1
|
Liu N, Zhang Q, Li J, Zhou S, Miao D, Zhang S, Chen Y. The antimicrobial peptide Microcin C7 inhibits the growth of Porphyromonas gingivalis and improves the perodontal status in a rat model. J Appl Microbiol 2024; 135:lxae247. [PMID: 39349994 DOI: 10.1093/jambio/lxae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 11/05/2024]
Abstract
AIMS This study aimed to investigate the antibacterial and anti-inflammatory effects of the antimicrobial peptide Microcin C7 for Porphyromonas gingivalis-associated diseases. METHODS AND RESULTS Reverse-phase high-performance liquid chromatography revealed that Microcin C7 could remain 25.5% at 12 h in saliva. At a concentration of <10 mg ml-1, Microcin C7 showed better cytocompatibility, as revealed by a hemolysis test and a subchronic systemic toxicity test. Moreover, the minimum inhibitory concentration and minimum bactericidal concentration of Microcin C7 were analyzed using a broth microdilution method, bacterial growth curve, scanning electron microscopy, and confocal laser microscopy and determined to be 0.16 and 5 mg ml-1, respectively. Finally, in a rat model, 5 mg ml-1 Microcin C7 showed better performance in decreasing the expression of inflammatory factors (IL-1β, IL-6, IL-8, and TNF-α) and alveolar bone resorption than other concentrations. CONCLUSIONS Microcin C7 demonstrated favorable biocompatibility, antibacterial activity, and anti-inflammatory effect, and could decrease the alveolar bone resorption in a rat model, indicating the promising potential for clinical translation and application on P. gingivalis-associated diseases.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Jiaotong University, Xi'an 710000, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Jiaotong University, Xi'an 710000, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Qianqian Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Jiaotong University, Xi'an 710000, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Jiaotong University, Xi'an 710000, China
| | - Jinyang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Jiaotong University, Xi'an 710000, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Jiaotong University, Xi'an 710000, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Shuo Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Jiaotong University, Xi'an 710000, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Jiaotong University, Xi'an 710000, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Di Miao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Jiaotong University, Xi'an 710000, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Jiaotong University, Xi'an 710000, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Sijia Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Jiaotong University, Xi'an 710000, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Jiaotong University, Xi'an 710000, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Yue Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Jiaotong University, Xi'an 710000, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Jiaotong University, Xi'an 710000, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| |
Collapse
|
2
|
Cao M, Zhang Z, Hu H, Wu Y, He T, Huang C, Wang K, Zhang Q, Cao M, Huang J, Li Y. Comprehensive studies of the serine carboxypeptidase-like (SCPL) gene family in Carya cathayensis revealed the roles of SCPL4 in epigallocatechin-3-gallate (EGCG) synthesis and drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109183. [PMID: 39378646 DOI: 10.1016/j.plaphy.2024.109183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Hickory (Carya cathayensis) nuts are rich in epigallocatechin-3-gallate (EGCG) with multiple health functions. EGCG also regulates plant growth, development and stress responses. However, research on the synthesis mechanism of EGCG and its function in hickory is currently limited. Herein, 44 serine carboxypeptidase-like (SCPL) members were identified from the hickory genome and classified into three major categories: SCPL-I, SCPL-II, and SCPL-III. In the CcSCPLs-IA branch, CcSCPL3/4/5/8/9/11/13 showed differential expression patterns in various tissues, especially with relatively high expression levels in plant roots, female flowers and seed coat. These proteins have a catalytic triad composed of serine (Ser), aspartic acid (Asp) and histidine (His). Ser-His in the triad and arginine (Arg) mediated the docking of CcSCPL3/4/5/11 with 1-O-galloyl-β-d-glucose (βG) and epigallocatechin (EGC), whereas the Asp of the triad did not. CcSCPL4 was further confirmed to promote the synthesis of EGCG in tobacco leaves. CcSCPL4 may function as monomer and be mainly localized within cellular structures outside the nucleus. Notably, the expression level of CcSCPL4 significantly changed after drought, cold, and salt stress, with the highest expression level under drought stress. Meanwhile CcSCPL4 over-expression could enhance the drought resistance of Saccharomyces cerevisiae and Arabidopsis. This study elucidates key enzymes for EGCG synthesis and their role in drought resistance, providing insights into the EGCG synthesis pathway and molecular breeding of hickory in future.
Collapse
Affiliation(s)
- Minghao Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ziyue Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Huangpeng Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yuanpeng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tengjie He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qixiang Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Min Cao
- Songyang County Bureau of Natural Resources, Songyang, 323400, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
3
|
Luo VC, Peczuh MW. Location, Location, Location: Establishing Design Principles for New Antibacterials from Ferric Siderophore Transport Systems. Molecules 2024; 29:3889. [PMID: 39202968 PMCID: PMC11357680 DOI: 10.3390/molecules29163889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This review strives to assemble a set of molecular design principles that enables the delivery of antibiotic warheads to Gram-negative bacterial targets (ESKAPE pathogens) using iron-chelating siderophores, known as the Trojan Horse strategy for antibiotic development. Principles are derived along two main lines. First, archetypical siderophores and their conjugates are used as case studies for native iron transport. They enable the consideration of the correspondence of iron transport and antibacterial target location. The second line of study charts the rationale behind the clinical antibiotic cefiderocol. It illustrates the potential versatility for the design of new Trojan Horse-based antibiotics. Themes such as matching the warhead to a location where the siderophore delivers its cargo (i.e., periplasm vs. cytoplasm), whether or not a cleavable linker is required, and the relevance of cheaters to the effectiveness and selectivity of new conjugates will be explored. The effort to articulate rules has identified gaps in the current understanding of iron transport pathways and suggests directions for new investigations.
