1
|
Zhao B, Liu Y, Wang Z, Zhang Q, Bai X. Long-Term Bridge Training Induces Functional Plasticity Changes in the Brain of Early-Adult Individuals. Behav Sci (Basel) 2024; 14:469. [PMID: 38920802 PMCID: PMC11200855 DOI: 10.3390/bs14060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to investigate the impact of extended bridge expertise on rapid perceptual processing and brain functional plasticity in early adulthood, utilizing functional magnetic resonance imaging (fMRI). In this investigation, we compared 6 high-level college bridge players with 25 college students lacking bridge experience, assessing their intelligence and working memory. Additionally, we scrutinized behavioral performance and whole-brain activation patterns during an image perceptual judgment task. Findings indicated significant group and interaction effects at the behavioral level. Bridge players exhibited prolonged reaction times and enhanced accuracy on card tasks. At the neural level, the activation level of bridge players in the occipital lobe exceeded that of ordinary college students, with more pronounced group effects in the motor area and inferior parietal lobule during card tasks. This implies that bridge expertise in early adulthood induces functional plasticity changes in regions associated with visual processing and automated mathematical computation.
Collapse
Affiliation(s)
- Bingjie Zhao
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Yan Liu
- Institute of Sports Science, Tianjin Normal University, Tianjin 300387, China
| | - Zheng Wang
- Inner Mongolia Mental Health Center, Brain Hospital of Inner Mongolia Autonomous Region, Hohhot 010000, China
- School of Psychology, Inner Mongolia Normal University, Hohhot 010000, China
| | - Qihan Zhang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Xuejun Bai
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
2
|
Sun J, Gauthier I. Does food recognition depend on color? Psychon Bull Rev 2023; 30:2219-2229. [PMID: 37231176 DOI: 10.3758/s13423-023-02298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/27/2023]
Abstract
Color is considered important in food perception, but its role in food-specific visual mechanisms is unclear. We explore this question in North American adults. We build on work revealing contributions from domain-general and domain-specific abilities in food recognition and a negative correlation between the domain-specific component and food neophobia (FN, aversion to novel food). In Study 1, participants performed two food-recognition tests, one in color and one in grayscale. Removing color reduced performance, but food recognition was predicted by domain-general and -specific abilities, and FN negatively correlated with food recognition. In Study 2, we removed color from both food tests. Food recognition was still predicted by domain-general and food-specific abilities, but with a relation between food-specific ability and FN. In Study 3, color-blind men reported lower FN than men with normal color perception. These results suggest two separate food-specific recognition mechanisms, only one of which is dependent on color.
Collapse
Affiliation(s)
- Jisoo Sun
- Department of Psychology, Vanderbilt University, 111 21st Avenue South, Nashville, TN, 37240, USA
| | - Isabel Gauthier
- Department of Psychology, Vanderbilt University, 111 21st Avenue South, Nashville, TN, 37240, USA.
| |
Collapse
|
3
|
McGugin RW, Sunday MA, Gauthier I. The neural correlates of domain-general visual ability. Cereb Cortex 2023; 33:4280-4292. [PMID: 36045003 PMCID: PMC11486684 DOI: 10.1093/cercor/bhac342] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022] Open
Abstract
People vary in their general ability to compare, identify, and remember objects. Research using latent variable modeling identifies a domain-general visual recognition ability (called o) that reflects correlations among different visual tasks and categories. We measure associations between a psychometrically-sensitive measure of o and a neurometrically-sensitive measure of visual sensitivity to shape. We report evidence for distributed neural correlates of o using functional and anatomical regions-of-interest (ROIs) as well as whole brain analyses. Neural selectivity to shape is associated with o in several regions of the ventral pathway, as well as additional foci in parietal and premotor cortex. Multivariate analyses suggest the distributed effects in ventral cortex reflect a common mechanism. The network of brain areas where neural selectivity predicts o is similar to that evoked by the most informative features for object recognition in prior work, showing convergence of 2 different approaches on identifying areas that support the best object recognition performance. Because o predicts performance across many visual tasks for both novel and familiar objects, we propose that o could predict the magnitude of neural changes in task-relevant areas following experience with specific task and object category.
Collapse
Affiliation(s)
- Rankin W McGugin
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, Nashville, TN 37240, United States
| | - Mackenzie A Sunday
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, Nashville, TN 37240, United States
| | - Isabel Gauthier
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, Nashville, TN 37240, United States
| |
Collapse
|
4
|
Trujillo LT, Anderson EM. Facial typicality and attractiveness reflect an ideal dimension of face structure. Cogn Psychol 2023; 140:101541. [PMID: 36587465 PMCID: PMC9899519 DOI: 10.1016/j.cogpsych.2022.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022]
Abstract
Face perception and recognition are important processes for social interaction and communication among humans, so understanding how faces are mentally represented and processed has major implications. At the same time, faces are just some of the many stimuli that we encounter in our everyday lives. Therefore, more general theories of how we represent objects might also apply to faces. Contemporary research on the mental representation of faces has centered on two competing theoretical frameworks that arose from more general categorization research: prototype-based face representation and exemplar-based face representation. Empirically distinguishing between these frameworks is difficult and neither one has been ruled out. In this paper, we advance this area of research in three ways. First, we introduce two additional frameworks for mental representation of categories, varying abstraction and ideal representation, which have not been applied to face perception and recognition before. Second, we fit formal computational models of all four of these theories to human perceptual judgments of the typicality and attractiveness (a strong correlate of typicality) of 100 young adult Caucasian female faces, with the models expressed within a face space derived from facial similarity judgments via multidimensional scaling. Third, we predict the perceived typicality and attractiveness of the faces using these models and compare the predictive performance of each to the empirical data. We found that of all four models, the ideal representation model provided the best account of perceived typicality and attractiveness for the present set of faces, although all models showed discrepancies from the empirical data. These findings demonstrate the relevance of mental categorization processes for representing faces.
