1
|
Lusk CP, King MC. A-tisket, a-tasket, what a beautiful nuclear basket. Cell 2024; 187:5225-5227. [PMID: 39303690 DOI: 10.1016/j.cell.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Nuclear pore complexes are massive protein gateways that control molecular exchange between the nucleus and cytoplasm. In this issue of Cell, Singh et al. provide the first high-resolution views of the elusive nuclear basket, which extends deep into the nucleus to coordinate functions from genome organization to mRNP export.
Collapse
Affiliation(s)
- C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA; Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Hosseini SH, Roussel MR. Analytic delay distributions for a family of gene transcription models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6225-6262. [PMID: 39176425 DOI: 10.3934/mbe.2024273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Models intended to describe the time evolution of a gene network must somehow include transcription, the DNA-templated synthesis of RNA, and translation, the RNA-templated synthesis of proteins. In eukaryotes, the DNA template for transcription can be very long, often consisting of tens of thousands of nucleotides, and lengthy pauses may punctuate this process. Accordingly, transcription can last for many minutes, in some cases hours. There is a long history of introducing delays in gene expression models to take the transcription and translation times into account. Here we study a family of detailed transcription models that includes initiation, elongation, and termination reactions. We establish a framework for computing the distribution of transcription times, and work out these distributions for some typical cases. For elongation, a fixed delay is a good model provided elongation is fast compared to initiation and termination, and there are no sites where long pauses occur. The initiation and termination phases of the model then generate a nontrivial delay distribution, and elongation shifts this distribution by an amount corresponding to the elongation delay. When initiation and termination are relatively fast, the distribution of elongation times can be approximated by a Gaussian. A convolution of this Gaussian with the initiation and termination time distributions gives another analytic approximation to the transcription time distribution. If there are long pauses during elongation, because of the modularity of the family of models considered, the elongation phase can be partitioned into reactions generating a simple delay (elongation through regions where there are no long pauses), and reactions whose distribution of waiting times must be considered explicitly (initiation, termination, and motion through regions where long pauses are likely). In these cases, the distribution of transcription times again involves a nontrivial part and a shift due to fast elongation processes.
Collapse
Affiliation(s)
- S Hossein Hosseini
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marc R Roussel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
3
|
Eichenberger BT, Griesbach E, Mitchell J, Chao JA. Following the Birth, Life, and Death of mRNAs in Single Cells. Annu Rev Cell Dev Biol 2023; 39:253-275. [PMID: 37843928 DOI: 10.1146/annurev-cellbio-022723-024045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Recent advances in single-molecule imaging of mRNAs in fixed and living cells have enabled the lives of mRNAs to be studied with unprecedented spatial and temporal detail. These approaches have moved beyond simply being able to observe specific events and have begun to allow an understanding of how regulation is coupled between steps in the mRNA life cycle. Additionally, these methodologies are now being applied in multicellular systems and animals to provide more nuanced insights into the physiological regulation of RNA metabolism.
Collapse
Affiliation(s)
- Bastian T Eichenberger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- University of Basel, Basel, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| | - Jessica Mitchell
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| |
Collapse
|
4
|
Stewart M. Function of the Nuclear Transport Machinery in Maintaining the Distinctive Compositions of the Nucleus and Cytoplasm. Int J Mol Sci 2022; 23:2578. [PMID: 35269721 PMCID: PMC8910404 DOI: 10.3390/ijms23052578] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Although the separation of transcription and translation, mediated by the nuclear envelope, is the defining characteristic of Eukaryotes, the barrier between the nuclear and cytoplasmic compartments needs to be semipermeable to enable material to be moved between them. Moreover, each compartment needs to have a distinctive complement of macromolecules to mediate specific functions and so movement between them needs to be controlled. This is achieved through the selective active transport of macromolecules through the nuclear pores that stud the nuclear envelope, and which serve as a conduit between these compartments. Nuclear pores are huge cylindrical macromolecular assemblies and are constructed from the order of 30 different proteins called nucleoporins. Nuclear pores have a central transport channel that is filled with a dense network of natively unfolded portions of many different nuclear pore proteins (nucleoporins or nups). This network generates a barrier that impedes, but does not entirely prevent, the diffusion of many macromolecules through the pores. The rapid movement of a range of proteins and RNAs through the pores is mediated by a range of transport factors that bind their cargo in one compartment and release it in the other. However, although as their size increases the diffusion of macromolecules through nuclear pores is progressively impaired, additional mechanisms, including the binding of some macromolecules to immobile components of each compartment and also the active removal of macromolecules from the inappropriate compartment, are needed to fully maintain the distinctive compositions of each compartment.
Collapse
Affiliation(s)
- Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
5
|
Dharan A, Campbell EM. Teaching old dogmas new tricks: recent insights into the nuclear import of HIV-1. Curr Opin Virol 2022; 53:101203. [PMID: 35121335 PMCID: PMC9175559 DOI: 10.1016/j.coviro.2022.101203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 01/08/2023]
Abstract
A hallmark feature of lentiviruses, which separates them from other members of the retrovirus family, is their ability to infect non-dividing cells by traversing the nuclear pore complex. The viral determinant that mediates HIV-1 nuclear import is the viral capsid (CA) protein, which forms the conical core protecting the HIV-1 genome in a mature virion. Recently, a series of novel approaches developed to monitor post-fusion events in infection have challenged previous textbook models of the viral life cycle, which envisage reverse transcription and disassembly of the capsid core as events that complete in the cytoplasm. In this review, we summarize these recent findings and describe their implications on our understanding of the spatiotemporal staging of HIV-1 infection with a focus on the nuclear import and its implications in other aspects of the viral lifecycle.
Collapse
Affiliation(s)
- Adarsh Dharan
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA.
| |
Collapse
|
6
|
Biswas J, Li W, Singer RH, Coleman RA. Imaging Organization of RNA Processing within the Nucleus. Cold Spring Harb Perspect Biol 2021; 13:a039453. [PMID: 34127450 PMCID: PMC8635003 DOI: 10.1101/cshperspect.a039453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Within the nucleus, messenger RNA is generated and processed in a highly organized and regulated manner. Messenger RNA processing begins during transcription initiation and continues until the RNA is translated and degraded. Processes such as 5' capping, alternative splicing, and 3' end processing have been studied extensively with biochemical methods and more recently with single-molecule imaging approaches. In this review, we highlight how imaging has helped understand the highly dynamic process of RNA processing. We conclude with open questions and new technological developments that may further our understanding of RNA processing.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
7
|
Wang B, Chai H, Zhong Y, Shen Y, Yang W, Chen J, Xin Z, Shi H. The DEAD-box RNA helicase SHI2 functions in repression of salt-inducible genes and regulation of cold-inducible gene splicing. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1598-1613. [PMID: 31745559 PMCID: PMC7242002 DOI: 10.1093/jxb/erz523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/19/2019] [Indexed: 05/29/2023]
Abstract
Gene regulation is central for growth, development, and adaptation to environmental changes in all living organisms. Many genes are induced by environmental cues, and the expression of these inducible genes is often repressed under normal conditions. Here, we show that the SHINY2 (SHI2) gene is important for repressing salt-inducible genes and also plays a role in cold response. The shi2 mutant displayed hypersensitivity to cold, abscisic acid (ABA), and LiCl. Map-based cloning demonstrates that SHI2 encodes a DEAD- (Asp-Glu-Ala-Asp) box RNA helicase with similarity to a yeast splicing factor. Transcriptomic analysis of the shi2 mutant in response to cold revealed that the shi2 mutation decreased the number of cold-responsive genes and the magnitude of their response, and resulted in the mis-splicing of some cold-responsive genes. Under salt stress, however, the shi2 mutation increased the number of salt-responsive genes but had a negligible effect on mRNA splicing. Our results suggest that SHI2 is a component in a ready-for-transcription repressor complex important for gene repression under normal conditions, and for gene activation and transcription under stress conditions. In addition, SHI2 also serves as a splicing factor required for proper splicing of cold-responsive genes and affects 5' capping and polyadenylation site selection.
