David Gatfield
- Center for Integrative Genomics (CIG) University of Lausanne Lausanne Switzerland
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich IMHS, Chair of RNAi and Genome Integrity Zurich Switzerland
| |
Collapse
|
17
|
Esmaeilivand M, Abedelahi A, Hamdi K, Farzadi L, Goharitaban S, Fattahi A, Niknafs B. Role of miRNAs in preimplantation embryo development and their potential as embryo selection biomarkers. Reprod Fertil Dev 2022; 34:589-597. [PMID: 35440361 DOI: 10.1071/rd21274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
CONTEXT MicroRNAs (miRNAs) play different roles in oocyte fertilisation, degradation of maternal transcripts, embryo development, and implantation. During in vitro fertilisation (IVF), different miRNAs are released from embryos into the spent culture media (SCM) that can potentially reflect the status of the embryo. AIMS This study is the assessment of miRNAs, which secreted in SCM during the IVF cycles can be used as noninvasive biomarkers to predict an embryo's ability to form a blastocyst, implant, and give live birth. METHODS Systematic literature search was conducted to review all recent studies about miRNAs as potential non-invasive biomarkers for selecting the best embryos in the assisted reproductive technology (ART) cycle. KEY RESULTS Studies have shown that levels of some miRNAs in the SCM have an association with the implantation potential and pregnancy outcome of the embryo. CONCLUSIONS Embryo-secreted miRNAs can be used as potential non-invasive biomarkers for selecting the best embryos in the ART cycle. Unfortunately, few human studies evaluated the association between ART outcomes and miRNAs in SCM. IMPLICATIONS This review can pave the way for further miRNAs transcriptomic studies on human embryo culture media and introducing a specific miRNA profile as a multivariable prediction model for embryo selection in IVF cycles.
Collapse
Affiliation(s)
- Masoumeh Esmaeilivand
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepide Goharitaban
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; and Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Chrysanthou S, Flores JC, Dawlaty MM. Tet1 Suppresses p21 to Ensure Proper Cell Cycle Progression in Embryonic Stem Cells. Cells 2022; 11:1366. [PMID: 35456045 PMCID: PMC9025953 DOI: 10.3390/cells11081366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Ten eleven translocation 1 (Tet1) is a DNA dioxygenase that promotes DNA demethylation by oxidizing 5-methylcytosine. It can also partner with chromatin-activating and repressive complexes to regulate gene expressions independent of its enzymatic activity. Tet1 is highly expressed in embryonic stem cells (ESCs) and regulates pluripotency and differentiation. However, its roles in ESC cell cycle progression and proliferation have not been investigated. Using a series of Tet1 catalytic mutant (Tet1m/m), knockout (Tet1-/-) and wild type (Tet1+/+) mouse ESCs (mESCs), we identified a non-catalytic role of Tet1 in the proper cell cycle progression and proliferation of mESCs. Tet1-/-, but not Tet1m/m, mESCs exhibited a significant reduction in proliferation and delayed progression through G1. We found that the cyclin-dependent kinase inhibitor p21/Cdkn1a was uniquely upregulated in Tet1-/- mESCs and its knockdown corrected the slow proliferation and delayed G1 progression. Mechanistically, we found that p21 was a direct target of Tet1. Tet1 occupancy at the p21 promoter overlapped with the repressive histone mark H3K27me3 as well as with the H3K27 trimethyl transferase PRC2 component Ezh2. A loss of Tet1, but not loss of its catalytic activity, significantly reduced the enrichment of Ezh2 and H3K27 trimethylation at the p21 promoter without affecting the DNA methylation levels. We also found that the proliferation defects of Tet1-/- mESCs were independent of their differentiation defects. Together, these findings established a non-catalytic role for Tet1 in suppressing p21 in mESCs to ensure a rapid G1-to-S progression, which is a key hallmark of ESC proliferation. It also established Tet1 as an epigenetic regulator of ESC proliferation in addition to its previously defined roles in ESC pluripotency and differentiation.
Collapse
Affiliation(s)
- Stephanie Chrysanthou
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA; (S.C.); (J.C.F.)
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Julio C. Flores
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA; (S.C.); (J.C.F.)
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Meelad M. Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA; (S.C.); (J.C.F.)
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
19
|
Wang Z, Meng N, Wang Y, Zhou T, Li M, Wang S, Chen S, Zheng H, Kong S, Wang H, Yan W. Ablation of the miR-465 Cluster Causes a Skewed Sex Ratio in Mice. Front Endocrinol (Lausanne) 2022; 13:893854. [PMID: 35677715 PMCID: PMC9167928 DOI: 10.3389/fendo.2022.893854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 01/31/2023] Open
Abstract
The X-linked miR-465 cluster is highly expressed in the testis, sperm, newborn ovary, and blastocysts as well as in 8-16 cell embryos. However, the physiological role of the miR-465 cluster is still largely unknown. This study aims to dissect the role of the miR-465 cluster in murine development. Despite abundant expression in the testis, ablation of the miR-465 miRNA cluster using CRISPR-Cas9 did not cause infertility. Instead, a skewed sex ratio biased toward males (60% males) was observed among miR-465 KO mice. Further analyses revealed that the female conceptuses selectively degenerated as early as embryonic day 8.5 (E8.5). Small RNA deep sequencing, qPCR, and in situ hybridization analyses revealed that the miRNAs encoded by the miR-465 cluster were mainly localized to the extraembryonic tissue/developing placenta. RNA-seq analyses identified altered mRNA transcriptome characterized by the dysregulation of numerous critical placental genes, e.g., Alkbh1, in the KO conceptuses at E7.5. Taken together, this study showed that the miR-465 cluster is required for normal female placental development, and ablation of the miR-465 cluster leads to a skewed sex ratio with more males (~60%) due to selective degeneration and resorption of the female conceptuses.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Nan Meng
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan,
| |
Collapse
|
20
|
Li X, Liu Y, Mu Q, Tian J, Yu H. MiR-290 family maintains developmental potential by targeting p21 in mouse pre-implantation embryos. Biol Reprod 2021; 106:425-440. [PMID: 34907414 DOI: 10.1093/biolre/ioab227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/29/2021] [Accepted: 12/03/2021] [Indexed: 11/15/2022] Open
Abstract
The miR-290 family is a mouse-specific microRNA cluster, which maintains mouse embryonic stem cells (ESCs) pluripotency by increasing OCT3/4 and C-MYC expression. However, its functions in mouse pre-implantation embryos remain unclear, especially during zygotic genome activation (ZGA). In this study, miR-290 family expression increased from the two-cell embryo stage through the blastocyst stage. Inhibition of miR-294-3p/5p did not affect ZGA initiation or embryo development, whereas pri-miR-290 knockdown decreased ZGA gene expression and slowed embryonic development. In addition, pluripotency decreased in ESCs derived from pri-miR-290 knockdown blastocysts. To clarify the mechanism of action, 33 candidate miR-294-3p target genes were screened from three databases, and miR-294-3p directly targeted the 3'-untranslated region of Cdkn1a (p21) mRNA. Similar to pri-miR-290 knockdown, P21 overexpression impeded embryonic development, whereas simultaneous overexpression of P21 and pri-miR-290 partially rescued embryonic development. The results indicate that the miR-290 family participates in promoting ZGA process and maintaining developmental potency in embryos by targeting p21.