Collapse
Affiliation(s)
- Logan T Trujillo
- Department of Psychology, UAC 253, Texas State University, 601 University Dr., San Marcos TX 78666, USA.
| | - Erin M Anderson
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton St., Austin, TX 78712, USA.
| |
Collapse
|
5
|
Cho FTH, Tan CY, Wong YK. Role of line junctions in expert object recognition: The case of musical notation. Psychophysiology 2023; 60:e14236. [PMID: 36653897 DOI: 10.1111/psyp.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 01/20/2023]
Abstract
Line junctions are well-known to be important for real-world object recognition, and sensitivity to line junctions is enhanced with perceptual experience with an object category. However, it remains unclear whether these very simple visual features are involved in expert object representations at the neural level, and if yes, at what level(s) they are involved. In this EEG study, 31 music reading experts and 31 novices performed a one-back task with intact musical notation, musical notation with line junctions removed and pseudo-letters. We observed more separable neural representations of musical notation from pseudo-letter for experts than for novices when line junctions were present and during 180-280 ms after stimulus onset. Also, the presence of line junctions was better decoded in experts than in novices during 320-580 ms, and the decoding accuracy in this time window predicted the behavioral recognition advantage of musical notation when line junctions were present. These suggest that, with perceptual expertise, line junctions are more involved in category selective representation of objects, and are more explicitly represented in later stages of processing to support expert recognition performance.
Collapse
Affiliation(s)
- Felix Tze-Hei Cho
- Department of Educational Psychology, Faculty of Education, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Cheng Yong Tan
- Faculty of Education, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yetta Kwailing Wong
- Department of Educational Psychology, Faculty of Education, The Chinese University of Hong Kong, Shatin, Hong Kong.,School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
6
|
Chen X, Liu X, Parker BJ, Zhen Z, Weiner KS. Functionally and structurally distinct fusiform face area(s) in over 1000 participants. Neuroimage 2023. [PMID: 36427753 DOI: 10.1101/2022.04.08.487562v1.full.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.
Collapse
Affiliation(s)
- Xiayu Chen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xingyu Liu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Department of Psychology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
7
|
Chen X, Liu X, Parker BJ, Zhen Z, Weiner KS. Functionally and structurally distinct fusiform face area(s) in over 1000 participants. Neuroimage 2023; 265:119765. [PMID: 36427753 PMCID: PMC9889174 DOI: 10.1016/j.neuroimage.2022.119765] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.
Collapse
Affiliation(s)
- Xiayu Chen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xingyu Liu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Department of Psychology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
8
|
Sexton NJ, Love BC. Reassessing hierarchical correspondences between brain and deep networks through direct interface. SCIENCE ADVANCES 2022; 8:eabm2219. [PMID: 35857493 PMCID: PMC9278854 DOI: 10.1126/sciadv.abm2219] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/27/2022] [Indexed: 05/16/2023]
Abstract
Functional correspondences between deep convolutional neural networks (DCNNs) and the mammalian visual system support a hierarchical account in which successive stages of processing contain ever higher-level information. However, these correspondences between brain and model activity involve shared, not task-relevant, variance. We propose a stricter account of correspondence: If a DCNN layer corresponds to a brain region, then replacing model activity with brain activity should successfully drive the DCNN's object recognition decision. Using this approach on three datasets, we found that all regions along the ventral visual stream best corresponded with later model layers, indicating that all stages of processing contained higher-level information about object category. Time course analyses suggest that long-range recurrent connections transmit object class information from late to early visual areas.
Collapse
Affiliation(s)
- Nicholas J. Sexton
- Department of Experimental Psychology, University College London, London, UK
| | - Bradley C. Love
- Department of Experimental Psychology, University College London, London, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
9
|
Face identity coding in the deep neural network and primate brain. Commun Biol 2022; 5:611. [PMID: 35725902 PMCID: PMC9209415 DOI: 10.1038/s42003-022-03557-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/01/2022] [Indexed: 01/01/2023] Open
Abstract
A central challenge in face perception research is to understand how neurons encode face identities. This challenge has not been met largely due to the lack of simultaneous access to the entire face processing neural network and the lack of a comprehensive multifaceted model capable of characterizing a large number of facial features. Here, we addressed this challenge by conducting in silico experiments using a pre-trained face recognition deep neural network (DNN) with a diverse array of stimuli. We identified a subset of DNN units selective to face identities, and these identity-selective units demonstrated generalized discriminability to novel faces. Visualization and manipulation of the network revealed the importance of identity-selective units in face recognition. Importantly, using our monkey and human single-neuron recordings, we directly compared the response of artificial units with real primate neurons to the same stimuli and found that artificial units shared a similar representation of facial features as primate neurons. We also observed a region-based feature coding mechanism in DNN units as in human neurons. Together, by directly linking between artificial and primate neural systems, our results shed light on how the primate brain performs face recognition tasks.
Collapse
|
10
|
Thorat S, Peelen MV. Body shape as a visual feature: Evidence from spatially-global attentional modulation in human visual cortex. Neuroimage 2022; 255:119207. [PMID: 35427768 DOI: 10.1016/j.neuroimage.2022.119207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022] Open
Abstract
Feature-based attention modulates visual processing beyond the focus of spatial attention. Previous work has reported such spatially-global effects for low-level features such as color and orientation, as well as for faces. Here, using fMRI, we provide evidence for spatially-global attentional modulation for human bodies. Participants were cued to search for one of six object categories in two vertically-aligned images. Two additional, horizontally-aligned, images were simultaneously presented but were never task-relevant across three experimental sessions. Analyses time-locked to the objects presented in these task-irrelevant images revealed that responses evoked by body silhouettes were modulated by the participants' top-down attentional set, becoming more body-selective when participants searched for bodies in the task-relevant images. These effects were observed both in univariate analyses of the body-selective cortex and in multivariate analyses of the object-selective visual cortex. Additional analyses showed that this modulation reflected response gain rather than a bias induced by the cues, and that it reflected enhancement of body responses rather than suppression of non-body responses. These findings provide evidence for a spatially-global attention mechanism for body shapes, supporting the rapid and parallel detection of conspecifics in our environment.