Collapse
Affiliation(s)
- Bangshing Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Haoxi Chai
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yingli Zhong
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yun Shen
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Wannian Yang
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, USA
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
- School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
8
|
Ferreira PA. The coming-of-age of nucleocytoplasmic transport in motor neuron disease and neurodegeneration. Cell Mol Life Sci 2019; 76:2247-2273. [PMID: 30742233 PMCID: PMC6531325 DOI: 10.1007/s00018-019-03029-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
The nuclear pore is the gatekeeper of nucleocytoplasmic transport and signaling through which a vast flux of information is continuously exchanged between the nuclear and cytoplasmic compartments to maintain cellular homeostasis. A unifying and organizing principle has recently emerged that cements the notion that several forms of amyotrophic lateral sclerosis (ALS), and growing number of other neurodegenerative diseases, co-opt the dysregulation of nucleocytoplasmic transport and that this impairment is a pathogenic driver of neurodegeneration. The understanding of shared pathomechanisms that underpin neurodegenerative diseases with impairments in nucleocytoplasmic transport and how these interface with current concepts of nucleocytoplasmic transport is bound to illuminate this fundamental biological process in a yet more physiological context. Here, I summarize unresolved questions and evidence and extend basic and critical concepts and challenges of nucleocytoplasmic transport and its role in the pathogenesis of neurodegenerative diseases, such as ALS. These principles will help to appreciate the roles of nucleocytoplasmic transport in the pathogenesis of ALS and other neurodegenerative diseases, and generate a framework for new ideas of the susceptibility of motoneurons, and possibly other neurons, to degeneration by dysregulation of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
Hinkle ER, Wiedner HJ, Black AJ, Giudice J. RNA processing in skeletal muscle biology and disease. Transcription 2019; 10:1-20. [PMID: 30556762 DOI: 10.1080/21541264.2018.1558677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA processing encompasses the capping, cleavage, polyadenylation and alternative splicing of pre-mRNA. Proper muscle development relies on precise RNA processing, driven by the coordination between RNA-binding proteins. Recently, skeletal muscle biology has been intensely investigated in terms of RNA processing. High throughput studies paired with deletion of RNA-binding proteins have provided a high-level understanding of the molecular mechanisms controlling the regulation of RNA-processing in skeletal muscle. Furthermore, misregulation of RNA processing is implicated in muscle diseases. In this review, we comprehensively summarize recent studies in skeletal muscle that demonstrated: (i) the importance of RNA processing, (ii) the RNA-binding proteins that are involved, and (iii) diseases associated with defects in RNA processing.
Collapse
Affiliation(s)
- Emma R Hinkle
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Hannah J Wiedner
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Adam J Black
- b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Jimena Giudice
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA.,c McAllister Heart Institute , University of North Carolina , Chapel Hill , USA
| |
Collapse
|
10
|
Ma Q, Tatsuno T, Nakamura Y, Izumi S, Tomosugi N, Ishigaki Y. Immuno‐detection of mRNA‐binding protein complex in human cells under transmission electron microscopy. Microsc Res Tech 2019; 82:680-688. [DOI: 10.1002/jemt.23214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Qingfeng Ma
- Medical Research InstituteKanazawa Medical University Uchinada Kahoku Japan
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Takanori Tatsuno
- Medical Research InstituteKanazawa Medical University Uchinada Kahoku Japan
| | - Yuka Nakamura
- Medical Research InstituteKanazawa Medical University Uchinada Kahoku Japan
| | - Shin‐Ichi Izumi
- Department of Cell Biology, Unit of Biomedical SciencesNagasaki University Graduate School of Biomedical Sciences Sakamoto Nagasaki Japan
| | - Naohisa Tomosugi
- Medical Research InstituteKanazawa Medical University Uchinada Kahoku Japan
- Medical Care Proteomics Biotechnology Co., Ltd. Uchinada Kahoku Japan
| | - Yasuhito Ishigaki
- Medical Research InstituteKanazawa Medical University Uchinada Kahoku Japan
| |
Collapse
|
11
|
Neriec N, Percipalle P. Sorting mRNA Molecules for Cytoplasmic Transport and Localization. Front Genet 2018; 9:510. [PMID: 30459808 PMCID: PMC6232293 DOI: 10.3389/fgene.2018.00510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/12/2018] [Indexed: 01/03/2023] Open
Abstract
In eukaryotic cells, gene expression is highly regulated at many layers. Nascent RNA molecules are assembled into ribonucleoprotein complexes that are then released into the nucleoplasmic milieu and transferred to the nuclear pore complex for nuclear export. RNAs are then either translated or transported to the cellular periphery. Emerging evidence indicates that RNA-binding proteins play an essential role throughout RNA biogenesis, from the gene to polyribosomes. However, the sorting mechanisms that regulate whether an RNA molecule is immediately translated or sent to specialized locations for translation are unclear. This question is highly relevant during development and differentiation when cells acquire a specific identity. Here, we focus on the RNA-binding properties of heterogeneous nuclear ribonucleoproteins (hnRNPs) and how these mechanisms are believed to play an essential role in RNA trafficking in polarized cells. Further, by focusing on the specific hnRNP protein CBF-A/hnRNPab and its naturally occurring isoforms, we propose a model on how hnRNP proteins are capable of regulating gene expression both spatially and temporally throughout the RNA biogenesis pathway, impacting both healthy and diseased cells.
Collapse
Affiliation(s)
- Nathalie Neriec
- Biology Department, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Piergiorgio Percipalle
- Biology Department, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
12
|
Landvogt L, Ruland JA, Montellese C, Siebrasse JP, Kutay U, Kubitscheck U. Observing and tracking single small ribosomal subunits in vivo. Methods 2018; 153:63-70. [PMID: 30194975 DOI: 10.1016/j.ymeth.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Ribosomes are formed of a small and a large subunit (SSU/LSU), both consisting of rRNA and a plethora of accessory proteins. While biochemical and genetic studies identified most of the involved proteins and deciphered the ribosomal synthesis steps, our knowledge of the molecular dynamics of the different ribosomal subunits and also of the kinetics of their intracellular trafficking is still limited. Adopting a labelling strategy initially used to study mRNA export we were able to fluorescently stain the SSU in vivo. We chose DIM2/PNO1 (Defective In DNA Methylation 2/Partner of NOb1) as labelling target and created a stable cell line carrying an inducible SNAP-DIM2 fusion protein. After bulk labelling with a green fluorescent dye combined with very sparse labelling with a red fluorescent dye the nucleoli and single SSU could be visualized simultaneously in the green and red channel, respectively. We used single molecule microscopy to track single SSU in the nucleolus and nucleoplasm. Resulting trajectory data were analyzed by jump-distance analysis and the variational Bayes single-particle tracking approach. Both methods allowed identifying the number of diffusive states and the corresponding diffusion coefficients. For both nucleoli and nucleoplasm we could identify mobile (D = 2.3-2.8 µm2/s), retarded (D = 0.18-0.31 µm2/s) and immobilized (D = 0.04-0.05 µm2/s) SSU fractions and, as expected, the size of the fractions differed in the two compartments. While the fast mobility fraction matches perfectly the expected nuclear mobility of the SSU (D = 2.45 µm2/s), we were surprised to find a substantial fraction (33%) of immobile SSU in the nucleoplasm, something not observed for inert control molecules.
Collapse
Affiliation(s)
- Lisa Landvogt
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegeler Str. 12, 53115 Bonn, Germany
| | - Jan Andreas Ruland
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegeler Str. 12, 53115 Bonn, Germany
| | - Christian Montellese
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Jan Peter Siebrasse
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegeler Str. 12, 53115 Bonn, Germany
| | - Ulrike Kutay
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegeler Str. 12, 53115 Bonn, Germany.
| |
Collapse
|
13
|
Singh P, Saha U, Paira S, Das B. Nuclear mRNA Surveillance Mechanisms: Function and Links to Human Disease. J Mol Biol 2018; 430:1993-2013. [PMID: 29758258 DOI: 10.1016/j.jmb.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
Abstract
Production of export-competent mRNAs involves transcription and a series of dynamic processing and modification events of pre-messenger RNAs in the nucleus. Mutations in the genes encoding the transcription and mRNP processing machinery and the complexities involved in the biogenesis events lead to the formation of aberrant messages. These faulty transcripts are promptly eliminated by the nuclear RNA exosome and its cofactors to safeguard the cells and organisms from genetic catastrophe. Mutations in the components of the core nuclear exosome and its cofactors lead to the tissue-specific dysfunction of exosomal activities, which are linked to diverse human diseases and disorders. In this article, we examine the structure and function of both the yeast and human RNA exosome complex and its cofactors, discuss the nature of the various altered amino acid residues implicated in these diseases with the speculative mechanisms of the mutation-induced disorders and project the frontier and prospective avenues of the future research in this field.