Collapse
Affiliation(s)
- Xiangnan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, 010070 Hohhot, China
| | - Yueshi Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, 010070 Hohhot, China
| | - Qier Mu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, 010070 Hohhot, China
| | - Junliang Tian
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, 010070 Hohhot, China
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, 010070 Hohhot, China
| |
Collapse
|
21
|
Small Noncoding RNAs in Reproduction and Infertility. Biomedicines 2021; 9:biomedicines9121884. [PMID: 34944700 PMCID: PMC8698561 DOI: 10.3390/biomedicines9121884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Infertility has been reported as one of the most common reproductive impairments, affecting nearly one in six couples worldwide. A large proportion of infertility cases are diagnosed as idiopathic, signifying a deficit in information surrounding the pathology of infertility and necessity of medical intervention such as assisted reproductive therapy. Small noncoding RNAs (sncRNAs) are well-established regulators of mammalian reproduction. Advanced technologies have revealed the dynamic expression and diverse functions of sncRNAs during mammalian germ cell development. Mounting evidence indicates sncRNAs in sperm, especially microRNAs (miRNAs) and transfer RNA (tRNA)-derived small RNAs (tsRNAs), are sensitive to environmental changes and mediate the inheritance of paternally acquired metabolic and mental traits. Here, we review the critical roles of sncRNAs in mammalian germ cell development. Furthermore, we highlight the functions of sperm-borne sncRNAs in epigenetic inheritance. We also discuss evidence supporting sncRNAs as promising biomarkers for fertility and embryo quality in addition to the present limitations of using sncRNAs for infertility diagnosis and treatment.
Collapse
|
22
|
Ramakrishna NB, Murison K, Miska EA, Leitch HG. Epigenetic Regulation during Primordial Germ Cell Development and Differentiation. Sex Dev 2021; 15:411-431. [PMID: 34847550 DOI: 10.1159/000520412] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/10/2021] [Indexed: 11/19/2022] Open
Abstract
Germline development varies significantly across metazoans. However, mammalian primordial germ cell (PGC) development has key conserved landmarks, including a critical period of epigenetic reprogramming that precedes sex-specific differentiation and gametogenesis. Epigenetic alterations in the germline are of unique importance due to their potential to impact the next generation. Therefore, regulation of, and by, the non-coding genome is of utmost importance during these epigenomic events. Here, we detail the key chromatin changes that occur during mammalian PGC development and how these interact with the expression of non-coding RNAs alongside broader epitranscriptomic changes. We identify gaps in our current knowledge, in particular regarding epigenetic regulation in the human germline, and we highlight important areas of future research.
Collapse
Affiliation(s)
- Navin B Ramakrishna
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore, Singapore
| | - Keir Murison
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, gametogenesis and germline development†. Biol Reprod 2021; 105:570-592. [PMID: 33929020 PMCID: PMC8444706 DOI: 10.1093/biolre/ioab085] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
24
|
Hawke DC, Ahmed DB, Watson AJ, Betts DH. Murine Blastocysts Release Mature MicroRNAs Into Culture Media That Reflect Developmental Status. Front Genet 2021; 12:655882. [PMID: 34122510 PMCID: PMC8193861 DOI: 10.3389/fgene.2021.655882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Extracellular microRNA (miRNA) sequences derived from the pre-implantation embryo have attracted interest for their possible contributions to the ongoing embryonic-uterine milieu, as well as their potential for use as accessible biomarkers indicative of embryonic health. Spent culture media microdroplets used to culture late-stage E4.0 murine blastocysts were screened for 641 mature miRNA sequences using a reverse transcription-quantitative polymerase chain reaction-based array. We report here 39 miRNAs exclusively detected in the conditioned media, including the implantation-relevant miR-126a-3p, miR-101a, miR-143, and miR-320, in addition to members of the highly expressed embryonic miR-125 and miR-290 families. Based on these results, an miRNA panel was assembled comprising five members of the miR-290 family (miR-291-295) and five conserved sequences with significance to the embryonic secretome (miR-20a, miR-30c, miR-142-3p, miR-191, and miR-320). Panel profiling of developing embryo cohort lysates and accompanying conditioned media microdroplets revealed extensive similarities in relative quantities of miRNAs and, as a biomarker proof of concept, enabled distinction between media conditioned with differently staged embryos (zygote, 4-cell, and blastocyst). When used to assess media conditioned with embryos of varying degrees of degeneration, the panel revealed increases in all extracellular panel sequences, suggesting cell death is an influential and identifiable factor detectable by this assessment. In situ hybridization of three panel sequences (miR-30c, miR-294, and miR-295) in late-stage blastocysts revealed primarily inner cell mass expression with a significant presence of miR-294 throughout the blastocyst cavity. Furthermore, extracellular miR-290 sequences responded significantly to high centrifugal force, suggesting a substantial fraction of these sequences may exist within a vesicle such as an exosome, microvesicle, or apoptotic bleb. Together, these results support the use of extracellular miRNA to assess embryonic health and enable development of a non-invasive viability diagnostic tool for clinical use.
Collapse
Affiliation(s)
- David Connor Hawke
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute-LHRI, London, ON, Canada
| | - Danyal Baber Ahmed
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute-LHRI, London, ON, Canada
| | - Andrew John Watson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute-LHRI, London, ON, Canada
| | - Dean Harvey Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute-LHRI, London, ON, Canada
| |
Collapse
|
25
|
LncRNAs induce oxidative stress and spermatogenesis by regulating endoplasmic reticulum genes and pathways. Aging (Albany NY) 2021; 13:13764-13787. [PMID: 34001678 PMCID: PMC8202879 DOI: 10.18632/aging.202971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
Abstract
Oligozoospermia or low sperm count is a leading cause of male infertility worldwide. Despite decades of work on non-coding RNAs (ncRNAs) as regulators of spermatogenesis, fertilization, and male fertility, the literature on the function of long non-coding RNAs (lncRNAs) in human oligozoospermia is scarce. We integrated lncRNA and mRNA sequencing data from 12 human normozoospermic and oligozoospermic samples and comprehensively analyzed the function of differentially expressed lncRNAs (DE lncRNAs) and mRNAs (DE mRNAs) in male infertility. The target genes of DE lncRNAs were identified using a Gaussian graphical model. Gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways were primarily enriched in protein transport and localization to the endoplasmic reticulum (ER). The lncRNA–mRNA co-expression network revealed cis- and trans-regulated target genes of lncRNAs. The transcriptome data implicated DE lncRNAs and DE mRNAs and their target genes in the accumulation of unfolded proteins in sperm ER, PERK-EIF2 pathway-induced ER stress, oxidative stress, and sperm cell apoptosis in individuals with oligozoospermia. These findings suggest that the identified lncRNAs and pathways could serve as effective therapeutic targets for male infertility.
Collapse
|
26
|
Nicholls PK, Page DC. Germ cell determination and the developmental origin of germ cell tumors. Development 2021; 148:239824. [PMID: 33913479 DOI: 10.1242/dev.198150] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In each generation, the germline is tasked with producing somatic lineages that form the body, and segregating a population of cells for gametogenesis. During animal development, when do cells of the germline irreversibly commit to producing gametes? Integrating findings from diverse species, we conclude that the final commitment of the germline to gametogenesis - the process of germ cell determination - occurs after primordial germ cells (PGCs) colonize the gonads. Combining this understanding with medical findings, we present a model whereby germ cell tumors arise from cells that failed to undertake germ cell determination, regardless of their having colonized the gonads. We propose that the diversity of cell types present in these tumors reflects the broad developmental potential of migratory PGCs.