Collapse
Affiliation(s)
- Sushrut Thorat
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Marius V Peelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Lateralization of word and face processing in developmental dyslexia and developmental prosopagnosia. Neuropsychologia 2022; 170:108208. [PMID: 35278463 DOI: 10.1016/j.neuropsychologia.2022.108208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022]
Abstract
In right-handed adults, face processing is lateralized to the right hemisphere and visual word processing to the left hemisphere. According to the many-to-many account (MTMA) of functional cerebral organization this lateralization pattern is partly dependent on the acquisition of literacy. Hence, the MTMA predicts that: (i) processing of both words and faces should show no or at least less lateralization in individuals with developmental dyslexia compared with controls, and (ii) lateralization in word processing should be normal in individuals with developmental prosopagnosia whereas lateralization in face processing should be absent. To test these hypotheses, 21 right-handed adults with developmental dyslexia and 21 right-handed adults with developmental prosopagnosia performed a divided visual field paradigm with delayed matching of faces, words and cars. Contrary to the predictions, we find that lateralization effects in face processing are within the normal range for both developmental dyslexics and prosopagnosics. Moreover, the group with developmental dyslexia showed right hemisphere lateralization for word processing. We argue that these findings are incompatible with the specific predictions of the MTMA.
Collapse
|
12
|
Li CH, Wang MY, Kuo BC. The effects of stimulus inversion on the neural representations of Chinese character and face recognition. Neuropsychologia 2022; 164:108090. [PMID: 34801520 DOI: 10.1016/j.neuropsychologia.2021.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
This study investigates whether stimulus inversion influences neural responses of Chinese character recognition similarly to its effect on face recognition in category-selective and object-related brain areas using functional magnetic resonance imaging. Participants performed a one-back matching task for simple (one radical) and compound (two radicals) Chinese characters and faces with upright and inverted orientations. Inverted stimuli produced slower response times with stronger activity within the fusiform gyrus (FG) than upright stimuli for faces and Chinese characters. While common inversion-related activation was identified in the left FG among stimulus types, we observed a significant inter-regional correlation between the left FG and the intraparietal sulcus for face inversion. Importantly, analyses of region-of-interest (ROI) multivariate pattern classification showed that classifiers trained on face inversion can decode the representations of character inversion in the character-selective ROI. However, this was not true for face inversion in face-selective ROIs when the classifiers were trained on characters. Similar activity patterns for character and face inversion were observed in the object-related ROIs. We also showed higher decoding accuracy for upright stimuli in the face-selective ROI than in the character-selective ROI but this was not true for inverted ones or when patterns were examined in the object-related ROIs. Together, our results support shared and distinct configural representations for character and face recognition in category-selective and object-related brain areas.
Collapse
Affiliation(s)
- Chun-Hui Li
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Man-Ying Wang
- Department of Psychology, Soochow University, Taipei, Taiwan
| | - Bo-Cheng Kuo
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
13
|
Abstract
Face-selective neurons are observed in the primate visual pathway and are considered as the basis of face detection in the brain. However, it has been debated as to whether this neuronal selectivity can arise innately or whether it requires training from visual experience. Here, using a hierarchical deep neural network model of the ventral visual stream, we suggest a mechanism in which face-selectivity arises in the complete absence of training. We found that units selective to faces emerge robustly in randomly initialized networks and that these units reproduce many characteristics observed in monkeys. This innate selectivity also enables the untrained network to perform face-detection tasks. Intriguingly, we observed that units selective to various non-face objects can also arise innately in untrained networks. Our results imply that the random feedforward connections in early, untrained deep neural networks may be sufficient for initializing primitive visual selectivity.
Collapse
|
14
|
Furlong LS, Rossell SL, Karantonis JA, Cropley VL, Hughes M, Van Rheenen TE. Characterization of facial emotion recognition in bipolar disorder: Focus on emotion mislabelling and neutral expressions. J Neuropsychol 2021; 16:353-372. [PMID: 34762769 DOI: 10.1111/jnp.12267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/28/2021] [Indexed: 11/29/2022]
Abstract
Increasing evidence suggests that facial emotion recognition is impaired in bipolar disorder (BD). However, patient-control differences are small owing to ceiling effects on the tasks used to assess them. The extant literature is also limited by a relative absence of attention towards identifying patterns of emotion misattribution or understanding whether neutral faces are mislabelled in the same way as ones displaying emotion. We addressed these limitations by comparing facial emotion recognition performance in BD patients and healthy controls on a novel and challenging task. Thirty-four outpatients with BD I and 32 demographically matched healthy controls completed a facial emotion recognition task requiring the labelling of neutral and emotive faces displayed at low emotional intensities. Results indicated that BD patients were significantly less accurate at labelling faces than healthy controls, particularly if they displayed fear or neutral expressions. There were no between-group differences in response times or patterns of emotion mislabelling, with both groups confusing sad and neutral faces, although BD patients also mislabelled sad faces as angry. Task performance did not significantly correlate with mood symptom severity in the BD group. These findings suggest that facial emotion recognition impairments in BD extend to neutral face recognition. Emotion misattribution occurs in a similar, albeit exaggerated manner in patients with BD compared to healthy controls. Future behavioural and neuroimaging research should reconsider the use of neutral faces as baseline stimuli in their task designs.
Collapse
Affiliation(s)
- Lisa S Furlong
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Victoria, Australia.,Department of Psychiatry, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - James A Karantonis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Victoria, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew Hughes
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Victoria, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Duyck S, Martens F, Chen CY, Op de Beeck H. How Visual Expertise Changes Representational Geometry: A Behavioral and Neural Perspective. J Cogn Neurosci 2021; 33:2461-2476. [PMID: 34748633 DOI: 10.1162/jocn_a_01778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Many people develop expertise in specific domains of interest, such as chess, microbiology, radiology, and, the case in point in our study: ornithology. It is poorly understood to what extent such expertise alters brain function. Previous neuroimaging studies of expertise have typically focused upon the category level, for example, selectivity for birds versus nonbird stimuli. We present a multivariate fMRI study focusing upon the representational similarity among objects of expertise at the subordinate level. We compare the neural representational spaces of experts and novices to behavioral judgments. At the behavioral level, ornithologists (n = 20) have more fine-grained and task-dependent representations of item similarity that are more consistent among experts compared to control participants. At the neural level, the neural patterns of item similarity are more distinct and consistent in experts than in novices, which is in line with the behavioral results. In addition, these neural patterns in experts show stronger correlations with behavior compared to novices. These findings were prominent in frontal regions, and some effects were also found in occipitotemporal regions. This study illustrates the potential of an analysis of representational geometry to understand to what extent expertise changes neural information processing.