Collapse
Affiliation(s)
- Pragyan Singh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Upasana Saha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
14
|
Das S, Sarkar D, Das B. The interplay between transcription and mRNA degradation in Saccharomyces cerevisiae. MICROBIAL CELL 2017; 4:212-228. [PMID: 28706937 PMCID: PMC5507684 DOI: 10.15698/mic2017.07.580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cellular transcriptome is shaped by both the rates of mRNA synthesis in the nucleus and mRNA degradation in the cytoplasm under a specified condition. The last decade witnessed an exciting development in the field of post-transcriptional regulation of gene expression which underscored a strong functional coupling between the transcription and mRNA degradation. The functional integration is principally mediated by a group of specialized promoters and transcription factors that govern the stability of their cognate transcripts by “marking” them with a specific factor termed “coordinator.” The “mark” carried by the message is later decoded in the cytoplasm which involves the stimulation of one or more mRNA-decay factors, either directly by the “coordinator” itself or in an indirect manner. Activation of the decay factor(s), in turn, leads to the alteration of the stability of the marked message in a selective fashion. Thus, the integration between mRNA synthesis and decay plays a potentially significant role to shape appropriate gene expression profiles during cell cycle progression, cell division, cellular differentiation and proliferation, stress, immune and inflammatory responses, and may enhance the rate of biological evolution.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Debasish Sarkar
- Present Address: Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201-2002, USA
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
15
|
Kubitscheck U, Siebrasse JP. Kinetics of transport through the nuclear pore complex. Semin Cell Dev Biol 2017; 68:18-26. [PMID: 28676422 DOI: 10.1016/j.semcdb.2017.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023]
Abstract
Single molecule microscopy techniques allow to visualize the translocation of single transport receptors and cargo molecules or particles through nuclear pore complexes. These data indicate that cargo molecule import into the nucleus takes less than 10ms and nuclear export of messenger RNA (mRNA) particles takes 50-350ms, up to several seconds for extremely bulky particles. This review summarizes and discusses experimental results on transport of nuclear transport factor 2 (NTF2), importin β and mRNA particles. Putative regulatory functions of importin β for the NPC transport mechanism and the RNA helicase Dbp5 for mRNA export kinetics are discussed.
Collapse
Affiliation(s)
- Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms-University Bonn, Wegeler Str. 12, D-53115 Bonn, Germany.
| | - Jan-Peter Siebrasse
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms-University Bonn, Wegeler Str. 12, D-53115 Bonn, Germany
| |
Collapse
|
16
|
Ramanathan A, Robb GB, Chan SH. mRNA capping: biological functions and applications. Nucleic Acids Res 2016; 44:7511-26. [PMID: 27317694 PMCID: PMC5027499 DOI: 10.1093/nar/gkw551] [Citation(s) in RCA: 482] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/03/2016] [Indexed: 12/19/2022] Open
Abstract
The 5′ m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2′O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose.
Collapse
Affiliation(s)
- Anand Ramanathan
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - G Brett Robb
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Siu-Hong Chan
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
17
|
Saroufim MA, Bensidoun P, Raymond P, Rahman S, Krause MR, Oeffinger M, Zenklusen D. The nuclear basket mediates perinuclear mRNA scanning in budding yeast. J Cell Biol 2016; 211:1131-40. [PMID: 26694838 PMCID: PMC4687876 DOI: 10.1083/jcb.201503070] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single-molecule resolution particle tracking reveals that mRNAs in S. cerevisiae scan the nuclear periphery before being exported to the cytoplasm and that this process is mediated by both components of the nuclear basket and the mRNP. After synthesis and transit through the nucleus, messenger RNAs (mRNAs) are exported to the cytoplasm through the nuclear pore complex (NPC). At the NPC, messenger ribonucleoproteins (mRNPs) first encounter the nuclear basket where mRNP rearrangements are thought to allow access to the transport channel. Here, we use single mRNA resolution live cell microscopy and subdiffraction particle tracking to follow individual mRNAs on their path toward the cytoplasm. We show that when reaching the nuclear periphery, RNAs are not immediately exported but scan along the nuclear periphery, likely to find a nuclear pore allowing export. Deletion or mutation of the nuclear basket proteins MLP1/2 or the mRNA binding protein Nab2 changes the scanning behavior of mRNPs at the nuclear periphery, shortens residency time at nuclear pores, and results in frequent release of mRNAs back into the nucleoplasm. These observations suggest a role for the nuclear basket in providing an interaction platform that keeps RNAs at the periphery, possibly to allow mRNP rearrangements before export.
Collapse
Affiliation(s)
- Mark-Albert Saroufim
- Departement de Biochimie et Medecine Moleculaire, Faculte de Medecine, Universite de Montreal, H3T 1J4 Montreal, Quebec, Canada
| | - Pierre Bensidoun
- Departement de Biochimie et Medecine Moleculaire, Faculte de Medecine, Universite de Montreal, H3T 1J4 Montreal, Quebec, Canada Institut de Recherches Cliniques de Montreal, H2W 1R7 Montreal, Quebec, Canada
| | - Pascal Raymond
- Departement de Biochimie et Medecine Moleculaire, Faculte de Medecine, Universite de Montreal, H3T 1J4 Montreal, Quebec, Canada
| | - Samir Rahman
- Departement de Biochimie et Medecine Moleculaire, Faculte de Medecine, Universite de Montreal, H3T 1J4 Montreal, Quebec, Canada
| | - Matthew R Krause
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Quebec, Canada
| | - Marlene Oeffinger
- Departement de Biochimie et Medecine Moleculaire, Faculte de Medecine, Universite de Montreal, H3T 1J4 Montreal, Quebec, Canada Institut de Recherches Cliniques de Montreal, H2W 1R7 Montreal, Quebec, Canada Faculty of Medicine, Division of Experimental Medicine, McGill University, H3A 2B4 Montreal, Quebec, Canada
| | - Daniel Zenklusen
- Departement de Biochimie et Medecine Moleculaire, Faculte de Medecine, Universite de Montreal, H3T 1J4 Montreal, Quebec, Canada
| |
Collapse
|
18
|
Saldi T, Cortazar MA, Sheridan RM, Bentley DL. Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing. J Mol Biol 2016; 428:2623-2635. [PMID: 27107644 DOI: 10.1016/j.jmb.2016.04.017] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/27/2016] [Accepted: 04/12/2016] [Indexed: 01/07/2023]
Abstract
Pre-mRNA maturation frequently occurs at the same time and place as transcription by RNA polymerase II. The co-transcriptionality of mRNA processing has permitted the evolution of mechanisms that functionally couple transcription elongation with diverse events that occur on the nascent RNA. This review summarizes the current understanding of the relationship between transcriptional elongation through a chromatin template and co-transcriptional splicing including alternative splicing decisions that affect the expression of most human genes.