Collapse
Affiliation(s)
- Peter K Nicholls
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - David C Page
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
27
|
Alexandri C, Daniel A, Bruylants G, Demeestere I. The role of microRNAs in ovarian function and the transition toward novel therapeutic strategies in fertility preservation: from bench to future clinical application. Hum Reprod Update 2020; 26:174-196. [PMID: 32074269 DOI: 10.1093/humupd/dmz039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/02/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND New therapeutic approaches in oncology have converted cancer from a certain death sentence to a chronic disease. However, there are still challenges to be overcome regarding the off-target toxicity of many of these treatments. Oncological therapies can lead to future infertility in women. Given this negative impact on long-term quality of life, fertility preservation is highly recommended. While gamete and ovarian tissue cryopreservation are the usual methods offered, new pharmacological-based options aiming to reduce ovarian damage during oncological treatment are very attractive. In this vein, advances in the field of transcriptomics and epigenomics have brought small noncoding RNAs, called microRNAs (miRNAs), into the spotlight in oncology. MicroRNAs also play a key role in follicle development as regulators of follicular growth, atresia and steroidogenesis. They are also involved in DNA damage repair responses and they can themselves be modulated during chemotherapy. For these reasons, miRNAs may be an interesting target to develop new protective therapies during oncological treatment. This review summarizes the physiological role of miRNAs in reproduction. Considering recently developed strategies based on miRNA therapy in oncology, we highlight their potential interest as a target in fertility preservation and propose future strategies to make the transition from bench to clinic. OBJECTIVE AND RATIONALE How can miRNA therapeutic approaches be used to develop new adjuvant protective therapies to reduce the ovarian damage caused by cytotoxic oncological treatments? SEARCH METHODS A systematic search of English language literature using PubMed and Google Scholar databases was performed through to 2019 describing the role of miRNAs in the ovary and their use for diagnosis and targeted therapy in oncology. Personal data illustrate miRNA therapeutic strategies to target the gonads and reduce chemotherapy-induced follicular damage. OUTCOMES This review outlines the importance of miRNAs as gene regulators and emphasizes the fact that insights in oncology can inspire new adjuvant strategies in the field of onco-fertility. Recent improvements in nanotechnology offer the opportunity for drug development using next-generation miRNA-nanocarriers. WIDER IMPLICATIONS Although there are still some barriers regarding the immunogenicity and toxicity of these treatments and there is still room for improvement concerning the specific delivery of miRNAs into the ovaries, we believe that, in the future, miRNAs can be developed as powerful and non-invasive tools for fertility preservation.
Collapse
Affiliation(s)
- C Alexandri
- Research Laboratory in Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - A Daniel
- Research Laboratory in Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.,Université de Tours, Faculty of Science and Technology, 37200 Tours, France
| | - G Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - I Demeestere
- Research Laboratory in Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.,Fertility Clinic, CUB-Erasme, 1070 Brussels, Belgium
| |
Collapse
|
28
|
Dong J, Wu Y, Zhang Y, Yu M, Tian W. Comparison of the Therapeutic Effect of Allogeneic and Xenogeneic Small Extracellular Vesicles in Soft Tissue Repair. Int J Nanomedicine 2020; 15:6975-6991. [PMID: 33061363 PMCID: PMC7519865 DOI: 10.2147/ijn.s269069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose Small extracellular vesicles (sEV) are a heterogeneous group of vesicles that consist of proteins, lipids and miRNA molecules derived from the cell of origin. Although xenogeneic sEV have been applied for soft tissue regeneration successfully, the regeneration effect of allogeneic and xenogeneic sEV has not been compared systematically. Methods Our previous study has shown that sEV derived from rat adipose tissue successfully induced neoadipose regeneration. In this study, sEV were isolated from rat adipose tissue (r-sEV-AT) and porcine adipose tissue (p-sEV-AT), the morphology, size distribution and marker proteins expression of r-sEV-AT and p-sEV-AT were characterized. Besides, the sEV/AT ratio was evaluated and compared between r-sEV-AT and p-sEV-AT. Rat adipose-derived stromal/stem cells (rASCs) and rat aorta endothelial cells (rECs) were adopted to test the cellular response to allogeneic and xenogeneic sEV-AT. The effects of allogeneic and xenogeneic sEV-AT on host cells migration and neoadipose formation were evaluated in a subcutaneous custom-designed model. A full-thickness skin wound healing model was used to further compare the ability of allogeneic and xenogeneic sEV-AT in inducing complex soft tissue regeneration. Results p-sEV-AT showed similar morphology and size distribution to r-sEV-AT. Marker proteins of sEV were detected in both r-sEV-AT and p-sEV-AT. The sEV/AT ratio of porcine was slightly higher than that of rat. The effects of r-sEV-AT and p-sEV-AT on the differentiation of rASCs and rECs showed no significant difference. When allogeneic and xenogeneic sEV-AT were subcutaneously implanted into the back of SD rats, the host cells chemotactic infiltration was observed in 1 week and neoadipose tissue formation was induced in 8 weeks; no significant difference was observed between allogeneic and xenogeneic sEV-AT. For complex soft tissue regeneration, both allogeneic and xenogeneic sEV-AT significantly promoted wound re-epithelialization, granulation tissue formation and hair follicle regeneration and then accelerated skin wound healing. Conclusion Our results demonstrated that sEV derived from the same tissues of different species might be loaded with similar therapeutic substance benefitting tissue repair and regeneration, and paved the way for future research aimed at xenogeneic sEV application.
Collapse
Affiliation(s)
- Jia Dong
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yue Wu
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Mei Yu
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
29
|
Haig D, Mainieri A. The Evolution of Imprinted microRNAs and Their RNA Targets. Genes (Basel) 2020; 11:genes11091038. [PMID: 32899179 PMCID: PMC7564603 DOI: 10.3390/genes11091038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Mammalian genomes contain many imprinted microRNAs. When an imprinted miRNA targets an unimprinted mRNA their interaction may have different fitness consequences for the loci encoding the miRNA and mRNA. In one possible outcome, the mRNA sequence evolves to evade regulation by the miRNA by a simple change of target sequence. Such a response is unavailable if the targeted sequence is strongly constrained by other functions. In these cases, the mRNA evolves to accommodate regulation by the imprinted miRNA. These evolutionary dynamics are illustrated using the examples of the imprinted C19MC cluster of miRNAs in primates and C2MC cluster in mice that are paternally expressed in placentas. The 3′ UTR of PTEN, a gene with growth-related and metabolic functions, appears to be an important target of miRNAs from both clusters.
Collapse
|
30
|
The Key Role of MicroRNAs in Self-Renewal and Differentiation of Embryonic Stem Cells. Int J Mol Sci 2020; 21:ijms21176285. [PMID: 32877989 PMCID: PMC7504502 DOI: 10.3390/ijms21176285] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Naïve pluripotent embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) represent distinctive developmental stages, mimicking the pre- and the post-implantation events during the embryo development, respectively. The complex molecular mechanisms governing the transition from ESCs into EpiSCs are orchestrated by fluctuating levels of pluripotency transcription factors (Nanog, Oct4, etc.) and wide-ranging remodeling of the epigenetic landscape. Recent studies highlighted the pivotal role of microRNAs (miRNAs) in balancing the switch from self-renewal to differentiation of ESCs. Of note, evidence deriving from miRNA-based reprogramming strategies underscores the role of the non-coding RNAs in the induction and maintenance of the stemness properties. In this review, we revised recent studies concerning the functions mediated by miRNAs in ESCs, with the aim of giving a comprehensive view of the highly dynamic miRNA-mediated tuning, essential to guarantee cell cycle progression, pluripotency maintenance and the proper commitment of ESCs.