Collapse
|
16
|
Chen J, Yuan P, Li H, Chen C, Jiang Y, Lee K. Music-reading expertise associates with face but not Chinese character processing ability. Q J Exp Psychol (Hove) 2021; 75:854-868. [PMID: 34609210 DOI: 10.1177/17470218211053144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A growing number of behavioural and neuroimaging studies have investigated the cognitive mechanisms and neural substrates underlying various forms of visual expertise, such as face and word processing. However, it remains poorly understood whether and to what extent the acquisition of one form of expertise would be associated with that of another. The current study examined the relationship between music-reading expertise and face and Chinese character processing abilities. In a series of experiments, music experts and novices performed discrimination and recognition tasks of musical notations, faces, and words. Results consistently showed that musical experts responded more accurately to musical notations and faces, but not to words, than did musical novices. More intriguingly, the music expert's age of training onset could well predict their face but not word processing performance: the earlier musical experts began musical notation reading, the better their face processing performance. Taken together, our findings provide preliminary and converging evidence that music-reading expertise links with face, but not word, processing, and lend support to the notion that the development of different types of visual expertise may not be independent, but rather interact with each other during their acquisition.
Collapse
Affiliation(s)
- Jie Chen
- School of Educational Science, Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, China
| | - Panpan Yuan
- School of Educational Science, Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, China
| | - Hong Li
- School of Educational Science, Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, China.,School of Psychology, South China Normal University, Guangzhou, China
| | - Changming Chen
- Department of Psychology, Xinyang Normal University, Xinyang, China
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Kang Lee
- Dr. Eric Jackman Institute of Child Study, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Wang Y, Jin C, Yin Z, Wang H, Ji M, Dong M, Liang J. Visual experience modulates whole-brain connectivity dynamics: A resting-state fMRI study using the model of radiologists. Hum Brain Mapp 2021; 42:4538-4554. [PMID: 34156138 PMCID: PMC8410580 DOI: 10.1002/hbm.25563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/18/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023] Open
Abstract
Visual expertise refers to proficiency in visual recognition. It is attributed to accumulated visual experience in a specific domain and manifests in widespread neural activities that extend well beyond the visual cortex to multiple high‐level brain areas. An extensive body of studies has centered on the neural mechanisms underlying a distinctive domain of visual expertise, while few studies elucidated how visual experience modulates resting‐state whole‐brain connectivity dynamics. The current study bridged this gap by modeling the subtle alterations in interregional spontaneous connectivity patterns with a group of superior radiological interns. Functional connectivity analysis was based on functional brain segmentation, which was derived from a data‐driven clustering approach to discriminate subtle changes in connectivity dynamics. Our results showed there was radiographic visual experience accompanied with integration within brain circuits supporting visual processing and decision making, integration across brain circuits supporting high‐order functions, and segregation between high‐order and low‐order brain functions. Also, most of these alterations were significantly correlated with individual nodule identification performance. Our results implied that visual expertise is a controlled, interactive process that develops from reciprocal interactions between the visual system and multiple top‐down factors, including semantic knowledge, top‐down attentional control, and task relevance, which may enhance participants' local brain functional integration to promote their acquisition of specific visual information and modulate the activity of some regions for lower‐order visual feature processing to filter out nonrelevant visual details. The current findings may provide new ideas for understanding the central mechanism underlying the formation of visual expertise.
Collapse
Affiliation(s)
- Yue Wang
- School of Electronic Engineering, Xidian University, Shaanxi, China
| | - Chenwang Jin
- Department of Medical Imaging, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Shaanxi, China
| | - Zhongliang Yin
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Shaanxi, China
| | - Hongmei Wang
- Department of Medical Imaging, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Shaanxi, China
| | - Ming Ji
- School of Psychology, Shaanxi Normal University, Shaanxi, China
| | - Minghao Dong
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Shaanxi, China
| | - Jimin Liang
- School of Electronic Engineering, Xidian University, Shaanxi, China
| |
Collapse
|
18
|
Expert Tool Users Show Increased Differentiation between Visual Representations of Hands and Tools. J Neurosci 2021; 41:2980-2989. [PMID: 33563728 PMCID: PMC8018880 DOI: 10.1523/jneurosci.2489-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
The idea that when we use a tool we incorporate it into the neural representation of our body (embodiment) has been a major inspiration for philosophy, science, and engineering. While theoretically appealing, there is little direct evidence for tool embodiment at the neural level. Using functional magnetic resonance imaging (fMRI) in male and female human subjects, we investigated whether expert tool users (London litter pickers: n = 7) represent their expert tool more like a hand (neural embodiment) or less like a hand (neural differentiation), as compared with a group of tool novices (n = 12). During fMRI scans, participants viewed first-person videos depicting grasps performed by either a hand, litter picker, or a non-expert grasping tool. Using representational similarity analysis (RSA), differences in the representational structure of hands and tools were measured within occipitotemporal cortex (OTC). Contrary to the neural embodiment theory, we find that the experts group represent their own tool less like a hand (not more) relative to novices. Using a case-study approach, we further replicated this effect, independently, in five of the seven individual expert litter pickers, as compared with the novices. An exploratory analysis in left parietal cortex, a region implicated in visuomotor representations of hands and tools, also indicated that experts do not visually represent their tool more similar to hands, compared with novices. Together, our findings suggest that extensive tool use leads to an increased neural differentiation between visual representations of hands and tools. This evidence provides an important alternative framework to the prominent tool embodiment theory.SIGNIFICANCE STATEMENT It is commonly thought that tool use leads to the assimilation of the tool into the neural representation of the body, a process referred to as embodiment. Here, we demonstrate that expert tool users (London litter pickers) neurally represent their own tool less like a hand (not more), compared with novices. Our findings advance our current understanding for how experience shapes functional organization in high-order visual cortex. Further, this evidence provides an alternative framework to the prominent tool embodiment theory, suggesting instead that experience with tools leads to more distinct, separable hand and tool representations.