Collapse
Affiliation(s)
- Tassa Saldi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - Michael A Cortazar
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - Ryan M Sheridan
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Björk P, Persson JO, Wieslander L. Intranuclear binding in space and time of exon junction complex and NXF1 to premRNPs/mRNPs in vivo. J Cell Biol 2016; 211:63-75. [PMID: 26459599 PMCID: PMC4602041 DOI: 10.1083/jcb.201412017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The exon junction core complex associates with Balbiani ring (BR) premRNPs during transcription and in relation to splicing, whereas the export factor NXF1 is recruited in the interchromatin, and BR mRNPs become export competent only after passage through the interchromatin. Eukaryotic gene expression requires the ordered association of numerous factors with precursor messenger RNAs (premRNAs)/messenger RNAs (mRNAs) to achieve efficiency and regulation. Here, we use the Balbiani ring (BR) genes to demonstrate the temporal and spatial association of the exon junction complex (EJC) core with gene-specific endogenous premRNAs and mRNAs. The EJC core components bind cotranscriptionally to BR premRNAs during or very rapidly after splicing. The EJC core does not recruit the nonsense-mediated decay mediaters UPF2 and UPF3 until the BR messenger RNA protein complexes (mRNPs) enter the interchromatin. Even though several known adapters for the export factor NXF1 become part of BR mRNPs already at the gene, NXF1 binds to BR mRNPs only in the interchromatin. In steady state, a subset of the BR mRNPs in the interchromatin binds NXF1, UPF2, and UPF3. This binding appears to occur stochastically, and the efficiency approximately equals synthesis and export of the BR mRNPs. Our data provide unique in vivo information on how export competent eukaryotic mRNPs are formed.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jan-Olov Persson
- Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
20
|
Herrero Ó, Planelló R, Morcillo G. The ribosome biogenesis pathway as an early target of benzyl butyl phthalate (BBP) toxicity in Chironomus riparius larvae. CHEMOSPHERE 2016; 144:1874-1884. [PMID: 26539713 DOI: 10.1016/j.chemosphere.2015.10.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/14/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Butyl benzyl phthalate (BBP) is a ubiquitous contaminant whose presence in the environment is expected for decades, since it has been extensively used worldwide as a plasticizer in the polyvinyl chloride (PVC) industry and the manufacturing of many other products. In the present study, the interaction of BBP with the ribosome biogenesis pathway and the general transcriptional profile of Chironomus riparius aquatic larvae were investigated by means of changes in the rDNA activity (through the study of the internal transcribed spacer 2, ITS2) and variations in the expression profile of ribosomal protein genes (rpL4, rpL11, and rpL13) after acute 24-h and 48-h exposures to a wide range of BBP doses. Furthermore, cytogenetic assays were conducted to evaluate the transcriptional activity of polytene chromosomes from salivary gland cells, with special attention to the nucleolus and the Balbiani rings (BRs) of chromosome IV. BBP caused a dose and time-dependent toxicity in most of the selected biomarkers, with a general depletion in the gene expression levels and the activity of BR2 after 48-h treatments. At the same time, decondensation and activation of some centromeres took place, while the activity of nucleolus remained unaltered. Withdrawal of the xenobiotic allowed the larvae to reach control levels in the case of rpL4 and rpL13 genes, which were previously slightly downregulated in 24-h tests. These data provide the first evidence on the interaction of BBP with the ribosome synthesis pathways, which results in a significant impairment of the functional activity of ribosomal protein genes. Thus, the depletion of ribosomes would be a long-term effect of BBP-induced cellular damage. These findings may have important implications for understanding the adverse biological effects of BBP in C. riparius, since they provide new sensitive biomarkers of BBP exposure and highlight the suitability of this organism for ecotoxicological risk assessment, especially in aquatic ecosystems.
Collapse
Affiliation(s)
- Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
21
|
Abstract
The human transcriptome is composed of a vast RNA population that undergoes further diversification by splicing. Detecting specific splice sites in this large sequence pool is the responsibility of the major and minor spliceosomes in collaboration with numerous splicing factors. This complexity makes splicing susceptible to sequence polymorphisms and deleterious mutations. Indeed, RNA mis-splicing underlies a growing number of human diseases with substantial societal consequences. Here, we provide an overview of RNA splicing mechanisms followed by a discussion of disease-associated errors, with an emphasis on recently described mutations that have provided new insights into splicing regulation. We also discuss emerging strategies for splicing-modulating therapy.
Collapse
Affiliation(s)
- Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-3610 USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-3610 USA
| |
Collapse
|
22
|
Spille JH, Kubitscheck U. Labelling and imaging of single endogenous messenger RNA particles in vivo. J Cell Sci 2015; 128:3695-706. [DOI: 10.1242/jcs.166728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
ABSTRACT
RNA molecules carry out widely diverse functions in numerous different physiological processes in living cells. The RNA life cycle from transcription, through the processing of nascent RNA, to the regulatory function of non-coding RNA and cytoplasmic translation of messenger RNA has been studied extensively using biochemical and molecular biology techniques. In this Commentary, we highlight how single molecule imaging and particle tracking can yield further insight into the dynamics of RNA particles in living cells. In the past few years, a variety of bright and photo-stable labelling techniques have been developed to generate sufficient contrast for imaging of single endogenous RNAs in vivo. New imaging modalities allow determination of not only lateral but also axial positions with high precision within the cellular context, and across a wide range of specimen from yeast and bacteria to cultured cells, and even multicellular organisms or live animals. A whole range of methods to locate and track single particles, and to analyze trajectory data are available to yield detailed information about the kinetics of all parts of the RNA life cycle. Although the concepts presented are applicable to all types of RNA, we showcase here the wealth of information gained from in vivo imaging of single particles by discussing studies investigating dynamics of intranuclear trafficking, nuclear pore transport and cytoplasmic transport of endogenous messenger RNA.
Collapse
Affiliation(s)
- Jan-Hendrik Spille
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegeler Str. 12, Bonn 53115, Germany
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegeler Str. 12, Bonn 53115, Germany
| |
Collapse
|
23
|
Kutsenko A, Svensson T, Nystedt B, Lundeberg J, Björk P, Sonnhammer E, Giacomello S, Visa N, Wieslander L. The Chironomus tentans genome sequence and the organization of the Balbiani ring genes. BMC Genomics 2014; 15:819. [PMID: 25261295 PMCID: PMC4192438 DOI: 10.1186/1471-2164-15-819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/22/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The polytene nuclei of the dipteran Chironomus tentans (Ch. tentans) with their Balbiani ring (BR) genes constitute an exceptional model system for studies of the expression of endogenous eukaryotic genes. Here, we report the first draft genome of Ch. tentans and characterize its gene expression machineries and genomic architecture of the BR genes. RESULTS The genome of Ch. tentans is approximately 200 Mb in size, and has a low GC content (31%) and a low repeat fraction (15%) compared to other Dipteran species. Phylogenetic inference revealed that Ch. tentans is a sister clade to mosquitoes, with a split 150-250 million years ago. To characterize the Ch. tentans gene expression machineries, we identified potential orthologus sequences to more than 600 Drosophila melanogaster (D. melanogaster) proteins involved in the expression of protein-coding genes. We report novel data on the organization of the BR gene loci, including a novel putative BR gene, and we present a model for the organization of chromatin bundles in the BR2 puff based on genic and intergenic in situ hybridizations. CONCLUSIONS We show that the molecular machineries operating in gene expression are largely conserved between Ch. tentans and D. melanogaster, and we provide enhanced insight into the organization and expression of the BR genes. Our data strengthen the generality of the BR genes as a unique model system and provide essential background for in-depth studies of the biogenesis of messenger ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Alexey Kutsenko
- />Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
- />Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE 171 21 Solna, Sweden
| | - Thomas Svensson
- />Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE 171 21 Solna, Sweden
| | - Björn Nystedt
- />Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE 171 21 Solna, Sweden
- />Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE 752 37 Uppsala, Sweden
| | - Joakim Lundeberg
- />Science for Life Laboratory, KTH, Royal Institute of Technology, Science for Life Laboratory, SE 171 65 Solna, Sweden
| | - Petra Björk
- />Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Erik Sonnhammer
- />Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE 171 21 Solna, Sweden
- />Department of Biochemistry and Biophysics, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Stefania Giacomello
- />Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE 171 21 Solna, Sweden
| | - Neus Visa
- />Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Lars Wieslander
- />Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|
24
|
Percipalle P. New insights into co-transcriptional sorting of mRNA for cytoplasmic transport during development. Semin Cell Dev Biol 2014; 32:55-62. [DOI: 10.1016/j.semcdb.2014.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/11/2014] [Indexed: 12/01/2022]
|
25
|
Björk P, Wieslander L. Mechanisms of mRNA export. Semin Cell Dev Biol 2014; 32:47-54. [PMID: 24813364 DOI: 10.1016/j.semcdb.2014.04.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 02/02/2023]
Abstract
Release of properly processed and assembled mRNPs from the actively transcribing genes, movement of the mRNPs through the interchromatin and interaction with the Nuclear Pore Complexes, leading to cytoplasmic export, are essential steps of eukaryotic gene expression. Here, we review these intranuclear gene expression steps.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
26
|
Fichtman B, Harel A. Stress and aging at the nuclear gateway. Mech Ageing Dev 2014; 135:24-32. [PMID: 24447784 DOI: 10.1016/j.mad.2014.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/31/2013] [Accepted: 01/06/2014] [Indexed: 12/11/2022]
Abstract
The nuclear pore complex (NPC) is a massive molecular machine embedded in the nuclear envelope and controlling traffic into and out of the cell nucleus. Here, we describe some of the outstanding research questions concerning the NPC, its assembly and functions. We also discuss recent findings that link the NPC and its immediate surroundings to the process of cellular aging. Scaffold and barrier nucleoporins are two major types of protein building blocks that make up the NPC. Surprisingly, these two groups of nucleoporins differ dramatically in their turnover rates. Recent work identifies some of the scaffold nucleoporins as the most extremely long-lived proteins in rat brain. Some of the consequences of these findings and new open questions arising from them are discussed. We also consider the evidence for a perturbed permeability barrier in nuclei from old cells and the alteration of nuclear transport pathways under stress conditions. Finally, we describe the connection between premature aging syndromes and the nuclear lamina, a filamentous protein network which underlies the nuclear envelope.