Collapse
|
31
|
Abdalla M, Deshmukh H, Atkin SL, Sathyapalan T. miRNAs as a novel clinical biomarker and therapeutic targets in polycystic ovary syndrome (PCOS): A review. Life Sci 2020; 259:118174. [PMID: 32745529 DOI: 10.1016/j.lfs.2020.118174] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder in females of the reproductive age. PCOS is commonly manifested as ovulatory dysfunction, clinical and biochemical excess androgen level, and polycystic ovaries. Metabolic sequelae associated with PCOS, including insulin resistance (IR), type 2 diabetes (T2DM), obesity and increased cardiometabolic risk. The underlying pathology of PCOS is not fully understood with various genetic and environmental factors have been proposed. MicroRNAs (miRNAs), are endogenously produced, small non-coding, single-stranded RNAs that capable of regulating gene expression at the post-transcriptional level. Altered miRNAs expression has been associated with various disorders, including T2DM, IR, lipid disorder, infertility, atherosclerosis, endometriosis, and cancer. Given that PCOS also present with similar features, there is an increasing interest to investigate the role of miRNAs in the diagnosis and management of PCOS. In recent years, studies have demonstrated that miRNAs are present in various body fluids, including follicular fluid of women with PCOS. Therefore, it may act as a potential biomarker and could serve as a novel therapeutic target for the diagnosis and treatment of PCOS. This review aims to summarise the up to date research on the relation between miRNAs and PCOS and explore its potential role in the diagnosis and the management of PCOS.
Collapse
Affiliation(s)
- Mohammed Abdalla
- Hull York Medical School, Academic Diabetes, Endocrinology and Metabolism, University of Hull, Hull, UK.
| | - Harshal Deshmukh
- Clinical lecturer at Hull York Medical School, Academic Diabetes, Endocrinology and Metabolism, University of Hull, Hull, UK.
| | - Stephen L Atkin
- Head of School Postgraduate Studies and Research, RCIS-Bahrain, Medical University of Bahrain, Bahrain.
| | - Thozhukat Sathyapalan
- Honorary Consultant Endocrinologist at Hull University Teaching Hospital NHS Trust, UK; Chair in Academic Diabetes, Endocrinology and metabolism in Hull York Medical School, University of Hull, UK.
| |
Collapse
|
32
|
CPPED1-targeting microRNA-371a-5p expression in human placenta associates with spontaneous delivery. PLoS One 2020; 15:e0234403. [PMID: 32520951 PMCID: PMC7286509 DOI: 10.1371/journal.pone.0234403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/24/2020] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression, and their expression is associated with many physiological conditions. Here, we investigated potential associations between expression levels of miRNAs in human placenta and the onset of spontaneous term birth. Using RNA sequencing, we identified 54 miRNAs differentially expressed during spontaneous term labor compared to elective term births. Expression levels of 23 miRNAs were upregulated, whereas 31 were downregulated at least 1.5-fold. The upregulated miRNA miR-371a-5p putatively targets CPPED1, expression of which decreases during spontaneous birth. We used a luciferase reporter–based assay to test whether a miR-371a-5p mimic affected translation when it bound to the 3′ untranslated region of CPPED1. In this setting, the miR-371a-5p mimic resulted in lower luciferase activity, which suggests that miR-371a-5p regulates levels of CPPED1. In conclusion, inversely correlated levels of miR-371a-5p and CPPED1 suggest a role for both in spontaneous delivery.
Collapse
|
33
|
Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020; 8:409. [PMID: 32582699 PMCID: PMC7283388 DOI: 10.3389/fcell.2020.00409] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression in diverse biological contexts. The emergence of small RNA-mediated gene silencing preceded the onset of multicellularity and was followed by a drastic expansion of the miRNA repertoire in conjunction with the evolution of complexity in the plant and animal kingdoms. Along this process, miRNAs became an essential feature of animal development, as no higher metazoan lineage tolerated loss of miRNAs or their associated protein machinery. In fact, ablation of the miRNA biogenesis machinery or the effector silencing factors results in severe embryogenesis defects in every animal studied. In this review, we summarize recent mechanistic insight into miRNA biogenesis and function, while emphasizing features that have enabled multicellular organisms to harness the potential of this broad class of repressors. We first discuss how different mechanisms of regulation of miRNA biogenesis are used, not only to generate spatio-temporal specificity of miRNA production within an animal, but also to achieve the necessary levels and dynamics of expression. We then explore how evolution of the mechanism for small RNA-mediated repression resulted in a diversity of silencing complexes that cause different molecular effects on their targets. Multicellular organisms have taken advantage of this variability in the outcome of miRNA-mediated repression, with differential use in particular cell types or even distinct subcellular compartments. Finally, we present an overview of how the animal miRNA repertoire has evolved and diversified, emphasizing the emergence of miRNA families and the biological implications of miRNA sequence diversification. Overall, focusing on selected animal models and through the lens of evolution, we highlight canonical mechanisms in miRNA biology and their variations, providing updated insight that will ultimately help us understand the contribution of miRNAs to the development and physiology of multicellular organisms.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
34
|
Sugawara T, Miura T, Kawasaki T, Umezawa A, Akutsu H. The hsa-miR-302 cluster controls ectodermal differentiation of human pluripotent stem cell via repression of DAZAP2. Regen Ther 2020; 15:1-9. [PMID: 32490061 PMCID: PMC7251312 DOI: 10.1016/j.reth.2020.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction Recent studies have revealed that microRNAs (miRNAs, miRs) are important for self-renewal, differentiation, and cellular reprogramming of somatic cells into induced pluripotent stem cells (iPSC); however, their functional roles and target genes that are regulated by human PSC-specific miRs including hsa-miR-302 clusters remain largely unknown. Analysis of their target gene will give us the opportunity to understand the functional roles of such miRs. Methods We analyzed the expression profiles of miRs in 4 somatic cell lines, 8 human iPSC lines derived from 4 different cell types, 3 human ESC lines, and embryoid bodies differentiated from the human ESCs to identify human PSC-specific miRs. We also analyzed the simultaneous expression profiles of miRs and mRNAs to identify candidate targets of human PSC-specific miRs. Then, we constructed a vector for overexpressing one of the target gene to dissect the functions of human PSC-specific miR in maintenance of self-renew and differentiation. Results We focused on hsa-miR-302 cluster as a human PSC-specific miR and identified 22 candidate targets of hsa-miR-302 cluster that were moderately expressed in undifferentiated human PSCs and up-regulated in differentiated cells. Deleted in azoospermia-associated protein 2 (DAZAP2), one such target, was directly repressed by hsa-miR-302a, -302b, -302c and -302d, but not by hsa-miR-367. Overexpression of DAZAP2 caused a decrease in cell proliferation of undifferentiated human iPSCs, although morphology and undifferentiated marker gene expression was not affected. In addition, neural differentiation was suppressed in DAZAP2-overexpressing human iPSCs. Conclusion Our study revealed that hsa-miR-302 cluster controls the cell proliferation of human PSCs and the neural differentiation of human PSCs by repression of DAZAP2, thereby highlighting an additional function of human PSC-specific miRs in maintaining pluripotency.