Collapse
|
19
|
Wong YK, Tong CKY, Lui M, Wong ACN. Perceptual expertise with Chinese characters predicts Chinese reading performance among Hong Kong Chinese children with developmental dyslexia. PLoS One 2021; 16:e0243440. [PMID: 33481782 PMCID: PMC7822259 DOI: 10.1371/journal.pone.0243440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/21/2020] [Indexed: 11/24/2022] Open
Abstract
This study explores the theoretical proposal that developmental dyslexia involves a failure to develop perceptual expertise with words despite adequate education. Among a group of Hong Kong Chinese children diagnosed with developmental dyslexia, we investigated the relationship between Chinese word reading and perceptual expertise with Chinese characters. In a perceptual fluency task, the time of visual exposure to Chinese characters was manipulated and limited such that the speed of discrimination of a short sequence of Chinese characters at an accuracy level of 80% was estimated. Pair-wise correlations showed that perceptual fluency for characters predicted speeded and non-speeded word reading performance. Exploratory hierarchical regressions showed that perceptual fluency for characters accounted for 5.3% and 9.6% variance in speeded and non-speeded reading respectively, in addition to age, non-verbal IQ, phonological awareness, morphological awareness, rapid automatized naming (RAN) and perceptual fluency for digits. The findings suggest that perceptual expertise with words plays an important role in Chinese reading performance in developmental dyslexia, and that perceptual training is a potential remediation direction.
Collapse
Affiliation(s)
- Yetta Kwailing Wong
- Department of Educational Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Ming Lui
- Department of Education Studies, Hong Kong Baptist University, Hong Kong, China
| | - Alan C.-N. Wong
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Car expertise does not compete with face expertise during ensemble coding. Atten Percept Psychophys 2020; 83:1275-1281. [PMID: 33164130 DOI: 10.3758/s13414-020-02188-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 11/08/2022]
Abstract
When objects from two categories of expertise (e.g., faces and cars in dual car/face experts) are processed simultaneously, competition occurs across a variety of tasks. Here, we investigate whether competition between face and car processing also occurs during ensemble coding. The relationship between single object recognition and ensemble coding is debated, but if ensemble coding relies on the same ability as object recognition, we expect cars to interfere with ensemble coding of faces as a function of car expertise. We measured the ability to judge the variability in identity of arrays of faces, in the presence of task-irrelevant distractors (cars or novel objects). On each trial, participants viewed two sequential arrays containing four faces and four distractors, judging which array was the more diverse in terms of face identity. We measured participants' car expertise, object recognition ability, and face recognition ability. Using Bayesian statistics, we found evidence against competition as a function of car expertise during ensemble coding of faces. Face recognition ability predicted ensemble judgments for faces, regardless of the category of task-irrelevant distractors. The result suggests that ensemble coding is not susceptible to competition between different domains of similar expertise, unlike single-object recognition.
Collapse
|
21
|
Meyer K, Nowparast Rostami H, Ouyang G, Debener S, Sommer W, Hildebrandt A. Mechanisms of face specificity - Differentiating speed and accuracy in face cognition by event-related potentials of central processing. Cortex 2020; 134:114-133. [PMID: 33276306 DOI: 10.1016/j.cortex.2020.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022]
Abstract
Given the crucial role of face recognition in social life, it is hardly surprising that cognitive processes specific for faces have been identified. In previous individual differences studies, the speed (measured in easy tasks) and accuracy (difficult tasks) of face cognition (FC, involving perception and recognition of faces) have been shown to form distinct abilities, going along with divergent factorial structures. This result has been replicated, but remained unexplained. To fill this gap, we first parameterized the sub-processes underlying speed vs. accuracy in easy and difficult memory tasks for faces and houses in a large sample. Then, we analyzed event-related potentials (ERPs) extracted from the EEG by using residue iteration decomposition (RIDE), yielding a central (C) component that is comparable to a purified P300. Structural equation modeling (SEM) was applied to estimate face specificity of C component latencies and amplitudes. If performance in easy tasks relies on purely general processes that are insensitive to stimulus content, there should be no specificity of individual differences in the latency recorded in easy tasks. However, in difficult tasks specificity was expected. Results indicated that, contrary to our predictions, specificity occurred in the C component latency of both speed-based and accuracy-based measures, but was stronger in accuracy. Further analyses suggested specific relationships between the face-related C latency and FC ability. Finally, we detected specificity in RTs of easy tasks when single tasks were modeled, but not when multiple tasks were jointly modeled. This suggests that the mechanisms leading to face specificity in performance speed are distinct across tasks.
Collapse
Affiliation(s)
- Kristina Meyer
- Carl von Ossietzky Universität Oldenburg, Department of Psychology, Germany.
| | | | - Guang Ouyang
- The University of Hong Kong, Faculty of Education, Hong Kong
| | - Stefan Debener
- Carl von Ossietzky Universität Oldenburg, Department of Psychology, Germany; Carl von Ossietzky Universität Oldenburg, Research Center Neurosensory Science, Germany
| | - Werner Sommer
- Humboldt-Universität zu Berlin, Institut für Psychologie, Germany
| | - Andrea Hildebrandt
- Carl von Ossietzky Universität Oldenburg, Department of Psychology, Germany; Carl von Ossietzky Universität Oldenburg, Research Center Neurosensory Science, Germany
| |
Collapse
|
22
|
Golarai G, Ghahremani DG, Greenwood AC, Gabrieli JDE, Eberhardt JL. The development of race effects in face processing from childhood through adulthood: Neural and behavioral evidence. Dev Sci 2020; 24:e13058. [PMID: 33151616 DOI: 10.1111/desc.13058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
Most adults are better at recognizing recently encountered faces of their own race, relative to faces of other races. In adults, this race effect in face recognition is associated with differential neural representations of own- and other-race faces in the fusiform face area (FFA), a high-level visual region involved in face recognition. Previous research has linked these differential face representations in adults to viewers' implicit racial associations. However, despite the fact that the FFA undergoes a gradual development which continues well into adulthood, little is known about the developmental time-course of the race effect in FFA responses. Also unclear is how this race effect might relate to the development of face recognition or implicit associations with own- or other-races during childhood and adolescence. To examine the developmental trajectory of these race effects, in a cross-sectional study of European American (EA) children (ages 7-11), adolescents (ages 12-16) and adults (ages 18-35), we evaluated responses to adult African American (AA) and EA face stimuli, using functional magnetic resonance imaging and separate behavioral measures outside the scanner. We found that FFA responses to AA and EA faces differentiated during development from childhood into adulthood; meanwhile, the magnitudes of race effects increased in behavioral measures of face-recognition and implicit racial associations. These three race effects were positively correlated, even after controlling for age. These findings suggest that social and perceptual experiences shape a protracted development of the race effect in face processing that continues well into adulthood.