Collapse
Affiliation(s)
- Boris Fichtman
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel
| | - Amnon Harel
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel.
| |
Collapse
|
27
|
Fukuda N, Fukuda T, Sinnamon J, Hernandez-Hernandez A, Izadi M, Raju CS, Czaplinski K, Percipalle P. The transacting factor CBF-A/Hnrnpab binds to the A2RE/RTS element of protamine 2 mRNA and contributes to its translational regulation during mouse spermatogenesis. PLoS Genet 2013; 9:e1003858. [PMID: 24146628 PMCID: PMC3798277 DOI: 10.1371/journal.pgen.1003858] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/20/2013] [Indexed: 11/29/2022] Open
Abstract
During spermatogenesis, mRNA localization and translation are believed to be regulated in a stage-specific manner. We report here that the Protamine2 (Prm2) mRNA transits through chromatoid bodies of round spermatids and localizes to cytosol of elongating spermatids for translation. The transacting factor CBF-A, also termed Hnrnpab, contributes to temporal regulation of Prm2 translation. We found that CBF-A co-localizes with the Prm2 mRNA during spermatogenesis, directly binding to the A2RE/RTS element in the 3′ UTR. Although both p37 and p42 CBF-A isoforms interacted with RTS, they associated with translationally repressed and de-repressed Prm2 mRNA, respectively. Only p42 was found to interact with the 5′cap complex, and to co-sediment with the Prm2 mRNA in polysomes. In CBF-A knockout mice, expression of protamine 2 (PRM2) was reduced and the Prm2 mRNA was prematurely translated in a subset of elongating spermatids. Moreover, a high percentage of sperm from the CBF-A knockout mouse showed abnormal DNA morphology. We suggest that CBF-A plays an important role in spermatogenesis by regulating stage-specific translation of testicular mRNAs. During eukaryotic gene expression, a fraction of newly exported mRNA molecules is transported to the cellular periphery for translation. The underlying mechanisms are not fully understood even though they likely affect specialized functions in many cell types including oligodendrocyets, neurons and germ cells. We discovered that the heterogeneous nuclear ribonucleoprotein CBF-A, interacts with a conserved sequence, the RNA trafficking sequence (RTS), located in the untranslated region of transported mRNAs. This interaction facilitates transport of myelin basic protein mRNA and dendritic mRNAs in oligodendrocytes and neurons, respectively. Here we investigated whether RTS-recognition by CBF-A coordinates transport and localized translation of the Protamine 2 mRNA in spermatogenic cells. During spermatogenesis the Protamine 2 mRNAs is synthesized and kept in a silent form to be translated at later stages. We show that by interacting with the RTS of the Protamine 2 mRNA both CBF-A isoforms contribute to regulate the transcript at the translational level. In a CBF-A knockout mouse model, we demonstrate that the interplay between the CBF-A isoforms in translation regulation of the Protamine 2 mRNA and other testicular transcripts has an impact on spermatogenesis.
Collapse
Affiliation(s)
- Nanaho Fukuda
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tomoyuki Fukuda
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - John Sinnamon
- Program in Neuroscience, Stony Brook University Center for Nervous System Disorders, Stony Brook, New York, United States of America
- Department of Biochemistry and Cell Biology, Stony Brook University Center for Nervous System Disorders, Stony Brook, New York, United States of America
| | | | - Manizheh Izadi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Kevin Czaplinski
- Program in Neuroscience, Stony Brook University Center for Nervous System Disorders, Stony Brook, New York, United States of America
- Department of Biochemistry and Cell Biology, Stony Brook University Center for Nervous System Disorders, Stony Brook, New York, United States of America
| | - Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
28
|
Doller A, Schulz S, Pfeilschifter J, Eberhardt W. RNA-dependent association with myosin IIA promotes F-actin-guided trafficking of the ELAV-like protein HuR to polysomes. Nucleic Acids Res 2013; 41:9152-67. [PMID: 23921630 PMCID: PMC3799433 DOI: 10.1093/nar/gkt663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The role of the mRNA-binding protein human antigen R (HuR) in stabilization and translation of AU-rich elements (ARE) containing mRNAs is well established. However, the trafficking of HuR and bound mRNA cargo, which comprises a fundamental requirement for the aforementioned HuR functions is only poorly understood. By administering different cytoskeletal inhibitors, we found that the protein kinase Cδ (PKCδ)-triggered accumulation of cytoplasmic HuR by Angiotensin II (AngII) is an actin-myosin driven process functionally relevant for stabilization of ARE-bearing mRNAs. Furthermore, we show that the AngII-induced recruitment of HuR and its bound mRNA from ribonucleoprotein particles to free and cytoskeleton bound polysomes strongly depended on an intact actomyosin cytoskeleton. In addition, HuR allocation to free and cytoskeletal bound polysomes is highly sensitive toward RNase and PPtase and structurally depends on serine 318 (S318) located within the C-terminal RNA recognition motif (RRM3). Conversely, the trafficking of the phosphomimetic HuRS318D, mimicking HuR phosphorylation at S318 by the PKCδ remained PPtase resistant. Co-immunoprecipitation experiments with truncated HuR proteins revealed that the stimulus-induced association of HuR with myosin IIA is strictly RNA dependent and mediated via the RRM3. Our data implicate a microfilament dependent transport of HuR, which is relevant for stimulus-induced targeting of ARE-bearing mRNAs from translational inactive ribonucleoprotein particles to polysomes.
Collapse
Affiliation(s)
- Anke Doller
- pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, D-60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
29
|
The hnRNP A1 homolog Hrp36 is essential for normal development, female fecundity, omega speckle formation and stress tolerance in Drosophila melanogaster. J Biosci 2013; 37:659-78. [PMID: 22922191 DOI: 10.1007/s12038-012-9239-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Hrp36/Hrb87F is one of the most abundant and well-characterized hnRNP A homolog in Drosophila and is shown to have roles in regulation of alternative splicing, heterochromatin formation, neurodegeneration, etc. Yet, hrp36 null individuals were reported to be viable and without any apparent phenotype, presumably because of overlapping functions provided by Hrp38 and related proteins. Here we show that loss of both copies of hrp36 gene slows down development with significant reduction in adult life span, decreased female fecundity and high sensitivity to starvation and thermal stresses. In the absence of Hrp36, the nucleoplasmic omega speckles are nearly completely disrupted. The levels of nuclear matrix protein Megator and the chromatin remodeller ISWI are significantly elevated in principal cells of larval Malpighian tubules, which also display additional endoreplication cycles and good polytene chromosomes. We suggest that besides the non-coding hsr omega-n transcripts, the Hrp36 protein is also a core constituent of omega speckles. The heat-shock-induced association of other hnRNPs at the hsr omega locus is affected in hrp36 null cells, which may be one of the reasons for their high sensitivity to cell stress. Therefore, in spite of the functional redundancy provided by Hrp38, Hrp36 is essential for normal development and for survival under conditions of stress.
Collapse
|
30
|
Abstract
A mathematical model is devised to study the diffusion of mRNA in the nucleus from the site of synthesis to a nuclear pore where it is exported to the cytoplasm. This study examines the role that nuclear structure can play in determining the kinetics of export by considering models in which elements of the nuclear skeleton and confinement by chromatin direct the mRNA movement. As a rule, a dense chromatin layer favours rapid export by reducing the effective volume for diffusion. However, it may also result in a heavy tail in the export time distribution because of the low mobility of molecules that accidentally find their way deep into the dense layer. An anisotropic solid-state transport system can also assist export. There exist both an optimal ratio of the anisotropy and an optimal depth of the solid-state transport layer that favour rapid export.