Collapse
Affiliation(s)
| | | | | | | | - Hidenori Akutsu
- Corresponding author. Department of Reproductive Medicine, National Center for Child Health and Developmen, Okura 2-10-1, Setagaya-ku, Tokyo, 157-8535, Japan. Fax: +81-3-5494-7048.
| |
Collapse
|
35
|
Cho SH, Kim YR, Kim JH, An HJ, Kim JO, Ko JJ, Lee WS, Kim NK. The association of miR-25T>C, miR-32C>A, miR-125C>T, and miR-222G>T polymorphisms with a risk of primary ovarian insufficiency in Korean women. Menopause 2020; 26:409-416. [PMID: 30422934 DOI: 10.1097/gme.0000000000001258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the association of microRNA polymorphisms (miR-25T>C, miR-32C>A, miR-125C>T, and miR-222G>T) with primary ovarian insufficiency (POI) in Korean women. METHODS We conducted a case-control study of Korean women: 142 participants with POI and 266 controls with at least 1 live birth and no history of pregnancy loss. RESULTS The haplotype-based multifactor dimensionality reduction analysis revealed that the T-C-T-G (miR-25/-32/-125/-222), T-A-C-G (miR-25/-32/-125/-222), C-T-G (miR-32/-125/-222), A-C-G (miR-32/-125/-222), T-G (miR-122/-222), C-T (miR-32/-125), and C-C (miR-25/-32) inferred haplotypes were significantly less frequent in POI (P < 0.05), which suggested potential protective effects. Participants with POI had significantly increased luteinizing hormone levels (P < 0.05), but hormonal levels, including luteinizing hormone, were not significantly different between POI women and control women with miR-32/-125/-222. CONCLUSIONS After considering multiple comparisons, we concluded that miR-25T>C, miR-32C>A, miR-125C>T, and miR-222G>T had no relation with POI.
Collapse
Affiliation(s)
- Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, School of Medicine, CHA University, Seongnam, Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, School of Medicine, CHA University, Seongnam, Korea
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Jung Jae Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| |
Collapse
|
36
|
Aktary Z, Corvelo A, Estrin C, Larue L. Sequencing two Tyr::CreER T2 transgenic mouse lines. Pigment Cell Melanoma Res 2019; 33:426-434. [PMID: 31679174 DOI: 10.1111/pcmr.12842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 01/07/2023]
Abstract
The Cre/loxP system is a powerful tool that has allowed the study of the effects of specific genes of interest in various biological settings. The Tyr::CreERT2 system allows for the targeted expression and activity of the Cre enzyme in the melanocyte lineage following treatment with tamoxifen, thus providing spatial and temporal control of the expression of specific target genes. Two independent transgenic mouse models, each containing a Tyr::CreERT2 transgene, have been generated and are widely used to study melanocyte transformation. In this study, we performed whole genome sequencing (WGS) on genomic DNA from the two Tyr::CreERT2 mouse models and identified their sites of integration in the C57BL/6 genome. Based on these results, we designed PCR primers to accurately, and efficiently, genotype transgenic mice. Finally, we discussed some of the advantages of each transgenic mouse model.
Collapse
Affiliation(s)
- Zackie Aktary
- Institut Curie, INSERM U1021, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France.,Univ. Paris-Sud, Univ. Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, Orsay, France
| | | | - Camille Estrin
- Institut Curie, INSERM U1021, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France.,Univ. Paris-Sud, Univ. Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, Orsay, France
| | - Lionel Larue
- Institut Curie, INSERM U1021, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France.,Univ. Paris-Sud, Univ. Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, Orsay, France
| |
Collapse
|
37
|
Shi M, Hao J, Wang XW, Liao LQ, Cao H, Wang Y. Functional Dissection of pri-miR-290~295 in Dgcr8 Knockout Mouse Embryonic Stem Cells. Int J Mol Sci 2019; 20:ijms20184345. [PMID: 31491855 PMCID: PMC6770266 DOI: 10.3390/ijms20184345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 11/28/2022] Open
Abstract
The DiGeorge syndrome critical region gene 8 (Dgcr8) knockout strategy has been widely used to study the function of canonical microRNAs (miRNAs) in vitro and in vivo. However, primary miRNA (pri-miRNA) transcripts are accumulated in Dgcr8 knockout cells due to interrupted processing. Whether abnormally accumulated pri-miRNAs have any function is unknown. Here, using clustered regularly interspaced short palindromic repeats system/CRISPR-associated protein 9 (CRISPR/Cas9), we successfully knocked out the primary microRNA-290~295 (pri-miR-290~295) cluster, the most highly expressed miRNA cluster in mouse embryonic stem cells (ESCs), in Dgcr8 knockout background. We found that the major defects associated with Dgcr8 knockout in mouse ESCs, including higher expression of epithelial-to-mesenchymal transition (EMT) markers, slower proliferation, G1 accumulation, and defects in silencing self-renewal, were not affected by the deletion of pri-miR-290~290 cluster. Interestingly, the transcription of neighboring gene nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 12(Nlrp12) was upregulated upon the deletion of the pri-miR-290~295 cluster. Together, our results suggested that the major defects in Dgcr8 knockout ESCs were not due to the accumulation of pri-miR-290~295, and the deletion of miRNA genes could affect the transcription of neighboring DNA elements.
Collapse
Affiliation(s)
- Ming Shi
- Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing 100871, China.
| | - Jing Hao
- Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing 100871, China.
| | - Xi-Wen Wang
- Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing 100871, China.
| | - Le-Qi Liao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Huiqing Cao
- Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing 100871, China.
| | - Yangming Wang
- Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing 100871, China.
| |
Collapse
|
38
|
Song Y, van den Berg PR, Markoulaki S, Soldner F, Dall'Agnese A, Henninger JE, Drotar J, Rosenau N, Cohen MA, Young RA, Semrau S, Stelzer Y, Jaenisch R. Dynamic Enhancer DNA Methylation as Basis for Transcriptional and Cellular Heterogeneity of ESCs. Mol Cell 2019; 75:905-920.e6. [PMID: 31422875 DOI: 10.1016/j.molcel.2019.06.045] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022]
Abstract
Variable levels of DNA methylation have been reported at tissue-specific differential methylation regions (DMRs) overlapping enhancers, including super-enhancers (SEs) associated with key cell identity genes, but the mechanisms responsible for this intriguing behavior are not well understood. We used allele-specific reporters at the endogenous Sox2 and Mir290 SEs in embryonic stem cells and found that the allelic DNA methylation state is dynamically switching, resulting in cell-to-cell heterogeneity. Dynamic DNA methylation is driven by the balance between DNA methyltransferases and transcription factor binding on one side and co-regulated with the Mediator complex recruitment and H3K27ac level changes at regulatory elements on the other side. DNA methylation at the Sox2 and the Mir290 SEs is independently regulated and has distinct consequences on the cellular differentiation state. Dynamic allele-specific DNA methylation at the two SEs was also seen at different stages in preimplantation embryos, revealing that methylation heterogeneity occurs in vivo.
Collapse
Affiliation(s)
- Yuelin Song
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | - Frank Soldner
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | - Jesse Drotar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Nicholas Rosenau
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, 2300 RA Leiden, the Netherlands.
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
39
|
Roles of MicroRNAs in Establishing and Modulating Stem Cell Potential. Int J Mol Sci 2019; 20:ijms20153643. [PMID: 31349654 PMCID: PMC6696000 DOI: 10.3390/ijms20153643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Early embryonic development in mammals, from fertilization to implantation, can be viewed as a process in which stem cells alternate between self-renewal and differentiation. During this process, the fates of stem cells in embryos are gradually specified, from the totipotent state, through the segregation of embryonic and extraembryonic lineages, to the molecular and cellular defined progenitors. Most of those stem cells with different potencies in vivo can be propagated in vitro and recapitulate their differentiation abilities. Complex and coordinated regulations, such as epigenetic reprogramming, maternal RNA clearance, transcriptional and translational landscape changes, as well as the signal transduction, are required for the proper development of early embryos. Accumulated studies suggest that Dicer-dependent noncoding RNAs, including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs), are involved in those regulations and therefore modulate biological properties of stem cells in vitro and in vivo. Elucidating roles of these noncoding RNAs will give us a more comprehensive picture of mammalian embryonic development and enable us to modulate stem cell potencies. In this review, we will discuss roles of miRNAs in regulating the maintenance and cell fate potential of stem cells in/from mouse and human early embryos.