Collapse
Affiliation(s)
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269, USA;
| |
Collapse
|
4
|
Yang F, Yang F, Huang J, Yu H, Qiao S. Microcin C7 as a Potential Antibacterial-Immunomodulatory Agent in the Postantibiotic Era: Overview of Its Bioactivity Aspects and Applications. Int J Mol Sci 2024; 25:7213. [PMID: 39000321 PMCID: PMC11241378 DOI: 10.3390/ijms25137213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
In the postantibiotic era, the pathogenicity and resistance of pathogens have increased, leading to an increase in intestinal inflammatory disease. Bacterial infections remain the leading cause of animal mortality. With increasing resistance to antibiotics, there has been a significant decrease in resistance to both inflammation and disease in animals, thus decreasing production efficiency and increasing production costs. These side effects have serious consequences and have detracted from the development of China's pig industry. Microcin C7 (McC7) demonstrates potent antibacterial activity against a broad spectrum of pathogens, stable physicochemical properties, and low toxicity, reducing the likelihood of resistance development. Thus, McC7 has received increasing attention as a potential clinical antibacterial and immunomodulatory agent. McC7 has the potential to serve as a new generation of antibiotic substitutes; however, its commercial applications in the livestock and poultry industry have been limited. In this review, we summarize and discuss the biosynthesis, biochemical properties, structural characteristics, mechanism of action, and immune strategies of McC7. We also describe the ability of McC7 to improve intestinal health. Our aim in this study was to provide a theoretical basis for the application of McC7 as a new feed additive or new veterinary drug in the livestock and poultry breeding industry, thus providing a new strategy for alleviating resistance through feed and mitigating drug resistance. Furthermore, this review provides insight into the new functions and anti-infection mechanisms of bacteriocin peptides and proposes crucial ideas for the research, product development, and application of bacteriocin peptides in different fields, such as the food and medical industries.
Collapse
Affiliation(s)
- Fengjuan Yang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Biofeed Additives Key Laboratory, Beijing 100193, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Biofeed Additives Key Laboratory, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Biofeed Additives Key Laboratory, Beijing 100193, China
| |
Collapse
|
5
|
He L, Liu Q, Han S. Genome-Wide Analysis of Serine Carboxypeptidase-like Genes in Soybean and Their Roles in Stress Resistance. Int J Mol Sci 2024; 25:6712. [PMID: 38928417 PMCID: PMC11203753 DOI: 10.3390/ijms25126712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
The serine carboxypeptidase-like (SCPL) gene family plays a crucial role in the regulation of plant growth, development, and stress response through activities such as acyltransferases in plant secondary metabolism pathways. Although SCPL genes have been identified in various plant species, their specific functions and characteristics in soybean (Glycine max) have not yet been studied. We identified and characterized 73 SCPL genes, grouped into three subgroups based on gene structure and phylogenetic relationships. These genes are distributed unevenly across 20 soybean chromosomes and show varied codon usage patterns influenced by both mutation and selection pressures. Gene ontology (GO) enrichment suggests these genes are involved in plant cell wall regulation and stress responses. Expression analysis in various tissues and under stress conditions, including the presence of numerous stress-related cis-acting elements, indicated that these genes have varied expression patterns. This suggests that they play specialized roles such as modulating plant defense mechanisms against nematode infections, enhancing tolerance to drought and high salinity, and responding to cold stress, thereby helping soybean adapt to environmental stresses. Moreover, the expression of specific GmSCPLs was significantly affected following exposure to nematode infection, drought, high salt (NaCl), and cold stresses. Our findings underscore the potential of SCPL genes in enhancing stress resistance in soybean, providing a valuable resource for future genetic improvement and breeding strategies.
Collapse
Affiliation(s)
- Long He
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (L.H.); (Q.L.)
- Zhejiang Lab, Hangzhou 310058, China
| | - Qiannan Liu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (L.H.); (Q.L.)
| | - Shaojie Han
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (L.H.); (Q.L.)