Collapse
Affiliation(s)
- M R Roussel
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada.
| | | |
Collapse
|
31
|
Kaminski T, Siebrasse JP, Kubitscheck U. A single molecule view on Dbp5 and mRNA at the nuclear pore. Nucleus 2013; 4:8-13. [PMID: 23324459 DOI: 10.4161/nucl.23386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Numerous molecular details of intracellular mRNA processing have been revealed in recent years. However, the export process of single native mRNA molecules, the actual translocation through the nuclear pore complex (NPC), could not yet be examined in vivo. The problem is observing mRNA molecules without interfering with their native behavior. We used a protein-based labeling approach to visualize single native mRNPs in live salivary gland cells of Chironomus tentans, an iconic system used for decades to study the mRNA life cycle. Recombinant hrp36, the C. tentans homolog of mammalian hnRNP A1, was fluorescence labeled and microinjected into living cells, where it was integrated into nascent mRNPs. Intranuclear trajectories of single mRNPs, including their NPC passage, were observed with high space and time resolution employing a custom-built light sheet fluorescence microscope. We analyzed the kinetics and dynamics of mRNP export and started to study its mechanism and regulation by measuring the turnover-kinetics of single Dbp5 at the NPC.
Collapse
Affiliation(s)
- Tim Kaminski
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | | | | |
Collapse
|
32
|
Rinne JS, Kaminski TP, Kubitscheck U, Heckel A. Light-inducible molecular beacons for spatio-temporally highly defined activation. Chem Commun (Camb) 2013; 49:5375-7. [DOI: 10.1039/c3cc42420k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Abstract
Actin is a key player for nuclear structure and function regulating both chromosome organization and gene activity. In the cell nucleus actin interacts with many different proteins. Among these proteins several studies have identified classical nuclear factors involved in chromatin structure and function, transcription and RNA processing as well as proteins that are normally involved in controlling the actin cytoskeleton. These discoveries have raised the possibility that nuclear actin performs its multi task activities through tight interactions with different sets of proteins. This high degree of promiscuity in the spectrum of protein-to-protein interactions correlates well with the conformational plasticity of actin and the ability to undergo regulated changes in its polymerization states. Several of the factors involved in controlling head-to-tail actin polymerization have been shown to be in the nucleus where they seem to regulate gene activity. By focusing on the multiple tasks performed by actin and actin-binding proteins, possible models of how actin dynamics controls the different phases of the RNA polymerase II transcription cycle are being identified.
Collapse
|
34
|
Hessle V, von Euler A, González de Valdivia E, Visa N. Rrp6 is recruited to transcribed genes and accompanies the spliced mRNA to the nuclear pore. RNA (NEW YORK, N.Y.) 2012; 18:1466-1474. [PMID: 22745224 PMCID: PMC3404368 DOI: 10.1261/rna.032045.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/30/2012] [Indexed: 06/01/2023]
Abstract
Rrp6 is an exoribonuclease involved in the quality control of mRNA biogenesis. We have analyzed the association of Rrp6 with the Balbiani ring pre-mRNPs of Chironomus tentans to obtain insight into the role of Rrp6 in splicing surveillance. Rrp6 is recruited to transcribed genes and its distribution along the genes does not correlate with the positions of exons and introns. In the nucleoplasm, Rrp6 is bound to both unspliced and spliced transcripts. Rrp6 is released from the mRNPs in the vicinity of the nuclear pore before nucleo-cytoplasmic translocation. We show that Rrp6 is associated with newly synthesized transcripts during all the nuclear steps of gene expression and is associated with the transcripts independently of their splicing status. These observations suggest that the quality control of pre-mRNA splicing is not based on the selective recruitment of the exoribonuclease Rrp6 to unprocessed mRNAs.
Collapse
Affiliation(s)
- Viktoria Hessle
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Anne von Euler
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Neus Visa
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
35
|
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
36
|
Nuclear export of single native mRNA molecules observed by light sheet fluorescence microscopy. Proc Natl Acad Sci U S A 2012; 109:9426-31. [PMID: 22615357 DOI: 10.1073/pnas.1201781109] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nuclear export of mRNA is a key transport process in eukaryotic cells. To investigate it, we labeled native mRNP particles in living Chironomus tentans salivary gland cells with fluorescent hrp36, the hnRNP A1 homolog, and the nuclear envelope by fluorescent NTF2. Using light sheet microscopy, we traced single native mRNA particles across the nuclear envelope. The particles were observed to often probe nuclear pore complexes (NPC) at their nuclear face, and in only 25% of the cases yielded actual export. The complete export process took between 65 ms up to several seconds. A rate-limiting step was observed, which could be assigned to the nuclear basket of the pore and might correspond to a repositioning and unfolding of mRNPs before the actual translocation. Analysis of single fluorescent Dbp5 molecules, the RNA helicase essential for mRNA export, revealed that Dbp5 most often approached the cytoplasmic face of the NPC, and exhibited a binding duration of approximately 55 ms. Our results have allowed a refinement of the current models for mRNA export.
Collapse
|
37
|
Oeffinger M, Zenklusen D. To the pore and through the pore: a story of mRNA export kinetics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:494-506. [PMID: 22387213 DOI: 10.1016/j.bbagrm.2012.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/26/2022]
Abstract
The evolutionary 'decision' to store genetic information away from the place of protein synthesis, in a separate compartment, has forced eukaryotic cells to establish a system to transport mRNAs from the nucleus to the cytoplasm for translation. To ensure export to be fast and efficient, cells have evolved a complex molecular interplay that is tightly regulated. Over the last few decades, many of the individual players in this process have been described, starting with the composition of the nuclear pore complex to proteins that modulate co-transcriptional events required to prepare an mRNP for export to the cytoplasm. How the interplay between all the factors and processes results in the efficient and selective export of mRNAs from the nucleus and how the export process itself is executed within cells, however, is still not fully understood. Recent advances in using proteomic and single molecule microscopy approaches have provided important insights into the process and its kinetics. This review summarizes these recent advances and how they led to the current view on how cells orchestrate the export of mRNAs. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Marlene Oeffinger
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, Canada.
| | | |
Collapse
|
38
|
Abstract
DEAD-box ATPases/helicases are a large family of enzymes (>35 in humans) involved in almost all aspects of RNA metabolism including ribosome biogenesis, RNA splicing, export, translation, and decay. Many members of this family are ATP-dependent RNA-binding proteins that interact with the RNA phosphodiester backbone and promote structural remodeling of target complexes through ATP binding and hydrolysis. Here, we describe the methods used in our laboratory to characterize the DEAD-box ATPase Dbp5 of Saccharomyces cerevisiae. Dbp5 is essential for the process of mRNA export in budding yeast and highly conserved orthologs can be found in all eukaryotes. Specifically, we describe enzyme assays to measure the catalytic activity of Dbp5 in association with RNA and known binding partners, as well as assays developed to measure the binding affinities and release kinetics of RNA and adenosine nucleotides from Dbp5. These assays have provided important information that has shaped our current models of Dbp5 function in mRNA export and should be useful for the characterization of other DEAD-box family members.
Collapse
Affiliation(s)
- Ben Montpetit
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | | | | |
Collapse
|
39
|
Simon DN, Wilson KL. The nucleoskeleton as a genome-associated dynamic 'network of networks'. Nat Rev Mol Cell Biol 2011; 12:695-708. [PMID: 21971041 DOI: 10.1038/nrm3207] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the cytosol, actin polymers, intermediate filaments and microtubules can anchor to cell surface adhesions and interlink to form intricate networks. This cytoskeleton is anchored to the nucleus through LINC (links the nucleoskeleton and cytoskeleton) complexes that span the nuclear envelope and in turn anchor to networks of filaments in the nucleus. The metazoan nucleoskeleton includes nuclear pore-linked filaments, A-type and B-type lamin intermediate filaments, nuclear mitotic apparatus (NuMA) networks, spectrins, titin, 'unconventional' polymers of actin and at least ten different myosin and kinesin motors. These elements constitute a poorly understood 'network of networks' that dynamically reorganizes during mitosis and is responsible for genome organization and integrity.