Collapse
|
40
|
Robles V, Valcarce DG, Riesco MF. Non-coding RNA regulation in reproduction: Their potential use as biomarkers. Noncoding RNA Res 2019; 4:54-62. [PMID: 31193491 PMCID: PMC6531869 DOI: 10.1016/j.ncrna.2019.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are crucial regulatory elements in most biological processes and reproduction is also controlled by them. The different types of ncRNAs, as well as the high complexity of these regulatory pathways, present a complex scenario; however, recent studies have shed some light on these questions, discovering the regulatory function of specific ncRNAs on concrete reproductive biology processes. This mini review will focus on the role of ncRNAs in spermatogenesis and oogenesis, and their potential use as biomarkers for reproductive diseases or for reproduction success.
Collapse
Affiliation(s)
- Vanesa Robles
- Spanish Institute of Oceanography (IEO) Santander, Spain
- MODCELL GROUP, Department of Molecular Biology, Universidad de León, 24071, León, Spain
- Corresponding author. Planta de Cultivos el Bocal, IEO, Barrio Corbanera, Monte, Santander, 39012, Spain.
| | | | | |
Collapse
|
41
|
Lu L, Wang X, Zhao H, Jiang F, Li Y, Yao Y, Shi C, Yang Y. MiR-291a/b-5p inhibits autophagy by targeting Atg5 and Becn1 during mouse preimplantation embryo development. RSC Adv 2019; 9:9331-9341. [PMID: 35517663 PMCID: PMC9062091 DOI: 10.1039/c9ra00017h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/26/2019] [Indexed: 11/21/2022] Open
Abstract
microRNA-290 (miR-290) clusters are highly expressed in mouse preimplantation embryos, but their specific role and regulatory mechanisms in the development of mouse preimplantation embryos remain unclear. Here, we found that miR-291a-5p and miR-291b-5p, as mature microRNA molecules of miR-290 clusters, were dynamically expressed in mouse preimplantation embryos. The expression of miR-291a-5p and miR-291b-5p in mouse embryos increased during the 2–4-cell stages and was accompanied by the decreasing expression of the autophagy-related genes Atg5 and Becn1 in mRNA. Immunofluorescence studies showed that the formation of autophagosomes and autophagic lysosomes increased in the 1-cell stage, decreased in the 2-cell stage, and rapidly decreased during the 4–8-cell stage. Transmission electron microscopy (TEM) also demonstrated that there were autophagosomes in the cytoplasm of fertilized eggs with a double-layer membrane structure, whereas this structure was not observed in the unfertilized oocyte cytoplasm. Moreover, miR-291a/b-5p inhibited the protein and mRNA expression of Atg5 and Becn1 in NIH/3T3 cells. A dual-luciferase reporter assay confirmed that miR-291a/b-5p directly targeted the Atg5 and Becn1 genes. MiR-291a/b-5p repressed rapamycin-induced autophagy-related LC3-I to LC3-II conversion, ultimately inhibiting the formation of autophagosomes. Furthermore, the microinjection of mouse zygote cytoplasm with miR-291a-5p inhibitors increased the mRNA expression of Atg5 and Becn1 in mouse embryos and facilitated the first cleavage of mouse embryos and blastocyst formation. Our results suggest the important role of miR-291a/b-5p during mouse preimplantation embryo development. MiR-291a-5p and MiR-291b-5p, was dynamically expressed and inhibited autophagy by targeting Atg5 and Becn 1 during mouse preimplantation embryo development.![]()
Collapse
Affiliation(s)
- Linshan Lu
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University Xi'an Shaanxi China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University Xi'an Shaanxi China
| | - Hongxi Zhao
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University Xi'an Shaanxi China
| | - Feng Jiang
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University Xi'an Shaanxi China
| | - Yanhong Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University Xi'an Shaanxi China
| | - Yuanqing Yao
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital Beijing China
| | - Changhong Shi
- Laboratory Animals Center, The Fourth Military Medical University Xi'an Shaanxi China
| | - Yanhong Yang
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University Xi'an Shaanxi China
| |
Collapse
|
42
|
Khawar MB, Mehmood R, Roohi N. MicroRNAs: Recent insights towards their role in male infertility and reproductive cancers. Bosn J Basic Med Sci 2019; 19:31-42. [PMID: 30599090 DOI: 10.17305/bjbms.2018.3477] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/20/2018] [Indexed: 12/13/2022] Open
Abstract
Spermatogenesis is a tightly controlled, multi-step process in which mature spermatozoa are produced. Disruption of regulatory mechanisms in spermatogenesis can lead to male infertility, various diseases of male reproductive system, or even cancer. The spermatogenic impairment in infertile men can be associated with different etiologies, and the exact molecular mechanisms are yet to be determined. MicroRNAs (miRNAs) are a type of non-protein coding RNAs, about 22 nucleotides long, with an essential role in post-transcriptional regulation. miRNAs have been recognized as important regulators of various biological processes, including spermatogenesis. The aim of this review is to summarize the recent literature on the role of miRNAs in spermatogenesis, male infertility and reproductive cancers, and to evaluate their potential in diagnosis, prognosis and therapy of disease. Experimental evidence shows that aberrant expression of miRNAs affects spermatogenesis at multiple stages and in different cell types, most often resulting in infertility. In more severe cases, dysregulation of miRNAs leads to cancer. miRNAs have enormous potential to be used as diagnostic and prognostic markers as well as therapeutic targets in male infertility and reproductive system diseases. However, to exploit this potential fully, we need a better understanding of miRNA-mediated regulation of spermatogenesis, including the characterization of yet unidentified miRNAs and related regulatory mechanisms.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Molecular Physiology/Endocrinology Laboratory, Department of Zoology, University of the Punjab, Lahore, Pakistan State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China.