- Zhejiang Lab, Hangzhou 310058, China
| |
Collapse
|
6
|
Zhou S, Miao D, Wen J, Zhang Q, Hu D, Liu N, Li J, Zhang Y, Wang K, Chen Y. Microcin C7-laden modified gelatin based biocomposite hydrogel for the treatment of periodontitis. Int J Biol Macromol 2024; 258:128293. [PMID: 38000587 DOI: 10.1016/j.ijbiomac.2023.128293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Periodontitis is an oral disease with the highest incidence globally, and plaque control is the key to its treatment. In this study, Microcin C7 was used to treat periodontitis, and a novel injectable temperature-sensitive sustained-release hydrogel was synthesized as an environmentally sensitive carrier for drug delivery. First, modified gelatin was formed from gelatin and glycidyl methacrylate. Then, Microcin C7-laden hydrogel was formed from cross-linking with double bonds between modified gelatin, N-isopropyl acrylamide, and 2-Methacryloyloxyethyl phosphorylcholine through radical polymerization, and the model drug Microcin C7 was loaded by electrostatic adsorption. The hydrogel has good temperature sensitivity, self-healing, and injectable properties. In vitro results showed that the hydrogel could slowly and continuously release Microcin C7 with good biocompatibility and biodegradability, with a remarkable antibacterial effect on Porphyromonas gingivalis. It also confirmed the antibacterial and anti-inflammatory effects of Microcin C7-laden hydrogel in a periodontitis rat model. The results showed that Microcin C7-laden hydrogel is a promising candidate for local drug delivery systems in periodontitis.
Collapse
Affiliation(s)
- Shuo Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China; Department of Stomatology, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an 710004, China
| | - Di Miao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jinpeng Wen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qianqian Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Datao Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Na Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jinyang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yifan Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yue Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
7
|
Shang L, Zhou J, Tu J, Zeng X, Qiao S. Evaluation of Effectiveness and Safety of Microcin C7 in Weaned Piglets. Animals (Basel) 2022; 12:ani12233267. [PMID: 36496787 PMCID: PMC9739829 DOI: 10.3390/ani12233267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The effects and safety of dietary supplementation with Microcin C7 (C7) were evaluated in 216 weaned piglets. The pigs were given a control corn−soybean meal basal diet or C7 diet (control diet supplemented with 250, 500, 750, 1000, or 5000 mg C7/kg diets). Compared with the control group, the 500 mg/kg C7 supplementation group had better intestinal morphological indicators (p < 0.05), which may help maintain intestinal epithelial function and increase the growth performance (p < 0.05) and apparent total tract digestibility (p < 0.05). The diarrhea indexes of the 250, 500, and 750 mg/kg groups were significantly lower than that of the control group at 0−28 d (p < 0.05), and the 500 mg/kg group had the lowest diarrhea indexes (linear and quadratic, p < 0.05). A comprehensive analysis showed that microbial structure was significantly correlated with the degree of diarrhea, and the diarrhea-alleviating effect of C7 may be related to its selective regulation of specific microbial taxa. The 250 and 500 mg/kg C7 supplementation also significantly improved several immune indices of piglets (p < 0.05). Compared with the control diet, 5000 mg/kg C7 supplementation had no significant adverse effect on all parameters. Overall, the 250−500 mg/kg dose had the best effect, and the highest dose (5000 mg/kg) posed no toxicity risk. Therefore, C7 appears safe for use as an alternative to antibiotic growth promoters in weaned piglets.
Collapse
Affiliation(s)
- Lijun Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Junyan Zhou
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Jiayu Tu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62733588; Fax: +86-10-62733688
| |
Collapse
|
8
|
Wang Y, Zhao J, Deng X, Wang P, Geng S, Gao W, Guo P, Chen Q, Li C, Qu Y. Genome-wide analysis of serine carboxypeptidase-like protein (SCPL) family and functional validation of Gh_SCPL42 unchromosome conferring cotton Verticillium der Verticillium wilt stress in Gossypium hirsutum. BMC PLANT BIOLOGY 2022; 22:421. [PMID: 36045341 PMCID: PMC9434971 DOI: 10.1186/s12870-022-03804-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Serine carboxypeptidase-like protein (SCPL) plays an important role in response to stress in plant. However, our knowledge of the function of the SCPL gene family is limited. RESULTS In this study, a comprehensive and systematic analysis of SCPL gene family was conducted to explore the phylogeny and evolution of the SCPL gene in Gossypium hirsutum. The phenotype and molecular mechanism of silencing of the Gh_SCPL42 under Verticillium wilt stress was also studied. Our results showed that 96 SCPL genes were observed in genome of G. hirsutum, which distributed on 25 chromosomes and most of them were located in the nucleus. The phylogenetic tree analysis showed that members of SCPL gene family can be divided into three subgroups in G. hirsutum, which are relatively conservative in evolution. SCPL gene has a wide range of tissue expression types in G. hirsutum. Promoter analysis showed that the most cis-acting elements related to MeJA and ABA were contained. Through RNA-seq combined with genotyping, it was found that 11 GhSCPL genes not only had significant expression changes during Verticillium wilt stress but also had differential SNPs in the upstream, downstream, exonic or intronic regions. The expression of these 11 genes in the resistant (Zhongzhimian 2) and susceptible (Junmian 1) materials was further analyzed by qRT-PCR, it was found that 6 genes showed significant expression differences in the two materials. Among them, Gh_SCPL42 has the most obvious expression change. Furthermore, virus-induced gene silencing (VIGS) showed necrosis and yellowing of leaves and significantly higher disease severity index (DSI) and disease severity rate (DSR) values in VIGS plants than in control silenced Gh_SCPL42 plants. Moreover, the expression levels of genes related to the SA and JA pathways were significantly downregulated. These results show that Gh_SCPL42 might improve resistance to Verticillium wilt through the SA and JA pathways in G. hirsutum. CONCLUSION In conclusion, our findings indicated that Gh_SCPL42 gene plays an important role in resistance to Verticillium wilt in cotton. It was provided an important theoretical basis for further research on the function of SCPL gene family and the molecular mechanism of resistance to Verticillium wilt in cotton.
