1
|
Huang A, Cicin-Sain C, Pasin C, Epp S, Audigé A, Müller NJ, Nilsson J, Bankova A, Wolfensberger N, Vilinovszki O, Nair G, Hockl P, Schanz U, Kouyos RD, Hasse B, Zinkernagel AS, Trkola A, Manz MG, Abela IA, Müller AMS. Antibody Response to SARS-CoV-2 Vaccination in Patients Following Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2022; 28:214.e1-214.e11. [PMID: 35092892 PMCID: PMC8802693 DOI: 10.1016/j.jtct.2022.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/06/2023]
Abstract
Vaccines against SARS-CoV-2 have been rapidly approved. Although pivotal studies were conducted in healthy volunteers, little information is available on the safety and efficacy of mRNA vaccines in immunocompromised patients, including recipients of allogeneic hematopoietic cell transplantation (allo-HCT). Here we used a novel assay to analyze patient- and transplantation-related factors and their influence on immune responses to SARS-CoV-2 vaccination over an extended period (up to 6 months) in a large and homogenous group of allo-HCT recipients at a single center in Switzerland. We examined longitudinal antibody responses to SARS-CoV-2 vaccination with BNT162b2 (BioNTech/Pfizer) and mRNA-1273 (Moderna) in 110 allo-HCT recipients and 86 healthy controls. Seroprofiling recording IgG, IgA, and IgM reactivity against SARS-CoV-2 antigens (receptor-binding domain, spike glycoprotein subunits S1 and S2, and nucleocapsid protein) was performed before vaccination, before the second dose, and at 1, 3, and 6 months after the second dose. Patients were stratified to 3 groups: 3 to 6 months post-allo-HCT, 6 to 12 months post-allo-HCT, and >12 months post-allo-HCT. Patients in the 3 to 6 months and 6 to 12 months post-allo-HCT groups developed significantly lower antibody titers after vaccination compared with patients in the >12 months post-allo-HCT group and healthy controls (P < .001). Within the cohort of allo-HCT recipients, patients age >65 years (P = .030), those receiving immunosuppression for prevention or treatment of graft-versus-host disease (GVHD) (P = .033), and patients with relapsed disease (P = .014) displayed low humoral immune responses to the vaccine. In contrast, the intensity of the conditioning regimen, underlying disease (myeloid/lymphoid/other), and presence of chronic GVHD had no impact on antibody levels. Antibody titers achieved the highest levels at 1 month after the second dose of the vaccine but waned substantially in all transplantation groups and healthy controls over time. This analysis of long-term vaccine antibody response is of critical importance to allo-HCT recipients and transplant physicians to guide treatment decisions regarding revaccination and social behavior during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Alice Huang
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Caroline Cicin-Sain
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Chloe Pasin
- Institute of Medical Virology, University of Zurich, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Nicolas J Müller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, Switzerland
| | - Andriyana Bankova
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Nathan Wolfensberger
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Oliver Vilinovszki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Gayathri Nair
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Philipp Hockl
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Barbara Hasse
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Antonia M S Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland.
| |
Collapse
|
2
|
Bögeholz J, Russkamp NF, Wilk CM, Gourri E, Haralambieva E, Schanz U, Mueller NJ, Manz MG, Müller AMS. Long-Term Follow-Up of Antibody Titers Against Measles, Mumps, and Rubella in Recipients of Allogenic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2019; 26:581-592. [PMID: 31682977 DOI: 10.1016/j.bbmt.2019.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 01/21/2023]
Abstract
Outbreaks of viral infections, such as measles, are regularly observed and pose a serious threat to recipients of allogeneic hematopoietic cell transplantation (HCT). The questions of how long cellular and humoral protective host immunity persists, and whether donor immunity can be transferred has not been clarified. Here we present a retrospective analysis of humoral immunity-serial antibody titers against measles, mumps, and rubella-in 331 patients who underwent allogeneic HCT at our single center between 2002 and 2015. Associations between the loss of protective antibody levels and clinical patient characteristics and transplantation parameters were examined. In general, antibody protection against measles persisted longer, with 72% of patients maintaining sufficient titers at 5 years post-HCT even without revaccination, while at that time only 65% and 50% of patients had protective immunity against rubella and mumps, respectively. The great majority of donors were seropositive for all 3 viruses; however, it appeared that donor humoral immunity could not be transferred and had no impact on post-HCT serostatus. Rather, the most relevant factor for persistent protective antibody titers against measles and rubella was whether patients were born before the introduction of the respective vaccine and thus were immunized by the wild-type disease-inducing virus instead of the vaccine. Moreover, the presence of moderate and severe chronic graft-versus-host disease (GVHD) was associated with more rapid loss of immune protection. In contrast, underlying disease, intensity of the conditioning regimen, use of antithymocyte globulin, age, and graft source had no influence on antibody titers. Overall, our findings suggest that the majority of antibodies against measles, mumps, and rubella originate from residual host cells, whereas donor immune status appears to have no influence on antibody protection post-HCT.