Collapse
Affiliation(s)
- Golijeh Golarai
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Dara G Ghahremani
- Department of Psychology, Stanford University, Stanford, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - John D E Gabrieli
- Department of Psychology, Stanford University, Stanford, CA, USA.,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
23
|
Chen W, Cheung OS. Flexible face processing: Holistic processing of facial identity is modulated by task-irrelevant facial expression. Vision Res 2020; 178:18-27. [PMID: 33075727 DOI: 10.1016/j.visres.2020.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 11/12/2022]
Abstract
Holistic processing is a hallmark of face perception and has been observed separately for facial identity and expression. While the identity of a face remains constant regardless of any changes in facial expressions, to what extent is holistic processing of facial identity affected by task-irrelevant facial expressions? If holistic processing is flexible and integrates both identity and expression information, the magnitude of holistic processing of facial identity may be systematically modulated by different facial expressions, due to either visual or emotional differences among the expressions. In Experiment 1, participants matched the identities of target halves of two sequentially presented face composites, with both composites showing either positive (happy) or negative (angry) expressions. The presentation duration for the test composite was either short (200 ms) or long (until a response). With a short presentation duration, the magnitude of holistic processing of identity for happy and angry composites was comparable. In contrast, with a long presentation duration, holistic processing of identity was reduced for angry compared with happy face composites. Experiment 2 replicated the results and showed reduced holistic processing of identity for face composites with either angry or neutral expressions, compared with happy expressions, given a long presentation duration. Because the modulation of facial expressions on holistic processing of facial identity was observed with long, but not short, presentation durations, these results suggest that such influence is unlikely solely due to visual differences, but may instead arise from cognitive evaluation of the emotions conveyed by facial expressions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Psychology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Olivia S Cheung
- Department of Psychology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
24
|
Comparative Brain Imaging Reveals Analogous and Divergent Patterns of Species and Face Sensitivity in Humans and Dogs. J Neurosci 2020; 40:8396-8408. [PMID: 33020215 PMCID: PMC7577605 DOI: 10.1523/jneurosci.2800-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/26/2020] [Accepted: 06/20/2020] [Indexed: 02/08/2023] Open
Abstract
Conspecific-preference in social perception is evident for multiple sensory modalities and in many species. There is also a dedicated neural network for face processing in primates. However, the evolutionary origin and the relative role of neural species sensitivity and face sensitivity in visuo-social processing are largely unknown. Conspecific-preference in social perception is evident for multiple sensory modalities and in many species. There is also a dedicated neural network for face processing in primates. However, the evolutionary origin and the relative role of neural species sensitivity and face sensitivity in visuo-social processing are largely unknown. In this comparative study, species sensitivity and face sensitivity to identical visual stimuli (videos of human and dog faces and occiputs) were examined using functional magnetic resonance imaging in dogs (n = 20; 45% female) and humans (n = 30; 50% female). In dogs, the bilateral mid suprasylvian gyrus showed conspecific-preference, no regions exhibited face-preference, and the majority of the visually-responsive cortex showed greater conspecific-preference than face-preference. In humans, conspecific-preferring regions (the right amygdala/hippocampus and the posterior superior temporal sulcus) also showed face-preference, and much of the visually-responsive cortex showed greater face-preference than conspecific-preference. Multivariate pattern analyses (MVPAs) identified species-sensitive regions in both species, but face-sensitive regions only in humans. Across-species representational similarity analyses (RSAs) revealed stronger correspondence between dog and human response patterns for distinguishing conspecific from heterospecific faces than other contrasts. Results unveil functional analogies in dog and human visuo-social processing of conspecificity but suggest that cortical specialization for face perception may not be ubiquitous across mammals. SIGNIFICANCE STATEMENT To explore the evolutionary origins of human face-preference and its relationship to conspecific-preference, we conducted the first comparative and noninvasive visual neuroimaging study of a non-primate and a primate species, dogs and humans. Conspecific-preferring brain regions were observed in both species, but face-preferring brain regions were observed only in humans. In dogs, an overwhelming majority of visually-responsive cortex exhibited greater conspecific-preference than face-preference, whereas in humans, much of the visually-responsive cortex showed greater face-preference than conspecific-preference. Together, these findings unveil functional analogies and differences in the organizing principles of visuo-social processing across two phylogenetically distant mammal species.
Collapse
|
25
|
Ultra-high-resolution fMRI of Human Ventral Temporal Cortex Reveals Differential Representation of Categories and Domains. J Neurosci 2020; 40:3008-3024. [PMID: 32094202 DOI: 10.1523/jneurosci.2106-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 11/21/2022] Open
Abstract
Human ventral temporal cortex (VTC) is critical for visual recognition. It is thought that this ability is supported by large-scale patterns of activity across VTC that contain information about visual categories. However, it is unknown how category representations in VTC are organized at the submillimeter scale and across cortical depths. To fill this gap in knowledge, we measured BOLD responses in medial and lateral VTC to images spanning 10 categories from five domains (written characters, bodies, faces, places, and objects) at an ultra-high spatial resolution of 0.8 mm using 7 Tesla fMRI in both male and female participants. Representations in lateral VTC were organized most strongly at the general level of domains (e.g., places), whereas medial VTC was also organized at the level of specific categories (e.g., corridors and houses within the domain of places). In both lateral and medial VTC, domain-level and category-level structure decreased with cortical depth, and downsampling our data to standard resolution (2.4 mm) did not reverse differences in representations between lateral and medial VTC. The functional diversity of representations across VTC partitions may allow downstream regions to read out information in a flexible manner according to task demands. These results bridge an important gap between electrophysiological recordings in single neurons at the micron scale in nonhuman primates and standard-resolution fMRI in humans by elucidating distributed responses at the submillimeter scale with ultra-high-resolution fMRI in humans.SIGNIFICANCE STATEMENT Visual recognition is a fundamental ability supported by human ventral temporal cortex (VTC). However, the nature of fine-scale, submillimeter distributed representations in VTC is unknown. Using ultra-high-resolution fMRI of human VTC, we found differential distributed visual representations across lateral and medial VTC. Domain representations (e.g., faces, bodies, places, characters) were most salient in lateral VTC, whereas category representations (e.g., corridors/houses within the domain of places) were equally salient in medial VTC. These results bridge an important gap between electrophysiological recordings in single neurons at a micron scale and fMRI measurements at a millimeter scale.