Collapse
Affiliation(s)
- Yuxiang Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Jieyin Zhao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Xiaojuan Deng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Peng Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Shiwei Geng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Wenju Gao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Peipei Guo
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Chunping Li
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830052, China.
| | - Yanying Qu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| |
Collapse
|
9
|
Dai Z, Shang L, Wang F, Zeng X, Yu H, Liu L, Zhou J, Qiao S. Effects of Antimicrobial Peptide Microcin C7 on Growth Performance, Immune and Intestinal Barrier Functions, and Cecal Microbiota of Broilers. Front Vet Sci 2022; 8:813629. [PMID: 35071396 PMCID: PMC8780134 DOI: 10.3389/fvets.2021.813629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Microcin C7 is an antimicrobial peptide produced by Escherichia coli, composed of a heptapeptide with a modified adenosine monophosphate. This study was performed to evaluate the effects of Microcin C7 as a potential substrate to traditional antibiotics on growth performance, immune functions, intestinal barrier, and cecal microbiota of broilers. In the current study, 300 healthy Arbor Acres broiler chicks were randomly assigned to one of five treatments including a corn-soybean basal diet and basal diet supplemented with antibiotic or 2, 4, and 6 mg/kg Microcin C7. Results showed that Microcin C7 significantly decreased the F/G ratio of broilers; significantly increased the levels of serum cytokine IL-10, immunoglobulins IgG and IgM, and ileal sIgA secretion; significantly decreased the level of serum cytokine TNF-α. Microcin C7 significantly increased villus height and V/C ratio and significantly decreased crypt depth in small intestine of broilers. Microcin C7 significantly increased gene expression of tight junction protein Occludin and ZO-1 and significantly decreased gene expression of pro-inflammatory and chemokine TNF-α, IL-8, IFN-γ, Toll-like receptors TLR2 and TLR4, and downstream molecular MyD88 in the jejunum of broilers. Microcin C7 significantly increased the number of Lactobacillus and decreased the number of total bacteria and Escherichia coli in the cecum of broilers. Microcin C7 also significantly increased short-chain fatty acid (SCFA) and lactic acid levels in the ileum and cecum of broilers. In conclusion, diet supplemented with Microcin C7 significantly improved growth performance, strengthened immune functions, enhanced intestinal barrier, and regulated cecal microbiota of broilers. Therefore, the antimicrobial peptide Microcin C7 may have the potential to be an ideal alternative to antibiotic.
Collapse
Affiliation(s)
- Ziqi Dai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| | - Lijun Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| | - Fengming Wang
- Fengguangde Laboratory of Sichuan Tieqilishi Group, Mianyang, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| | - Haitao Yu
- Department of Immunology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Lu Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| | - Jianchuan Zhou
- Fengguangde Laboratory of Sichuan Tieqilishi Group, Mianyang, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Bio-Feed Additives Key Laboratory, Beijing, China
| |
Collapse
|
10
|
Wang X, Deng X, Zhu D, Duan W, Zhang J, Yan Y. N-linked glycoproteome analysis reveals central glycosylated proteins involved in wheat early seedling growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:327-337. [PMID: 33906120 DOI: 10.1016/j.plaphy.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Glycosylation is an important protein post-translational modification in eukaryotic organisms. It is involved in many important life processes, such as cell recognition, differentiation, development, signal transduction and immune response. This study carried out the first N-linked glycosylation proteome analysis of wheat seedling leaves using HILIC glycosylation enrichment, chemical deglycosylation, HPLC separation and tandem mass spectrometric identification. In total, we detected 308 glycosylated peptides and 316 glycosylated sites corresponding to 248 unique glycoproteins. The identified glycoproteins were mainly concentrated in plasma membranes (25.6%), cell wall (16.8%) and extracellular area (16%). In terms of molecular function, 65% glycoproteins belonged to various enzymes with catalytic activity such as kinase, carboxypeptidase, peroxidase and phosphatase, and, particularly, 25% of glycoproteins were related to binding functions. These glycoproteins are involved in cell wall reconstruction, biomacromolecular metabolism, signal transduction, endoplasmic reticulum quality control and stress response. Analysis indicated that 57.66% of glycoproteins were highly conserved in other plant species while 42.34% of glycoproteins went unidentified among the conserved glycosylated homologous proteins in other plant species; these may be the new N-linked glycosylated proteins first identified in wheat. The glycosylation sites generally occurred on the random coil, which could play roles in maintaining the structural stability of proteins. PNGase F digestion and glycosylation site mutations further verified the glycosylation modification and glycosylation sites of LRR receptor-like serine/threonine-protein kinase (LRR-RLK) and Beta-D-glucan exohydrolase (β-D-GEH). Our results indicated that N-linked glycosylated proteins could play important roles in the early seedling growth of wheat.