| | | | | |
Collapse
|
43
|
Mahabadi JA, Sabzalipoor H, Nikzad H, Seyedhosseini E, Enderami SE, Gheibi Hayat SM, Sahebkar A. The role of microRNAs in embryonic stem cell and induced pluripotent stem cell differentiation in male germ cells. J Cell Physiol 2018; 234:12278-12289. [PMID: 30536380 DOI: 10.1002/jcp.27990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
New perspectives have been opened by advances in stem cell research for reproductive and regenerative medicine. Several different cell types can be differentiated from stem cells (SCs) under suitable in vitro and in vivo conditions. The differentiation of SCs into male germ cells has been reported by many groups. Due to their unlimited pluripotency and self-renewal, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be used as valuable tools for drug delivery, disease modeling, developmental studies, and cell-based therapies in regenerative medicine. The unique features of SCs are controlled by a dynamic interplay between extrinsic signaling pathways, and regulations at epigenetic, transcriptional and posttranscriptional levels. In recent years, significant progress has been made toward better understanding of the functions and expression of specific microRNAs (miRNAs) in the maintenance of SC pluripotency. miRNAs are short noncoding molecules, which play a functional role in the regulation of gene expression. In addition, the important regulatory role of miRNAs in differentiation and dedifferentiation has been recently demonstrated. A balance between differentiation and pluripotency is maintained by miRNAs in the embryo and stem cells. This review summarizes the recent findings about the role of miRNAs in the regulation of self-renewal and pluripotency of iPSCs and ESCs, as well as their impact on cellular reprogramming and stem cell differentiation into male germ cells.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Seyedhosseini
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Yen YP, Hsieh WF, Tsai YY, Lu YL, Liau ES, Hsu HC, Chen YC, Liu TC, Chang M, Li J, Lin SP, Hung JH, Chen JA. Dlk1-Dio3 locus-derived lncRNAs perpetuate postmitotic motor neuron cell fate and subtype identity. eLife 2018; 7:38080. [PMID: 30311912 PMCID: PMC6221546 DOI: 10.7554/elife.38080] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022] Open
Abstract
The mammalian imprinted Dlk1-Dio3 locus produces multiple long non-coding RNAs (lncRNAs) from the maternally inherited allele, including Meg3 (i.e., Gtl2) in the mammalian genome. Although this locus has well-characterized functions in stem cell and tumor contexts, its role during neural development is unknown. By profiling cell types at each stage of embryonic stem cell-derived motor neurons (ESC~MNs) that recapitulate spinal cord development, we uncovered that lncRNAs expressed from the Dlk1-Dio3 locus are predominantly and gradually enriched in rostral motor neurons (MNs). Mechanistically, Meg3 and other Dlk1-Dio3 locus-derived lncRNAs facilitate Ezh2/Jarid2 interactions. Loss of these lncRNAs compromises the H3K27me3 landscape, leading to aberrant expression of progenitor and caudal Hox genes in postmitotic MNs. Our data thus illustrate that these lncRNAs in the Dlk1-Dio3 locus, particularly Meg3, play a critical role in maintaining postmitotic MN cell fate by repressing progenitor genes and they shape MN subtype identity by regulating Hox genes. When a gene is active, its DNA sequence is ‘transcribed’ to form a molecule of RNA. Many of these RNAs act as templates for making proteins. But for some genes, the protein molecules are not their final destinations. Their RNA molecules instead help to control gene activity, which can alter the behaviour or the identity of a cell. For example, experiments performed in individual cells suggest that so-called long non-coding RNAs (or lncRNAs for short) guide how stem cells develop into different types of mature cells. However, it is not clear whether lncRNAs play the same critical role in embryos. Yen et al. used embryonic stem cells to model how motor neurons develop in the spinal cord of mouse embryos. This revealed that motor neurons produce large amounts of a specific group of lncRNAs, particularly one called Meg3. Further experiments showed that motor neurons in mouse embryos that lack Meg3 do not correctly silence a set of genes called the Hox genes, which are crucial for laying out the body plans of many different animal embryos. These neurons also incorrectly continue to express genes that are normally active in an early phase of the stem-like cells that make motor neurons. There is wide interest in how lncRNAs help to regulate embryonic development. With this new knowledge of how Meg3 regulates the activity of Hox genes in motor neurons, research could now be directed toward investigating whether lncRNAs help other tissues to develop in a similar way.
Collapse
Affiliation(s)
- Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Wen-Fu Hsieh
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Ya-Yin Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ya-Lin Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ee Shan Liau
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ho-Chiang Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yen-Chung Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ting-Chun Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Joye Li
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jui-Hung Hung
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.,Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
45
|
Zheng G, Qu H, Li F, Ma W, Yang H. Propofol attenuates sepsis-induced acute kidney injury by regulating miR-290-5p/CCL-2 signaling pathway. ACTA ACUST UNITED AC 2018; 51:e7655. [PMID: 30328934 PMCID: PMC6190213 DOI: 10.1590/1414-431x20187655] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/13/2018] [Indexed: 11/22/2022]
Abstract
Previous studies have indicated that propofol has immunomodulatory and antioxidative properties. However, the renoprotection effect and the precise mechanisms of propofol in sepsis-induced renal injury remain unclear. The purpose of the present study was to investigate the role of miR-290-5p/CCL-2 signaling in septic mice treatment with propofol. Mice were treated with propofol (50 mg/kg) twice within 24 h. Survival outcome was monitored within 48 h. The mRNA and protein levels were assayed by qRT-PCR and western blotting, respectively. Mouse podocytes (MPC5) were treated with lipopolysaccharide (LPS) to establish the cell model in vitro. The proliferation of MPC5 was monitored using the MTS assay. Cell apoptosis was analyzed by flow cytometry. Propofol improved survival outcome and alleviated acute kidney injury in cecal ligation and puncture-operated mice. Propofol increased miR-290-5p expression and decreased CCL-2 and inflammatory cytokines levels in the kidney for septic mice. We found that miR-290-5p was a direct regulator of CCL-2 in MPC5. Propofol could abrogate LPS-induced growth inhibition and apoptosis in MPC5. Meanwhile, propofol inhibited CCL-2 expression in LPS-treated MPC5, however, knockdown of miR-290-5p abrogated the inhibitory effect propofol on the mRNA and protein expressions of CCL-2. Propofol could serve as an effective therapeutic medication to suppress sepsis-induced renal injury in vivo and in vitro by regulating the miR-290-5p/CCL-2 signaling pathway.
Collapse
Affiliation(s)
- Guodong Zheng
- Department of Critical Care Medicine, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong Qu
- Department of Hematology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Fen Li
- Department of Critical Care Medicine, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Weiquan Ma
- Department of Critical Care Medicine, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong Yang
- Department of Critical Care Medicine, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Cruz L, Romero JAA, Iglesia RP, Lopes MH. Extracellular Vesicles: Decoding a New Language for Cellular Communication in Early Embryonic Development. Front Cell Dev Biol 2018; 6:94. [PMID: 30211159 PMCID: PMC6121069 DOI: 10.3389/fcell.2018.00094] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
The blastocyst inner cell mass (ICM) that gives rise to a whole embryo in vivo can be derived and cultured in vitro as embryonic stem cells (ESCs), which retain full developmental potential. ICM cells receive, from diverse sources, complex molecular and spatiotemporal signals that orchestrate the finely-tuned processes associated with embryogenesis. Those instructions come, continuously, from themselves and from surrounding cells, such as those present in the trophectoderm and primitive endoderm (PrE). A key component of the ICM niche are the extracellular vesicles (EVs), produced by distinct cell types, that carry and transfer key molecules that regulate target cells and modulate cell renewal or cell fate. A growing number of studies have demonstrated the extracellular circulation of morphogens, a group of classical regulators of embryo development, are carried by EVs. miRNAs are also an important cargo of the EVs that have been implicated in tissue morphogenesis and have gained special attention due to their ability to regulate protein expression through post-transcriptional modulation, thereby influencing cell phenotype. This review explores the emerging evidence supporting the role of EVs as an additional mode of intercellular communication in early embryonic and ESCs differentiation.