Collapse
Affiliation(s)
- Jan Bögeholz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland; Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Norman F Russkamp
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Christian M Wilk
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland; Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Elise Gourri
- Department of Molecular Diagnostics and Research & Development, Blood Transfusion Service Zurich, Swiss Red Cross, Zurich, Switzerland
| | | | - Urs Schanz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Nicolas J Mueller
- Department of Infectious Diseases & Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Antonia M S Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Müller AMS, Min D, Wernig G, Levy RB, Perez VL, Herretes S, Florek M, Burnett C, Weinberg K, Shizuru JA. Modeling Chronic Graft-versus-Host Disease in MHC-Matched Mouse Strains: Genetics, Graft Composition, and Tissue Targets. Biol Blood Marrow Transplant 2019; 25:2338-2349. [PMID: 31415899 DOI: 10.1016/j.bbmt.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 06/22/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Graft-versus-host disease (GVHD) remains a major complication of allogeneic hematopoietic cell transplantation. Acute GVHD (aGVHD) results from direct damage by donor T cells, whereas the biology of chronic GVHD (cGVHD) with its autoimmune-like manifestations remains poorly understood, mainly because of the paucity of representative preclinical models. We examined over an extended time period 7 MHC-matched, minor antigen-mismatched mouse models for development of cGVHD. Development and manifestations of cGVHD were determined by a combination of MHC allele type and recipient strain, with BALB recipients being the most susceptible. The C57BL/6 into BALB.B combination most closely modeled the human syndrome. In this strain combination moderate aGVHD was observed and BALB.B survivors developed overt cGVHD at 6 to 12 months affecting eyes, skin, and liver. Naïve CD4+ cells caused this syndrome as no significant pathology was induced by grafts composed of purified hematopoietic stem cells (HSCs) or HSC plus effector memory CD4+ or CD8+ cells. Furthermore, co-transferred naïve and effector memory CD4+ T cells demonstrated differential homing patterns and locations of persistence. No clear association with donor Th17 cells and the phenotype of aGVHD or cGVHD was observed in this model. Donor CD4+ cells caused injury to medullary thymic epithelial cells, a key population responsible for negative T cell selection, suggesting that impaired thymic selection was an underlying cause of the cGVHD syndrome. In conclusion, we report for the first time that the C57BL/6 into BALB.B combination is a representative model of cGVHD that evolves from immunologic events during the early post-transplant period.
Collapse
Affiliation(s)
- Antonia M S Müller
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California; Department of Hematology, University Hospital and University Zurich, Zurich, Switzerland.
| | - Dullei Min
- Division of Pediatric Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California
| | - Gerlinde Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Robert B Levy
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Victor L Perez
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Samantha Herretes
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| | - Mareike Florek
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Casey Burnett
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Kenneth Weinberg
- Department of Hematology, University Hospital and University Zurich, Zurich, Switzerland
| | - Judith A Shizuru
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California; Division of Pediatric Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
4
|
George BM, Kao KS, Kwon HS, Velasco BJ, Poyser J, Chen A, Le AC, Chhabra A, Burnett CE, Cajuste D, Hoover M, Loh KM, Shizuru JA, Weissman IL. Antibody Conditioning Enables MHC-Mismatched Hematopoietic Stem Cell Transplants and Organ Graft Tolerance. Cell Stem Cell 2019; 25:185-192.e3. [PMID: 31204177 PMCID: PMC6679784 DOI: 10.1016/j.stem.2019.05.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/14/2018] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
Hematopoietic cell transplantation can correct hematological and immunological disorders by replacing a diseased blood system with a healthy one, but this currently requires depleting a patient's existing hematopoietic system with toxic and non-specific chemotherapy, radiation, or both. Here we report an antibody-based conditioning protocol with reduced toxicity and enhanced specificity for robust hematopoietic stem cell (HSC) transplantation and engraftment in recipient mice. Host pre-treatment with six monoclonal antibodies targeting CD47, T cells, NK cells, and HSCs followed by donor HSC transplantation enabled stable hematopoietic system reconstitution in recipients with mismatches at half (haploidentical) or all major histocompatibility complex (MHC) genes. This approach allowed tolerance to heart tissue from HSC donor strains in haploidentical recipients, showing potential applications for solid organ transplantation without immune suppression. Fully mismatched chimeric mice developed antibody responses to nominal antigens, showing preserved functional immunity. These findings suggest approaches for transplanting immunologically mismatched HSCs and solid organs with limited toxicity.