Collapse
Affiliation(s)
- Xueqian Wang
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Xiong Deng
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Dong Zhu
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Wenjing Duan
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Junwei Zhang
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| |
Collapse
|
11
|
Xu X, Zhang L, Zhao W, Fu L, Han Y, Wang K, Yan L, Li Y, Zhang XH, Min DH. Genome-wide analysis of the serine carboxypeptidase-like protein family in Triticum aestivum reveals TaSCPL184-6D is involved in abiotic stress response. BMC Genomics 2021; 22:350. [PMID: 33992092 PMCID: PMC8126144 DOI: 10.1186/s12864-021-07647-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Background The serine carboxypeptidase-like protein (SCPL) family plays a vital role in stress response, growth, development and pathogen defense. However, the identification and functional analysis of SCPL gene family members have not yet been performed in wheat. Results In this study, we identified a total of 210 candidate genes encoding SCPL proteins in wheat. According to their structural characteristics, it is possible to divide these members into three subfamilies: CPI, CPII and CPIII. We uncovered a total of 209 TaSCPL genes unevenly distributed across 21 wheat chromosomes, of which 65.7% are present in triads. Gene duplication analysis showed that ~ 10.5% and ~ 64.8% of the TaSCPL genes are derived from tandem and segmental duplication events, respectively. Moreover, the Ka/Ks ratios between duplicated TaSCPL gene pairs were lower than 0.6, which suggests the action of strong purifying selection. Gene structure analysis showed that most of the TaSCPL genes contain multiple introns and that the motifs present in each subfamily are relatively conserved. Our analysis on cis-acting elements showed that the promoter sequences of TaSCPL genes are enriched in drought-, ABA- and MeJA-responsive elements. In addition, we studied the expression profiles of TaSCPL genes in different tissues at different developmental stages. We then evaluated the expression levels of four TaSCPL genes by qRT-PCR, and selected TaSCPL184-6D for further downstream analysis. The results showed an enhanced drought and salt tolerance among TaSCPL184-6D transgenic Arabidopsis plants, and that the overexpression of the gene increased proline and decreased malondialdehyde levels, which might help plants adapting to adverse environments. Our results provide comprehensive analyses of wheat SCPL genes that might work as a reference for future studies aimed at improving drought and salt tolerance in wheat. Conclusions We conducte a comprehensive bioinformatic analysis of the TaSCPL gene family in wheat, which revealing the potential roles of TaSCPL genes in abiotic stress. Our analysis also provides useful resources for improving the resistance of wheat. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07647-6.
Collapse
Affiliation(s)
- Xiaomin Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lili Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Wan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Fu
- Xinxiang Academy of Agricultural Sciences of He'nan Province, Xinxiang, China
| | - Yuxuan Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Keke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Luyu Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ye Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao-Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Dong-Hong Min
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
12
|
Travin DY, Severinov K, Dubiley S. Natural Trojan horse inhibitors of aminoacyl-tRNA synthetases. RSC Chem Biol 2021; 2:468-485. [PMID: 34382000 PMCID: PMC8323819 DOI: 10.1039/d0cb00208a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
For most antimicrobial compounds with intracellular targets, getting inside the cell is the major obstacle limiting their activity. To pass this barrier some antibiotics mimic the compounds of specific interest for the microbe (siderophores, peptides, carbohydrates, etc.) and hijack the transport systems involved in their active uptake followed by the release of a toxic warhead inside the cell. In this review, we summarize the information about the structures, biosynthesis, and transport of natural inhibitors of aminoacyl-tRNA synthetases (albomycin, microcin C-related compounds, and agrocin 84) that rely on such "Trojan horse" strategy to enter the cell. In addition, we provide new data on the composition and distribution of biosynthetic gene clusters reminiscent of those coding for known Trojan horse aminoacyl-tRNA synthetases inhibitors. The products of these clusters are likely new antimicrobials that warrant further investigation.
Collapse
Affiliation(s)
- Dmitrii Y Travin
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
- Waksman Institute for Microbiology, Rutgers, Piscataway New Jersey USA
| | - Svetlana Dubiley
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
| |
Collapse
|
13
|
Telhig S, Ben Said L, Zirah S, Fliss I, Rebuffat S. Bacteriocins to Thwart Bacterial Resistance in Gram Negative Bacteria. Front Microbiol 2020; 11:586433. [PMID: 33240239 PMCID: PMC7680869 DOI: 10.3389/fmicb.2020.586433] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
An overuse of antibiotics both in human and animal health and as growth promoters in farming practices has increased the prevalence of antibiotic resistance in bacteria. Antibiotic resistant and multi-resistant bacteria are now considered a major and increasing threat by national health agencies, making the need for novel strategies to fight bugs and super bugs a first priority. In particular, Gram-negative bacteria are responsible for a high proportion of nosocomial infections attributable for a large part to Enterobacteriaceae, such as pathogenic Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To cope with their highly competitive environments, bacteria have evolved various adaptive strategies, among which the production of narrow spectrum antimicrobial peptides called bacteriocins and specifically microcins in Gram-negative bacteria. They are produced as precursor peptides that further undergo proteolytic cleavage and in many cases more or less complex posttranslational modifications, which contribute to improve their stability and efficiency. Many have a high stability in the gastrointestinal tract where they can target a single pathogen whilst only slightly perturbing the gut microbiota. Several microcins and antibiotics can bind to similar bacterial receptors and use similar pathways to cross the double-membrane of Gram-negative bacteria and reach their intracellular targets, which they also can share. Consequently, bacteria may use common mechanisms of resistance against microcins and antibiotics. This review describes both unmodified and modified microcins [lasso peptides, siderophore peptides, nucleotide peptides, linear azole(in)e-containing peptides], highlighting their potential as weapons to thwart bacterial resistance in Gram-negative pathogens and discusses the possibility of cross-resistance and co-resistance occurrence between antibiotics and microcins in Gram-negative bacteria.