Collapse
Affiliation(s)
- Lilian Cruz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jenny A A Romero
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rebeca P Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilene H Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Reza AMMT, Choi YJ, Han SG, Song H, Park C, Hong K, Kim JH. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos. Biol Rev Camb Philos Soc 2018; 94:415-438. [PMID: 30151880 PMCID: PMC7379200 DOI: 10.1111/brv.12459] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are active regulators of numerous biological and physiological processes including most of the events of mammalian reproduction. Understanding the biological functions of miRNAs in the context of mammalian reproduction will allow a better and comparative understanding of fertility and sterility in male and female mammals. Herein, we summarize recent progress in miRNA‐mediated regulation of mammalian reproduction and highlight the significance of miRNAs in different aspects of mammalian reproduction including the biogenesis of germ cells, the functionality of reproductive organs, and the development of early embryos. Furthermore, we focus on the gene expression regulatory feedback loops involving hormones and miRNA expression to increase our understanding of germ cell commitment and the functioning of reproductive organs. Finally, we discuss the influence of miRNAs on male and female reproductive failure, and provide perspectives for future studies on this topic.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| |
Collapse
|
48
|
Bick JT, Flöter VL, Robinson MD, Bauersachs S, Ulbrich SE. Small RNA-seq analysis of single porcine blastocysts revealed that maternal estradiol-17beta exposure does not affect miRNA isoform (isomiR) expression. BMC Genomics 2018; 19:590. [PMID: 30081835 PMCID: PMC6090871 DOI: 10.1186/s12864-018-4954-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/23/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The expression of microRNAs (miRNAs) is essential for the proper development of the mammalian embryo. A maternal exposure to endocrine disrupting chemicals during preimplantation bears the potential for transgenerational inheritance of disease through the epigenetic perturbation of the developing embryo. A comprehensive assembly of embryo-specific miRNAs and respective isoforms (isomiR) is lacking to date. We aimed at revealing the sex-specific miRNA expression profile of single porcine blastocysts developing in gilts orally exposed to exogenous estradiol-17 (E2). Therefore we analyzed the miRNA profile specifically focusing on isomiRs and potentially embryo-specific miRNAs. RESULTS Deep sequencing of small RNA (small RNA-seq) result in the detection of miRNA sequences mapping to known and predicted porcine miRNAs as well as novel miRNAs highly conserved in human and cattle. A set of highly abundant miRNAs and a large number of rarely expressed miRNAs were identified by using a small RNA analysis pipeline, which was integrated into a novel Galaxy workflow specifically benefits incompletely annotated species. In particular, orthologue species information increased the total number of annotated miRNAs, while mapping to other non-coding RNAs avoided falsely annotated miRNAs. Neither the low nor the high dose of E2 treatment (10 and 1000 µ E2/kg body weight daily, respectively) affected the miRNA profile in blastocysts despite the distinct differential mRNA expression and DNA methylation found in previous studies. The high number of generated sequence reads enabled a comprehensive analysis of the isomiR repertoire showing various templated and non-templated modifications. Furthermore, potentially blastocyst-specific miRNAs were identified. CONCLUSIONS In pre-implantation embryos, numerous distinct isomiRs were discovered indicating a high complexity of miRNA expression. Neither the sex of the embryo nor a maternal E2 exposure affected the miRNA expression profile of developing porcine blastocysts. The adaptation to the continuous duration of the E2 treatment might explain the lack of an effect.
Collapse
Affiliation(s)
- Jochen T. Bick
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Veronika L. Flöter
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
- Physiology Weihenstephan, Technische Universität München, Freising, Germany
| | - Mark D. Robinson
- Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Stefan Bauersachs
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
- University of Zurich, Genetics and Functional Genomics, Clinic for Animal Reproduction Medicine, Zurich, Switzerland
| | - Susanne E. Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|
49
|
Verdelli C, Forno I, Morotti A, Creo P, Guarnieri V, Scillitani A, Cetani F, Vicentini L, Balza G, Beretta E, Ferrero S, Vaira V, Corbetta S. The aberrantly expressed miR-372 partly impairs sensitivity to apoptosis in parathyroid tumor cells. Endocr Relat Cancer 2018; 25:761-771. [PMID: 29724878 DOI: 10.1530/erc-17-0204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 01/08/2023]
Abstract
Parathyroid tumors deregulate microRNAs belonging to the two clusters on the chromosome 19, the C19MC and miR-371-373 clusters. Here, we report that the embryonic miR-372 is aberrantly expressed in half of parathyroid adenomas (PAds) in most of atypical adenomas and carcinomas (n = 15). Through in situ hybridization, we identified that miR-372-positive parathyroid tumor cells were scattered throughout the tumor parenchyma. In PAd-derived cells, ectopic miR-372 inhibited the expression of its targets CDKN1A/p21 and LATS2 at both mRNA and protein levels. Although the viability of parathyroid cells was not affected by miR-372 overexpression, the miRNA blunted camptothecin-induced apoptosis in primary PAd-derived cultures. miR-372 overexpression in parathyroid tumor cells increased parathormone (PTH) mRNA levels, and it positively correlated in vivo with circulating PTH levels. Conversely, the parathyroid-specific genes TBX1 and GCM2 were not affected by miR-372 mimic transfection. Finally, miR-372 dampened the Wnt pathway in parathyroid tumor cells through DKK1 upregulation. In conclusion, miR-372 is a novel mechanism exploited by a subset of parathyroid tumor cells to partially decrease sensitivity to apoptosis, to increase PTH synthesis and to deregulate Wnt signaling.
Collapse
Affiliation(s)
- Chiara Verdelli
- Laboratory of Experimental EndocrinologyIRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Irene Forno
- Department of Pathophysiology and TransplantationUniversity of Milan, Milan, Italy
- Division of PathologyFondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annamaria Morotti
- Department of Pathophysiology and TransplantationUniversity of Milan, Milan, Italy
- Division of PathologyFondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pasquale Creo
- Laboratory of Stem Cells for Tissue EngineeringIRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Vito Guarnieri
- Medical GeneticsIRCCS Hospital Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Alfredo Scillitani
- Endocrine UnitIRCCS Hospital Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Filomena Cetani
- Department of Endocrinology and MetabolismUniversity of Pisa, Pisa, Italy
| | - Leonardo Vicentini
- Endocrine SurgeryIRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianni Balza
- Endocrinology UnitOspedale Manzoni, Lecco, Italy
| | | | - Stefano Ferrero
- Division of PathologyFondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of BiomedicalSurgical and Dental Sciences, University of Milan, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and TransplantationUniversity of Milan, Milan, Italy
- Division of PathologyFondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Corbetta
- Endocrinology UnitDepartment of Biomedical Sciences for Health, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
50
|
Du P, Pirouz M, Choi J, Huebner AJ, Clement K, Meissner A, Hochedlinger K, Gregory RI. An Intermediate Pluripotent State Controlled by MicroRNAs Is Required for the Naive-to-Primed Stem Cell Transition. Cell Stem Cell 2018; 22:851-864.e5. [PMID: 29804889 DOI: 10.1016/j.stem.2018.04.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 01/14/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
The embryonic stem cell (ESC) transition from naive to primed pluripotency is marked by major changes in cellular properties and developmental potential. ISY1 regulates microRNA (miRNA) biogenesis, yet its role and relevance to ESC biology remain unknown. Here, we find that highly dynamic ISY1 expression during the naive-to-primed ESC transition defines a specific phase of "poised" pluripotency characterized by distinct miRNA and mRNA transcriptomes and widespread poised cell contribution to mouse chimeras. Loss- and gain-of-function experiments reveal that ISY1 promotes exit from the naive state and is necessary and sufficient to induce and maintain poised pluripotency, and that persistent ISY1 overexpression inhibits the transition from the naive to the primed state. We identify a large subset of ISY1-dependent miRNAs that can rescue the inability of miRNA-deficient ESCs to establish the poised state and transition to the primed state. Thus, dynamic ISY1 regulates poised pluripotency through miRNAs to control ESC fate.
Collapse
Affiliation(s)
- Peng Du
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mehdi Pirouz
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jiho Choi
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Aaron J Huebner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kendell Clement
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|