Collapse
Affiliation(s)
- Benson M George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin S Kao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hye-Sook Kwon
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brenda J Velasco
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jessica Poyser
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology and the Stanford-UC Berkeley Stem Cell Institute, Stanford, CA 94305, USA
| | - Alan C Le
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Akanksha Chhabra
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cassandra E Burnett
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Devon Cajuste
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Malachia Hoover
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology and the Stanford-UC Berkeley Stem Cell Institute, Stanford, CA 94305, USA
| | - Judith A Shizuru
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology and the Stanford-UC Berkeley Stem Cell Institute, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Huang W, Mo W, Jiang J, Chao NJ, Chen BJ. Donor Allospecific CD44 high Central Memory T Cells Have Decreased Ability to Mediate Graft-vs.-Host Disease. Front Immunol 2019; 10:624. [PMID: 31001254 PMCID: PMC6454869 DOI: 10.3389/fimmu.2019.00624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
Data from both animal models and humans have demonstrated that effector memory T cells (TEM) and central memory T cells (TCM) from unprimed donors have decreased ability to induce graft-vs-host disease (GVHD). Allospecific TEM from primed donors do not mediate GVHD. However, the potential of alloreactive TCM to induce GVHD is not clear. In this study, we sought to answer this question using a novel GVHD model induced by T cell receptor (TCR) transgenic OT-II T cells. Separated from OT-II mice immunized with OVA protein 8 weeks earlier, the allospecific CD44high TCM were able to mediate skin graft rejection after transfer to naive mice, yet had dramatically decreased ability to induce GVHD. We also found that these allospecific CD44high TCM persisted in GVHD target organs for more than 30 days post-transplantation, while the expansion of these cells was dramatically decreased during GVHD, suggesting an anergic or exhausted state. These observations provide insights into how allospecific CD4+ TCM respond to alloantigen during GVHD and underscore the fundamental difference of alloresponses mediated by allospecific TCM in graft rejection and GVHD settings.
Collapse
Affiliation(s)
- Wei Huang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States
| | - Wenjian Mo
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Jieling Jiang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Department of Hematology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Benny J Chen
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
6
|
Müller AMS, Florek M, Kohrt HEK, Küpper NJ, Filatenkov A, Linderman JA, Hadeiba H, Negrin RS, Shizuru JA. Blood Stem Cell Activity Is Arrested by Th1-Mediated Injury Preventing Engraftment following Nonmyeloablative Conditioning. THE JOURNAL OF IMMUNOLOGY 2016; 197:4151-4162. [PMID: 27815446 DOI: 10.4049/jimmunol.1500715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/12/2016] [Indexed: 11/19/2022]
Abstract
T cells are widely used to promote engraftment of hematopoietic stem cells (HSCs) during an allogeneic hematopoietic cell transplantation. Their role in overcoming barriers to HSC engraftment is thought to be particularly critical when patients receive reduced doses of preparative chemotherapy and/or radiation compared with standard transplantations. In this study, we sought to delineate the effects CD4+ cells on engraftment and blood formation in a model that simulates clinical hematopoietic cell transplantation by transplanting MHC-matched, minor histocompatibility-mismatched grafts composed of purified HSCs, HSCs plus bulk T cells, or HSCs plus T cell subsets into mice conditioned with low-dose irradiation. Grafts containing conventional CD4+ T cells caused marrow inflammation and inhibited HSC engraftment and blood formation. Posttransplantation, the marrows of HSCs plus CD4+ cell recipients contained IL-12-secreting CD11c+ cells and IFN-γ-expressing donor Th1 cells. In this setting, host HSCs arrested at the short-term stem cell stage and remained in the marrow in a quiescent cell cycling state (G0). As a consequence, donor HSCs failed to engraft and hematopoiesis was suppressed. Our data show that Th1 cells included in a hematopoietic allograft can negatively impact HSC activity, blood reconstitution, and engraftment of donor HSCs. This potential negative effect of donor T cells is not considered in clinical transplantation in which bulk T cells are transplanted. Our findings shed new light on the effects of CD4+ T cells on HSC biology and are applicable to other pathogenic states in which immune activation in the bone marrow occurs such as aplastic anemia and certain infectious conditions.