Collapse
|
26
|
McGugin RW, Newton AT, Tamber-Rosenau B, Tomarken A, Gauthier I. Thickness of Deep Layers in the Fusiform Face Area Predicts Face Recognition. J Cogn Neurosci 2020; 32:1316-1329. [PMID: 32083519 DOI: 10.1162/jocn_a_01551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
People with superior face recognition have relatively thin cortex in face-selective brain areas, whereas those with superior vehicle recognition have relatively thick cortex in the same areas. We suggest that these opposite correlations reflect distinct mechanisms influencing cortical thickness (CT) as abilities are acquired at different points in development. We explore a new prediction regarding the specificity of these effects through the depth of the cortex: that face recognition selectively and negatively correlates with thickness of the deepest laminar subdivision in face-selective areas. With ultrahigh resolution MRI at 7T, we estimated the thickness of three laminar subdivisions, which we term "MR layers," in the right fusiform face area (FFA) in 14 adult male humans. Face recognition was negatively associated with the thickness of deep MR layers, whereas vehicle recognition was positively related to the thickness of all layers. Regression model comparisons provided overwhelming support for a model specifying that the magnitude of the association between face recognition and CT differs across MR layers (deep vs. superficial/middle) whereas the magnitude of the association between vehicle recognition and CT is invariant across layers. The total CT of right FFA accounted for 69% of the variance in face recognition, and thickness of the deep layer alone accounted for 84% of this variance. Our findings demonstrate the functional validity of MR laminar estimates in FFA. Studying the structural basis of individual differences for multiple abilities in the same cortical area can reveal effects of distinct mechanisms that are not apparent when studying average variation or development.
Collapse
Affiliation(s)
| | - Allen T Newton
- Vanderbilt University Medical Center.,Vanderbilt University Institute of Imaging Science.,Monroe Carell Jr. Children's Hospital at Vanderbilt
| | | | | | | |
Collapse
|
27
|
AMiCUS 2.0-System Presentation and Demonstration of Adaptability to Personal Needs by the Example of an Individual with Progressed Multiple Sclerosis. SENSORS 2020; 20:s20041194. [PMID: 32098240 PMCID: PMC7070692 DOI: 10.3390/s20041194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 01/02/2023]
Abstract
AMiCUS is a human–robot interface that enables tetraplegics to control an assistive robotic arm in real-time using only head motion, allowing them to perform simple manipulation tasks independently. The interface may be used as a standalone system or to provide direct control as part of a semi-autonomous system. Within this work, we present our new gesture-free prototype AMiCUS 2.0, which has been designed with special attention to accessibility and ergonomics. As such, AMiCUS 2.0 addresses the needs of tetraplegics with additional impairments that may come along with multiple sclerosis. In an experimental setup, both AMiCUS 1.0 and 2.0 are compared with each other, showing higher accessibility and usability for AMiCUS 2.0. Moreover, in an activity of daily living, a proof-of-concept is provided that an individual with progressed multiple sclerosis is able to operate the robotic arm in a temporal and functional scope, as would be necessary to perform direct control tasks for use in a commercial semi-autonomous system. The results indicate that AMiCUS 2.0 makes an important step towards closing the gaps of assistive technology, being accessible to those who rely on such technology the most.
Collapse
|
28
|
Loganovsky KN, Fedirko PA, Kuts KV, Marazziti D, Antypchuk KY, Perchuk IV, Babenko TF, Loganovska TK, Kolosynska OO, Kreinis GY, Gresko MV, Masiuk SV, Zdorenko LL, Zdanevich NA, Garkava NA, Dorichevska RY, Vasilenko ZL, Kravchenko VI, Drosdova NV, Yefimova YV. BRAIN AND EYE AS POTENTIAL TARGETS FOR IONIZING RADIATION IMPACT. Part І. THE CONSEQUENCES OF IRRADIATION OF THE PARTICIPANTS OF THE LIQUIDATION OF THE CHORNOBYL ACCIDENT. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:90-129. [PMID: 33361831 DOI: 10.33145/2304-8336-2020-25-90-129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Exposure to ionizing radiation could affect the brain and eyes leading to cognitive and vision impairment, behavior disorders and performance decrement during professional irradiation at medical radiology, includinginterventional radiological procedures, long-term space flights, and radiation accidents. OBJECTIVE The objective was to analyze the current experimental, epidemiological, and clinical data on the radiation cerebro-ophthalmic effects. MATERIALS AND METHODS In our analytical review peer-reviewed publications via the bibliographic and scientometric bases PubMed / MEDLINE, Scopus, Web of Science, and selected papers from the library catalog of NRCRM - theleading institution in the field of studying the medical effects of ionizing radiation - were used. RESULTS The probable radiation-induced cerebro-ophthalmic effects in human adults comprise radiation cataracts,radiation glaucoma, radiation-induced optic neuropathy, retinopathies, angiopathies as well as specific neurocognitive deficit in the various neuropsychiatric pathology including cerebrovascular pathology and neurodegenerativediseases. Specific attention is paid to the likely stochastic nature of many of those effects. Those prenatally and inchildhood exposed are a particular target group with a higher risk for possible radiation effects and neurodegenerative diseases. CONCLUSIONS The experimental, clinical, epidemiological, anatomical and pathophysiological rationale for visualsystem and central nervous system (CNS) radiosensitivity is given. The necessity for further international studieswith adequate dosimetric support and the follow-up medical and biophysical monitoring of high radiation riskcohorts is justified. The first part of the study currently being published presents the results of the study of theeffects of irradiation in the participants of emergency works at the Chornobyl Nuclear Power Plant (ChNPP).