Collapse
Affiliation(s)
- Dan N Simon
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
40
|
Johnson SA, Kim H, Erickson B, Bentley DL. The export factor Yra1 modulates mRNA 3' end processing. Nat Struct Mol Biol 2011; 18:1164-71. [PMID: 21947206 PMCID: PMC3307051 DOI: 10.1038/nsmb.2126] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 07/20/2011] [Indexed: 11/09/2022]
Abstract
The Saccharomyces cerevisiae mRNA export adaptor Yra1 binds the Pcf11 subunit of cleavage-polyadenylation factor CF1A that links export to 3' end formation. We found that an unexpected consequence of this interaction is that Yra1 influences cleavage-polyadenylation. Yra1 competes with the CF1A subunit Clp1 for binding to Pcf11, and excess Yra1 inhibits 3' processing in vitro. Release of Yra1 at the 3' ends of genes coincides with recruitment of Clp1, and depletion of Yra1 enhances Clp1 recruitment within some genes. These results suggest that CF1A is not necessarily recruited as a complete unit; instead, Clp1 can be incorporated co-transcriptionally in a process regulated by Yra1. Yra1 depletion causes widespread changes in poly(A) site choice, particularly at sites where the efficiency element is divergently positioned. We propose that one way Yra1 modulates cleavage-polyadenylation is by influencing co-transcriptional assembly of the CF1A 3' processing factor.
Collapse
Affiliation(s)
- Sara A Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
41
|
Noble KN, Tran EJ, Alcázar-Román AR, Hodge CA, Cole CN, Wente SR. The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Genes Dev 2011; 25:1065-77. [PMID: 21576266 DOI: 10.1101/gad.2040611] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Essential messenger RNA (mRNA) export factors execute critical steps to mediate directional transport through nuclear pore complexes (NPCs). At cytoplasmic NPC filaments, the ATPase activity of DEAD-box protein Dbp5 is activated by inositol hexakisphosphate (IP(6))-bound Gle1 to mediate remodeling of mRNA-protein (mRNP) complexes. Whether a single Dbp5 executes multiple remodeling events and how Dbp5 is recycled are unknown. Evidence suggests that Dbp5 binding to Nup159 is required for controlling interactions with Gle1 and the mRNP. Using in vitro reconstitution assays, we found here that Nup159 is specifically required for ADP release from Dbp5. Moreover, Gle1-IP(6) stimulates ATP binding, thus priming Dbp5 for RNA loading. In vivo, a dbp5-R256D/R259D mutant with reduced ADP binding bypasses the need for Nup159 interaction. However, NPC spatial control is important, as a dbp5-R256D/R259D nup42Δ double mutant is temperature-sensitive for mRNA export. Further analysis reveals that remodeling requires a conformational shift to the Dbp5-ADP form. ADP release factors for DEAD-box proteins have not been reported previously and reflect a new paradigm for regulation. We propose a model wherein Nup159 and Gle1-IP(6) regulate Dbp5 cycles by controlling its nucleotide-bound state, allowing multiple cycles of mRNP remodeling by a single Dbp5 at the NPC.
Collapse
Affiliation(s)
- Kristen N Noble
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
42
|
Raju CS, Fukuda N, López-Iglesias C, Göritz C, Visa N, Percipalle P. In neurons, activity-dependent association of dendritically transported mRNA transcripts with the transacting factor CBF-A is mediated by A2RE/RTS elements. Mol Biol Cell 2011; 22:1864-77. [PMID: 21471000 PMCID: PMC3103402 DOI: 10.1091/mbc.e10-11-0904] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We report that the transacting factor CArG Box binding Factor A (CBF-A) binds the RNA trafficking sequences found in activity-regulated cytoskeleton-associated protein, calmodulin-dependent protein kinase II, and brain-derived neurotrophic factor mRNAs in an activity-dependent manner and accompanies the transcripts from gene to dendrites. CBF-A gene silencing impaired dendritic mRNA localization. We propose that CBF-A is important for trafficking of RNA trafficking sequence–containing neuronal mRNAs. In neurons certain mRNA transcripts are transported to synapses through mechanisms that are not fully understood. Here we report that the heterogeneous nuclear ribonucleoprotein CBF-A (CArG Box binding Factor A) facilitates dendritic transport and localization of activity-regulated cytoskeleton-associated protein (Arc), brain-derived neurotrophic factor (BDNF), and calmodulin-dependent protein kinase II (CaMKIIα) mRNAs. We discovered that, in the adult mouse brain, CBF-A has a broad distribution. In the nucleus, CBF-A was found at active transcription sites and interchromosomal spaces and close to nuclear pores. In the cytoplasm, CBF-A localized to dendrites as well as pre- and postsynaptic sites. CBF-A was found in synaptosomal fractions, associated with Arc, BDNF, and CaMKIIα mRNAs. Electrophoretic mobility shift assays demonstrated a direct interaction mediated via their hnRNP A2 response element (A2RE)/RNA trafficking sequence (RTS) elements located in the 3′ untranslated regions. In situ hybridization and microscopy on live hippocampal neurons showed that CBF-A is in dynamic granules containing Arc, BDNF, and CaMKIIα mRNAs. N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) postsynaptic receptor stimulation led to CBF-A accumulation in dendrites; increased Arc, BDNF, and CaMKIIα mRNA levels; and increased amounts of transcripts coprecipitating with CBF-A. Finally, CBF-A gene knockdown led to decreased mRNA levels. We propose that CBF-A cotranscriptionally binds RTSs in Arc, BDNF, and CaMKIIα mRNAs and follows the transcripts from genes to dendrites, promoting activity-dependent nuclear sorting of transport-competent mRNAs.
Collapse
Affiliation(s)
- Chandrasekhar S Raju
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Veith R, Sorkalla T, Baumgart E, Anzt J, Häberlein H, Tyagi S, Siebrasse JP, Kubitscheck U. Balbiani ring mRNPs diffuse through and bind to clusters of large intranuclear molecular structures. Biophys J 2011; 99:2676-85. [PMID: 20959109 DOI: 10.1016/j.bpj.2010.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 07/07/2010] [Accepted: 08/05/2010] [Indexed: 12/13/2022] Open
Abstract
A detailed conception of intranuclear messenger ribonucleoprotein particle (mRNP) dynamics is required for the understanding of mRNP processing and gene expression outcome. We used complementary state-of-the-art fluorescence techniques to quantify native mRNP mobility at the single particle level in living salivary gland cell nuclei. Molecular beacons and fluorescent oligonucleotides were used to specifically label BR2.1 mRNPs by an in vivo fluorescence in situ hybridization approach. We characterized two major mobility components of the BR2.1 mRNPs. These components with diffusion coefficients of 0.3 ± 0.02 μm²/s and 0.73 ± 0.03 μm²/s were observed independently of the staining method and measurement technique used. The mobility analysis of inert tracer molecules revealed that the gland cell nuclei contain large molecular nonchromatin structures, which hinder the mobility of large molecules and particles. The mRNPs are not only hindered by these mobility barriers, but in addition also interact presumably with these structures, what further reduces their mobility and effectively leads to the occurrence of the two diffusion coefficients. In addition, we provide evidence that the remarkably high mobility of the large, 50 nm-sized BR2.1 mRNPs was due to the absence of retarding chromatin.
Collapse
Affiliation(s)
- Roman Veith
- Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nair PMG, Park SY, Lee SW, Choi J. Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:31-7. [PMID: 20870301 DOI: 10.1016/j.aquatox.2010.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/18/2010] [Accepted: 08/26/2010] [Indexed: 05/03/2023]
Abstract
The eco- and genotoxicity of silver nanoparticles (AgNPs) was investigated in the fourth instar larvae of the aquatic midge, Chironomus riparius. AgNPs did not have acute toxicity in C. riparius, but did exhibited chronic toxicity on development (pupation and emergence failure) and reproduction. Genotoxicity also occurred in AgNPs exposed C. riparius. Differential Display PCR (DD-PCR), based on the Annealing Control Primer (ACP) technique, was conducted to investigate the underlying toxic mechanism, which identified altered gene expression in C. riparius after treatment with AgNPs. The possible toxicity mechanism of AgNPs in C. riparius involves the down regulation of the ribosomal protein gene (CrL15) affecting the ribosomal assembly and consequently, protein synthesis. Up regulation of the gonadotrophin releasing hormone gene (CrGnRH1) might lead to the activation of gonadotrophin releasing hormone mediated signal transduction pathways and reproductive failure. Up regulation of the Balbiani ring protein gene (CrBR2.2) may be an indication of the organism's protection mechanism against the AgNPs. The overall results suggest that the toxicity of AgNPs towards aquatic organisms should be thoroughly investigated to allow for their safe use, as they seem to exhibit important toxicity towards C. riparius.