Collapse
Affiliation(s)
- Antonia M S Müller
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305; .,Department of Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Mareike Florek
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Holbrook E K Kohrt
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Natascha J Küpper
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Alexander Filatenkov
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Jessica A Linderman
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Husein Hadeiba
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Judith A Shizuru
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
7
|
A tribute to the life and career of Holbrook Kohrt. Ann Oncol 2016; 27:1183-4. [DOI: 10.1093/annonc/mdw190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Prevention of liver fibrosis by intrasplenic injection of high-density cultured bone marrow cells in a rat chronic liver injury model. PLoS One 2014; 9:e103603. [PMID: 25255097 PMCID: PMC4177810 DOI: 10.1371/journal.pone.0103603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/03/2014] [Indexed: 01/27/2023] Open
Abstract
Endothelial progenitor cells (EPCs) from bone marrow have proven to be functional for the prevention of liver fibrosis in chronic liver injury. However, expansion of EPCs in culture is complicated and expansive. Previously, we have established a simple method that could enrich and expand EPCs by simple seeding bone marrow cells in high density dots. The purpose of this study is to evaluate whether cells derived from high-density (HD) culture of rat bone marrow cells could prevent the liver fibrosis in a chronic liver injury rat model, induced by carbon tetrachloride (CCl4). Flow cytometric analysis showed that cells from HD culture were enriched for EPCs, expressing high levels of EPC markers. Intrasplenic injection of HD cultured bone marrow cells in the CCl4-induced liver injury rat showed an enhanced antifibrogenic effect compared with animals treated with cells from regular-density culture. The antifibrogenic effect was demonstrated by biochemical and histological analysis 4 weeks post-transplantation. Furthermore, cells from HD culture likely worked through increasing neovascularization, stimulating liver cell proliferation, and suppressing pro-fibrogenic factor expression. HD culture, which is a simple and cost-effective procedure, could potentially be used to expand bone marrow cells for the treatment of liver fibrosis.
Collapse
|
9
|
Logan AC, Weissman IL, Shizuru JA. The road to purified hematopoietic stem cell transplants is paved with antibodies. Curr Opin Immunol 2012; 24:640-8. [PMID: 22939368 PMCID: PMC5061494 DOI: 10.1016/j.coi.2012.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 12/24/2022]
Abstract
Hematopoietic progenitor cell replacement therapy remains a surprisingly unrefined process. In general, unmanipulated bone marrow or mobilized peripheral blood (MPB) grafts which carry potentially harmful passenger cells are administered after treating recipients with high-dose chemotherapy and/or radiotherapy to eradicate malignant disease, eliminate immunologic barriers to allogeneic cell engraftment, and to 'make space' for rare donor stem cells within the stem cell niche. The sequalae of such treatments are substantial, including direct organ toxicity and nonspecific inflammation that contribute to the development of graft-versus-host disease (GVHD) and poor immune reconstitution. Passenger tumor cells that contaminate autologous hematopoietic grafts may contribute to relapse post-transplant. Use of antibodies to rid grafts of unwanted cell populations, and to eliminate or minimize the need for nonspecifically cytotoxic therapies used to condition transplant recipients, will dramatically improve the safety profile of allogeneic and gene-modified autologous hematopoietic stem cell therapies.
Collapse
Affiliation(s)
- Aaron C. Logan
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Judith A. Shizuru
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|