Collapse
Affiliation(s)
- Soufiane Telhig
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Laila Ben Said
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
14
|
Smits SHJ, Schmitt L, Beis K. Self-immunity to antibacterial peptides by ABC transporters. FEBS Lett 2020; 594:3920-3942. [PMID: 33040342 DOI: 10.1002/1873-3468.13953] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Bacteria produce under certain stress conditions bacteriocins and microcins that display antibacterial activity against closely related species for survival. Bacteriocins and microcins exert their antibacterial activity by either disrupting the membrane or inhibiting essential intracellular processes of the bacterial target. To this end, they can lyse bacterial membranes and cause subsequent loss of their integrity or nutrients, or hijack membrane receptors for internalisation. Both bacteriocins and microcins are ribosomally synthesised and several are posttranslationally modified, whereas others are not. Such peptides are also toxic to the producer bacteria, which utilise immunity proteins or/and dedicated ATP-binding cassette (ABC) transporters to achieve self-immunity and peptide export. In this review, we discuss the structure and mechanism of self-protection that is conferred by these ABC transporters.
Collapse
Affiliation(s)
- Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany.,Center for Structural Studies, Heinrich-Heine-University, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
| |
Collapse
|
15
|
Travin DY, Bikmetov D, Severinov K. Translation-Targeting RiPPs and Where to Find Them. Front Genet 2020; 11:226. [PMID: 32296456 PMCID: PMC7136475 DOI: 10.3389/fgene.2020.00226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 11/15/2022] Open
Abstract
Prokaryotic translation is among the major targets of diverse natural products with antibacterial activity including several classes of clinically relevant antibiotics. In this review, we summarize the information about the structure, biosynthesis, and modes of action of translation inhibiting ribosomally synthesized and post-translationally modified peptides (RiPPs). Azol(in)e-containing RiPPs are known to target translation, and several new compounds inhibiting the ribosome have been characterized recently. We performed a systematic search for biosynthetic gene clusters (BGCs) of azol(in)e-containing RiPPs. This search uncovered several groups of clusters that likely direct the synthesis of novel compounds, some of which may be targeting the ribosome.
Collapse
Affiliation(s)
- Dmitrii Y Travin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Bikmetov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Waksman Institute for Microbiology, Rutgers, Piscataway, NJ, United States
| |
Collapse
|
16
|
Grinter R, Lithgow T. The structure of the bacterial iron-catecholate transporter Fiu suggests that it imports substrates via a two-step mechanism. J Biol Chem 2019; 294:19523-19534. [PMID: 31712312 PMCID: PMC6926462 DOI: 10.1074/jbc.ra119.011018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
The ferric iron uptake (Fiu) transporter from Escherichia coli functions in the transport of iron–catecholate complexes across the bacterial outer membrane, providing the bacterium with iron, which is essential for growth. Recently it has become clear that Fiu also represents a liability for E. coli because its activity allows import of antimicrobial compounds that mimic catecholate. This inadvertent import suggests the potential utility of antimicrobial catechol siderophore mimetics in managing bacterial infections. However, to fully exploit these compounds, a detailed understanding of the mechanism of transport through Fiu and related transporters is required. To address this question, we determined the crystal structure of Fiu at 2.1–2.9 Å and analyzed its function in E. coli. Through analysis of the Fiuo crystal structure, in combination with in silico docking and mutagenesis, we provide insight into how Fiu and related transporters bind catecholate in a surface-exposed cavity. Moreover, through determination of the structure of Fiu in multiple crystal states, we revealed the presence of a large, selectively gated cavity in the interior of this transporter. This chamber is large enough to accommodate the Fiu substrate and may allow import of substrates via a two-step mechanism. This would avoid channel formation through the transporter and inadvertent import of toxic molecules. As Fiu and its homologs are the targets of substrate-mimicking antibiotics, these results may assist in the development of these compounds.