Collapse
Affiliation(s)
- Prakash M Gopalakrishnan Nair
- School of Environmental Engineering and Graduate School of Urban Sciences, University of Seoul, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
45
|
Subnuclear targeting of the RNA-binding motif protein RBM6 to splicing speckles and nascent transcripts. Chromosome Res 2010; 18:851-72. [PMID: 21086038 DOI: 10.1007/s10577-010-9170-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
RNA-binding motif (RBM) proteins comprise a large family of RNA-binding proteins whose functions are poorly understood. Since some RBM proteins are candidate alternative splicing factors we examined whether one such member of the family, RBM6, exhibited a pattern of nuclear distribution and targeting consistent with this role. Using antibodies raised against mouse RBM6 to immunostain mammalian cell lines we found that the endogenous protein was both distributed diffusely in the nucleus and concentrated in a small number of nuclear foci that corresponded to splicing speckles/interchromatin granule clusters (IGCs). Tagged RBM6 was also targeted to IGCs, although it accumulated in large bodies confined to the IGC periphery. The basis of this distribution pattern was suggested by the targeting of tagged RBM6 in the giant nuclei (or germinal vesicles (GVs)) of Xenopus oocytes. In spread preparations of GV contents RBM6 was localized both to lampbrush chromosomes and to the surface of many oocyte IGCs, where it was confined to up to 50 discrete patches. Each patch of RBM6 labelling corresponded to a bead-like structure of 0.5-1 microm diameter that assembled de novo on the IGC surface. Assembly of these novel structures depended on the repetitive N-terminal region of RBM6, which acts as a multimerization domain. Without this domain, RBM6 was no longer excluded from the IGC interior but accumulated homogeneously within it. Assembly of IGC-surface structures in mammalian cell lines also depended on the oligomerization domain of RBM6. Oligomerization of RBM6 also had morphological effects on its other major target in GVs, namely the arrays of nascent transcripts visible in lampbrush chromosome transcription units. The presence of oligomerized RBM6 on many lampbrush loops caused them to appear as dense structures with a spiral morphology that appeared quite unlike normal, extended loops. This distribution pattern suggests a new role for RBM6 in the co-transcriptional packaging or processing of most nascent transcripts.
Collapse
|
46
|
Nucleocytoplasmic mRNP export is an integral part of mRNP biogenesis. Chromosoma 2010; 120:23-38. [PMID: 21079985 PMCID: PMC3028071 DOI: 10.1007/s00412-010-0298-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 01/16/2023]
Abstract
Nucleocytoplasmic export and biogenesis of mRNPs are closely coupled. At the gene, concomitant with synthesis of the pre-mRNA, the transcription machinery, hnRNP proteins, processing, quality control and export machineries cooperate to release processed and export competent mRNPs. After diffusion through the interchromatin space, the mRNPs are translocated through the nuclear pore complex and released into the cytoplasm. At the nuclear pore complex, defined compositional and conformational changes are triggered, but specific cotranscriptionally added components are retained in the mRNP and subsequently influence the cytoplasmic fate of the mRNP. Processes taking place at the gene locus and at the nuclear pore complex are crucial for integrating export as an essential part of gene expression. Spatial, temporal and structural aspects of these events have been highlighted in analyses of the Balbiani ring genes.
Collapse
|
47
|
Abstract
Messenger RNAs undergo 5' capping, splicing, 3'-end processing, and export before translation in the cytoplasm. It has become clear that these mRNA processing events are tightly coupled and have a profound effect on the fate of the resulting transcript. This processing is represented by modifications of the pre-mRNA and loading of various protein factors. The sum of protein factors that stay with the mRNA as a result of processing is modified over the life of the transcript, conferring significant regulation to its expression.
Collapse
Affiliation(s)
- Sami Hocine
- Department for Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
48
|
Ritter JG, Veith R, Veenendaal A, Siebrasse JP, Kubitscheck U. Light sheet microscopy for single molecule tracking in living tissue. PLoS One 2010; 5:e11639. [PMID: 20668517 PMCID: PMC2909143 DOI: 10.1371/journal.pone.0011639] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 06/24/2010] [Indexed: 01/23/2023] Open
Abstract
Single molecule observation in cells and tissue allows the analysis of physiological processes with molecular detail, but it still represents a major methodological challenge. Here we introduce a microscopic technique that combines light sheet optical sectioning microscopy and ultra sensitive high-speed imaging. By this approach it is possible to observe single fluorescent biomolecules in solution, living cells and even tissue with an unprecedented speed and signal-to-noise ratio deep within the sample. Thereby we could directly observe and track small and large tracer molecules in aqueous solution. Furthermore, we demonstrated the feasibility to visualize the dynamics of single tracer molecules and native messenger ribonucleoprotein particles (mRNPs) in salivary gland cell nuclei of Chironomus tentans larvae up to 200 µm within the specimen with an excellent signal quality. Thus single molecule light sheet based fluorescence microscopy allows analyzing molecular diffusion and interactions in complex biological systems.
Collapse
Affiliation(s)
- Jörg Gerhard Ritter
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany
| | - Roman Veith
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany
| | - Andreas Veenendaal
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany
| | - Jan Peter Siebrasse
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany
- * E-mail:
| |
Collapse
|
49
|
Abstract
Internal membrane bound structures sequester all genetic material in eukaryotic cells. The most prominent of these structures is the nucleus, which is bounded by a double membrane termed the nuclear envelope (NE). Though this NE separates the nucleoplasm and genetic material within the nucleus from the surrounding cytoplasm, it is studded throughout with portals called nuclear pore complexes (NPCs). The NPC is a highly selective, bidirectional transporter for a tremendous range of protein and ribonucleoprotein cargoes. All the while the NPC must prevent the passage of nonspecific macromolecules, yet allow the free diffusion of water, sugars, and ions. These many types of nuclear transport are regulated at multiple stages, and the NPC carries binding sites for many of the proteins that modulate and modify the cargoes as they pass across the NE. Assembly, maintenance, and repair of the NPC must somehow occur while maintaining the integrity of the NE. Finally, the NPC appears to be an anchor for localization of many nuclear processes, including gene activation and cell cycle regulation. All these requirements demonstrate the complex design of the NPC and the integral role it plays in key cellular processes.
Collapse
Affiliation(s)
- Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
50
|
Mor A, Suliman S, Ben-Yishay R, Yunger S, Brody Y, Shav-Tal Y. Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nat Cell Biol 2010; 12:543-52. [PMID: 20453848 DOI: 10.1038/ncb2056] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 04/15/2010] [Indexed: 12/16/2022]
Abstract
The flow of genetic information in eukaryotic cells occurs through the nucleocytoplasmic translocation of mRNAs. Knowledge of in vivo messenger RNA export kinetics remains poor in comparison with that of protein transport. We have established a mammalian system that allowed the real-time visualization and quantification of large single mRNA-protein complexes (mRNPs) during export. The in vivo dynamics of bulk mRNP transport and export, from transcription to the nuclear pore complex (NPC), occurred within a 5-40 minute time frame, with no NPC pile-up. mRNP export was rapid (about 0.5 s) and kinetically faster than nucleoplasmic diffusion. Export inhibition demonstrated that mRNA-NPC interactions were independent of ongoing export. Nucleoplasmic transport dynamics of intron-containing and intronless mRNAs were similar, yet an intron did increase export efficiency. Here we provide visualization and analysis at the single mRNP level of the various steps in nuclear gene expression and the inter-chromatin tracks through which mRNPs diffuse, and demonstrate the kinetics of mRNP-NPC interactions and translocation.
Collapse
Affiliation(s)
- Amir Mor
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|