Collapse
Affiliation(s)
- K N Loganovsky
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - P A Fedirko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - K V Kuts
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - D Marazziti
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100, Pisa, Italy
| | - K Yu Antypchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - I V Perchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - T F Babenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - T K Loganovska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - O O Kolosynska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - G Yu Kreinis
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - M V Gresko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - S V Masiuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - L L Zdorenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N A Zdanevich
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N A Garkava
- State Institution «Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine», 9 Vernadsky Street, Dnipro, 49044, Ukraine
| | - R Yu Dorichevska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - Z L Vasilenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - V I Kravchenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - N V Drosdova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| | - Yu V Yefimova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Illyenko Street, Kyiv, 04050, Ukraine
| |
Collapse
|
29
|
P-curving the fusiform face area: Meta-analyses support the expertise hypothesis. Neurosci Biobehav Rev 2019; 104:209-221. [DOI: 10.1016/j.neubiorev.2019.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022]
|
30
|
Op de Beeck HP, Pillet I, Ritchie JB. Factors Determining Where Category-Selective Areas Emerge in Visual Cortex. Trends Cogn Sci 2019; 23:784-797. [PMID: 31327671 DOI: 10.1016/j.tics.2019.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 11/26/2022]
Abstract
A hallmark of functional localization in the human brain is the presence of areas in visual cortex specialized for representing particular categories such as faces and words. Why do these areas appear where they do during development? Recent findings highlight several general factors to consider when answering this question. Experience-driven category selectivity arises in regions that have: (i) pre-existing selectivity for properties of the stimulus, (ii) are appropriately placed in the computational hierarchy of the visual system, and (iii) exhibit domain-specific patterns of connectivity to nonvisual regions. In other words, cortical location of category selectivity is constrained by what category will be represented, how it will be represented, and why the representation will be used.
Collapse
Affiliation(s)
- Hans P Op de Beeck
- Department of Brain and Cognition and Leuven Brain Institute, KU Leuven, Belgium. @kuleuven.be
| | - Ineke Pillet
- Department of Brain and Cognition and Leuven Brain Institute, KU Leuven, Belgium
| | - J Brendan Ritchie
- Department of Brain and Cognition and Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
31
|
Parsing rooms: the role of the PPA and RSC in perceiving object relations and spatial layout. Brain Struct Funct 2019; 224:2505-2524. [PMID: 31317256 PMCID: PMC6698272 DOI: 10.1007/s00429-019-01901-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/01/2019] [Indexed: 11/25/2022]
Abstract
The perception of a scene involves grasping the global space of the scene, usually called the spatial layout, as well as the objects in the scene and the relations between them. The main brain areas involved in scene perception, the parahippocampal place area (PPA) and retrosplenial cortex (RSC), are supposed to mostly support the processing of spatial layout. Here we manipulated the objects and their relations either by arranging objects within rooms in a common way or by scattering them randomly. The rooms were then varied for spatial layout by keeping or removing the walls of the room, a typical layout manipulation. We then combined a visual search paradigm, where participants actively search for an object within the room, with multivariate pattern analysis (MVPA). Both left and right PPA were sensitive to the layout properties, but the right PPA was also sensitive to the object relations even when the information about objects and their relations is used in the cross-categorization procedure on novel stimuli. The left and right RSC were sensitive to both spatial layout and object relations, but could only use the information about object relations for cross-categorization to novel stimuli. These effects were restricted to the PPA and RSC, as other control brain areas did not display the same pattern of results. Our results underline the importance of employing paradigms that require participants to explicitly retrieve domain-specific processes and indicate that objects and their relations are processed in the scene areas to a larger extent than previously assumed.
Collapse
|
32
|
Language Processing. Cognition 2019. [DOI: 10.1017/9781316271988.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Methods of Cognitive Psychology. Cognition 2019. [DOI: 10.1017/9781316271988.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Cognitive Psychologists’ Approach to Research. Cognition 2019. [DOI: 10.1017/9781316271988.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Visual Imagery. Cognition 2019. [DOI: 10.1017/9781316271988.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Index. Cognition 2019. [DOI: 10.1017/9781316271988.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Decision Making and Reasoning. Cognition 2019. [DOI: 10.1017/9781316271988.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Attention. Cognition 2019. [DOI: 10.1017/9781316271988.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Long-Term Memory Structure. Cognition 2019. [DOI: 10.1017/9781316271988.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Problem Solving. Cognition 2019. [DOI: 10.1017/9781316271988.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Preface. Cognition 2019. [DOI: 10.1017/9781316271988.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Sensory and Working Memory. Cognition 2019. [DOI: 10.1017/9781316271988.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Memory Retrieval. Cognition 2019. [DOI: 10.1017/9781316271988.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Visual Perception. Cognition 2019. [DOI: 10.1017/9781316271988.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
References. Cognition 2019. [DOI: 10.1017/9781316271988.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Language Structure. Cognition 2019. [DOI: 10.1017/9781316271988.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Concepts and Categories. Cognition 2019. [DOI: 10.1017/9781316271988.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Long-Term Memory Processes. Cognition 2019. [DOI: 10.1017/9781316271988.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Glossary. Cognition 2019. [DOI: 10.1017/9781316271988.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Folstein JR, Monfared SS. Extended categorization of conjunction object stimuli decreases the latency of attentional feature selection and recruits orthography-linked ERPs. Cortex 2019; 120:49-65. [PMID: 31233910 DOI: 10.1016/j.cortex.2019.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 11/28/2022]
Abstract
The role of attention in driving perceptual expertise effects is controversial. The current study addressed the effect of training on ERP components related to and independent of attentional feature selection. Participants learned to categorize cartoon animals over six training sessions (8,800 trials) after which ERPs were recorded during a target detection task performed on trained and untrained stimulus sets. The onset of the selection negativity, an ERP component indexing attentional modulation, was about 60 msec earlier for trained than untrained stimuli. Trained stimuli also elicited centro-parietal N200 and N320 components that were insensitive to attentional feature selection. The scalp distribution and timecourse of these components were better matched by studies of orthography than object expertise. Source localization using eLORETA suggested that the strongest neural sources of the selection negativity were in right ventral temporal cortex whereas the strongest sources of the N200/N320 components were in left ventral temporal cortex, again consistent with the hypothesis that training recruited orthography related areas. Overall, training altered neural processes related to attentional selection, but also affected neural processes that were independent of feature selection.
Collapse
|