Collapse
Affiliation(s)
- Rhys Grinter
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia .,Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800 Victoria, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800 Victoria, Australia
| |
Collapse
|
17
|
Baquero F, Lanza VF, Baquero MR, Del Campo R, Bravo-Vázquez DA. Microcins in Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere. Front Microbiol 2019; 10:2261. [PMID: 31649628 PMCID: PMC6795089 DOI: 10.3389/fmicb.2019.02261] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Microcins are low-molecular-weight, ribosomally produced, highly stable, bacterial-inhibitory molecules involved in competitive, and amensalistic interactions between Enterobacteriaceae in the intestine. These interactions take place in a highly complex chemical landscape, the intestinal eco-active chemosphere, composed of chemical substances that positively or negatively influence bacterial growth, including those originated from nutrient uptake, and those produced by the action of the human or animal host and the intestinal microbiome. The contribution of bacteria results from their effect on the host generated molecules, on food and digested food, and organic substances from microbial origin, including from bacterial degradation. Here, we comprehensively review the main chemical substances present in the human intestinal chemosphere, particularly of those having inhibitory effects on microorganisms. With this background, and focusing on Enterobacteriaceae, the most relevant human pathogens from the intestinal microbiota, the microcin’s history and classification, mechanisms of action, and mechanisms involved in microcin’s immunity (in microcin producers) and resistance (non-producers) are reviewed. Products from the chemosphere likely modulate the ecological effects of microcin activity. Several cross-resistance mechanisms are shared by microcins, colicins, bacteriophages, and some conventional antibiotics, which are expected to produce cross-effects. Double-microcin-producing strains (such as microcins MccM and MccH47) have been successfully used for decades in the control of pathogenic gut organisms. Microcins are associated with successful gut colonization, facilitating translocation and invasion, leading to bacteremia, and urinary tract infections. In fact, Escherichia coli strains from the more invasive phylogroups (e.g., B2) are frequently microcinogenic. A publicly accessible APD3 database http://aps.unmc.edu/AP/ shows particular genes encoding microcins in 34.1% of E. coli strains (mostly MccV, MccM, MccH47, and MccI47), and much less in Shigella and Salmonella (<2%). Some 4.65% of Klebsiella pneumoniae are microcinogenic (mostly with MccE492), and even less in Enterobacter or Citrobacter (mostly MccS). The high frequency and variety of microcins in some Enterobacteriaceae indicate key ecological functions, a notion supported by their dominance in the intestinal microbiota of biosynthetic gene clusters involved in the synthesis of post-translationally modified peptide microcins.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Val F Lanza
- Bioinformatics Unit, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Maria-Rosario Baquero
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| | - Rosa Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Daniel A Bravo-Vázquez
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| |
Collapse
|
18
|
Dong SH, Kulikovsky A, Zukher I, Estrada P, Dubiley S, Severinov K, Nair SK. Biosynthesis of the RiPP trojan horse nucleotide antibiotic microcin C is directed by the N-formyl of the peptide precursor. Chem Sci 2018; 10:2391-2395. [PMID: 30881667 PMCID: PMC6385645 DOI: 10.1039/c8sc03173h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023] Open
Abstract
The N-formyl moiety of the peptide precursor directs the biosynthesis of the RiPP trojan horse nucleotide antibiotic McC.
Microcin C7 (McC) is a peptide antibiotic modified by a linkage of the terminal isoAsn amide to AMP via a phosphoramidate bond. Post-translational modification on this ribosomally produced heptapeptide precursor is carried out by MccB, which consumes two equivalents of ATP to generate the N–P linkage. We demonstrate that MccB only efficiently processes the precursor heptapeptide that retains the N-formylated initiator Met (fMet). Binding studies and kinetic measurements evidence the role of the N-formyl moiety. Structural data show that the N-formyl peptide binding results in an ordering of residues in the MccB “crossover loop”, which dictates specificity in homologous ubiquitin activating enzymes. The N-formyl peptide exhibits substrate inhibition, and cannot be displaced from MccB by the desformyl counterpart. Such substrate inhibition may be a strategy to avert unwanted McC buildup and avert toxicity in the cytoplasm of producing organisms.
Collapse
Affiliation(s)
- Shi-Hui Dong
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Illinois , USA . .,Carl Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Illinois , USA
| | - Alexey Kulikovsky
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Illinois , USA . .,Institute of Gene Biology , Russian Academy of Science , 34/5 Vavilo str. , 11934 Moscow , Russia.,Center for Life Sciences , Skolkov Institute of Science and Technology , 3 Nobel str. , 143026 Moscow , Russia
| | - Inna Zukher
- Institute of Gene Biology , Russian Academy of Science , 34/5 Vavilo str. , 11934 Moscow , Russia
| | - Paola Estrada
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Illinois , USA .
| | - Svetlana Dubiley
- Institute of Gene Biology , Russian Academy of Science , 34/5 Vavilo str. , 11934 Moscow , Russia.,Center for Life Sciences , Skolkov Institute of Science and Technology , 3 Nobel str. , 143026 Moscow , Russia
| | - Konstantin Severinov
- Institute of Gene Biology , Russian Academy of Science , 34/5 Vavilo str. , 11934 Moscow , Russia.,Center for Life Sciences , Skolkov Institute of Science and Technology , 3 Nobel str. , 143026 Moscow , Russia.,Waksman Institute for Microbiology , 190 Frelinghuysen Road , Piscataway , New Jersey , USA .
| | - Satish K Nair
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Illinois , USA . .,Carl Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Illinois , USA.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Illinois , USA
| |
Collapse
|
19
|
Meyer K, Addy C, Akashi S, Roper DI, Tame JR. The crystal structure and oligomeric form of Escherichia coli l , d -carboxypeptidase A. Biochem Biophys Res Commun 2018; 499:594-599. [DOI: 10.1016/j.bbrc.2018.03.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 11/16/2022]
|
20
|
Ran R, Zeng H, Zhao D, Liu R, Xu X. The Novel Property of Heptapeptide of Microcin C7 in Affecting the Cell Growth of Escherichia coli. Molecules 2017; 22:E432. [PMID: 28282893 PMCID: PMC6155343 DOI: 10.3390/molecules22030432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/06/2017] [Indexed: 12/01/2022] Open
Abstract
Microcin C7 (McC), widely distributed in enterobacteria, is a promising antibiotic against antibiotic resistance [...].
Collapse
Affiliation(s)
- Rensen Ran
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huan Zeng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dong Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ruiyuan Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xia Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
21
|
Zhang S, Zhou R, Zhao H, Korpelainen H, Li C. iTRAQ-based quantitative proteomic analysis gives insight into sexually different metabolic processes of poplars under nitrogen and phosphorus deficiencies. Proteomics 2015; 16:614-28. [PMID: 26698923 DOI: 10.1002/pmic.201500197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/19/2015] [Accepted: 12/17/2015] [Indexed: 11/10/2022]
Abstract
Male and female poplars (Populus cathayana Rehd.) respond differently to nitrogen (N) and phosphorus (P) deficiencies. In this study, an iTRAQ-based quantitative proteomic analysis was performed. N and P deficiencies caused 189 and 144 proteins to change in abundance in males and 244 and 464 in females, respectively. Compared to N- and P-deficient males, both N- and P-deficient females showed a wider range of changes in proteins that are involved in amino acid, carbohydrate and protein metabolism, and the sexual differences were significant. When comparing the effects of N- and P-deficiencies, N-deficient females expressed more changes in proteins that are involved in stress responses and gene expression regulation, while P-deficient females showed more changes in proteins that are involved in energy and lipid metabolism, stress responses and gene expression regulation. The quantitative RT-PCR analysis of stress-related proteins showed that males have a better expression correlation between mRNA and protein levels than do females. This study shows that P. cathayana females are more sensitive and have more rapid metabolic mechanisms when responding to N and P deficiencies than do males, and P deficiency has a wider range of effects on females than does N deficiency.
Collapse
Affiliation(s)
- Sheng Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, P. R. China
| | - Rong Zhou
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongxia Zhao
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, P. R. China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Chunyang Li
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, P. R. China.,The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, P. R. China
| |
Collapse
|
22
|
Agarwal V, Vondenhoff G, Gadakh B, Severinov K, Van Aerschot A, Nair SK. Exploring the substrate promiscuity of an antibiotic inactivating enzyme. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00204k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide–nucleotide conjugates have been extensively studied as scaffolds for the development of new antibiotics.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Biophysics and Computational Biology and Institute for Genomic Biology
- University of Illinois at Urbana Champaign
- USA
| | - Gaston Vondenhoff
- Rega Institute for Medical Research, Medicinal Chemistry
- KU Leuven
- Belgium
| | - Bharat Gadakh
- Rega Institute for Medical Research, Medicinal Chemistry
- KU Leuven
- Belgium
| | - Konstantin Severinov
- Saint Petersburg State Polytechnical University
- St. Petersburg, Russia
- Institute of Molecular Genetics
- Russian Academy of Sciences
- Moscow, Russia
| | | | - Satish K. Nair
- Center for Biophysics and Computational Biology and Institute for Genomic Biology
- University of Illinois at Urbana Champaign
- USA
| |
Collapse
|
23
|
Abstract
Gram-negative phytopathogens cause significant losses in a diverse range of economically important crop plants. The effectiveness of traditional countermeasures, such as the breeding and introduction of resistant cultivars, is often limited by the dearth of available sources of genetic resistance. An alternative strategy to reduce loss to specific bacterial phytopathogens is to use narrow-spectrum protein antibiotics such as colicin-like bacteriocins as biocontrol agents. A number of colicin-like bacteriocins active against phytopathogenic bacteria have been described previously as have strategies for their application to biocontrol. In the present paper, we discuss these strategies and our own recent work on the identification and characterization of candidate bacteriocins and how these potent and selective antimicrobial agents can be effectively applied to the control of economically important plant disease.
Collapse
|
24
|
Wencewicz TA, Walsh CT. Pseudomonas syringae self-protection from tabtoxinine-β-lactam by ligase TblF and acetylase Ttr. Biochemistry 2012; 51:7712-25. [PMID: 22994681 DOI: 10.1021/bi3011384] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plant pathogenic Pseudomonas syringae produce the hydroxy-β-lactam antimetabolite tabtoxinine-β-lactam (TβL) as a time-dependent inactivating glutamine analogue of plant glutamine synthetases. The producing pseudomonads use multiple modes of self-protection, two of which are characterized in this study. The first is the dipeptide ligase TblF which converts tabtoxinine-β-lactam to the TβL-Thr dipeptide known as tabtoxin. The dipeptide is not recognized by glutamine synthetase. This represents a Trojan Horse strategy: the dipeptide is secreted, taken up by dipeptide permeases in neighboring cells, and TβL is released by peptidase action. The second self-protection mode is elaboration by the acetyltransferase Ttr, which acetylates the α-amino group of the proximal inactivator TβL, but not the tabtoxin dipeptide.
Collapse
Affiliation(s)
- Timothy A Wencewicz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | |
Collapse
|